Abstract

We propose dissonance detection, the task of detecting conflicting stance between two input statements. Computational models for stance detection have typically been trained for a given target topic (e.g., gun control). In this paper, we aim for building a computational model for dissonance detection without using training data from the topic of test data. We first build a large-scale dataset of topic-controlled arguments from two sources: (i) an online debate platform, consisting of 15k pairs of statements with support, attack, or no relation from 20 diverse topics, and (ii) Twitter, consisting of 5k pairs of statements from 5 topics. We then evaluate a BERT-based dissonance detection model on this dataset in a topic-controlled manner. Our experiments suggest that dissonance detection models learn the topic-independent patterns of language for detecting dissonance and generalize largely to other arguments in unseen topics.

1 Introduction

It has been suggested that the main point of human reasoning is to support stance argumentation (Mercier and Sperber, 2011). Techniques to better capture stance and argumentation have wide ranging applications from an educational strategy for facilitating learning (Schwarz and Asterhan, 2010; Scheuer et al., 2010) to tracking political opinions (Thomas et al., 2006).

We propose the task of topic-independent dissonance detection. Given two statements s_1, s_2 under topic t, the task is to classify them into either CONSONANCE if the stance suggested by s_1 towards t is the same as that by s_2, DISSONANCE if the stance suggested by s_1 towards t is the opposite to that by s_2, or NEITHER relation otherwise (e.g. “Vaping is injurious to health”—“Health problems tend to be caused from unregulated vaping products” classified into DISSONANCE).

We view topic-independent dissonance detection as an expansion of traditional stance detection (Küçük and Can, 2020), which is typically modeled as a single document (topic-dependent) classification task, whereby models are trained for each potential target topic (e.g. gun control, abortion, etc.) (Hasan and Ng, 2013; Mohammad et al., 2016). In this way, models can learn key content that is indicative of stance for the given target topic. However, such an approach can only be applied to topics that are pre-specified and which training data is available, and yet one can express stance on endless topics — local, situational, or new — for which training data is not available.

Here, we thus propose a computational model for dissonance detection in a topic-independent manner. Instead of training a model with examples specific to the target topic, we attempt to train a model that can generally detect when two statements are in opposition, agreement, or neither. We contribute: (1) a proposed generalization of the stance detection task into topic-independent dissonance detection, (2) transformer language-model based dissonance detection models (§4), and (3) evaluation for topic-generalizability of our models and traditional stance models (§5), demonstrating that our dissonance models trained on datasets with completely different topics from test data do not experience a significant performance degradation from those trained with-in topic datasets (while the same is not true of traditional stance models). We also modify and repurpose two dissonance detection corpora derived from an online debate forum and Twitter in a semi-automatic manner (§3).

2 Related work

Our task is a generalization of stance detection, the automatic classification of the stance expressed by a piece of text, towards a target, into either: Favor, Against, Neither. The input to such a task is a target domain (e.g. Legalization of Abortion), and a
piece of text or a statement to infer the stance of the author/speaker from (Kuçük and Can, 2020). Some recent work has focused on cross-target stance classification (we focus, rather, on topic independent stance), which is similar to our work in the sense that it explores the generalizability of stance to unseen targets (Xu et al., 2018; Kaushal et al., 2021). Similar to our experiments, Stab et al. (2018) collect a corpus of arguments over a smaller 8 topics to investigate the topic-generalizability of stance detection models.

Although we are not identifying a direct semantic relation between statements, our task is also similar to a broad range of NLP tasks seeking to identify some type of relation between spans of text. Notable instantiations of this problem include Discourse Relation Identification (Prasad et al., 2008; Bosc et al., 2016), Semantic Textual Similarity (Cer et al., 2017), Textual Entailment Task (Bowman et al., 2015; Williams et al., 2018) and argumentative relation prediction (Cocarascu and Toni, 2017). However, few studies investigate the topic-generalizability of models.\(^1\)

Our work is particularly pertinent to the argument mining community, where most existing work focuses on argument mining at the discourse level or long-form texts for a limited number of targets or topics (Menini and Tonelli, 2016; Menini et al., 2018). Some work has sought to annotate and classify discourse arguments in tweets that support or attack each other (Bosc et al., 2016), but focused on argumentation-level support and attack, as opposed to a generalized, topic-level approach to identifying support or attack in the text.

3 Data collection

To build topic-generalizable dissonance detection models, we create two corpora of arguments annotated with topic and consonance/dissonance relations from existing resources: (i) KIALO (§3.1), and (ii) SD16 (§3.2). The summary statistics of each corpus is shown in Table 1.

3.1 KIALO: arguments from debate forum

To obtain clean, topic-diverse arguments, we extract arguments from Kialo.\(^2\) Kialo is one of the popular online debate platforms where people debate on claims. The arguments in Kialo are tree-structured: given a topic (i.e. a thesis topic, or a starting statement which is being debated upon, such as *Should vaping be banned?*), the users can add claims, i.e. supporting and opposing statements as pros and cons for the topic, and then the other users can add more claims as pros and cons arguments for each claim.

Our goal is to collect arguments with diverse topics but to keep a reasonable amount of arguments per topic. For the purpose of our experiments, we also want to have the same number of arguments per topic. To this end, first, we manually choose mutually exclusive 57 topics. We then choose 20 topics with most frequent claims, and then extract pairs of arguments in a parent-child relationship.

Finally, we label the claim-pro statement pairs as CONSONANCE (e.g. for the topic *Vaping should be banned: Vaping is injurious to health.—There is a public health crisis brought on by vaping in the USA.*), and the claim-con statement pairs as DISSONANCE (e.g. for the topic *Is Gender a Social Construct?: Gender roles are natural. Gender theory is just a dangerous invention that denies the “order of creation”.—Gender is a social construct, but that doesn’t mean it’s an invention.*).

To ensure that the absence of a relation between any two unrelated statements is also captured by dissonance detection models, we artificially created pairs of claims randomly chosen across topics and labeled them as NEITHER.

3.2 SD16: arguments from Tweets

To create the topic-annotated corpus of arguments, we also use the dataset of stance detection. We use the dataset from *SemEval 2016 Task 6: Detecting Stance in Tweets (Mohammad et al., 2016).*\(^3\) In the original task, the Task A dataset has five topics such as atheism, legalization of abortion, climate change

<table>
<thead>
<tr>
<th>Dataset</th>
<th># topics</th>
<th># statement pairs</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIALO</td>
<td>20</td>
<td>15,300 (5,100 / 5,100 / 5,100)</td>
<td>Debate forum</td>
</tr>
<tr>
<td>SD16</td>
<td>5</td>
<td>8,051 (2,683 / 2,656 / 2,702)</td>
<td>Tweets</td>
</tr>
</tbody>
</table>

Table 1: Summary of the constructed dataset. The numbers in the parenthesis indicates the instances of CONSONANCE, DISSONANCE, and NEITHER, respectively.

\(^1\)a notable exception being Williams et al. (2018) who created a large-scale corpus of textual entailment from diverse sources of texts including government websites and telephone conversations, and analyzed the domain-generalizability of textual entailment models. However, dissonance relations are fundamentally different from logical entailment relations.

\(^2\)https://www.kialo.com/

\(^3\)https://alt.qcri.org/semeval2016/task6/
is a real concern, feminist movement, Hillary Clinton. The Task B is used to measure performance on a set of tweets from the same pool of five topics, but including a new topic Donald Trump. There are 4,870 tweets annotated with stance (favor, against, or neither) (e.g. The pregnant are more than walking incubators, and have rights!, favor).

For our experiments, for each topic, we extract a pair of statements annotated with the same stance (favor or against) as CONSONANCE (e.g. for the topic Feminist Movement: If Feminism is not hypocritical fake "equality" then manure sprayed in pink is not fecal. #GamerGate #SemST BUT SHE RUNS IN HIGH HEELS #SemST), a pair of statements annotated with opposite stances as DISSONANCE (e.g. for the topic Atheism, Imagine how amazing the world would be without religion. No wars. No hate (religion wise). No extremist. #SemST—I bind and rebuke the angel of light in the name of Jesus -2 Cor. 11:14 #SemST), and a random pair of statements as NEITHER.

3.3 Spurious cues
Recent studies report that many NLP datasets has spurious cues unrelated to the task (Ribeiro et al., 2020), which would mislead the results of experiments. By definition, the consonance/dissonance relations signify the relation between the input statements, and this should require dissonance detection models to analyze a pair of statements. We thus make sure the failure of a dissonance detection model taking only a single statement. In this experiment, we use the BERT-based model as described in §4.2. Ideally, we expect an accuracy similar to random prediction (33.3% on both datasets).

Our experiments show that the BERT-based model achieves an accuracy of 43.0% on KIALO and 41.2% on SD16, which are only slightly better than the random performance. This indicates that the constructed dataset rarely contains spurious cues for dissonance detection.

4 Models
4.1 Baseline model
Given a pair of statements s_1, s_2, we create a sentence representation s_1, s_2 by averaging word embeddings. We then feed it into a three-way linear classifier to predict consonance/dissonance relations:

$$y = W \cdot [s_1 \odot s_2; \text{abs}(s_1 - s_2)] + b,$$

where $W \in \mathbb{R}^{3 \times 2d}$, $b \in \mathbb{R}^{3}$ are the model parameters learned from the dataset, d is the dimension of word embeddings, and \odot is element-wise multiplication. Henceforth, we call it WordEmbAvg.

4.2 BERT-based model
We use RoBERTa-base (Liu et al., 2019) to obtain a representation of input statement pair. Given a pair of statements s_1, s_2, the input to the model is of the following form:

$$[\text{CLS}] s_1 \ [\text{SEP}] s_2 \ [\text{SEP}]$$

We then take the contextualized word embedding of [CLS] in the final layer and feed it into the same three-way non-linear classifier as (Devlin et al., 2019).

5 Experiments
5.1 Setup
5.1.1 Setting
To explore the generalizability of the dissonance detection models to topics unseen in the training set, we explore two settings on KIALO and SD16.

Cross-topic To test the topic-generalizability of the dissonance detection models, we first split each dataset into 5 folds based on the topic of statement pairs and conduct cross validation. For KIALO, each fold has 16 training topics and 4 test topics, where each topic has 765 corresponding statement pairs. For SD16, each fold has 4 training topics and 2 test topics (the topic Donald Trump is always used in the test set, similar to the SemEval 2016 Task-6 dataset). The original dataset has a variable number of tweets, and thus a variable amount of potential training data, per topic. To maintain the distribution in the training and test set, we set training set size to 5,175 statement pairs from all topics.

In-topic To estimate the upper bound performance of dissonance detection models, we allow the dissonance detection models to learn clues for dissonance detection from the same-topic arguments (RoBERTa (In-T)). In this setting, we conduct five-fold cross-validation where the split is purely based on instance-level (not topic-based).

5.1.2 Models
For the word-average model (§4.1), we use GloVe (Pennington et al., 2014)-pretrained 300 di-
Table 2: Performance of dissonance detection task in cross-topic settings. RoBERTa outperforms baseline models and performs as well as RoBERTa trained in the in-topic setting (i.e. upper bound performance), indicating that cross-topic dissonance detection is successful.†: The majority baseline has two non-zero F1s because we report an average F1 across five folds, where the majority class is different.

<table>
<thead>
<tr>
<th>Model</th>
<th>Acc</th>
<th>F1-Co</th>
<th>F1-D</th>
<th>F1-NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIALO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>0.333</td>
<td>0.325</td>
<td>0.339</td>
<td>0.333</td>
</tr>
<tr>
<td>Majority†</td>
<td>0.334</td>
<td>0.207</td>
<td>0.323</td>
<td>0.000</td>
</tr>
<tr>
<td>WordEmbAvg</td>
<td>0.367</td>
<td>0.004</td>
<td>0.190</td>
<td>0.519</td>
</tr>
<tr>
<td>RoBERTa</td>
<td>0.786</td>
<td>0.870</td>
<td>0.730</td>
<td>0.760</td>
</tr>
<tr>
<td>RoBERTa (In-T)</td>
<td>0.835</td>
<td>0.930</td>
<td>0.780</td>
<td>0.790</td>
</tr>
<tr>
<td>SD16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>0.334</td>
<td>0.333</td>
<td>0.334</td>
<td>0.332</td>
</tr>
<tr>
<td>Majority</td>
<td>0.334</td>
<td>0.000</td>
<td>0.501</td>
<td>0.000</td>
</tr>
<tr>
<td>WordEmbAvg</td>
<td>0.350</td>
<td>0.171</td>
<td>0.310</td>
<td>0.457</td>
</tr>
<tr>
<td>RoBERTa</td>
<td>0.587</td>
<td>0.536</td>
<td>0.387</td>
<td>0.778</td>
</tr>
<tr>
<td>RoBERTa (In-T)</td>
<td>0.635</td>
<td>0.564</td>
<td>0.466</td>
<td>0.828</td>
</tr>
</tbody>
</table>

The results show that the dissonance detection model can be reasonably generalized to unseen topics even with the small number of training topics. This indicates that underlying patterns of arguments to signify the dissonance between them is somewhat limited and that the cross-topic model can successfully capture these signals.

6 Conclusions

We have proposed dissonance detection, a generalization of the stance detection task which seeks to detect conflicting stance between two input statements. To build a computational model for dissonance detection without using target test topic at all in the training data, we have built a large-scale dataset of topic-controlled arguments from an online debate platform and Twitter. Our experiments on these datasets have suggested that, while challenging, topic independent stance detection is possible. Our dissonance detection models demonstrated the ability to learn topic-independent patterns for detecting dissonance and generalize largely to other arguments in unseen topics.

Ethical Considerations

To create the dataset (§3), we use publicly available dataset on the web. We are restricted to only document-level information; No user-level information is used.

5 We used an implementation of huggingface’s transformer https://github.com/huggingface/transformers.
References

