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Abstract

This paper considers offline multi-agent reinforcement learning. We propose the
strategy-wise concentration principle which directly builds a confidence interval
for the joint strategy, in contrast to the point-wise concentration principle that
builds a confidence interval for each point in the joint action space. For two-player
zero-sum Markov games, by exploiting the convexity of the strategy-wise bonus,
we propose a computationally efficient algorithm whose sample complexity enjoys
a better dependency on the number of actions than the prior methods based on
the point-wise bonus. Furthermore, for offline multi-agent general-sum Markov
games, based on the strategy-wise bonus and a novel surrogate function, we give
the first algorithm whose sample complexity only scales

P
m

i=1 Ai where Ai is the
action size of the i-th player and m is the number of players. In sharp contrast, the
sample complexity of methods based on the point-wise bonus would scale with the
size of the joint action space ⇧m

i=1Ai due to the curse of multiagents. Lastly, all
of our algorithms can naturally take a pre-specified strategy class ⇧ as input and
output a strategy that is close to the best strategy in ⇧. In this setting, the sample
complexity only scales with log |⇧| instead of

P
m

i=1 Ai.

1 Introduction

Multi-agent reinforcement learning (MARL) is about decision making in a multi-agent system under
uncertainty, which has achieved significant success in solving a wide range of tasks such as GO
[Silver et al., 2017], Poker [Brown and Sandholm, 2019] and autonomous deriving [Shalev-Shwartz
et al., 2016]. One standard setting in MARL is multi-player general-sum Markov games where each
player deploys a policy to maximize its own total reward while the evolution of the environment
depends on the policies of all the players [Zhang et al., 2021a]. During the learning process, each
player needs to identify the environment dynamics as well as compete/cooperate with other agents.

One emerging subarea is offline MARL, where plenty of empirical works have been done while the
theoretical understanding is still largely missing [Pan et al., 2021, Jiang and Lu, 2021, Meng et al.,
2021]. Offline RL has received tremendous attention because in various practical scenarios, it is
expensive to acquire online data while offline log data is accessible.

The offline single-agent RL is well studied in the literature. Researchers have identified the minimal
dataset coverage assumption, single policy coverage (the dataset only needs to cover an optimal
policy), under which one can learn a near-optimal policy efficiently. Furthermore, they have developed
algorithms with minimax sample complexity [Xie et al., 2021b, Li et al., 2022]. For offline MARL,
recent works showed that single policy coverage is not sufficient and unilateral coverage is necessary
for learning a Nash equilibrium (NE) strategy, i.e., the dataset covers all the joint strategies that
only differ from an NE at one player [Cui and Du, 2022, Zhong et al., 2022]. This condition is also
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sufficient for two-player zero-sum Markov games with sample complexity eO(AB) (ignoring other
quantities), where A, B are the number of actions for each player [Cui and Du, 2022]. However, it is
still unclear if it is sufficient for multi-player general-sum Markov game.

One major challenge in MARL is the curse of multiagents [Jin et al., 2021a]. Suppose the number of
actions for player j is Aj and there are m players. Then the joint action space is of size

Q
j2[m] Aj ,

which grows exponentially with the number of players m. As a result, any algorithm that depends
linearly on the cardinality of the joint action space can hardly be applied to real-world scenarios.
In online MARL, Jin et al. [2021a] and Song et al. [2021] show that finding the coarse correlated
equilibrium, which is a weaker equilibrium notion than NE, only requires eO(maxj2[m] Aj) samples,
thus breaking the curse of multiagents. In this paper, we study the following question:

Can we find NE in offline m-player general-sum Markov game with unilateral coverage and without
the exponential dependence on the number of players?

In this paper, we answer this question in the affirmative. We highlight our contributions below.

1.1 Main Novelties and Contributions

1. Strategy-wise concentration principle. We propose the strategy-wise concentration principle.
Point-wise concentration is a standard technique in computing the confidence interval for each state-
action pair [Azar et al., 2017, Liu et al., 2021, Xie et al., 2021b, Cui and Du, 2022]. However, the
straightforward extension to MARL suffers from the curse of multiagents as the NE can be a mixed
strategy. Different from the point-wise concentration technique, strategy-wise concentration directly
estimates each strategy, which allows a tighter confidence interval that can avoid the dependence
on the joint action space. We give a technical overview in Section 1.2. In addition, we show that
the strategy-wise confidence bound is always a convex function so that the empirical best response
strategy can always be a deterministic strategy, which is critical to the computational efficiency.

2. Improved algorithm for offline two-player zero-sum Markov games. For offline two-player
zero-sum Markov games, we utilize its special structure to develop a maximin-optimization-type
algorithm. Though the nonlinear strategy-wise bonus breaks the bilinear structure of the zero-sum
game, we show that by solving a maximin optimization problem we can still output a good strategy. In
addition, we can solve it efficiently using any black-box algorithms for Lipschitz-continuous convex
optimization. Our sample complexity improves the AB factor in Cui and Du [2022] to (A+B).

3. The first algorithm for offline multi-player general-sum Markov games. For multi-player
general-sum Markov games, we develop a surrogate function to approximate performance gap
and then show that the minimizer of the surrogate function approximates NE well. The surrogate
function is constructed by optimistic best response values and pessimistic values. Interestingly, to
our knowledge, this is the first time that optimism has been used in offline RL algorithms. Our
result validates that unilateral coverage is sufficient for general-sum Markov games and our sample
complexity rate scales with eO(

P
m

j=1 Aj) (ignoring other parameters), thus breaking the curse of
multiagents.

4. Incorporating pre-specified strategy class. Lastly, our algorithm allows exploiting the prior
knowledge about the NE strategy with an adaptive sample complexity bound. Pre-specified policy
class has been widely used in empirical works where the policy class is parameterized by neural
networks (e.g., Mnih et al. [2016], Haarnoja et al. [2018], Lowe et al. [2017]), and single-agent
RL theory as well (e.g., Auer et al. [2002], Agarwal et al. [2021]), but has not been investigated in
MARL theory. In this paper, we take a step to incorporate prior knowledge in the MARL setting.
Our performance guarantee only depends on the logarithmic covering number of the pre-specified
strategy class, which is always upper bounded by

P
j2[m] Aj , but can be smaller. To the best of our

knowledge, this is the first paper that considers a pre-specified strategy class in MARL theory.

1.2 Technical Overview of Strategy-wise Concentration

To give some intuition about this technique, let us consider a toy problem. Suppose there are m random
variables {xi}m

i=1 and we want to obtain a pessimistic estimate of their average x =
P

i2[m] x
i/m.

We have n/m observations for each xi. The point-wise concentration estimate corresponds to
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estimating each xi and then aggregating the results. The pessimistic estimate of xi would be
bxi � eO(

p
m/n) where bxi is the empirical mean, and the aggregated mean of these pessimistic

estimates would be bx � eO(
p
m/n) where bx is the empirical mean of all data. The strategy-wise

concentration estimate corresponds to directly using all the samples to estimate the average of {x}m
i=1

and obtain the pessimistic estimate as bx� eO(1/
p
n). This example shows that the point-wise estimate

will lead to an extra m factor. In MARL, m is the cardinality of the joint action space, which implies
that point-wise concentration can be exponentially worse than strategy-wise concentration. Note that
this is not an issue in single-agent MDP as the optimal policy is always deterministic but leads to
severe suboptimality in the multi-agent case where NE can be a mixed strategy.

1.3 Related Work

Online Multi-agent RL. Markov games can be solved via dynamic programming when the rewards
and transition dynamics are given [Hansen et al., 2013, Perolat et al., 2015]. If the environment
is unknown, reinforcement learning algorithms are applied with different sampling oracles. One
particular line of research is online Markov games, including two-player zero-sum Markov games [Liu
et al., 2021, Dou et al., 2021, Xie et al., 2020, Bai et al., 2020, Huang et al., 2021] and multi-player
general-sum Markov games [Zhong et al., 2021, Mao et al., 2021, Jin et al., 2021a, Song et al., 2021].
Rubinstein [2016] proves an exponential (in the number of players) lower bound for learning the NE
strategy in m-player general-sum game while others show that the correlated equilibrium and coarse
correlated equilibrium admit poly(m,maxj2[m] Aj , H, S)-sample complexity algorithms [Mao et al.,
2021, Jin et al., 2021a, Song et al., 2021]. Our upper bounds for m-player general-sum games depend
polynomially on all parameters, which do not contradict the hardness result in Rubinstein [2016]
because the assumptions on the offline dataset provide additional information about the NE.

Offline Single-agent RL. The simplest dataset assumption for offline RL is uniform coverage, i.e.,
the dataset covers all the state-action pairs. This assumption dates back to Szepesvári and Munos
[2005]. The minimax sample complexity has been well studied for both tabular case and function
approximation [Xie and Jiang, 2021, Yin et al., 2020, 2021, Ren et al., 2021]. Recently it has been
shown that only covering the optimal policy is sufficient for offline RL under different settings
[Rashidinejad et al., 2021, Yin and Wang, 2021, Xie et al., 2021b, Jin et al., 2021b, Uehara and Sun,
2021, Zanette et al., 2021, Xie et al., 2021a]. These works design provably efficient algorithms based
on the principle of pessimism.

Offline Multi-agent RL. Offline MARL theory is still at a primary stage. Previous works mostly
focused on uniform coverage assumption, i.e. all state-action pairs or all policies are covered [Sidford
et al., 2020, Cui and Yang, 2021, Zhang et al., 2020, 2021b, Abe and Kaneko, 2020, Subramanian
et al., 2021]. Recently, Cui and Du [2022] and Zhong et al. [2022] show that the unilateral coverage
assumption is the minimal dataset coverage assumption for learning NE in Markov games. In
addition, [Cui and Du, 2022] proposes a pessimism-type algorithm with eO(SABH3C(⇡⇤)/✏2)
sample complexity for tabular two-player zero-sum Markov game and [Zhong et al., 2022] provides a
similar algorithm for linear two-player zero-sum Markov games.

2 Preliminaries

Notations. We use D(X ) to denote the single point distributions over the finite set X . For example,
D(A) to represent the policies that deterministically choose one of the actions in A. We use
⇡s

j,h
2 �(Aj) as a concise notation of ⇡j,h(·|s) and Ph(s,a) to denote Ph(·|s,a), which will be

defined in the following section. We use �j in subscript to denote all the players except player
j. We use bold letter to denote vectors, e.g. a is a vector and aj is the j-th element of a. We let
O(·) hide absolute constants and eO(·) hide polylog terms as well. The L1 norm of a vector in Rd is
kak1 =

P
d

i=1 |ai|. We denote the projection as proj[a,b](x) := max{a,min{b, x}}.

Multi-player General-sum Markov Game. A multi-player general-sum Markov game is described
by a tuple G = (S,A =

Q
j2[m] Aj , P,R,H), where S is the state space with cardinality S, m is

the number of players, Aj is the action space of player j with cardinality Aj , P = (P1, P2, · · · , PH)

with Ph 2 RS⇥
Q

i2[m] Ai⇥S being the (unknown) transition matrix at timestep h 2 [H], R =
{Rh(·|sh,ah)}Hh=1 with Rh(·|sh,ah) being a distribution on [0, 1]m with mean rh(sh,ah) 2 [0, 1]m
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as the (unknown) reward distribution at timestep h. At timestep h, all players choose their actions
simultaneously and a reward vector is sampled from the reward distribution rh ⇠ Rh(·|sh,ah), where
sh is the current state and ah = (ah,1, ah,2, · · · , ah,m) is the joint action. Each player j receives
its own reward rh,j with support on [0, 1] and mean rh,j(sh,ah). The state then transits to sh+1

following the distribution of Ph(· | sh,ah). The game terminates at timestep H + 1. We assume
that the initial state s1 is fixed because for a stochastic initial state, one can add s0 as the initial state
instead and it transits to s1 following the initial distribution.

We denote a joint strategy as ⇡ = (⇡1,⇡2, · · · ,⇡m), where ⇡j = (⇡1,j ,⇡2,j , · · · ,⇡H,j) and ⇡h,j :
S ! �(Aj) is the strategy of player j at timestep h where �(Aj) is the probability simplex over Aj .
We use ⇧full to denote the set of all the possible joint strategies. We define the state value function
and state-action value function under strategy ⇡ for each player j 2 [m]:

V ⇡

h,j
(sh) := E⇡

"
HX

t=h

rt,j(st,at)

����� sh

#
, Q⇡

h,j
(sh,ah) := E⇡

"
HX

t=h

rt,j(st,at)

����� sh,ah

#
,

where the expectation is over the randomness of the environment and the joint strategy ⇡. For a fixed
player j, if all the other player’s strategies are fixed, then player j can play the best response strategy
to maximize its own total reward. We define ⇡�j to be the strategy for all players except player j and
define the best response value to be V

⇤,⇡�j

h,j
(sh) := max⇡j V

⇡j ,⇡�j

h,j
(sh).

It is well-known that Nash equilibrium strategy exists for general-sum Markov games. Note that there
could be multiple NE strategies with different value functions. We use the following performance
gap to evaluate a strategy ⇡: Gap(⇡) :=

P
j2[m]

⇥
V

⇤,⇡�j

1,j (s1)� V ⇡

1,j(s1)
⇤
. This metric is always

non-negative and we say ⇡ is an ✏-approximate NE if and only if Gap(⇡)  ✏.

Two-player Zero-sum Markov Game. A general-sum Markov game becomes a two-player zero-sum
Markov game if there are only two players and the reward rh ⇠ Rh(·|s, a1, a2) always satisfies
rh,1+rh,2 = 0 for all h 2 [H], s 2 S , a1 2 A1 and a2 2 A2. Following the literatures on two-player
zero-sum Markov games, we use slightly different notations for this setting. There is only one reward
function r shared by both players, which is the reward function {rh,1}Hh=1 for player 1 and the target
of player 2 is to minimize the total reward. We denote µ = ⇡1 and ⌫ = ⇡2 to be the strategy for each
player, a = a1 and b = a2 to be the action for each player, ⇧max = ⇧1 and ⇧min = ⇧2 to be the
strategy class for each player to remove extra subscripts. One can derive the performance gap under
the new notations for two-player zero-sum Markov games: Gap(⇡) := V ⇤,⌫

1 (s1)� V µ,⇤
1 (s1).

Offline Markov Game. In offline RL, the dataset is collected beforehand and no further sampling is
allowed. Here we consider offline multi-player general-sum Markov game. The framework for offline
two-player zero-sum Markov game is similar with the slightly different notations as we mentioned.

We assume that the algorithm has access to an offline dataset D = {(sk
h
,ak

h
, rk

h
, sk

h+1)}
H,n

h,k=1,1 that
satisfies Assumption 1. The assumption states that the dataset is independently generated from the
underlying Markov game, which is used in [Jin et al., 2021b, Zhong et al., 2022]. The target of
offline Markov game is to find a strategy ⇡ with as small performance gap as possible by utilizing the
dataset D. One closely related assumption is that the dataset is generated from some behavior strategy
[Xie et al., 2021b, Cui and Du, 2022]. Though this kind of dataset does not satisfy Assumption 1
directly due to the dependence within the trajectory, we can construct a compliant dataset by using
the subsampling technique in Li et al. [2022] while the number of samples is still of the same order.
Assumption 1. The dataset D is compliant with the multi-player general-sum markov game, i.e.,

PD(s
k

h+1 = s | sk
h
,ak

h
) = Ph(sh+1 = s | sh = sk

h
,ah = ak

h
),

PD(r
k

h
= r|sk

h
,ak

h
) = Rh(rh = r|sh = sk

h
, ah = ak

h
), 8j 2 [m],

for all h 2 [H] and k 2 [n]. In addition, all tuples (sk
h
,ak

h
, rk

h
, sk

h+1) are independent.

Pre-specified Policy Class. We also consider the case when we know that the NE is possibly in a
given subset of ⇧full. We denote this subset as ⇧ and our target is to find the best strategy in ⇧. Note
that we do not assume NE is indeed in ⇧. In addition, by choosing ⇧ = ⇧full we can recover the
standard setting. To measure the complexity of ⇧, we use the covering number.
Definition 1. (Covering Number) For any error level ✏cover and strategy class ⇧, we define

N (⇧, ✏cover) :=
X

s2S,h2[H]

Y

j2[m]

|C(⇧h,j(s), ✏cover)| ,
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Algorithm 1 Strategy-wise Bonus + MaxiMin Optimization (SBMM)
Input: offline dataset D.
Initialization: V

H+1(s) = V H+1(s) = 0 for all s 2 S .
for time h = H,H � 1, . . . , 1 do

#Player 1
Approximately solve µs

h
= argmax

µ
s
h2⇧max

h (s) min⌫s
h2D(B) V

µ
s
h,⌫

s
h

h
(s), where V

µ
s
h,⌫

s
h

h
(s) is

defined by (4) and (5) and µs

h
satisfies (10).

Solve ⌫s
h
= argmin

⌫
s
h2D(B) V

µ
s
h
,⌫

s
h

h
(s) and set V

h
(s) = proj[0,H�h+1]

n
V

µ
s
h
,⌫

s
h

h
(s)

o
.

#Player 2
Approximately solve ⌫s

h
= argmin

⌫
s
h2⇧min

h (s) maxµs
h2D(A) V

µ
s
h,⌫

s
h

h
(s), where V

µ
s
h,⌫

s
h

h
(s) is

defined by (8) and (9) and ⌫s
h

satisfies (11).
Solve µs

h
= argmax

µ
s
h2D(A) V

µ
s
h,⌫

s
h

h
(s) and set V

s

h
= proj[0,H�h+1]

n
V

µ
s
h,⌫

s
h

h
(s)

o
.

end for

Output ⇡output = (µ, ⌫).

where ⇧h,j(s) = {⇡j

h
(·|s) : ⇡ 2 ⇧} is a subset of �(Ai) and C(⇧h,j(s), ✏cover) is an ✏cover-covering

of ⇧h,j(s) with respect to the L1 norm k · k1.

Our performance guarantee will only have logarithm dependence on N (⇧, ✏cover). As ⇧h,j(s) is
a subset of �(Aj), we always have log(N (⇧, ✏cover))  eO(

P
j2[m] Aj log(1/✏cover)) and if ⇧ is

a finite set, we have log(N (⇧, ✏cover))  log(SH|⇧|) (see Appendix B.1 for the proof). In this
paper we will choose ✏cover =

1P
j2[m] AjmH2n2 , which only leads to logarithm dependence on these

quantities. In later sections, we will omit ✏cover to simplify the notation.

For any joint strategy ⇡, we call (⇡0
j
,⇡�j) for any strategy ⇡0 and j 2 [m] as a unilateral strategy of

⇡. Previous works show that only covering an NE is not sufficient, and covering all the unilateral
strategies of an NE is necessary for learning the NE in Markov games [Cui and Du, 2022, Zhong et al.,
2022]. We use unilateral coefficient to quantify how the dataset covers all the unilateral strategies
of a strategy ⇡. If we assume that the dataset is sampled from some (unknown) distribution, i.e.
(sh,ah) ⇠ dh(·, ·) for all h 2 [H], we can define the population unilateral coefficient.
Definition 2. For any strategy ⇡, the population unilateral coefficient is defined as C(⇡) :=

maxh,j,⇡0,sh,ah

d
⇡0
j ,⇡�j

h (sh,ah)
dh(sh,ah)

.

Cui and Du [2022] provide a sample complexity result for zero-sum Markov games with dependence
on C(⇡⇤). We can also define the empirical unilateral coefficient using the empirical distribution.

Definition 3. Define the empirical dataset distribution as bdh(s,a) = nh(s,a)/n, for all h 2
[H], s 2 S,a 2 A, where nh(s,a) is the number of times that (s,a) appears in the dataset
for timestep h. For any strategy ⇡, the empirical unilateral coefficient is defined as bC(⇡) :=

maxh,j,⇡0,sh,ah

d
⇡0
j ,⇡�j

h (sh,ah)
bdh(sh,ah)

.

The empirical unilateral coefficient can lead to dataset-dependent bound that has no dependence on
the underlying distribution of the dataset. In addition, bC(⇡) can be bounded by 2C(⇡) (Proposition
1) so results based on bC(⇡) directly transfer to C(⇡). Note that bC(⇡) and C(⇡) are both unknown to
the algorithm and only appear in the analysis and theorems.
Proposition 1. Suppose pmin = mins,a,h{dh(s,a) : dh(s,a) > 0}. If n � 8 log(S⇧j2[m]AjH/�)

pmin
,

with probability 1� �, for all strategy ⇡, we have 2C(⇡) � bC(⇡).

3 An Improved Algorithm for Offline Two-player Zero-sum Markov Game

In this section, we propose a new algorithm for offline zero-sum Markov game based on two novel
techniques, i.e., strategy-wise concentration and maximin-optimization-based algorithm. We then
show that this algorithm is computationally efficient and can (almost) find the best strategy in strategy
class ⇧ with favorable sample complexity.
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Let us first define some notations. Given a dataset D = {(sk
h
, ak

h
, bk

h
, rk

h
, sk

h+1)}
n,H

k,h=1, we denote
nh(s, a, b) =

P
n

k=1 1
�
(sk

h
, ak

h
, bk

h
) = (s, a, b)

�
and Kh(s) = {(a, b) 2 A ⇥ B : nh(s, a, b) 6= 0}.

If nh(s, a, b) 6= 0, we set

brh(s, a, b) =
P

n

k=1 r
k

h
1
�
(sk

h
, ak

h
, bk

h
) = (s, a, b)

�

nh(s, a, b)
, (1)

bPh(s
0|s, a, b) =

P
n

k=1 1
�
(sk

h
, ak

h
, bk

h
, sk

h+1) = (s, a, b, s0)
�

nh(s, a, b)
, (2)

otherwise we have
brh(s, a, b) = 0, bPh(s

0|s, a, b) = 0. (3)
Based on this empirical Markov game, we can perform value-iteration-type algorithm. Here we
describe our algorithm for player 1. For each timestep h, we first compute the the state-action values
based on the estimates at timestep h+ 1:

Q
h
(s, a, b) = brh(s, a, b) +

D
bPh(s, a, b), V h+1

E
, (4)

Then instead of adding the bonus on state-action estimates directly to ensure pessimism as used in
Cui and Du [2022] and Zhong et al. [2022], we first estimate the state value functions for strategy
µs

h
, ⌫s

h
and then add the bonus on them instead.

V
µ
s
h,⌫

s
h

h
(s) = Ea⇠µ

s
h,b⇠⌫

s
h
Q

h
(s, a, b)� bh(s, µ

s

h
, ⌫s

h
), (5)

where

bh(s, µ
s

h
, ⌫s

h
) = H

vuut
X

(a,b)2Kh(s)

µs

h
(a)2⌫s

h
(b)2

nh(s, a, b)
log(N (⇧))◆+

p
◆/n, (6)

with ◆ = 32 log(2ABSHn/�). We also present the bonus from point-wise concentration used in Cui
and Du [2022] to better compare them, bpoint

h
(s, µs

h
, ⌫s

h
) = H

P
(a,b)2Kh(s)

µs

h
(a)⌫s

h
(b)

q
◆

nh(s,a,b)
.

As a concrete example, if µs

h
and ⌫s

h
are uniform distribution on A and B, then bh(s, µs

h
, ⌫s

h
) is

smaller than bpoint
h

(s, µs

h
, ⌫s

h
) for an order of

p
AB. Finally to obtain the pessimistic value estimate,

we solve the following optimization problem

V
h
(s) = max

µ
s
h2⇧max

h (s)
min

⌫
s
h2D(B)

V
µ
s
h,⌫

s
h

h
(s). (7)

Here recall that D(B) represents all the deterministic strategies in B. Our algorthm is similar for
player 2 with the following Q and V estimation:

Q
h
(s, a, b) = brh(s, a, b) +

D
bPh(s, a, b), V h+1

E
+H1{(a, b) /2 Kh(s)}, (8)

V
µ
s
h,⌫

s
h

h
(s) = Eµ

s
h,⌫

s
h
Q

h
(s, a, b) + bh(s, µ

s

h
, ⌫s

h
). (9)

The additional H1{(a, b) /2 Kh(s)} term in (8) compared with (4) is to compensate the underestimate
by (3).

3.1 Computational Efficiency

For computational efficiency, we start with the following characterization about our bonus.

Proposition 2. V
µ
s
h,⌫

s
h

h
(s) is concave and V

µ
s
h,⌫

s
h

h
(s) is convex w.r.t. µs

h
and ⌫s

h
respectively.

Proposition 2 explains why the inner minimization in (7) is over the deterministic strategy class
as the minimum of a concave function over the probability simplex is achieved at the vertexes, i.e.
deterministic strategies. The proof of Proposition 2 is provided in Appendix B.2.

Previous works solve the NE (saddle point) of V µ
s
h,⌫

s
h

h
(s) as the point-wise bonus maintains the

bilinear structure [Cui and Du, 2022, Zhong et al., 2022]. Though here V
µ
s
h,⌫

s
h

h
(s) no longer enjoys
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the strong duality, we will show that solving the maximin problem is enough to obtain a good strategy
for player 1. As the inner minimization is only on a feasible set of size B, this problem can be solved
efficiently by using projected gradient descent [Bubeck et al., 2015]. We assume that we solve the
maximin and the minimax optimization problem to ✏opt-optimality, i.e.

min
⌫
s
h2D(B)

V
µ
s
h
,⌫

s
h

h
(s) � max

µ
s
h2⇧max

h (s)
min

⌫
s
h2D(B)

V
µ
s
h,⌫

s
h

h
(s)� ✏opt, (10)

max
µ
s
h2D(A)

V
µ
s
h,⌫

s
h

h
(s)  min

⌫
s
h2⇧min

h (s)
max

µ
s
h2D(A)

V
µ
s
h,⌫

s
h

h
(s) + ✏opt. (11)

In Appendix B.2 we show that projected gradient descent can output an ✏opt-minimizer with (H +
H
p
log(N (⇧))◆)/✏2opt iterations, where each iteration consists of a gradient computation and a

projection onto the probability simplex. We note that if we set ✏opt to 1p
n

, then the optimization error
is always of a smaller order term compared to the statistical error.

3.2 Sample Complexity Guarantees for SBMM

For the statistical guarantee, we will first provide assumption-free bounds in the sense that it holds
for arbitrary compliant dataset [Jin et al., 2021b, Yin and Wang, 2021]. We define the uncertainty at
timestep h and state s under strategy µs

h
and ⌫s

h
:

bbh(s, µs

h
, ⌫s

h
) := 2bh(s, µ

s

h
, ⌫s

h
) +H

X

(a,b)/2Kh(s)

µs

h
(a)⌫s

h
(b)

.
Proposition 3. Suppose ⇡output is the output of Algorithm 1. With probability 1� �, we have
Gap(⇡output) 

min
⇡=(µ,⌫)2⇧

max
⇡0=(µ0,⌫0)2⇧det

"
Gap(⇡) + Eµ,⌫0

HX

h=1

bbh(sh, µsh
h
, ⌫

0sh
h

) +Eµ0,⌫

HX

h=1

bbh(sh, µ0sh
h

, ⌫h)

#
+ 2H✏opt.

Proposition 3 shows that our algorithm can find the best strategy in ⇧ with an additional error of
the expected total uncertainty under some unilateral strategies and an extra optimization error term
2H✏opt. Then we derive bounds with unilateral coefficients.
Theorem 1. Suppose ⇡output is the output of Algorithm 1. With probability 1� �, we have

Gap(⇡output)  min
⇡2⇧


Gap(⇡) + 4H2

q
S log(N (⇧)) bC(⇡)◆/n

�
+ 2H✏opt.

Theorem 1 directly implies the following corollary.
Corollary 1. If ⇧ = ⇧full, then with probability 1 � �, we have Gap(⇡output) =

eO(
q
H4S(A+B) bC(⇡⇤)/n) + 2H✏opt. If ⇡⇤ 2 ⇧, then with probability 1 � �, we have

Gap(⇡output) = eO(
q
H4S log(N (⇧)) bC(⇡⇤)/n) + 2H✏opt.

Since bC(⇡) can be bounded using C(⇡) (Proposition 1), we have the following theorem.
Theorem 2. Suppose ⇡output is the output of Algorithm 1. With probability 1� �, we have

Gap(⇡output)  min
⇡2⇧

h
Gap(⇡) + 4H2

p
S log(N (⇧))C(⇡)◆2/n+HS(A+B)C(⇡)/n

i
+2H✏opt.

In addition, suppose pmin = mins,a,b,h{d⇢h(s, a, b) : d
⇢

h
(s, a, b) > 0} and if n � 8 log(SABH/�)

pmin
, we

have Gap(⇡)  min⇡2⇧

h
Gap(⇡) + 8H2

p
S log(N (⇧))C(⇡)◆2/n

i
+ 2H✏opt.

Theorem 2 shows that there will be an additional lower order term S(A+B)C(⇡)/n, which can be
interpreted as the rate of the empirical dataset distribution converges to the population distribution. In
addition, for large enough n � 8 log(SABH/�)

pmin
, there is no lower order term. Here n � 8 log(SABH/�)

pmin

serves as a warm-up cost so that the empirical support is the same as the true support of dh. A similar
analysis is used in Yin and Wang [2021]. With a refined analysis, we can show that there is no lower
order term for the standard settings ⇧ = ⇧full in two-player zero-sum Markov games and ⇧ = ⇧det

for turn-based Markov games. Note that turn-based Markov games always have a deterministic NE.
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Corollary 2. If ⇧ = ⇧full, then with probability 1 � �, we have Gap(⇡output) =
eO(
p
H4S(A+B)C(⇡⇤)/n) + 2H✏opt. In addition, for turn-based two-player zero-sum Markov

games, we can set ⇧ = ⇧det and we have Gap(⇡output) = eO(
p
H4SC(⇡⇤)/n) + 2H✏opt.

Corollary 2 improves the AB dependence in the previous zero-sum Markov games result [Cui and
Du, 2022] and matches the result for turn-based Markov games [Cui and Du, 2022] up to an extrap
H factor. The additional H factor is due to the Hoeffding-type bonus and we believe it can be

removed with a more sophisticated Bernstein-type bonus.

4 Algorithms and Analyses for Multi-player General-sum Markov Game

In this section, we propose the first provably efficient algorithm for offline multi-player general-sum
Markov game. We will use the strategy-wise bonus to achieve a sample complexity that does not
scale with

Q
j2[m] Aj . However, in general-sum games there is no saddle point structure, so we

can no longer use the maximin-optimization-type algorithm. Instead, our algorithm utilizes a novel
surrogate function to approximately minimize the performance gap.

Given a dataset D = {(sk
h
,ak

h
, rk

h
, sk

h+1)}
n,H

k,h=1, we denote nh(s,a) =
P

n

k=1 1
�
(sk

h
,ak

h
) = (s,a)

�

and Kh(s) = {a : nh(s,a) 6= 0}. If nh(s,a) > 0, we set

brh,j(s,a) =
P

n

k=1 r
k

h,j
1
�
(sk

h
,ak

h
) = (s,a)

�

nh(s,a)
, bPh(s

0|s,a) =
P

n

k=1 1
�
(sk

h
,ak

h
, sk

h+1) = (s,a, s0)
�

nh(s,a)
,

(12)
otherwise we have brh,j(s,a) = 0, bPh(s0|s,a) = 0.

Based on this empirical multi-player Markov game, we can estimate the value of arbitrary strategy
⇡ via policy evaluation (Algorithm 2 in Appendix). We describe Algorithm 2 for the pessimistic
estimate. For a player j, strategy ⇡ and timestep h, we first compute the state-action value estimates:

Q⇡

h,j
(s,a) = brh,j(s,a) +

D
bPh(s,a), V

⇡

h+1,j

E
, (13)

Then we estimate the state value functions and add the strategy-wise bonus to ensure pessimism.

V ⇡

h,j
(s) =proj[0,H�h+1]

n
Ea⇠⇡h(·|s)Q

⇡

h,j
(s,a)� bh(s,⇡

s

h
)
o
, (14)

where bh(s,⇡
s

h
) =H

vuut
X

a2Kh(s)

Q
j2[m] ⇡

s

h,j
(aj)2

nh(s,a)
S log(N (⇧))◆+

p
◆/n, (15)

with ◆ = 32 log(16
Q

j2[m] AjmSHn/�). Here the strategy-wise pessimism can remove theQ
j2[m] Aj dependence as explained in the previous section. By dynamic programming from timestep

H to timestep 1 we can obtain the pessimistic estimate V ⇡

1,j(s1). Compared with the bonus function
(6) in zero-sum Markov game, there is an extra S factor in (15) because here we need to perform con-
centration on

D
bPh(s,a), V

⇡

h+1,j

E
for all ⇡ while in (4) we only need to analyze

D
bPh(s, a, b), V h+1

E

for a single V
h+1. We use an additional ✏-covering on RS which leads to the extra S.

We use Algorithm 3 (in Appendix) to compute the optimistic value of the best response strategy.
For a given player j, strategy ⇡�j used by all the other player and timestep h, we first compute the
optimistic state-action value estimate:

Q
⇤,⇡�j

h,j
(s,a) = brh,j(s,a) +

D
bPh(s,a), V

⇤,⇡�j

h+1,j

E
+H1{a /2 Kh(s)}. (16)

Then we compute the optimistic value for deterministic strategies for player j:

V h,j(s, aj) =Ea�j⇠⇡h,�j(·|s)Q
⇤,⇡�j

h,j
(s, aj ,a�j) + bh(s, aj ,⇡

s

h,�j
). (17)

Here with a slight abuse of the notation, we use aj to denote the deterministic strategy
of player j that chooses action aj at state s and timestep h. Finally we use the maxi-
mum over all the deterministic strategies to be the best response value function:V

⇤,⇡�j

h,j
(s) =

proj[0,H�h+1]

�
maxaj2Aj V h,j(s, aj)

 
.

8



By dynamic programming we can obtain the optimistic estimate V
⇤,⇡�j

1,j (s1) at the initial state. Note
that we only consider the deterministic strategies for player j. Thanks to the convexity of the bonus
bh(s,⇡s

h
), the best response with respect to V

⇡

h,j
(s) is also in the deterministic strategy class as in

zero-sum Markov games. The following proposition connects Algorithm 2 and Algorithm 3:
Proposition 4. For any strategy ⇡�j 2 ⇧full

�j
,h 2 [H] and s 2 S, we have V

⇤,⇡�j

h,j
(s) =

max⇡j V
⇡j ,⇡�j

h,j
(s).

Based on Algorithm 2 and Algorithm 3, we propose a surrogate minimization algorithm for multi-
player general-sum Markov game. Suppose V ⇡

1,j(s1) and V
⇤,⇡�j

1,j (s1) are pessimistic and optimistic
estimates, then we have

Gap(⇡) =
X

j2[m]

V
⇤,⇡�j

1,j (s1)� V ⇡

1,j(s1) 
X

j2[m]

V
⇤,⇡�j

1,j (s1)� V ⇡

1,j(s1).

The RHS can serve as the surrogate function and SBSM (Algorithm 4 in Appendix) outputs the
minimizer of it in ⇧. From the computational perspective, Algorithm 2 and Algorithm 3 are both
efficient while Algorithm 4 needs to enumerate ⇧ for the worst case. This computational hardness
agrees with the PPAD-hardness for computing approximate NE even in full information general-sum
game [Daskalakis, 2013]. However, if ⇧ is well structured, Algorithm 4 may be computationally
efficient and we leave it to future work. Here we assume ⇡output is an exact solution while it is
straightforward to incorporate optimization error as in the previous section.

4.1 Sample Complexity Guarantees for SBSM

We still begin with assumption-free bound as in the previous section. We define the uncertainty at
timestep h and state s under strategy ⇡: bbh(s,⇡s

h
) = 2bh(s,⇡s

h
) +H

P
a/2Kh(s)

⇡s

h
(a).

Proposition 5. Suppose ⇡output is the output of Algorithm 4. With probability 1� �, we have

Gap(⇡output)  min
⇡2⇧

2

4Gap(⇡) + max
⇡02⇧det

X

j2[m]

E⇡
0
j ,⇡

⇤
�j

HX

h=1

bbh(sh,⇡0sh
h,j

,⇡
sh
h,�j

) +mE⇡

HX

h=1

bbh(sh,⇡sh
h
)

3

5 .

Proposition 5 has a similar structure as Proposition 3 with a slight difference in the expected
uncertainty terms. Then we will bound using the unilateral coefficients.
Theorem 3. Suppose ⇡output is the output of Algorithm 4. With probability 1� �, we have

Gap(⇡output)  min
⇡2⇧


Gap(⇡) + 4mH2S

q
bC(⇡) log(N (⇧))◆/n

�
.

Theorem 3 directly implies the following corollary, which shows that the sample complexity of offline
multi-agent RL only scales linearly with respect to the number of the players.
Corollary 3. If ⇧ = ⇧full, with probability 1 � �, we have Gap(⇡output) =

eO(
q
H4S2

P
j2[m] Aj

bC(⇡⇤)/n). If ⇡⇤ 2 ⇧, then with probability 1� �, we have Gap(⇡output) =

eO(
q
H4S2 log(N (⇧)) bC(⇡⇤)/n).

Similarly we have the following theorem and corollary for the population unilateral coefficient.

Theorem 4. Suppose ⇡output is the output of Algorithm 4. If n � 8 log(S⇧j2[m]AjH/�)
pmin

, with proba-

bility 1� �, we have Gap(⇡output)  min⇡2⇧

h
Gap(⇡) + 4mH2S

p
2C(⇡) log(N (⇧))◆/n

i
.

Corollary 4. Suppose n � 8 log(S⇧j2[m]AjH/�)
pmin

. If ⇧ = ⇧full, with probability 1 � �, we have

Gap(⇡output) = eO(
q
H4S2

P
j2[m] AjC(⇡⇤)/n). If ⇡⇤ 2 ⇧, then with probability 1� �, we have

Gap(⇡output) = eO(
p
H4S2 log(N (⇧))C(⇡⇤)/n).

5 Conclusion

In this work, we studied offline MARL. With a novel strategy-wise bonus, we remove the exponential
dependence on the number of players. We use different algorithm frameworks for zero-sum Markov
games and general-sum Markov games due to their different properties.
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Here we list several open problems for future work. One direction is to find the minimax sample
complexity for offline Markov games, i.e., if the log(N (⇧)) term is necessary. Another direction is to
design computationally efficient algorithms for finding (coarse) correlated equilibrium in general-sum
Markov games. Lastly, we only focus on the tabular setting serving as a start point. It is important to
study MARL with reasonable function approximation.
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