Multiplicative Position-aware Transformer Models for Language
Understanding

Anonymous ACL submission

Abstract

In order to utilize positional ordering infor-
mation in transformer models, various flavors
of absolute and relative position embeddings
have been proposed. However, there is no com-
prehensive comparison of position embedding
methods in the literature. In this paper, we
review existing position embedding methods
and compare their accuracy on downstream
NLP tasks, using our own implementations.
We also propose a novel multiplicative embed-
ding method which leads to superior accuracy
when compared to existing methods. Finally,
we show that our proposed embedding method,
served as a drop-in replacement of the default
absolute position embedding, can improve the
RoBERTa-base and RoBERTa-large models on
SQuADI1.1 and SQuAD?2.0 datasets.

1 Introduction

The BERT (Devlin et al., 2018) and its variants
RoBERTza (Liu et al., 2019), XLNet (Yang et al.,
2019), ALBERT (Lan et al., 2019) and T5 (Raffel
et al., 2019) have led to new state-of-the-art results
for various NLP tasks. The backbone of BERT vari-
ants is a transformer model Vaswani et al. (2017),
which uses absolute position embedding to capture
word position information. The relative position
embedding was initially proposed in Shaw et al.
(2018); Huang et al. (2018). The work of Shaw
et al. (2018) was modified and adopted in (Dai
et al., 2019; Yang et al., 2019; Raffel et al., 2019;
Song et al., 2020). More recent work on improving
position embeddings can be found at Huang et al.
(2020); He et al. (2020); Ke et al. (2020); Dufter
et al. (2021).

Despite the proposal of various position embed-
ding methods, a systematic comparison of these
methods is missing in literature. Additionally, it is
uncertain if simply replacing the default absolute
position embedding with a relative position embed-
ding method can improve an already strong model

(e.g., ROBERTa). We attempt to answer these two
questions in this paper. Our major contributions
are three fold. 1) We implement' existing major
position embedding methods including the abso-
lute position embedding (Devlin et al., 2018) and
existing relative position embeddings (Shaw et al.,
2018; Raffel et al., 2019; Huang et al., 2020; He
et al., 2020; Ke et al., 2020). We compare these
methods in terms of their computational complex-
ity and accuracy on GLUE and SQuAD datasets.
2) Inspired by Huang et al. (2020), we propose
a novel multiplicative embedding method which
leads to superior accuracy. 3) We show that our
novel position embedding, when compared to the
default absolute position embedding, can improve
RoBERTa-base and RoBERTa-large models perfor-
mance on the SQuUADI1.1 and SQuAD?2.0 datasets.

2 Position Embedding Methods

The attention weight from position j to i, e;j, is
defined in (Vaswani et al., 2017) as follows:

(i W) (2, W)
\/@)

where i, j represent the positions which are in
the range of maximum sequence length, d, and
d, are model input and output dimensions (iden-
tical in our case). ;,r; € R% . The scaling fac-
tor, v/d., is necessary to make the training stable.
We WK ¢ R¥>d: are parameter matrices. In
this section, we review the absolute position em-
bedding used in the original BERT paper and vari-
ous relative position embedding methods. Due to
space limit, we include all methods’ complexity
analysis at Appendix A.

ey

eij =

2.1 Absolute position embedding in BERT

In the self-attention scheme, the absolute position
embedding is defined as follows.

x; =t + 8 +w,)

"We will release the code soon.

where x;, i € {0,...,n — 1} is the input embed-
ding to the first transformer layer and ¢;, s; and
w; € R% are the token embeddings, segment em-
beddings and absolute position embeddings, respec-
tively. Segment embedding indicates if a token is
sentence A or sentence B, which was originally
introduced in BERT (Devlin et al., 2018) to com-
pute the next sentence prediction (NSP) loss. We
drop the segment embedding in this paper as recent
work (Yang et al., 2019; Liu et al., 2019; Raffel
et al., 2019) suggested that the NSP loss does not
help improve accuracy.

2.2 Shaw’s relative position embedding

Edge representations, a;; € R, are proposed in
Shaw et al. (2018) to model how token ¢; attends
to token ¢;. Equation (1) can be revised as follows
to consider the distance between token % and token
J when computing their attention.

(.TZWQ)(:L‘]WK + CLij)T

Vd,

The authors also introduced a clipped value k
which is the maximum relative position distance
allowed. The authors hypothesized that the precise
relative position information is not useful beyond a
certain distance.

3)

eij =

2.3 Raffel’s relative position embedding

In Text-to-Text Transfer Transformer (T5), Raffel
et al. (2019) uses a simplified position embedding
where each embedding is a scalar that is added
to the corresponding logit used for computing the
attention weights. Specifically, the attention weight
is defined as

(I'Z‘WQ)({E]‘WK)T + aij

Vd,

where a;; € R are scalars used to represent how
token ¢ attends to j.

C))

eij =

2.4 Huang’s relative position embedding

Four relative embedding methods have been pro-
posed in (Huang et al., 2020). Two methods among
those four, M2 and M4, are selected in compari-
son. Similar to Raffel’s method, M2 uses scalars
to model relative distance and thus have an identi-
cal number of parameters. However, M2 performs
multiplication instead of the addition, as in Raffel’s
method, when computing the attention weights.

Specifically, the attention weight defined in M2
can be written as follows.

e = (2 W) (2, W) x aij.
! V.
Huang’s M4 method extends Shaw’s method

to include the dot product of all possible pairs of
query, key, and relative position embeddings.

&)

(@iW?) - (@; W) + (@W?) - ai; + (2, W) - ai;
T :

€ij =

(6)
Three factors in the numerator model the interac-
tion of query and key, query and relative position
embedding, and key and relative position embed-
ding, respectively.

2.5 DeBERTa relative position embedding

Recently, DeBERTa (He et al., 2020) proposed dis-
entangled attention mechanism, where each word
is represented using two vectors that encode its
content and position, respectively.

_ @W) (@WK 4 (@ W) (e W) + (@, W) (aijWT)_

o Vs Q)

where WE WT ¢ R%xd= are additional lin-
ear projection matrices. DeBERTa’s embedding
method is similar to Huang’s M4, with the follow-
ing differences: 1) DeBERTa introduced projection
matrices W% and W7, 2) DeBERTa has differ-
ent relative embeddings across different heads, and
3) DeBERTa used a different scaling factor v/3d.,
instead of the default /d., in the denominator.

2.6 Transformer with untied positional
encoding (TUPE)

The attention weight definition in TUPE (Ke et al.,
2020) , which consists of both absolute and relative
embeddings, is listed as follows.
(W) - (2, W) + (pU®) - (p,UX)
2d,

e = + aqj, (8)
where p; and p; are the absolute position embed-
dings, and U®, UK € R?%*% are the linear pro-
jection matrices for absolute position embeddings.
a;; is used to model relative position embeddings,
which is identical to Raffel’s relative embeddings.
Furthermore, the authors argued that the [CLS] to-
ken is a virtual token and it should not be applied
in the same way to the normal tokens:

(W) - (x;W5)
2d.,
(piU®) - (p;U")
2d.

€ij =
©

+ resety (+ aij, i, 5),

where resety is defined as the following, in which
0 is used as the attention weight from [CLS] token
to others, and 65 is used from others to [CLS].
vij 1#F1,j#1
resetg(vij, Z,j) = 0, i=1
fy i#1,5=1

2.7 Proposed M4 multiplicative (M4M)
method

The M2 method proposed in (Huang et al., 2020)
essentially replaces the additive operator with the
multiplicative operator in Raffel’s method, which
improves downstream application accuracy as we
will see in the experiment section 3.1. It is intuitive
to apply the multiplicative operator to scale the con-
tent attention with respect to the relative positional
attention. Inspired by this intuition, we propose to
replace the additive operator with multiplicative op-
erator in M4 method (equation 6) to the following.

(10)

(W) - (&, W) x (W) - ai; X (2; W) - ay

€ij = \/@

an
We denote this method as M4 modified, M4M,
which has exactly the same amount of parameters
and computational complexity as M4.

3 Experiments

We start with a small-scale pretraining setup so we
can afford to compare different embedding meth-
ods. We use training data of BooksCorpus (Zhu
et al., 2015) and English Wikipedia (Wikipedia
contributors, 2004; Devlin et al., 2018) (15G in
total), which is the dataset used to pretrain the orig-
inal BERT model (Devlin et al., 2018). We use
the RoBERTa-base setting and set the maximum
input length to 512. The model updates use a batch
size of 96 and Adam optimizer with learning rate
starting at le-4. This batch size was chosen to
fit as many samples as possible. We train each
model on one AWS P4DN instance (each contain-
ing 8 A100-SXM4-40GB GPUs) with maximum
steps of 500000 (around 5.85 epochs). Each pre-
training run takes approximately 30 hours. We
evaluate on GLUE (Wang et al., 2018), SQuADI.1
and SQuAD2.0) (Rajpurkar et al., 2016). We show
the main experiment results in this section, with
additional experiments listed in Appendices.

3.1 Position embedding methods comparison

We train RoBERTa-base models with our imple-
mentation of different position embedding methods

and list the results on MNLI, SST-2 and SQuAD
1.1 datasets in Table 1. Absolute is the default
absolute position embedding which results in the
F1 score of 87.08 on the SQuADI1.1 dataset. The
lower F1 score when compared to the BERT (De-
vlin et al., 2018) baseline of 88.5 can be attributed
to under-training (6 epochs here vs 40 epochs in
BERT). Shaw’s method offers accuracy boost over
the absolute embedding on all three datasets. For
example, it improves the F1 from 87.08 to 88.62
on SQuADI1.1 dev dataset. M2 uses fewer param-
eters (12K) compared to Shaw’s method (785K)
and it results in a lower accuracy. M4 has the same
number of parameters as Shaw’s method. It outper-
forms Shaw’s method on MNLI and SQuAD1.1 but
underperforms on the SST-2 dataset. DeBERTa has
mixed result when compared to M4. The proposed
M4M method leads to accuracy improvement for
all three datasets when compared to M4. Specifi-
cally, it achieves the highest accuracy (91.62) on
the SST-2 dataset and F1 score (89.45) on the
SQuAD1.1 among all methods.

Model MNLI-m SST-2 SQuAD1.1
Absolute 81.25 90.25 87.08
Shaw 82.88 91.28 88.62
M2 82.41 90.36 87.26
M4 83.05 91.05 89.36
DeBERTa 83.67 90.71 88.84
M4M 83.58 91.62 89.45
M4+Reset 82.30 91.39 88.43
ABS+M4M 83.19 91.16 88.68

Table 1: Accuracy of different position embeddings for
RoBERTa-base.

We also implemented Raffel’s method and ob-
served that the training loss of Raffel is similar
to other methods. However, the fine-tuning di-
verges on GLUE and SQuADI1.1 datasets if the
same learning rate is used. TUPE (Ke et al., 2020)
also uses Raffel’s relative position embedding and
it suffers from the same issue. We thus exclude
Raffel and TUPE results in Table 1. In addition, we
implemented two hybrid methods: M4+Reset and
ABS+M4M. M4+Reset applies the reset equation
(10) to M4 method. We do not find the reset help
improve the accuracy. Similarly, the combination
of absolute and relative position (ABS+M4M) does
not lead to accuracy boost.

3.2 RoBERTa-base model with M4M method

We apply the best method, M4M, in a larger scale
training setup. We now use the training data of

Model MNLI-(m/mm) QQP QNLI SST2 CoLA STS-B MRPC RTE

392k 363k 108k 67k 85k 5.7k 3.5k 2.5k
RoBERTa 87.32/87.31 8833 9284 9392 5533 9033 9142 71.84
RoBERTa-ABS 87.35/86.99 8829 9278 9392 5277 89.07 89.67 72.92
RoBERTa-M4M 87.82/87.59 88.28 9298 94.26 47.02 89.45 91.63 68.59

Table 2: GLUE accuracy for RoOBERTa, RoOBERTa-ABS, and RoBERTa-M4M models. The number below each task
denotes the number of training examples. F1 scores are reported for QQP and MRPC, Spearman correlations are
reported for STS-B, and accuracy scores are reported for other tasks.

BooksCorpus, English Wikipedia (16G) and Open-
Web Text (Gokaslan and Cohen., 2019) (38G). The
CommonCrawl News dataset (Nagel., 2016) (76G)
and STORIES (Trinh and Le., 2018) (31G) datasets,
which were used in RoOBERTa pre-train, are not
publicly available so were not included. We com-
pare three models in our experiments, RoBER1a,
RoBERTa-ABS, and RoBERTa-M4M. RoBERTa is
the official RoOBERTa model?>. RoBERTa-ABS and
RoBERTa-M4M are the models pre-trained with ab-
solute position embedding and M4M respectively.
Both are initialized from RoBERTa. We use a
batch size of 480 and learning rate starting from
le-4. We train each model with maximum steps
of 500000 (approximately 8.8 epochs). Each pre-
training takes around 5 days.

Following Devlin et al. (2018), we use a batch
size of 32 and 3-epochs of fine-tuning for each
dataset in GLUE. We report the best accuracy on
the development dataset with learning rates 2e-5,
3e-5 and 4e-5. Table 2 shows the results of GLUE
datasets. As we use less data in pretraining (54G vs
161G), ROBERT-ABS underperforms the official
RoBERTa model on 6 out 8 datasets. RoBERTa-
M4M, however, is able to match the performance
of the official ROBERTa model. It outperforms
RoBERTa on the MNLI, QNLI, SST-2 and MRPC
datasets but underperforms on rest four datasets.

For SQuADI1.1 and SQuAD2.0 datasets, Table 3
shows that ROBERTa-ABS boosts RoBERTa per-
formance slightly. ROBERTa-M4M results in an
even greater accuracy boost. It leads to the high-
est accuracies among three models on both the
SQuADI1.1 and SQuAD?2.0 datasets. Finally, we
train a RoBERTa-M4M (denoted as RoBERTa-
M4M (C4 en) in Table 3) on 800G C4-en dataset’.
RoBERTa-M4M (C4 en) leads to additional ac-
curacy gain when compared to RoBERTa-M4M.
It reaches the F1 scores of 92.64 and 84.51 on

2roberta-base downloaded from
https://github.com/huggingface/transformers.

3https://huggingface.co/datasets/allenai/c4/tree/main.

SQuADI1.1 and SQuAD?2.0 datasets respectively.

Model SQuAD1.1 SQuAD2.0
EM F1 EM F1
RoBERTa 8595 92.12 7999 83.10
RoBERTa-ABS 86.10 9231 80.67 83.69
RoBERTa-M4M 86.44 92.52 80.88 84.00
RoBERTa-M4M (C4 en) 86.54 92.64 81.65 84.51

Table 3: SQuADI1.1 and SQuAD?2.0 accuracy for vari-
ous base models.

3.3 RoBERTa-large model with M4M method

Similar to Section 3.2, we now apply M4M method
to RoBERTa-large models. We use the training data
of BooksCorpus plus English Wikipedia (16G) and
OpenWeb Text (38G) to train a model denoted as
RoBERTa-M4M Large, which is initialized from
RoBERTa Large*. We use the batch size of 192,
learning rate starting from le-4, and maximum
steps of 500000. Table 4 shows that ROBERTa-
M4M Large can improve RoBERTa Large model.
Specifically, it improves from F1 score of 94.63
to 94.78 on SQuAD1.1 dataset, and from 87.62 to

88.34 on SQuUAD?2.0 dataset.
Model SQuAD1.1 SQuAD2.0
EM F1 EM F1
RoBERTa Large 89.13 94.63 84.66 87.62
RoBERTa-M4M Large 89.21 94.78 8547 88.34

Table 4: SQuADI.1 and SQuAD2.0 accuracy for
RoBERTa Large and RoBERTa-M4M Large models.

4 Conclusion

We compared existing position embedding meth-
ods. We proposed a novel multiplicative posi-
tion embedding method which can improve both
RoBERTa-base and RoBERTa-large models on
SQuADI1.1 and SQuAD?2.0 datasets.

*roberta-large downloaded from

https://github.com/huggingface/transformers.

References

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-x1: Attentive language models beyond a
fixed-length context. arXiv:1901.02860.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv:1810.04805.

Philipp Dufter, Martin Schmitt, and Hinrich Schiitze.

2021. Position information in transformers: An
overview. arXiv:2102.11090.

Aaron Gokaslan and Vanya Co-
hen. 2019. Openwebtext corpus..

http://Skylion007.github.io/OpenWebTextCorpus/.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv:2006.03654.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszko-
reit, Noam Shazeer, Curtis Hawthorne, AndrewM-
Dai, Matthew D Hoffman, and Douglas Eck. 2018.
An improved relative self-attention mechanism for

transformer with application to music generation.
arXiv:1809.04281.

Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xiang.
2020. Improve transformer models with better rela-
tive position embeddings. findings of EMNLP 2020,
arXiv:2009.13658.

Guolin Ke, Di He, and Tie-Yan Liu. 2020. Rethink-
ing positional encoding in language pre-training.
arXiv:2006.15595.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations. arXiv:1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv:1907.11692.

Sebastian Nagel. 2016. Cc-news.
https://commoncrawl.org/the-data/get-started/.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswanii.
2018. Self-attention with relative position represen-
tations. arXiv:1803.02155.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and
Tie-Yan Liu. 2020. Mpnet: Masked and per-
muted pre-training for language understanding.
arXiv:2004.09297.

Trieu H Trinh and Quoc V Le. 2018. A simple method
for commonsense reasoning. arXiv:1806.02847.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv:1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. A
multi-task benchmark and analysis platform for natu-
ral language understanding. 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP.

Wikipedia contributors. 2004. Plagiarism — Wikipedia,
the free encyclopedia. [Online; accessed 22-July-
2004].

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. arXiv:1906.08237.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. IEEE international conference
on computer vision.

A Appendix: Complexity Analysis

We analyze the storage complexity of various po-
sition embedding methods in this section. For a
transformer model with m layers, h attention heads
per layer, and maximum sequence length of n, ta-
ble 5 lists the parameter size for various position
embeddings and the runtime storage complexity.
In order to have sufficient expressive power, we
allow different embedding parameters at different
layers for all methods except absolute position em-
bedding’. For example, Shaw’s method introduces
the following parameters size: m(2n — 1)d/h =
12%(2%512—1)%768/12 = 785 K. It has runtime
storage complexity of O(mn2d/h).

All position embedding methods introduce a
small number of additional parameters to the BERT
model. The maximum parameter size is 834K from
DeBERTa. It is negligible when compared to the

5To be compatible to the original BERT implementation.

https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350
https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350
https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350

Method Parameters Parameter (K) Complexity
Absolute nd 393 O(nd)
Shaw m(2n — 1)d/h 785 O(mn?d/h)
Raffel m(2n — 1) 12 O(mn?)
M2 m(2n — 1) 12 O(mn?)
M4 m(2n —1)d/h 785 O(mn2d/h)
DeBERTa m(2n — 1)d/h + m(d/h)? 834 O(mn?d/h)
TUPE mnd/h +m(d/h)? + m(2n — 1) 454 O(mn2d/h)
M4M m(2n — 1)d/h 785 O(mn?d/h)

Table 5: Parameter sizes and runtime storage complexities of various position embedding methods.

number of parameters in RoBERTa-base (110M
parameters). Other methods introduce even fewer
parameters. For example, Raffel and M2 only have
12K additional parameters. In terms of training
and inference speed, all methods are similar to the
absolute position embedding baseline. Note that
since TUPE requires different treatment to [CLS]
positions, the self-attention along batch dimension
cannot be efficiently computed with broadcasting,
thus slowing down the training speed.

B Appendix: Unsuccessful baselines

We first train a RoBERTa-base model without any
position embedding information. Specifically, the
input is the sum of the token id embedding and
token type id embedding with no absolute position
embedding. We find that the model pre-training
does not converge. The training loss ended up
being around 5.8° which does not result in good
accuracy on downstream applications.

We use the full-sentences setting in Liu et al.
(2019). Each input is packed with full sentences
sampled contiguously from one or more documents,
such that the total length is at most 512 tokens.
With the absolute position embedding, each token
has a position in the range of 1 to 512. Due to sen-
tence packing, the beginnings of sentences can be
associated with any positions. While this absolute
position embedding leads to a reasonable baseline
as we will see in Section 3.1, we train a RoOBERTa
model with the real absolute positions. That is,
each token is associated with its real position in
the sentence which it belongs to. With this setup,
the first token of a sentence always has the posi-
tion of 1. We hypothesize that the real absolute
position may be useful to capture certain syntactic
information in model training. Surprisingly, we

®Normally a RoBERTa-base model reaches the training
loss of 1.4.

find that the model pre-training does not converge;
the training loss remains as around 4.3 after the
pre-training.

C Appendix: The effect of scaling factor

In original transformer models, the scaling factor
of v/d, was used in equation (1) to make training
stable. Different scaling factors have been intro-
duced in the self-attention equations, for example,
V/3d., is used in equation (7) for DeBERTa and
v/2d., is used in equation (9) for TUPE. The effect
of scaling has not been evaluated in any previous
study. In this section, We vary the scaling factors
to the M4 methods and report the downstream task
accuracy in Table 6. The results show that different
scaling factors do not make a significant accuracy
difference on the MNLI, SST-2 and SQuADI1.1
datasets.

Scaling Factor MNLI-m SST-2 SQuADI1.1
1 83.05 91.05 89.36
2 82.80 91.97 88.96
3 82.86 91.51 89.20
4 82.58 91.28 89.36
6 82.71 90.71 88.95
9 82.34 90.36 88.65

Table 6: Accuracy of M4 method with different scaling
factors.

D Appendix: The effect of sharing
parameters

In our implementation of various relative posi-
tion embedding methods, we share the parameters
across different heads for each layer. That is why
we see the term of d/h instead of d in the param-
eters column in Table 5 for Shaw, M4, DeBERTa,
TUPE and M4M methods. Some methods, for ex-
ample DeBERTa (He et al., 2020), allow different
relative embeddings across different heads. In this

section, we train two RoBERTa base models with
the M4 method, one with parameter sharing and
one without. Table 7 shows their accuracy on the
MNLI, SST-2 and SQuADI1.1 datasets. As we can
see, the parameter sharing performs better on two
out three datasets.

Parameter Sharing MNLI-m SST-2 SQuADl1.1

Yes 83.05 91.05 89.36
No 82.88 91.17 88.50

Table 7: Accuracy of M4 method with and without
parameter sharing.

	Introduction
	Position Embedding Methods
	Absolute position embedding in BERT
	Shaw's relative position embedding
	Raffel's relative position embedding
	Huang's relative position embedding
	DeBERTa relative position embedding
	Transformer with untied positional encoding (TUPE)
	Proposed M4 multiplicative (M4M) method

	Experiments
	Position embedding methods comparison
	RoBERTa-base model with M4M method
	RoBERTa-large model with M4M method

	Conclusion
	Appendix: Complexity Analysis
	Appendix: Unsuccessful baselines
	Appendix: The effect of scaling factor
	Appendix: The effect of sharing parameters

