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Figure 1: Summary. Given a set of heterogeneous input sequences that capture a common geographic area in
varying environmental conditions (e.g. weather, season, and lighting) with distinct dynamic objects (e.g. vehicles,
pedestrians, and cyclists), we optimize a single dynamic scene representation that permits rendering of arbitrary
viewpoints and scene configurations at interactive speeds.

Abstract

We present an efficient neural 3D scene representation for novel-view synthesis
(NVS) in large-scale, dynamic urban areas. Existing works are not well suited
for applications like mixed-reality or closed-loop simulation due to their limited
visual quality and non-interactive rendering speeds. Recently, rasterization-based
approaches have achieved high-quality NVS at impressive speeds. However, these
methods are limited to small-scale, homogeneous data, i.e. they cannot handle
severe appearance and geometry variations due to weather, season, and lighting
and do not scale to larger, dynamic areas with thousands of images. We propose
4DGF, a neural scene representation that scales to large-scale dynamic urban areas,
handles heterogeneous input data, and substantially improves rendering speeds. We
use 3D Gaussians as an efficient geometry scaffold while relying on neural fields
as a compact and flexible appearance model. We integrate scene dynamics via a
scene graph at global scale while modeling articulated motions on a local level
via deformations. This decomposed approach enables flexible scene composition
suitable for real-world applications. In experiments, we surpass the state-of-the-art
by over 3 dB in PSNR and more than 200× in rendering speed.

1 Introduction

The problem of synthesizing novel views from a set of images has received widespread attention
in recent years due to its importance for technologies like AR/VR and robotics. In particular,
obtaining interactive, high-quality renderings of large-scale, dynamic urban areas under varying
weather, lighting, and seasonal conditions is a key requirement for closed-loop robotic simulation
and immersive VR experiences. To achieve this goal, sensor-equipped vehicles act as a frequent data
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source that is becoming widely available in city-scale mapping and autonomous driving, creating the
possibility of building up-to-date digital twins of entire cities. However, modeling these scenarios is
extremely challenging as heterogeneous data sources have to be processed and combined: different
weather, lighting, seasons, and distinct dynamic and transient objects pose significant challenges to
the reconstruction and rendering of dynamic urban areas.

In recent years, neural radiance fields have shown great promise in achieving realistic novel view
synthesis of static [1, 2, 3] and dynamic scenes [4, 5, 6, 7]. While earlier methods were limited
to controlled environments, several recent works have explored large-scale, dynamic areas [8, 9,
10]. Among these, many works resort to removing dynamic regions and thus produce partial
reconstructions [9, 10, 11, 12, 13, 14]. In contrast, fewer works model scene dynamics [15, 16, 17].
These methods exhibit clear limitations, such as rendering speed which can be attributed to the high
cost of ray traversal in volumetric rendering.

Therefore, rasterization-based techniques [18, 19, 20, 11] have recently emerged as a viable alternative.
Most notably, Kerbl et al. [18] propose a scene representation based on 3D Gaussian primitives that
can be efficiently rendered with a tile-based rasterizer at a high visual quality. While demonstrating
impressive rendering speeds, it requires millions of Gaussian primitives with high-dimensional
spherical harmonics coefficients as color representation to achieve good view synthesis results. This
limits its applicability to large-scale urban areas due to high memory requirements. Furthermore,
due to its explicit color representation, it cannot model transient geometry and appearance variations
commonly encountered in city-scale mapping and autonomous driving use cases such as seasonal
and weather changes. Lastly, the approach is limited to static scenes which complicates representing
dynamic objects such as moving vehicles or pedestrians commonly encountered in urban areas.

To this end, we propose 4DGF, a method that takes a hybrid approach to modeling dynamic urban
areas. In particular, we use 3D Gaussian primitives as an efficient geometry scaffold. However, we do
not store appearance as a per-primitive attribute, thus avoiding more than 80% of its memory footprint.
Instead, we use fixed-size neural fields as a compact and flexible alternative. This allows us to model
drastically different appearances and transient geometry which is essential to reconstructing urban
areas from heterogeneous data. Finally, we model scene dynamics with a graph-based representation
that maps dynamic objects to canonical space for reconstruction. We model non-rigid deformations
in this canonical space with our neural fields to cope with articulated dynamic objects common in
urban areas such as pedestrians and cyclists. This decomposed approach further enables a flexible
scene composition suitable to downstream applications. The key contributions of this work are:

• We introduce 4DGF, a hybrid neural scene representation for dynamic urban areas that
leverages 3D Gaussians as an efficient geometry scaffold and neural fields as a compact and
flexible appearance representation.

• We use neural fields to incorporate scene-specific transient geometry and appearances
into the rendering process of 3D Gaussian splatting, overcoming its limitation to static,
homogeneous data sources while benefitting from its efficient rendering.

• We integrate scene dynamics via i) a graph-based representation, mapping dynamic objects
to canonical space, and ii) modeling non-rigid deformations in this canonical space. This
enables effective reconstruction of dynamic objects from in-the-wild captures.

We show that 4DGF effectively reconstructs large-scale, dynamic urban areas with over ten thousand
images, achieves state-of-the-art results across four dynamic outdoor benchmarks [21, 22, 17, 23],
and is more than 200× faster to render than the previous state-of-the-art.

2 Related Work

Dynamic scene representations. Scene representations are a pillar of computer vision and graphics
research [24]. Over decades, researchers have studied various static and dynamic scene representations
for numerous problem setups [25, 26, 27, 28, 29, 30, 31, 32, 1, 33, 34]. Recently, neural rendering [35]
has given rise to a new class of scene representations for photo-realistic image synthesis. While earlier
methods in this scope were limited to static scenes [2, 3, 36, 37, 38], dynamic scene representations
have emerged quickly [4]. These scene representations can be broadly classified into implicit and
explicit representations. Implicit representations [5, 6, 7, 39, 4, 40, 41, 16] encode the scene as a
parametric function modeled as neural network, while explicit representations [42, 43, 44, 45, 44] use
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a collection of low-level primitives. In both cases, scene dynamics are simulated as i) deformations
of a canonical volume [5, 6, 42, 39, 41], ii) particle-level motion such as scene flow [7, 4, 40, 16, 46],
or iii) rigid transformations of local geometric primitives [44]. On the contrary, traditional computer
graphics literature uses scene graphs to compose entities into complex scenes [47]. Therefore, another
area of research explores decomposing scenes into higher-level elements [31, 48, 32, 15, 49, 50, 17],
where entities and their spatial relations are expressed as a directed graph. This concept was recently
revisited for view synthesis [15, 17]. In this work, we take a hybrid approach that uses i) explicit
geometric primitives for fast rendering, ii) implicit neural fields to model appearance and geometry
variation, and iii) a scene graph to decompose individual dynamic and static components.

Efficient rendering and 3D Gaussian splatting. Aside from accuracy, the rendering speed of a scene
representation is equally important. While rendering speed highly depends on the representation
efficiency itself, it also varies with the form of rendering that is coupled with it to generate an
image [51]. Traditionally, neural radiance fields [3] use implicit functions and volumetric rendering
which produce accurate renderings but suffer from costly function evaluation and ray traversal. To
remedy these issues, many techniques for caching and efficient sampling [52, 53, 54, 36, 55, 17] have
been developed. However, these approaches often suffer from excessive GPU memory requirements
[52] and are still limited in rendering speed [54, 55, 17]. Therefore, researchers have opted to
exploit more efficient forms of rendering, baking neural scene representations into meshes for
efficient rasterization [19, 20, 11]. This area of research has recently been disrupted by 3D Gaussian
splatting [18], which i) represents the scene as a set of anisotropic 3D Gaussian primitives ii) uses
an efficient tile-based, differentiable rasterizer, and iii) enables effective optimization by adaptive
density control (ADC), which facilitates primitive growth and pruning. This led to a paradigm shift
from baking neural scene representations to a more streamlined approach.

However, the method of Kerbl. et al. [18] exhibits clear limitations, which has sparked a very active
field of research with many concurrent works [44, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]. For instance,
several works tackle dynamic scenes by adapting approaches described in the paragraph above [44,
66, 67, 68, 69, 70]. Another line of work focuses on modeling larger-scale scenes [65, 71, 72]. Lastly,
several concurrent works investigate the reconstruction of dynamic street scenes [73, 74, 75]. These
methods are generally limited to homogeneous data and in scale. In contrast, our method scales to tens
of thousands of images and effectively reconstructs large, dynamic urban areas from heterogeneous
data while also providing orders of magnitude faster rendering than traditional approaches.

Reconstructing urban areas. Dynamic urban areas are particularly challenging to reconstruct due
to the complexity of both the scenes and the capturing process. Hence, significant research efforts
have focused on adapting view synthesis approaches from controlled, small-scale environments to
larger, real-world scenes. In particular, researchers have investigated the use of depth priors from
e.g. LiDAR, providing additional information such as camera exposure, jointly optimizing camera
parameters, and developing specialized sky and light modeling approaches [8, 9, 10, 11, 12, 13, 14].
However, since scene dynamics are challenging to approach, many works simply remove dynamic
areas, providing only a partial reconstruction. A few works explicitly model scene dynamics, but
suffer from limitations in terms of scalability [15, 49, 45], accuracy [16], rendering speed [17, 76, 77],
or modeling of non-rigid and uncommon objects [15, 49, 45, 77, 17]. We introduce a mechanism to
handle transient geometry and varying appearance, improve rendering efficiency, and, inspired by
how global rigid object motion is handled in [17, 15, 49, 45, 77], propose an approach to model the
local articulated motion of non-rigid dynamic objects without using semantic priors. Consequently,
our work enables the reconstruction of much larger urban areas with a significantly higher number
and diversity of dynamic objects across multiple in-the-wild captures.

3 Method

3.1 Problem setup

We are given a set of heterogeneous sequences S that capture a common geographic area from a
moving vehicle. The vehicle is equipped with calibrated cameras mounted in a surround-view setup.
We denote with Cs the set of cameras of sequence s ∈ S and with C the total set of cameras, i.e.
C :=

⋃
s∈S Cs. For each camera c ∈ C, we assume to know the intrinsic Kc parameters and the

pose Pc ∈ SE(3), expressed in the ego-vehicle reference frame. Ego-vehicle poses Pts ∈ SE(3) are
provided for each sequence s ∈ S and timesteps t ∈ Ts and are expressed in the world reference
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Figure 2: Overview. To render an image of sequence s at time t, we first evaluate the scene graph G =
(V, E) which stores latent codes ω at its nodes V and coordinate transformations [R|t] at its edges E , i.e. the
configuration of the dynamic objects and the overall scene. We then use the scene configuration to determine
the active sets of 3D Gaussians G. The 3D Gaussians G and the latent codes ω serve as conditioning signals to
the neural fields ϕ and ψ, which output, for each 3D Gaussian gk ∈ G, an appearance conditioned color cs,tk ,
an opacity correction term νs,tk for static Gaussians modeling transient geometry, and a dynamic deformation
δtk for non-rigid dynamic 3D Gaussians modeling e.g. pedestrians. Finally, the retrieved information is used to
compose a set of 3D Gaussians that represent the dynamic scene at (s, t) from which we render the image.

frame that is shared across all sequences. Here, Ts denotes a set of timestamps relative to s. Indeed,
we assume that timestamps cannot be compared across sequences because we lack a mapping to a
global timeline, which is often the case with benchmark datasets due to privacy reasons. For each
sequence s ∈ S, camera c ∈ Cs and timestamp t ∈ Ts we have an RGB image It(s,c) ∈ [0, 1]H×W×3.
Each sequence has additionally an associated set of dynamic objects Os. Dynamic objects o ∈ Os are
associated with a 3D bounding box track that holds its (stationary) 3D object dimensions so ∈ R3

+

and poses {ξt0o , ..., ξtno } ⊂ SE(3) w.r.t. the ego-vehicle frame, where ti ∈ To ⊂ Ts. Our goal is to
estimate the plenoptic function for the shared geographic area spanned by the training sequences,
i.e. a function f(P, K, t, s), which outputs a rendered RGB image of size (H,W ) for a given camera
pose P with calibration K in the conditions of sequence s ∈ S at time t ∈ Ts.

3.2 Representation

We model a parameterized, plenoptic function fθ, which depends on the following components: i)
a scene graph G that provides the scene configuration and latent conditioning signals ω for each
sequence s, object o, and time t, ii) sets of 3D Gaussians that serve as a geometry scaffold for the
scene and objects, and iii) implicit neural fields that model appearance and modulate the geometry
scaffold according to the conditioning signals. See Figure 2 for an overview of our method.

Scene configuration. Inspired by [17], we factorize the scene with a graph representation G = (V, E),
holding latent conditioning signals at the nodes V and coordinate system transformations along the
edges E . The nodes V consist of a root node vr defining the global coordinate system, camera
nodes {vc}c∈C , and for each sequence s ∈ S, sequence nodes {vts}t∈Ts

and dynamic object nodes
{vo}o∈Os

. We associate latent vectors ω to sequence and object nodes representing local appearance
and geometry. Specifically, we model the time-varying sequence appearance and geometry via

ωts := [Asγ(t), Gsγ(t)] (1)

where As and Gs are appearance and geometry modulation matrices, respectively, and γ(·) is a 1D
basis function of sines and cosines with linearly increasing frequencies at log-scale [35]. Time t is
normalized to [−1, 1] via the maximum sequence length maxs∈S |Ts|. For objects, we use both an
object code and a time encoding

ωto := [ωo, γ(t)] . (2)
Nodes in the graph G are connected by oriented edges that define rigid transformations between the
canonical frames of the nodes. We have Pts for sequence to root edges, Pc for camera to sequence
edges, and ξto for object to sequence edges.

3D Gaussians. We represent the scene geometry with sets of anisotropic 3D Gaussians primitives
G = {Gr} ∪ {Go : o ∈ Os, s ∈ S}. Each 3D Gaussian primitive gk is parameterized by its mean
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µk, covariance matrix Σk, and a base opacity αk. The covariance matrix is decomposed into a rotation
matrix represented as a unit quaternion qk and a scaling vector ak ∈ R3

+. The geometry of gk is
represented by

gk(x) = exp

(
−1

2
[x− µk]

⊤Σ−1
k [x− µk]

)
. (3)

The common scene geometry scaffold is modeled with a single set of 3D Gaussians Gr, while
we have a separate set Go of 3D Gaussians for each dynamic object o. Indeed, scene geometry is
largely consistent across sequences while object geometries are distinct. The 3D Gaussians Gr are
represented in world frame, while each set Go is represented in a canonical, object-centric coordinate
frame, which can be mapped to the world frame by traversing G.

Differently from [18], our 3D Gaussians do not hold any appearance information, reducing the
memory footprint of the representation by more than 80%. Instead, we leverage neural fields to
regress a color information cs,tk and an updated opacity αs,tk for each sequence s ∈ S and time t ∈ Ts.
For 3D Gaussians in Gr modeling the scene scaffolding, we predict an opacity attenuation term
νs,tk that is used to model transient geometry by downscaling αk. Instead, for 3D Gaussians in Go
modeling objects the base opacity is left invariant. Hence

αs,tk :=

{
νs,tk αk if gk ∈ Gr
αk else.

(4)

The attenuation term enforces a high base opacity for every 3D Gaussian visible in at least one
sequence. Therefore, we can obtain pruning decisions in ADC by thresholding the base opacity αk,
which is directly accessible without computational overhead, without risking the removal of transient
geometry.

Furthermore, in the presence of non-rigid objects o, we predict deformation terms δtk ∈ R3 to the
position of 3D primitives in Go via the neural fields, for each time t ∈ To. In this case, the position
of the primitive in object-centric space at time t is given by

µtk := µk + δtk . (5)

Appearance and transient geometry. Given the scene graph G and the 3D Gaussians G, we use
two neural fields to decode the aforementioned parameters for each primitive. In particular, for 3D
Gaussians in Gr modeling the static scene, the neural field is denoted by ϕ and regresses the opacity
attenuation term νs,tk and a color cs,tk , given the 3D Gaussian primitive’s position µk, a viewing
direction d, the base opacity αk and the latent code of the node ωts, i.e.

(νs,tk , cs,tk ) := ϕ(µk,d, αk, ω
t
s) . (6)

where s ∈ S and t ∈ Ts. Note that since the opacity attenuation νs,tk contributes to modeling transient
geometry by removing parts of the scene encoded in the original set of Gaussians, it does not depend
on the viewing direction d.

For 3D Gaussians in Go modeling dynamic objects, the neural field is denoted by ψ and regresses a
color cs,tk . Besides the primitive’s position and viewing direction, we condition ψ on latent vectors
ωts and ωto to model both local object texture and global sequence appearance such as illumination.
Here, the sequence s is the one where o belongs to, i.e. satisfying o ∈ Os, and t ∈ To. Accordingly,
the color cs,tk for a 3D Gaussian in Go is given by

cs,tk := ψ(µk,d, ω
t
s, ω

t
o) . (7)

Both µk and d are expressed in the canonical, object-centric space of object o. Using neural fields
has three key advantages for our purpose. First, by sharing the parameters of ϕ and ψ across all 3D
Gaussians G, we achieve a significantly more compact representation than in [18] when scaling to
large-scale urban areas. Second, it allows us to model sequence-dependent appearance and transient
geometry which is fundamental to learning a scene representation from heterogeneous data. Third,
information sharing between nodes enables an interaction of sequence and object appearance.

However, querying a neural field is more complex than a spherical harmonics function as in [18].
Therefore, we i) use efficient hash-grid representations [53] to minimize query complexity and, ii)
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carefully optimize the rendering workflow to minimize the amount of queries. In particular, we
skip out-of-view 3D Gaussians and implement a vectorized query function to ψ that retrieves the
parameters of all relevant dynamic objects in parallel. We refer to Section 4.3 for a runtime analysis.

Non-rigid objects. Street scenes are occupied not only by rigidly moving vehicles but also by,
e.g., pedestrians and cyclists that move in a non-rigid manner. These pose a significant challenge
due to their unconstrained motion under limited visual coverage. Therefore, we take a decomposed
approach to modeling non-rigid objects. First, we represent the local articulated motion of non-rigid
objects like pedestrians as deformation in canonical space. We use deformation head χ that predicts a
local position offset δtk via

δtk := χ(fψ, γ(t)) (8)
given an intermediate feature representation fψ of ψ conditioned on µk and time t. We deform the
position of µk over time in canonical space as per Equation (5). Second, we use the scene graph G to
model the global rigid object motion, transforming the objects from object-centric to world space
with a rigid body transformation. We use a general design to cover a wide range of scenarios, such as
pedestrians holding a stroller or shopping bags, cyclists, and animals. See Figure 10 in our supp. mat.

Background modeling. To achieve a faithful rendering of far-away objects and the sky, it is
important to have a background model. Inspired by [54], where points are sampled along a ray at
increasing distance outside the scene bounds, we place 3D Gaussians on spheres around the scene
with radius r2i+1 for i ∈ {1, 2, 3} where r is half of the scene bound diameter. To avoid ambiguity
with foreground scene geometry and to increase efficiency, we remove all points that are i) below
the ground plane, ii) occluded by foreground scene points, or iii) outside of the view frustum of any
training view. To uniformly distribute points on each sphere, we utilize the Fibonacci sphere sampling
algorithm [78], which arranges points in a spiral pattern using a golden ratio-based formula. Even
though this sampling is not optimal, it serves as a faster approximation of the optimal sampling.

3.3 Composition and Rendering

Scene composition. To render our representation from the perspective of camera c at time t in
sequence s, we traverse the graph G to obtain the latent vector ωts and the latent vector ωto of each
visible object o ∈ Os, i.e. such that t ∈ To. Moreover, for each 3D Gaussian primitive gk inG, we use
the collected camera parameters, object scale, and pose information to determine the transformation
Πck mapping points from the primitive’s reference frame (e.g. world for Gr, object-space for Go)
to the image space of camera c. Opacities αs,tk are computed as per Equation (4), while colors cs,tk
are computed for primitives in Gr and in Go via Equations (6) and (7), respectively. For non-rigid
objects in Go, we compute the primitive positions µtk via Equation (5).

Rasterization. To render the scene from camera c, we follow [18] and splat the 3D Gaussians to the
image plane. Practically, for each primitive, we compute a 2D Gaussian kernel denoted by gck with
mean µck given by the projection of the primitive’s position to the image plane, i.e. µck := Πck(µk),
and with covariance given by Σck := JckΣkJ

c⊤
k , where Jck is the Jacobian of Πck evaluated at µk.

Finally, we apply traditional alpha compositing of the 3D Gaussians to render pixels p of camera c:

cs,t(p) :=

K∑
k=0

cs,tk wk

k−1∏
j=0

(1− wj) with wk := αs,tk gck(p) . (9)

3.4 Optimization

To optimize parameters θ of fθ, i.e. 3D Gaussian parameters µk, αk, qk and ak, sequence latent
vectors ωts and implicit neural fields ψ and ϕ, we use an end-to-end differentiable rendering pipeline.
We render both an RGB color image Î and a depth image D̂ and apply the following loss function:

L(Î, I, D̂,D) = λrgbLrgb(Î, I) + λssimLssim(Î, I) + λdepLdep(D̂,D) (10)

where Lrgb is the L1 norm, Lssim is the structural similarity index measure [79], and Ldep is the L2
norm. We use the posed training images and LiDAR measurements as the ground truth. If no depth
ground-truth is available, we drop the depth-related loss from L.

Pose optimization. Next to optimizing scene geometry, it is crucial to refine the pose parameters of
the reconstruction for in-the-wild scenarios since provided poses often have limited accuracy [10, 17].
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Method Residential Downtown Mean Render (s)PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Nerfacto + Emb. 19.83 0.637 0.562 18.05 0.655 0.625 18.94 0.646 0.594 11.5
Nerfacto + Emb. + Time 20.05 0.641 0.562 18.66 0.656 0.603 19.36 0.654 0.583 11.6
SUDS [16] 21.76 0.659 0.556 19.91 0.665 0.645 20.84 0.662 0.601 74.0
ML-NSG [17] 22.29 0.678 0.523 20.01 0.681 0.586 21.15 0.680 0.555 21.7
4DGF (Ours) 25.78 0.772 0.405 24.16 0.772 0.488 24.97 0.772 0.447 0.074

Table 1: Novel view synthesis on Argoverse 2 [81]. Our method improves substantially over the state-of-the-art
while being more than 200× faster to render at the original 1550× 2048 resolution.

Thus, we optimize the residuals ∆Pts ∈ se(3), ∆Pc ∈ se(3) and ∆ξto ∈ se(2) jointly with parameters
θ. We constrain object pose residuals to se(2) to incorporate the prior that objects move on the ground
plane and are oriented upright. See our supp. mat. for details on camera pose gradients.

Adaptive density control. To facilitate the growth and pruning of 3D Gaussian primitives, the
optimization of the parameters θ is interleaved by an ADC mechanism [18]. This mechanism is
essential to achieve photo-realistic rendering. However, it was not designed for training on tens of
thousands of images, and thus we develop a streamlined multi-GPU version of it. We accumulate
statistics across processes and, instead of running ADC on GPU 0 and synchronizing the results,
we synchronize only non-deterministic parts of ADC, i.e. the random samples drawn from the 3D
Gaussians that are being split. These are usually much fewer than the total number of 3D Gaussians
and thus avoids communication overhead. Next, the 3D Gaussian parameters are replaced by their
updated replicas. However, this will impair the synchronization of the gradients because, in PyTorch
DDP [80], parameters are only registered once at model initialization. Therefore, we re-initialize the
Reducer upon finishing the ADC mechanism in the low-level API provided in [80].

Furthermore, urban street scenes pose some unique challenges to ADC, such as a large variation
in scale, e.g. extreme close-ups of nearby cars mixed with far-away buildings and sky. This can
lead to blurry renderings for close-ups due to insufficient densification. We address this by using
maximum 2D screen size as a splitting criterion.1 In addition, ADC considers the world-space scale
ak of a 3D Gaussian to prune large primitives which hurts background regions far from the camera.
Hence, we first test if a 3D Gaussian is inside the scene bounds before pruning it according to ak.
Finally, the scale of urban areas leads to memory issues when the growth of 3D Gaussian primitives
is unconstrained. Therefore, we introduce a threshold that limits primitive growth while keeping
pruning in place. See our supp. mat. for more details and analysis.

4 Experiments

Datasets and metrics. We evaluate our approach across various dynamic outdoor benchmarks. First,
we utilize the recently proposed NVS benchmark [17] of Argoverse 2 [81] to compare against the
state-of-the-art in the multi-sequence scenario and to showcase the scalability of our method. Second,
we use the established Waymo Open [23], KITTI [21] and VKITTI2 [22] benchmarks to compare to
existing approaches in single-sequence scenarios. For Waymo, we use the dynamic-32 split of [76],
while for KITTI and VKITTI2 we follow [16, 17]. We apply commonly used metrics to measure
view synthesis quality: PSNR, SSIM [79], and LPIPS (AlexNet) [82].

Implementation details. We use λrgb := 0.8, λssim := 0.2 and λdepth := 0.05. We use the LiDAR
point clouds as initialization for the 3D Gaussians. We first filter the points of dynamic objects using
the 3D bounding box annotations and subsequently initialize the static scene with the remaining
points while using the filtered points to initialize each dynamic object. We use mean voxelization
with voxel size τ to remove redundant points. See our supp. mat. for more details.

4.1 Comparison to state-of-the-art

We compare with prior art across two experimental settings: single-sequence and multi-sequence.
In the former, we are given a single input sequence and aim to synthesize hold-out viewpoints from
that same sequence. In the latter, we are given multiple, heterogeneous input sequences and aim to
synthesize hold-out viewpoints across all of these sequences from a single model.

1Note that while this criterion was described in [18], it was not used in the experiments.
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Method
KITTI [75%] KITTI [50%] KITTI [25%]

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NSG [15] 21.53 0.673 0.254 21.26 0.659 0.266 20.00 0.632 0.281
SUDS [16] 22.77 0.797 0.171 23.12 0.821 0.135 20.76 0.747 0.198
MARS [83] 24.23 0.845 0.160 24.00 0.801 0.164 23.23 0.756 0.177
StreetGaussians [73] 25.79 0.844 0.081 25.52 0.841 0.084 24.53 0.824 0.090
ML-NSG [17] 28.38 0.907 0.052 27.51 0.898 0.055 26.51 0.887 0.060
4DGF (Ours) 31.34 0.945 0.026 30.55 0.931 0.028 29.08 0.908 0.036

Method
VKITTI2 [75%] VKITTI2 [50%] VKITTI2 [25%]

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NSG [15] 23.41 0.689 0.317 23.23 0.679 0.325 21.29 0.666 0.317
SUDS [16] 23.87 0.846 0.150 23.78 0.851 0.142 22.18 0.829 0.160
MARS [83] 29.79 0.917 0.088 29.63 0.916 0.087 27.01 0.887 0.104
StreetGaussians [73] 30.10 0.935 0.025 29.91 0.932 0.026 28.52 0.917 0.034
ML-NSG [17] 29.73 0.912 0.065 29.19 0.906 0.066 28.29 0.901 0.067
4DGF (Ours) 30.67 0.943 0.035 30.45 0.939 0.036 29.27 0.923 0.041

Table 2: Novel view synthesis on KITTI [21] and VKITTI2 [22]. Our method produces state-of-the-art results
across both benchmarks and at varying training view fractions.

Multi-sequence setting. In Table 1, we show results on the Argoverse 2 NVS benchmark proposed
in [17]. We compare to state-of-the-art approaches [16, 17] and the baselines introduced in [17]. The
results highlight that our approach scales well to large-scale dynamic urban scenes, outperforming
previous work in performance and rendering speed by a significant margin. Specifically, we outper-
form [17] by more than 3 dB in PSNR while rendering more than 200× faster. To examine these
results more closely, we show a qualitative comparison in Figure 3. We see that while SUDS [16]
struggles with dynamic objects and ML-NSG [17] produces blurry renderings, our work provides
sharp renderings and accurately represented dynamic objects, in both RGB color and depth images.
Overall, the results highlight that our model can faithfully represent heterogeneous data at high visual
quality in a single 3D representation while being much faster to render than previous work.

Method PSNR ↑ SSIM ↑ LPIPS ↓
SUDS† [16, 83] 23.12 0.821 0.135
MARS [83] 24.00 0.801 0.164
NeuRAD [77] 27.00 0.795 0.082
NeuRAD-2x [77] 27.91 0.822 0.066
4DGF (Ours) 30.01 0.913 0.052

Table 3: Novel view synthesis on
KITTI [21] on split from [77]. We follow
the experimental protocol in [77] to compare
to additional works. †baseline from [83].

Single-sequence setting. In Table 2, we show results
on the KITTI [21] and VKITTI [22] benchmarks at vary-
ing training view fractions, i.e. from dense towards sparse
view setting. Furthermore, we follow the experimental
protocol in [77] and show an additional comparison on the
KITTI dataset with a different data split that uses also ap-
prox. 50% of views for training in Table 3. Our approach
consistently outperforms previous work as well as con-
current 3D Gaussian-based approaches [73]. In Table 4,
we show results on Waymo Open [23], specifically on the
Dynamic-32 split proposed in [76]. We outperform previous work by a large margin while our
rendering speed is 700× faster than the best alternative. Note that our rendering speed increases
for smaller-scale scenes. Furthermore, we show that, contrary to previous approaches, our method
does not suffer from lower view quality in dynamic areas. This corroborates the strength of our
contributions, showing that our method is not only scalable to large-scale, heterogeneous street data
but also demonstrates superior performance in smaller-scale, homogeneous street data.

4.2 Ablation studies

Method Full Image Dynamic-Only Render (s)PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
D2NeRF [41] 24.17 0.642 21.44 0.494 -
HyperNeRF [39] 24.71 0.682 22.43 0.554 -
EmerNeRF [76] 27.62 0.792 24.18 0.670 18.9

4DGF (Ours) 29.04 0.881 29.34 0.884 0.025

Table 4: Novel view synthesis on Waymo Open [23]. We use
the Dynamic-32 split [76]. Contrary to prior work, we do not
exhibit lower view quality in dynamic areas.

We verify our design choices in both
multi- and single-sequence settings. For
a fair comparison, we set the global max-
imum of 3D Gaussians to 8 and 4.1 mil-
lion, respectively. We perform these
ablation studies on the residential split
of [17]. We use the full overlap in the
multi-sequence setting, while using a sin-
gle sequence of this split for the single-
sequence setting. In Table 5a, we verify the components that are not specific to the multi-sequence
setting. In particular, we show that our approach to modeling scene dynamics is highly effective,
evident from the large disparity in performance between the static and the dynamic variants. Next, we
show that modeling appearance with a neural field is on par with the proposed solution in [18], while
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Dynamic Neural Fields Background PSNR ↑ SSIM ↑ LPIPS ↓ GPU Mem.

- - - 24.31 0.814 0.287 8.6 GB
✓ - - 28.55 0.839 0.262 8.6 GB
✓ ✓ - 28.49 0.838 0.262 4.5 GB
✓ ✓ ✓ 28.81 0.845 0.260 4.5 GB

(a) Single-sequence.

ωs αs PSNR ↑ SSIM ↑ LPIPS ↓
- - 22.37 0.741 0.456
✓ - 25.13 0.767 0.412
✓ ✓ 25.78 0.772 0.405

(b) Multi-sequence.

Table 5: Ablation studies. We show that (a) our approaches to modeling scene dynamics and background
regions are effective and neural fields are on-par with spherical harmonics while more memory efficient to train,
and (b) using implicit fields for appearance and geometry is crucial for the multi-sequence setting. We control
for the maximum number of 3D Gaussians for fair comparison.

Dataset Argoverse 2 [81] Waymo Open [23]
Mean (ms) Percentage (%)Resolution 1550 × 2048 640 × 960

Avg. number of 3D Gaussians 8.02M 2.75M

1. Scene graph evaluation: retrieve ω, [R|t], 3D Gaussians at (s, t) 38.5 13.0 25.75 52.4
2. Scene composition: apply [R|t] to 3D Gaussians 2.3 1.5 1.90 3.9
3. 3D Gaussian projection 2.0 3.5 2.75 5.6
4. Query neural fields ϕ and ψ 9.5 3.6 6.55 13.3
5. Rasterization 21.3 3.0 12.15 24.8

Total 73.6 24.6 49.1 100

FPS 13.6 40.7 20.4 -

Table 6: Inference runtime analysis. We report the individual and average timings of our method’s components
on two datasets. Overall, scene graph evaluation (1.) and rasterization (5.), dominate the runtime. While total
runtime correlates with scene scale and image resolution, we achieve interactive frame rates on both datasets.

being more memory efficient. In particular, when modeling view-dependent color as a per-Gaussian
attribute as in [18] the model uses 8.6 GB of peak GPU memory during training, while it uses only 4.5
GB with fixed-size neural fields. Similarly, storing the parameters of the former takes 922 MB, while
the latter takes only 203 MB. Note that this disparity increases with the number of 3D Gaussians per
scene. Finally, we achieve the best performance when adding the generated 3D Gaussian background.

We now scrutinize components specific to multi-sequence data in Table 5b. We compare the view
synthesis performance of our model when i) not modeling sequence appearance or transient geometry,
ii) only modeling sequence appearance, iii) modeling both sequence appearance and transient
geometry. Naturally, we observe a large gap in performance between i) and ii), since the appearance
changes between sequences are drastic (see Figure 3). However, there is still a significant gap
between ii) and iii), demonstrating that modeling both sequence appearance and transient geometry is
important for view synthesis from heterogeneous data sources. Finally, we provide qualitative results
for non-rigid object view synthesis in Figure 4, and show that our approach can model articulate
motion without the use of domain priors. In our supp. mat., we provide further analysis.

4.3 Runtime analysis

We divide our algorithm into its main components and report the individual inference runtimes across
two datasets in Table 6. While the runtime clearly correlates with scene complexity and image
resolution, we observe that, on average, the runtime is dominated by scene graph evaluation and
rasterization, accounting for more than 75% of the total runtime. This owes to the complexity of
rasterizing millions of primitives across a high-resolution image which is computationally demanding
even for efficient rasterization algorithms [18], and handling hundreds to thousands of dynamic
objects across one or multiple dynamic captures, making the retrieval of the 3D Gaussians and latent
codes costly. In contrast, the queries to the neural fields account for only 13.3% of the average total
runtime, making it a viable alternative to the spherical harmonics function in [18]. Overall, our
method achieves interactive rendering speeds on both datasets and 20.4 FPS on average.

5 Conclusion

We presented 4DGF, a neural scene representation for dynamic urban areas. 4DGF models highly
dynamic, large-scale urban areas with 3D Gaussians as efficient geometry scaffold and compact but
flexible neural fields modeling large appearance and geometry variations across captures. We use a
scene graph to model dynamic object motion and flexibly compose the representation at arbitrary
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Figure 3: Qualitative results on Argoverse 2 [81]. Our method produces significantly sharper renderings both
in foreground dynamic and static background regions, with much fewer artifacts e.g. in areas with transient
geometry such as tree branches (left). Best viewed digitally.

Figure 4: Qualitative results on Waymo Open [23]. We show a sequence of evaluation views synthesized by
our model (top-left to bottom-right). As the woman (marked with a red box) gets out of the car and walks away,
we successfully model her articulated motion and changing body poses.

configurations and conditions. We jointly optimize the 3D Gaussians, the neural fields, and the scene
graph, showing state-of-the-art view synthesis quality and interactive rendering speeds.

Limitations and future work. While 4DGF improves novel view synthesis in dynamic urban
areas, the challenging nature of the problem leaves room for further exploration. Although we model
scene dynamics, appearance, and geometry variations, other factors influence image renderings in
real-world captures. First, in-the-wild captures often exhibit distortions caused by the physical image
formation process. Therefore, modeling phenomena like rolling shutter, white balance, motion and
defocus blur, or chromatic aberrations is necessary to avoid reconstruction artifacts. Second, the
assumption of a pinhole camera model in [18] persists in our work. Thus, our method falls short
of modeling more complex camera models like equirectangular cameras and other sensors such as
LiDAR, which may be limiting for certain capturing or simulation settings.

Broader impact. We expect our work to positively impact real-world use cases like robotic
simulation and mixed reality by improving the underlying technology. While we do not expect
malicious uses of our method, we note that an inaccurate simulation, i.e. a failure of our system,
could misrepresent the robotic system performance, possibly affecting real-world deployment.
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A Appendix

We provide further details on our method and the experimental setting, as well as additional experi-
mental results. We accompany this supplemental material with a demonstration video.

A.1 Demonstration Video

We showcase the robustness of our method by rendering a complete free-form trajectory across five
highly diverse sequences using the same model. Specifically, we chose the model trained on the
residential split in Argoverse 2 [81].

To obtain the trajectory, we interpolate keyframes selected throughout the total geographic area of
the residential split into a single, smooth trajectory that encompasses most of its spatial extent. We
also apply periodical translations and rotations to this trajectory to increase the variety of synthesized
viewpoints. We use a constant speed of 10 meters per second. We choose five different sequences in
the data split as the references, spanning sunny daylight conditions in summer to near sunset in winter.
Consequently, the appearance of the sequences changes drastically, e.g. from green, fully-leafed trees
to empty branches and snow or from bright sunlight to dark clouds. Furthermore, we render each
sequence with its unique set of dynamic objects, simulating various distinct traffic scenarios.

We show that our model is able to perform dynamic view synthesis in all of these conditions at high
quality, faithfully representing scene appearance, transient geometry, and dynamic objects in each
of the conditions. We highlight that this scenario is extremely difficult, as it requires the model to
generalize well beyond the training trajectories, represent totally different appearances and geometry,
and model hundreds of dynamic, fast-moving objects. Despite this fact, our method produces realistic
renderings, showing its potential for real-world applications.

A.2 Method

Neural field architectures. To maximize efficiency, we model ϕ and ψ with hash grids and tiny
MLPs [53]. The hash grids interpolate feature vectors at the nearest voxel vertices at multiple levels.
The feature vectors are obtained by indexing a feature table with a hash function. Both neural fields
are given input conditioning signals ωts ∈ R64 and ωto := [ωo ∈ N, γ(t) ∈ R13] and output a color c
among the other outputs defined in Section 3.2.

For ϕ, we use the 3D Gaussian mean µk to query the hash function at a certain 3D position yielding
an intermediate feature representation fϕ. We input the feature fϕ, the sequence latent code ωts, and
the base opacity αk into MLPα which outputs the opacity attenuation νs,tk . In a parallel branch, we
input fϕ, ωts, and the viewing direction d encoded by a spherical harmonics encoding of degree 4 into
the color head MLPc of ϕ that will define the final color of the 3D Gaussian.

For ψ, we use a 4D hash function while using only three dimensions for interpolation of the feature
vectors, effectively modeling a 4D hash grid. We use both the position µk and the object code ωo, i.e.
the object identity, as the fourth dimension of the hash grid to model an arbitrarily large number of
objects with a single hash table [16] without a linear increase in memory.

We input the intermediate feature fψ and the time encoding γ(t) into the deformation head MLPχ
which will output the non-rigid deformation of the object at time t, if applicable. In parallel, we
input ωts, fψ , γ(t), and the encoded relative viewing direction d into the color head MLPc to output
the final color. Note that relative viewing direction refers to the viewing direction in canonical,
object-centric space. As noted in Section 3.2, the MLP heads are shared across all objects.

We list a detailed overview of the architectures in Table 7. Note that, i) we decrease the hash table
size of ψ in single-sequence experiments to 215 as we find this to be sufficient, and ii) we use two
identical networks for ψ to separate rigid from non-rigid object instances.

Color prediction. The kernel function gk prevents a full saturation of the rendered color within the
support of the primitive as long as the primitive’s RGB color is bounded in the [0, 1] range. This can
be a problem for background and other uniformly textured regions that contain large 3D Gaussians,
specifically larger than a single pixel. Therefore, inspired by [84], we use a scaled sigmoid activation
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Hash Table MLPc MLPα MLPχ

Size # levels max. res. # layers # neurons # layers # neurons # layers # neurons

ϕ 219 16 2048 3 64 2 64 - -
ψ 217 8 1024 2 64 - - 2 64

Table 7: Neural field architectures. We provide the detailed parameter configurations of the neural fields we
use to represent scene and object appearances.

function for the color head MLPc:

f(x) :=
1

c
sigmoid(cx) (11)

where c := 0.9 is a constant scaling factor. This allows the color prediction to slightly exceed the
valid [0, 1] RGB color space. After alpha compositing, we clamp the rendered RGB to the valid [0, 1]
range following [18].

Time-dependent appearance. In addition to conditioning the object appearance on the sequence at
hand, we model the appearance of dynamic objects as a function of time by inputting γ(t) to MLPc

as described above. This way, our method adapts to changes in scene lighting that are more intricate
than the general scene appearance. This could be specular reflections, dynamic indicators such as
brake lights, or shadows cast onto the object as it moves through the environment.

Space contraction. We use space contraction to query unbounded 3D Gaussian locations from the
neural fields [54]. In particular, we use the following function for space contraction:

ζ(x) :=

{
x, ∥x∥ ≤ 1(
2− 1

∥x∥

)
x

∥x∥ , ∥x∥ > 1
. (12)

For ϕ, we use ∥ · ∥∞ as the norm to contract the space, while for ψ we use the Frobenius norm
∥ · ∥F . Note that we use space contraction for ψ because 3D Gaussians may extend beyond the 3D
object dimensions to represent e.g. shadows, however, most of the representation capacity should be
allocated to the object itself.

Continuous-time object poses. Both Argoverse 2 [81] and Waymo Open [23] provide precise timing
information for both the LiDAR pointclouds to which the 3D bounding boxes are synchronized, and
the camera images. Thus, we treat the dynamic object poses {ξt0o , ..., ξtno } as a continuous function
of time ξo(t), i.e. we interpolate between at ta ≤ t < tb to time t to compute ξo(t). This also allows
us to render videos at arbitrary frame rates with realistic, smooth object trajectories.

Anti-aliased rendering. Inspired by [59], we compensate for the screen space dilation introduced
in [18] when evaluating gck multiplying by a compensation factor:

gck(p) :=

√
|Σck|

|Σck + bI|
exp

(
−1

2
(p− µck)

⊤(Σck + bI)−1(p− µck)

)
, (13)

where b is chosen to cover a single pixel in screen space. This helps us to render views at different
sampling rates.

Gradients of camera parameters. Different from [18], we not only optimize the scene geometry
but also the parameters of the camera poses. This greatly improves view quality in scenarios with
imperfect camera calibration which is frequently the case in street scene datasets. In particular, we
approximate the gradients w.r.t. a camera pose [R|t] as:

∂L
∂t

≈ −
∑
k

∂L
∂µk

,
∂L
∂R

≈ −

[∑
k

∂L
∂µk

(µk − t)⊤

]
R . (14)

This formulation was concurrently proposed in [61], so we refer to them for a detailed derivation. We
obtain the gradients w.r.t. the vehicle poses ξ via automatic differentiation [80].

Adaptive density control. We elaborate on the modifications described in Section 3.4. Specifically,
we observe that the same 3D Gaussian will be rendered at varying but dominantly small scales. This
biases the distribution of positional gradients towards views where the object is relatively small in
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Vanilla ADC Modified ADC Ground Truth

Figure 5: Qualitative comparison of ADCs. We show an example of a close-up car and observe over-smoothing
when using vanilla ADC while our modified ADC leads to a sharper rendering result.

view space, leading to blurry renderings for close-ups due to insufficient densification. This motivates
us to use maximum 2D screen size as an additional splitting criterion.

In addition to the adjustments described above and inspired by recent findings [60], we adapt the
criterion of densification during ADC. In particular, Kerbl et al. [18] use the average absolute value of
positional gradient ∂L

∂µk
across multiple iterations. The positional gradient of a projected 3D Gaussian

is the sum of the positional gradients across the pixels it covers:

∂L
∂µk

=
∑
i

∂L
∂pi

∂pi
∂µk

. (15)

However, this criterion is suboptimal when a 3D Gaussian spans more than a single pixel, a scenario
that is particularly relevant for large-scale urban scenes. Specifically, since the positional gradient is
composed of a sum of per-pixel gradients, these can point in different directions and thus cancel each
other out. Therefore, we threshold ∑

i

∥∥∥∥ ∂L∂pi ∂pi∂µk

∥∥∥∥
1

(16)

as the criterion to drive densification decisions. This ensures that the overall magnitude of the
gradients is considered, independent of the direction. However, this leads to an increased expected
value, and therefore we increase the densification threshold to 0.0006.

Hyperparameters. We describe the hyperparameters used for our method, while training details
can be found in Appendix A.3. For ADC, we use an opacity threshold of 0.005 to cull transparent 3D
Gaussians. To maximize view quality, we do not cull 3D Gaussians after densification stops. We use
a near clip plane at a 1.0m distance, scaled by the global scene scaling factor. We set this threshold to
avoid numerical instability in the projection of 3D Gaussians. Indeed, the Jacobian Jck used in gck
scales inversely with the depth of the primitive, which causes numerical instabilities as the depth of a
3D Gaussian approaches zero. For γ(t), we use 6 frequencies to encode time t.

A.3 Experiments

Data preprocessing. For each dataset, we obtain the initialization of the 3D Gaussians from a
point cloud of the scene obtained from the provided LiDAR measurements. To avoid redundant
points slowing down training, we voxelize this initial pointcloud with voxel sizes of τ := 0.1m and
τ := 0.15m for the single- and multi-sequence experiments, respectively. We use the provided 3D
bounding box annotations to filter points belonging to dynamic objects, to initialize the 3D Gaussians
for each object, and as our object poses ξ.

For KITTI and VKITTI, we follow the established benchmark used in [16, 83, 17, 73]. We use the
full resolution 375 × 1242 images for training and evaluation and evaluate at varying training set
fractions. For Argoverse 2, we follow the experimental setup of [17]. In particular, we use the full
resolution 1550× 2080 images for training and evaluation and use all cameras of every 10th temporal
frame as the testing split. Note that we used the provided masks from [17] to mask out parts of the
ego-vehicle for both training and evaluation. For Waymo Open, we follow the experimental setup of
EmerNeRF [76]. We use the three front cameras (FRONT, FRONT_LEFT, FRONT_RIGHT) and resize
the images to 640×960 for both training and evaluation. We use only the first LiDAR return as initial
points for our reconstruction. We follow [76] and evaluate the cameras of every 10th temporal frame.
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Figure 6: Qualitative examples of transient geometry. We show four relevant examples from the residential
split of Argoverse 2 [81]. We observe a large disparity between our full model and ours without transient
geometry modeling (App. only). Transient objects like a banner (left bottom) are completely missing and there
are severe depth and color artifacts (e.g. trees). Best viewed digitally.

For separate evaluation of dynamic objects, we compute masks from the 2D ground truth camera
bounding boxes. We keep only objects exceeding a velocity of 1 m/s to filter for potential sensor and
annotation noise. We determine the velocities from the corresponding 3D bounding box annotations.
Note also that [76] do not undistort the input images, and we follow this setup for a fair comparison.

Implementation details. For Ldep, we use only the LiDAR measurements at the time of the camera
sensor recording as ground truth to ensure dynamic objects receive valid depth supervision. We
implement our method in PyTorch [80] with tools from nerfstudio [85]. For visualization of the depth,
we use the inferno_r colormap and linear scaling in the 1-82.5 meters range.

During training, we use the Adam optimizer [86] with β1 := 0.9, β2 := 0.999. We use separate
learning rates for each 3D Gaussian attribute, the neural fields, and the sequence latent codes ωts.
In particular, for means µ, we use an exponential decay learning rate schedule from 1.6 · 10−5 to
1.6 · 10−6, for opacity α, we use a learning rate of 5 · 10−2, for scales a and rotations q, we use a
learning rate of 10−3. The neural fields are trained with an exponential decay learning rate schedule
from 2.5 · 10−3 to 2.5 · 10−4. The sequence latent vectors ωts are optimized with a learning rate
of 5 · 10−4. We optimize camera and object pose parameters with an exponential decay learning
rate schedule from 10−5 to 10−6. To counter pose drift, we apply weight decay with a factor 10−2.
Note that we also optimize the height of object poses ξ. We follow previous works [87, 85, 17] and
optimize the evaluation camera poses when optimizing training poses to compensate for pose errors
introduced by drifting geometry through optimized training poses that may contaminate the view
synthesis quality measurement.

In our multi-sequence experiments in Table 1 and Table 5, we train our model on 8 NVIDIA A100
40GB GPUs for 125,000 steps, taking approximately 2.5 days. In our single-sequence experiments,
we train our model on a single RTX 4090 GPU for several hours. On Waymo Open, we train our
model for 60,000 steps while for KITTI and VKITTI2 we train the model for 30,000 steps. For
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Split 3D Box Type PSNR ↑ SSIM ↑ LPIPS ↓

Single Seq. GT 28.81 0.845 0.260
Prediction 28.52 0.842 0.264

Multi. Seq. GT 25.78 0.772 0.405
Prediction 25.67 0.772 0.409

(a) Ablation on 3D bounding boxes. We use 3D box annota-
tions and predictions from an off-the-shelf 3D tracker.

MLPχ
Full Image Dynamic-Only

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
- 29.52 0.891 30.08 0.895
✓ 29.60 0.892 30.15 0.896

(b) Ablation on deformation head χ. We
compare results with and without modeling
non-rigid motion as deformations.

Table 8: Addtional ablation studies. In (a) we show results on a single sequence of the residential area in our
benchmark and the full residential area. In (b) we use a subset of the Dynamic-32 split from [76], i.e. the 12
sequences with the highest number of non-rigid objects.

Figure 7: Runtime comparison of neural fields
vs. spherical harmonics. We compare the runtime
of querying neural fields ϕ and ψ to a spherical
harmonics function of degree 3. We report time-
per-query in nanoseconds.

Figure 8: Histogram of mean 3D Gaussian scales.
We use our model trained on Argoverse 2 (residen-
tial split). Both axes are in logarithmic scale. The
vast majority of 3D Gaussians have a small scale,
while there are a few outliers with huge scales. The
scene is approximately within [-1, 1].

our single-sequence experiments in Table 5 we use a schedule of 100,000 steps. We chose a longer
schedule for Waymo Open and Argoverse 2 since the scenes are more complex and contain about
5− 10× as many images as the sequences in KITTI and VKITTI2.

We linearly scale the number warm-up steps, the steps per ADC, and the maximum step to invoke
ADC with the number of training steps. For multi-GPU training, we reduce these parameters linearly
with the number of GPUs. However, we observed that scaling the learning rates linearly does perform
subpar to the initial learning rates in the multi-GPU setup, and therefore we keep the learning rates
the same across all experiments.

Additional ablation studies. In Table 8a, we show that while our approach benefits from high-
quality 3D bounding boxes, it is robust to noise and achieves a high view synthesis quality even with
noisy predictions acquired from a 3D tracking algorithm [88]. In Table 8b, we demonstrate that the
deformation head yields a small, albeit noticeable improvement in quantitative rendering results. This
corroborates the utility of deformation head χ beyond the qualitative examples shown in Figures 4
and 10. Note that the threshold to distinguish between dynamic and static areas is 1m/s following [76]
so that some instances like slow-moving pedestrians will be classified as static. Also, since non-rigid
entities usually cover only a small portion of the scene, expected improvements are inherently small.

Mod. ADC PSNR ↑ SSIM ↑ LPIPS ↓ Num. Total Num. Obj.

- 28.60 0.834 0.270 3.72M 314K
✓ 28.81 0.845 0.260 4.1M 611K

Table 9: Ablation study on ADC. We compare the performance of
vanilla ADC to our modified variant in the single-sequence setting.

In Table 9, we show that our modi-
fied ADC increases view quality in
general, and perceptual quality in par-
ticular as it avoids blurry close-up ren-
derings. Note that our ADC leads to
roughly twice the number of 3D Gaus-
sians belonging to objects compared
to vanilla ADC, thus avoiding insufficient densification. We also show a qualitative example in
Figure 5, illustrating this effect. The close-up car rendering is significantly sharper using the modified
ADC. Note that for both variants, we use the absolute gradient criterion (see Appendix A.2) for a fair
comparison.
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Additional runtime and model analysis. In Figure 7, we provide a comparison in terms of
time per query of neural fields of different sizes (equivalent to the sizes of our ϕ and ψ) versus
querying a spherical harmonics function of degree 3 as used in 3DGS [18]. We observe that the SH
function is approx. 6 to 8× faster to evaluate than the neural fields. However, we show that this
does not lead to a critical increase in overall runtime in Table 6. Additionally, we note that the SH
function is limited in representation capacity: It is not capable of handling varying appearance across
input sequences (weather, time of day, season), transient geometry (construction sites, tree leaves),
articulated motion of dynamic objects (pedestrians, cyclists), and large-scale scenes with several
millions of 3D Gaussians due to memory constraints. Thus, we emphasize that the use of neural
fields does not merely improve memory footprint, but enables applications that 3DGS [18] is not
capable of modeling.

In Figure 8, provide an analysis on the distribution of 3D Gaussian scales across a large-scale urban
scene reconstruction. We notice that while the vast majority of 3D Gaussians is small (< 0.001 mean
scale), there is a small number of very large 3D Gaussians (> 1.0 mean scale) compared to the scene
bounds that are approximately within [-1.0, 1.0]. This can lead to fog-like artifacts in free-viewpoint
renderings. We note that this can be mitigated using a regularization term on the 3D Gaussian scales,
however, we did not observe an quantitative improvement in view synthesis metrics and thus we did
not include it in the experiments.

Qualitative results. We provide an additional qualitative comparison of the variants iii) and ii)
introduced in Section 4.2, i.e. our model with and without transient geometry modeling. In Figure 6,
we show multiple examples confirming that iii) indeed models transient geometry such as tree leaves
or temporary advertisement banners (bottom left), and effectively mitigates the severe artifacts present
in the RGB renderings of ii). Furthermore, the depth maps show that iii) faithfully represents the true
geometry, while ii) lacks geometric variability across sequences.

In addition, we show qualitative comparisons to the state-of-the-art in Figure 9. Our method continues
to produce sharper renderings than the previous best-performing method [17], while also handling
articulated objects such as pedestrians which are missing in the reconstruction of previous works
(bottom two rows). Finally, we show another temporal sequence of evaluation frames in Figure 10.
Our method handles unconstrained motions and can also reconstruct more complicated scenarios
such as a pedestrian carrying a stroller (right), or a grocery bag (left).
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Figure 9: Additional qualitative results on Argoverse 2 [81]. We show four examples where the upper two are
from the residential area and the lower two are from the downtown area.
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Figure 10: Additional qualitative results on Waymo Open [23]. We show a sequence of evaluation views
synthesized by our model (top to bottom). We see two pedestrians on the left and right being faithfully modeled
across varying body poses while also carrying objects such as a stroller (right) or a shopping bag (left).

22



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the tackled problem, the technical gap in existing work,
describe our contributions, and outline our experimental results. These claims are in line
with our experimental results presented.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We discuss the limitations of our method in the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
Justification: Our paper presents a new system for novel view synthesis and thus relies on
experimental validation of our claims.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide extensive implementation details, the hyperparameters, training
details of our method, as well as data preprocessing and evaluation protocols in the technical
appendix.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We released the full source code for reproducing our experiments. All datasets
used are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See above, we provide all details on data preprocessing, evaluation splits, and
others.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Not feasible with the limited computational budget.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the number and type of GPUs as well as the wall clock time to run
the experiments.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We provide details for reproducing results, we respect all data privacy regula-
tions, do not conduct research involving human subjects and discuss the broader impact of
our work in our paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss this throughout the paper and dedicate a paragraph in the conclusion
to it.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The datasets and benchmarks we use are properly licensed and not scraped but
collected by the authors. The datasets respect privacy regulations. Our method does not use
data-driven priors derived from, e.g., LLMs.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the papers of each benchmark when using any assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets in our paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not conduct research involving human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: See above.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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