
Multiplicative Position-aware Transformer Models for Language
Understanding

Anonymous ACL submission

Abstract

In order to utilize positional ordering infor-001
mation in transformer models, various flavors002
of absolute and relative position embeddings003
have been proposed. However, there is no com-004
prehensive comparison of position embedding005
methods in the literature. In this paper, we006
review existing position embedding methods007
and compare their accuracy on downstream008
NLP tasks, using our own implementations.009
We also propose a novel multiplicative embed-010
ding method which leads to superior accuracy011
when compared to existing methods. Finally,012
we show that our proposed embedding method,013
served as a drop-in replacement of the default014
absolute position embedding, can improve the015
RoBERTa-base and RoBERTa-large models on016
SQuAD1.1 and SQuAD2.0 datasets.017

1 Introduction018

The BERT (Devlin et al., 2018) and its variants019

RoBERTa (Liu et al., 2019), XLNet (Yang et al.,020

2019), ALBERT (Lan et al., 2019) and T5 (Raffel021

et al., 2019) have led to new state-of-the-art results022

for various NLP tasks. The backbone of BERT vari-023

ants is a transformer model Vaswani et al. (2017),024

which uses absolute position embedding to capture025

word position information. The relative position026

embedding was initially proposed in Shaw et al.027

(2018); Huang et al. (2018). The work of Shaw028

et al. (2018) was modified and adopted in (Dai029

et al., 2019; Yang et al., 2019; Raffel et al., 2019;030

Song et al., 2020). More recent work on improving031

position embeddings can be found at Huang et al.032

(2020); He et al. (2020); Ke et al. (2020); Dufter033

et al. (2021).034

Despite the proposal of various position embed-035

ding methods, a systematic comparison of these036

methods is missing in literature. Additionally, it is037

uncertain if simply replacing the default absolute038

position embedding with a relative position embed-039

ding method can improve an already strong model040

(e.g., RoBERTa). We attempt to answer these two 041

questions in this paper. Our major contributions 042

are three fold. 1) We implement1 existing major 043

position embedding methods including the abso- 044

lute position embedding (Devlin et al., 2018) and 045

existing relative position embeddings (Shaw et al., 046

2018; Raffel et al., 2019; Huang et al., 2020; He 047

et al., 2020; Ke et al., 2020). We compare these 048

methods in terms of their computational complex- 049

ity and accuracy on GLUE and SQuAD datasets. 050

2) Inspired by Huang et al. (2020), we propose 051

a novel multiplicative embedding method which 052

leads to superior accuracy. 3) We show that our 053

novel position embedding, when compared to the 054

default absolute position embedding, can improve 055

RoBERTa-base and RoBERTa-large models perfor- 056

mance on the SQuAD1.1 and SQuAD2.0 datasets. 057

2 Position Embedding Methods 058

The attention weight from position j to i, eij , is 059

defined in (Vaswani et al., 2017) as follows: 060

eij =
(xiW

Q)(xjW
K)T√

dz
, (1) 061

where i, j represent the positions which are in 062

the range of maximum sequence length, dx and 063

dz are model input and output dimensions (iden- 064

tical in our case). xi, xj ∈ Rdx . The scaling fac- 065

tor,
√
dz , is necessary to make the training stable. 066

WQ,WK ∈ Rdx×dz are parameter matrices. In 067

this section, we review the absolute position em- 068

bedding used in the original BERT paper and vari- 069

ous relative position embedding methods. Due to 070

space limit, we include all methods’ complexity 071

analysis at Appendix A. 072

2.1 Absolute position embedding in BERT 073

In the self-attention scheme, the absolute position 074

embedding is defined as follows. 075

xi = ti + si + wi, (2) 076

1We will release the code soon.

1



where xi, i ∈ {0, . . . , n − 1} is the input embed-077

ding to the first transformer layer and ti, si and078

wi ∈ Rdx are the token embeddings, segment em-079

beddings and absolute position embeddings, respec-080

tively. Segment embedding indicates if a token is081

sentence A or sentence B, which was originally082

introduced in BERT (Devlin et al., 2018) to com-083

pute the next sentence prediction (NSP) loss. We084

drop the segment embedding in this paper as recent085

work (Yang et al., 2019; Liu et al., 2019; Raffel086

et al., 2019) suggested that the NSP loss does not087

help improve accuracy.088

2.2 Shaw’s relative position embedding089

Edge representations, aij ∈ Rdz , are proposed in090

Shaw et al. (2018) to model how token ti attends091

to token tj . Equation (1) can be revised as follows092

to consider the distance between token i and token093

j when computing their attention.094

eij =
(xiW

Q)(xjW
K + aij)

T

√
dz

. (3)095

The authors also introduced a clipped value k096

which is the maximum relative position distance097

allowed. The authors hypothesized that the precise098

relative position information is not useful beyond a099

certain distance.100

2.3 Raffel’s relative position embedding101

In Text-to-Text Transfer Transformer (T5), Raffel102

et al. (2019) uses a simplified position embedding103

where each embedding is a scalar that is added104

to the corresponding logit used for computing the105

attention weights. Specifically, the attention weight106

is defined as107

eij =
(xiW

Q)(xjW
K)T + aij√

dz
. (4)108

where aij ∈ R are scalars used to represent how109

token i attends to j.110

2.4 Huang’s relative position embedding111

Four relative embedding methods have been pro-112

posed in (Huang et al., 2020). Two methods among113

those four, M2 and M4, are selected in compari-114

son. Similar to Raffel’s method, M2 uses scalars115

to model relative distance and thus have an identi-116

cal number of parameters. However, M2 performs117

multiplication instead of the addition, as in Raffel’s118

method, when computing the attention weights.119

Specifically, the attention weight defined in M2 120

can be written as follows. 121

eij =
(xiW

Q)(xjW
K)T × aij√

dz
. (5) 122

Huang’s M4 method extends Shaw’s method 123

to include the dot product of all possible pairs of 124

query, key, and relative position embeddings. 125

eij =
(xiW

Q) · (xjWK) + (xiW
Q) · aij + (xjW

K) · aij√
dz

.

(6) 126

Three factors in the numerator model the interac- 127

tion of query and key, query and relative position 128

embedding, and key and relative position embed- 129

ding, respectively. 130

2.5 DeBERTa relative position embedding 131

Recently, DeBERTa (He et al., 2020) proposed dis- 132

entangled attention mechanism, where each word 133

is represented using two vectors that encode its 134

content and position, respectively. 135

eij =
(xiW

Q) · (xjWK) + (xiW
Q) · (aijWR) + (xjW

K) · (aijWT )
√
3dz

,

(7) 136

where WR,W T ∈ Rdx×dz are additional lin- 137

ear projection matrices. DeBERTa’s embedding 138

method is similar to Huang’s M4, with the follow- 139

ing differences: 1) DeBERTa introduced projection 140

matrices WR and W T . 2) DeBERTa has differ- 141

ent relative embeddings across different heads, and 142

3) DeBERTa used a different scaling factor
√
3dz , 143

instead of the default
√
dz , in the denominator. 144

2.6 Transformer with untied positional 145

encoding (TUPE) 146

The attention weight definition in TUPE (Ke et al., 147

2020) , which consists of both absolute and relative 148

embeddings, is listed as follows. 149

eij =
(xiW

Q) · (xjWK) + (piU
Q) · (pjUK)√

2dz
+ aij , (8) 150

where pi and pj are the absolute position embed- 151

dings, and UQ, UK ∈ Rdz×dz are the linear pro- 152

jection matrices for absolute position embeddings. 153

aij is used to model relative position embeddings, 154

which is identical to Raffel’s relative embeddings. 155

Furthermore, the authors argued that the [CLS] to- 156

ken is a virtual token and it should not be applied 157

in the same way to the normal tokens: 158

eij =
(xiW

Q) · (xjWK)√
2dz

+ resetθ(
(piU

Q) · (pjUK)√
2dz

+ aij , i, j),

(9) 159

2



where resetθ is defined as the following, in which160

θ1 is used as the attention weight from [CLS] token161

to others, and θ2 is used from others to [CLS].162

resetθ(vij , i, j) =


vij i 6= 1, j 6= 1
θ1 i = 1
θ2 i 6= 1, j = 1

(10)163

2.7 Proposed M4 multiplicative (M4M)164

method165

The M2 method proposed in (Huang et al., 2020)166

essentially replaces the additive operator with the167

multiplicative operator in Raffel’s method, which168

improves downstream application accuracy as we169

will see in the experiment section 3.1. It is intuitive170

to apply the multiplicative operator to scale the con-171

tent attention with respect to the relative positional172

attention. Inspired by this intuition, we propose to173

replace the additive operator with multiplicative op-174

erator in M4 method (equation 6) to the following.175

176

eij =
(xiW

Q) · (xjWK)× (xiW
Q) · aij × (xjW

K) · aij√
dz

.

(11)177

We denote this method as M4 modified, M4M,178

which has exactly the same amount of parameters179

and computational complexity as M4.180

3 Experiments181

We start with a small-scale pretraining setup so we182

can afford to compare different embedding meth-183

ods. We use training data of BooksCorpus (Zhu184

et al., 2015) and English Wikipedia (Wikipedia185

contributors, 2004; Devlin et al., 2018) (15G in186

total), which is the dataset used to pretrain the orig-187

inal BERT model (Devlin et al., 2018). We use188

the RoBERTa-base setting and set the maximum189

input length to 512. The model updates use a batch190

size of 96 and Adam optimizer with learning rate191

starting at 1e-4. This batch size was chosen to192

fit as many samples as possible. We train each193

model on one AWS P4DN instance (each contain-194

ing 8 A100-SXM4-40GB GPUs) with maximum195

steps of 500000 (around 5.85 epochs). Each pre-196

training run takes approximately 30 hours. We197

evaluate on GLUE (Wang et al., 2018), SQuAD1.1198

and SQuAD2.0) (Rajpurkar et al., 2016). We show199

the main experiment results in this section, with200

additional experiments listed in Appendices.201

3.1 Position embedding methods comparison202

We train RoBERTa-base models with our imple-203

mentation of different position embedding methods204

and list the results on MNLI, SST-2 and SQuAD 205

1.1 datasets in Table 1. Absolute is the default 206

absolute position embedding which results in the 207

F1 score of 87.08 on the SQuAD1.1 dataset. The 208

lower F1 score when compared to the BERT (De- 209

vlin et al., 2018) baseline of 88.5 can be attributed 210

to under-training (6 epochs here vs 40 epochs in 211

BERT). Shaw’s method offers accuracy boost over 212

the absolute embedding on all three datasets. For 213

example, it improves the F1 from 87.08 to 88.62 214

on SQuAD1.1 dev dataset. M2 uses fewer param- 215

eters (12K) compared to Shaw’s method (785K) 216

and it results in a lower accuracy. M4 has the same 217

number of parameters as Shaw’s method. It outper- 218

forms Shaw’s method on MNLI and SQuAD1.1 but 219

underperforms on the SST-2 dataset. DeBERTa has 220

mixed result when compared to M4. The proposed 221

M4M method leads to accuracy improvement for 222

all three datasets when compared to M4. Specifi- 223

cally, it achieves the highest accuracy (91.62) on 224

the SST-2 dataset and F1 score (89.45) on the 225

SQuAD1.1 among all methods.

Model MNLI-m SST-2 SQuAD1.1

Absolute 81.25 90.25 87.08
Shaw 82.88 91.28 88.62
M2 82.41 90.36 87.26
M4 83.05 91.05 89.36
DeBERTa 83.67 90.71 88.84
M4M 83.58 91.62 89.45

M4+Reset 82.30 91.39 88.43
ABS+M4M 83.19 91.16 88.68

Table 1: Accuracy of different position embeddings for
RoBERTa-base.

226
We also implemented Raffel’s method and ob- 227

served that the training loss of Raffel is similar 228

to other methods. However, the fine-tuning di- 229

verges on GLUE and SQuAD1.1 datasets if the 230

same learning rate is used. TUPE (Ke et al., 2020) 231

also uses Raffel’s relative position embedding and 232

it suffers from the same issue. We thus exclude 233

Raffel and TUPE results in Table 1. In addition, we 234

implemented two hybrid methods: M4+Reset and 235

ABS+M4M. M4+Reset applies the reset equation 236

(10) to M4 method. We do not find the reset help 237

improve the accuracy. Similarly, the combination 238

of absolute and relative position (ABS+M4M) does 239

not lead to accuracy boost. 240

3.2 RoBERTa-base model with M4M method 241

We apply the best method, M4M, in a larger scale 242

training setup. We now use the training data of 243

3



Model MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k

RoBERTa 87.32/87.31 88.33 92.84 93.92 55.33 90.33 91.42 71.84
RoBERTa-ABS 87.35/86.99 88.29 92.78 93.92 52.77 89.07 89.67 72.92
RoBERTa-M4M 87.82/87.59 88.28 92.98 94.26 47.02 89.45 91.63 68.59

Table 2: GLUE accuracy for RoBERTa, RoBERTa-ABS, and RoBERTa-M4M models. The number below each task
denotes the number of training examples. F1 scores are reported for QQP and MRPC, Spearman correlations are
reported for STS-B, and accuracy scores are reported for other tasks.

BooksCorpus, English Wikipedia (16G) and Open-244

Web Text (Gokaslan and Cohen., 2019) (38G). The245

CommonCrawl News dataset (Nagel., 2016) (76G)246

and STORIES (Trinh and Le., 2018) (31G) datasets,247

which were used in RoBERTa pre-train, are not248

publicly available so were not included. We com-249

pare three models in our experiments, RoBERTa,250

RoBERTa-ABS, and RoBERTa-M4M. RoBERTa is251

the official RoBERTa model2. RoBERTa-ABS and252

RoBERTa-M4M are the models pre-trained with ab-253

solute position embedding and M4M respectively.254

Both are initialized from RoBERTa. We use a255

batch size of 480 and learning rate starting from256

1e-4. We train each model with maximum steps257

of 500000 (approximately 8.8 epochs). Each pre-258

training takes around 5 days.259

Following Devlin et al. (2018), we use a batch260

size of 32 and 3-epochs of fine-tuning for each261

dataset in GLUE. We report the best accuracy on262

the development dataset with learning rates 2e-5,263

3e-5 and 4e-5. Table 2 shows the results of GLUE264

datasets. As we use less data in pretraining (54G vs265

161G), RoBERT-ABS underperforms the official266

RoBERTa model on 6 out 8 datasets. RoBERTa-267

M4M, however, is able to match the performance268

of the official RoBERTa model. It outperforms269

RoBERTa on the MNLI, QNLI, SST-2 and MRPC270

datasets but underperforms on rest four datasets.271

For SQuAD1.1 and SQuAD2.0 datasets, Table 3272

shows that RoBERTa-ABS boosts RoBERTa per-273

formance slightly. RoBERTa-M4M results in an274

even greater accuracy boost. It leads to the high-275

est accuracies among three models on both the276

SQuAD1.1 and SQuAD2.0 datasets. Finally, we277

train a RoBERTa-M4M (denoted as RoBERTa-278

M4M (C4 en) in Table 3) on 800G C4-en dataset3.279

RoBERTa-M4M (C4 en) leads to additional ac-280

curacy gain when compared to RoBERTa-M4M.281

It reaches the F1 scores of 92.64 and 84.51 on282

2roberta-base downloaded from
https://github.com/huggingface/transformers.

3https://huggingface.co/datasets/allenai/c4/tree/main.

SQuAD1.1 and SQuAD2.0 datasets respectively. 283

Model SQuAD1.1 SQuAD2.0
EM F1 EM F1

RoBERTa 85.95 92.12 79.99 83.10
RoBERTa-ABS 86.10 92.31 80.67 83.69
RoBERTa-M4M 86.44 92.52 80.88 84.00

RoBERTa-M4M (C4 en) 86.54 92.64 81.65 84.51

Table 3: SQuAD1.1 and SQuAD2.0 accuracy for vari-
ous base models.

3.3 RoBERTa-large model with M4M method 284

Similar to Section 3.2, we now apply M4M method 285

to RoBERTa-large models. We use the training data 286

of BooksCorpus plus English Wikipedia (16G) and 287

OpenWeb Text (38G) to train a model denoted as 288

RoBERTa-M4M Large, which is initialized from 289

RoBERTa Large4. We use the batch size of 192, 290

learning rate starting from 1e-4, and maximum 291

steps of 500000. Table 4 shows that RoBERTa- 292

M4M Large can improve RoBERTa Large model. 293

Specifically, it improves from F1 score of 94.63 294

to 94.78 on SQuAD1.1 dataset, and from 87.62 to 295

88.34 on SQuAD2.0 dataset.

Model SQuAD1.1 SQuAD2.0
EM F1 EM F1

RoBERTa Large 89.13 94.63 84.66 87.62
RoBERTa-M4M Large 89.21 94.78 85.47 88.34

Table 4: SQuAD1.1 and SQuAD2.0 accuracy for
RoBERTa Large and RoBERTa-M4M Large models.

296

4 Conclusion 297

We compared existing position embedding meth- 298

ods. We proposed a novel multiplicative posi- 299

tion embedding method which can improve both 300

RoBERTa-base and RoBERTa-large models on 301

SQuAD1.1 and SQuAD2.0 datasets. 302

4roberta-large downloaded from
https://github.com/huggingface/transformers.

4



References303

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-304
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.305
Transformer-xl: Attentive language models beyond a306
fixed-length context. arXiv:1901.02860.307

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and308
Kristina Toutanova. 2018. Bert: Pre-training of deep309
bidirectional transformers for language understand-310
ing. arXiv:1810.04805.311

Philipp Dufter, Martin Schmitt, and Hinrich Schütze.312
2021. Position information in transformers: An313
overview. arXiv:2102.11090.314

Aaron Gokaslan and Vanya Co-315
hen. 2019. Openwebtext corpus..316
http://Skylion007.github.io/OpenWebTextCorpus/.317

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and318
Weizhu Chen. 2020. Deberta: Decoding-enhanced319
bert with disentangled attention. arXiv:2006.03654.320

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszko-321
reit, Noam Shazeer, Curtis Hawthorne, AndrewM-322
Dai, Matthew D Hoffman, and Douglas Eck. 2018.323
An improved relative self-attention mechanism for324
transformer with application to music generation.325
arXiv:1809.04281.326

Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xiang.327
2020. Improve transformer models with better rela-328
tive position embeddings. findings of EMNLP 2020,329
arXiv:2009.13658.330

Guolin Ke, Di He, and Tie-Yan Liu. 2020. Rethink-331
ing positional encoding in language pre-training.332
arXiv:2006.15595.333

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,334
Kevin Gimpel, Piyush Sharma, and Radu Soricut.335
2019. Albert: A lite bert for self-supervised learning336
of language representations. arXiv:1909.11942.337

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-338
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,339
Luke Zettlemoyer, and Veselin Stoyanov. 2019.340
Roberta: A robustly optimized bert pretraining ap-341
proach. arXiv:1907.11692.342

Sebastian Nagel. 2016. Cc-news.343
https://commoncrawl.org/the-data/get-started/.344

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine345
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,346
Wei Li, and Peter J. Liu. 2019. Exploring the limits347
of transfer learning with a unified text-to-text trans-348
former. arXiv:1910.10683.349

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and350
Percy Liang. 2016. Squad: 100,000+ questions for351
machine comprehension of text. Proceedings of the352
2016 Conference on Empirical Methods in Natural353
Language Processing.354

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswanii. 355
2018. Self-attention with relative position represen- 356
tations. arXiv:1803.02155. 357

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and 358
Tie-Yan Liu. 2020. Mpnet: Masked and per- 359
muted pre-training for language understanding. 360
arXiv:2004.09297. 361

Trieu H Trinh and Quoc V Le. 2018. A simple method 362
for commonsense reasoning. arXiv:1806.02847. 363

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 364
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 365
Kaiser, and Illia Polosukhin. 2017. Attention is all 366
you need. arXiv:1706.03762. 367

Alex Wang, Amanpreet Singh, Julian Michael, Felix 368
Hill, Omer Levy, and Samuel Bowman. 2018. A 369
multi-task benchmark and analysis platform for natu- 370
ral language understanding. 2018 EMNLP Workshop 371
BlackboxNLP: Analyzing and Interpreting Neural 372
Networks for NLP. 373

Wikipedia contributors. 2004. Plagiarism — Wikipedia, 374
the free encyclopedia. [Online; accessed 22-July- 375
2004]. 376

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car- 377
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019. 378
Xlnet: Generalized autoregressive pretraining for lan- 379
guage understanding. arXiv:1906.08237. 380

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut- 381
dinov, Raquel Urtasun, Antonio Torralba, and Sanja 382
Fidler. 2015. Aligning books and movies: Towards 383
story-like visual explanations by watching movies 384
and reading books. IEEE international conference 385
on computer vision. 386

A Appendix: Complexity Analysis 387

We analyze the storage complexity of various po- 388

sition embedding methods in this section. For a 389

transformer model withm layers, h attention heads 390

per layer, and maximum sequence length of n, ta- 391

ble 5 lists the parameter size for various position 392

embeddings and the runtime storage complexity. 393

In order to have sufficient expressive power, we 394

allow different embedding parameters at different 395

layers for all methods except absolute position em- 396

bedding5. For example, Shaw’s method introduces 397

the following parameters size: m(2n − 1)d/h = 398

12∗(2∗512−1)∗768/12 = 785K. It has runtime 399

storage complexity of O(mn2d/h). 400

All position embedding methods introduce a 401

small number of additional parameters to the BERT 402

model. The maximum parameter size is 834K from 403

DeBERTa. It is negligible when compared to the 404

5To be compatible to the original BERT implementation.

5

https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350
https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350
https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350


Method Parameters Parameter (K) Complexity
Absolute nd 393 O(nd)
Shaw m(2n− 1)d/h 785 O(mn2d/h)
Raffel m(2n− 1) 12 O(mn2)
M2 m(2n− 1) 12 O(mn2)
M4 m(2n− 1)d/h 785 O(mn2d/h)
DeBERTa m(2n− 1)d/h+m(d/h)2 834 O(mn2d/h)
TUPE mnd/h+m(d/h)2 +m(2n− 1) 454 O(mn2d/h)
M4M m(2n− 1)d/h 785 O(mn2d/h)

Table 5: Parameter sizes and runtime storage complexities of various position embedding methods.

number of parameters in RoBERTa-base (110M405

parameters). Other methods introduce even fewer406

parameters. For example, Raffel and M2 only have407

12K additional parameters. In terms of training408

and inference speed, all methods are similar to the409

absolute position embedding baseline. Note that410

since TUPE requires different treatment to [CLS]411

positions, the self-attention along batch dimension412

cannot be efficiently computed with broadcasting,413

thus slowing down the training speed.414

B Appendix: Unsuccessful baselines415

We first train a RoBERTa-base model without any416

position embedding information. Specifically, the417

input is the sum of the token id embedding and418

token type id embedding with no absolute position419

embedding. We find that the model pre-training420

does not converge. The training loss ended up421

being around 5.86 which does not result in good422

accuracy on downstream applications.423

We use the full-sentences setting in Liu et al.424

(2019). Each input is packed with full sentences425

sampled contiguously from one or more documents,426

such that the total length is at most 512 tokens.427

With the absolute position embedding, each token428

has a position in the range of 1 to 512. Due to sen-429

tence packing, the beginnings of sentences can be430

associated with any positions. While this absolute431

position embedding leads to a reasonable baseline432

as we will see in Section 3.1, we train a RoBERTa433

model with the real absolute positions. That is,434

each token is associated with its real position in435

the sentence which it belongs to. With this setup,436

the first token of a sentence always has the posi-437

tion of 1. We hypothesize that the real absolute438

position may be useful to capture certain syntactic439

information in model training. Surprisingly, we440

6Normally a RoBERTa-base model reaches the training
loss of 1.4.

find that the model pre-training does not converge; 441

the training loss remains as around 4.3 after the 442

pre-training. 443

C Appendix: The effect of scaling factor 444

In original transformer models, the scaling factor 445

of
√
dz was used in equation (1) to make training 446

stable. Different scaling factors have been intro- 447

duced in the self-attention equations, for example, 448√
3dz is used in equation (7) for DeBERTa and 449√
2dz is used in equation (9) for TUPE. The effect 450

of scaling has not been evaluated in any previous 451

study. In this section, We vary the scaling factors 452

to the M4 methods and report the downstream task 453

accuracy in Table 6. The results show that different 454

scaling factors do not make a significant accuracy 455

difference on the MNLI, SST-2 and SQuAD1.1 456

datasets. 457

Scaling Factor MNLI-m SST-2 SQuAD1.1

1 83.05 91.05 89.36
2 82.80 91.97 88.96
3 82.86 91.51 89.20
4 82.58 91.28 89.36
6 82.71 90.71 88.95
9 82.34 90.36 88.65

Table 6: Accuracy of M4 method with different scaling
factors.

D Appendix: The effect of sharing 458

parameters 459

In our implementation of various relative posi- 460

tion embedding methods, we share the parameters 461

across different heads for each layer. That is why 462

we see the term of d/h instead of d in the param- 463

eters column in Table 5 for Shaw, M4, DeBERTa, 464

TUPE and M4M methods. Some methods, for ex- 465

ample DeBERTa (He et al., 2020), allow different 466

relative embeddings across different heads. In this 467

6



section, we train two RoBERTa base models with468

the M4 method, one with parameter sharing and469

one without. Table 7 shows their accuracy on the470

MNLI, SST-2 and SQuAD1.1 datasets. As we can471

see, the parameter sharing performs better on two472

out three datasets.

Parameter Sharing MNLI-m SST-2 SQuAD1.1

Yes 83.05 91.05 89.36
No 82.88 91.17 88.50

Table 7: Accuracy of M4 method with and without
parameter sharing.

473

7


	Introduction
	Position Embedding Methods
	Absolute position embedding in BERT
	Shaw's relative position embedding
	Raffel's relative position embedding
	Huang's relative position embedding
	DeBERTa relative position embedding
	Transformer with untied positional encoding (TUPE)
	Proposed M4 multiplicative (M4M) method

	Experiments
	Position embedding methods comparison
	RoBERTa-base model with M4M method
	RoBERTa-large model with M4M method

	Conclusion
	Appendix: Complexity Analysis
	Appendix: Unsuccessful baselines
	Appendix: The effect of scaling factor
	Appendix: The effect of sharing parameters

