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Abstract

We propose a novel application of Pre-trained001
Language Models (PLMs) to generate analo-002
gies and study how to design effective prompts003
to prompt a PLM to generate a source concept004
analogous to a given target concept as well as005
to generate an explanation of the similarity be-006
tween given pair of target concept and source007
concept. We found that it is feasible to prompt008
a GPT-3 PLM to generate meaningful analogies009
and the best prompts tend to be precise impera-010
tive statements especially with low temperature011
setting. We systematically analyzed the sen-012
sitivity of the GPT-3 model to prompt design013
and temperature and found that the model is014
particularly sensitive to certain variations (e.g.,015
questions vs. imperative statements). We also016
investigated the suitability of using the exist-017
ing reference-based metrics designed for eval-018
uating natural language generation (NLG) to019
evaluate analogy generation and found that the020
recent BLEURT score is better than the oth-021
ers. We further propose a promising consensus022
measure based on diverse prompts and settings,023
which can be potentially used to both automati-024
cally evaluate the generated analogies in the ab-025
sence of reference text (e.g., in novel domains)026
and rank a set of generated analogies to select027
analogies of different characteristics. Overall,028
our study shows that PLMs offer a promising029
new way to generate analogies in unrestricted030
domains, breaking the limitation of existing031
analogy generation methods in requiring struc-032
tured representation.033

1 Introduction034

Pre-trained Language Models (PLMs) such as035

BERT and GPT have been applied to many tasks036

of text generation (e.g., summarization, dialogue037

system) with promising results (Li et al., 2021).038

However, no existing work has studied how to ap-039

ply PLMs to generate analogies.040

Generating analogies has a wide range of appli-041

cations, such as explaining concepts and scientific042

innovation, and analogies play a crucial role in hu- 043

man cognition. Analogical matching and reasoning 044

enables humans to understand and learn unfamiliar 045

concepts (aka target concepts) by means of famil- 046

iar ones (aka source concepts), e.g. understanding 047

the Bohr’s model of atoms using the solar system; 048

and to make scientific innovations, e.g. the Wright 049

brothers developed a steerable aircraft based on bi- 050

cycles. As a result, computing analogies has been a 051

long-standing goal of AI (Mitchell, 2021). This is a 052

challenging problem because it requires computing 053

structural similarities that are beyond the surface- 054

level similarity. For example, at a surface level, 055

the Bohr’s atom model and the solar system do not 056

share any attributes, but their relational similarities 057

(i.e., atoms orbit around the nucleus just as planets 058

around the sun) makes them analogous. 059

Much work has been done to compute such ana- 060

logical similarities. However, existing approaches 061

generally rely on structured representations, thus 062

they can only work on limited domains where such 063

representations already exist. Moreover, they can- 064

not generate analogies in natural language. For 065

example, one of the most popular models is Struc- 066

tural Mapping Engine (SME) (Forbus et al., 2017), 067

which aligns structured representations of the tar- 068

get and source concepts using predicate logic. 069

Inspired by the recent success in applying PLMs 070

to many NLP tasks (see, e.g., (Li et al., 2021)), we 071

propose and study the application of PLMs to anal- 072

ogy generation. We consider two typical applica- 073

tion scenarios of analogy generation: 1) Analogous 074

Concept Generation (ACG): Given a target concept, 075

generate a source concept analogous to the target 076

concept possibly with an explanation of the simi- 077

larity of the two concepts. 2) Analogy Explanation 078

Generation (AEG): Given a target concept and an 079

analogous source concept, generate an explanation 080

of their similarity. 081

We note the similarity of the two tasks defined 082

above and other text generation problems, thus in- 083
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spired by the recent success of using prompted084

PLMs for text generation, we hypothesize that anal-085

ogy generation can also be solved by using a PLM086

with appropriately designed prompts.087

Large pre-trained language models (e.g., GPT-3)088

have already been successful for other tasks like089

question answering with minimal further training090

for downstream tasks. Along this direction, prompt-091

ing language models (Liu et al., 2021) is a promis-092

ing emerging paradigm that uses textual prompts093

with unfilled slots, and directly leverages the lan-094

guage models to fill those slots and obtain the de-095

sired output. Our problem setup is similar to the096

use of PLMs for text generation (Li et al., 2021),097

but the task of analogy generation is challenging098

and different from the existing text generation tasks099

in multiple ways:100

Firstly, analogical reasoning and explanation re-101

quire deep knowledge of the attributes, functions102

and relations of both source and target concepts.103

Secondly, analogies are most useful when they ex-104

plain target concepts using everyday-life scenarios.105

Both commonsense reasoning and creativity are106

required to generate plausible yet interesting ana-107

logical texts (e.g., electrical resistance is like cats108

blocking mice). It is unclear whether PLMs are109

capable of such tasks. Moreover, since this is a new110

problem, it is unclear how to evaluate the quality111

of the generated analogies.112

In this paper, we address those challenges and113

study the following main research questions: RQ1)114

How effective is a modern PLM such as GTP-3 in115

generating meaningful analogies? RQ2) Are exist-116

ing NLG evaluation metrics suitable for evaluating117

generated analogies and can they give meaning-118

ful results? RQ3) How sensitive are the generated119

analogies to prompt design and other hyperparame-120

ters? RQ4) Can we automatically assess analogies121

in the absence of reference dataset?122

To study these questions, we design several ex-123

periments on analogies generated from the GPT-3124

model. Firstly, to assess whether existing NLG125

metrics (e.g., BLEURT (Lin, 2004)) can be reliably126

used for evaluating the quality of generated analo-127

gies, we design two sanity tests. The tests check128

whether the metrics generally behave as expected,129

i.e. give higher scores to higher quality analogies.130

Using these tests, we select the best metric for auto-131

matically evaluating the GPT-3 generated analogies132

against a reference dataset of analogies of middle-133

school science concepts created from Chegg.com1. 134

We also design and systematically vary prompt vari- 135

ants (e.g., imperative statements -> questions) and 136

investigate the corresponding variations in gener- 137

ated text. Finally, since it is not always feasible 138

to obtain reference datasets (e.g., for new domains 139

or novel analogies), we design a scoring method 140

based on consensus of generated analogies in var- 141

ious settings (e.g., prompt design, temperature), 142

called Consensus Score, to automatically evaluate 143

the analogies without reference text. We also in- 144

vestigate its effectiveness as an evaluation method 145

based on its correlation with BLEURT. 146

Our study confirms that PLMs offer a promising 147

general approach to generate analogies with prop- 148

erly designed prompts. Furthermore, the GPT-3 149

model is found to be sensitive to the prompt design 150

and temperature for this task, particularly to the 151

prompt style (i.e., question vs. imperative state- 152

ment). Precise imperative statements in low tem- 153

perature setting are found to be the best prompts. 154

We also confirm the effectiveness of the recent 155

BLEURT(Sellam et al., 2020) score for evaluat- 156

ing analogies. We show that our Consensus Score 157

metric with diversity offers a promising way of 158

reference-free evaluation of generated analogies. 159

We will release all the GPT-3 generated analogies 160

(≈ 6k) for the community’s further study of this 161

novel problem. 162

2 Related Work 163

2.1 Computational Models of Analogies 164

There has been a lot of work on computational 165

modeling of analogies (Mitchell, 2021). The SME 166

model (Forbus et al., 2017) is one of the most popu- 167

lar symbolic model that finds the mapping between 168

structured representations of source and target con- 169

cepts. The recent deep learning-based approaches 170

(Mikolov et al., 2013; Rossiello et al., 2019; Ushio 171

et al., 2021), perform analogical reasoning on un- 172

structured text, but are currently limited to simple 173

word-level or proportional analogies, such as (Paris: 174

France:: London: ?). However, none of the exist- 175

ing work has studied the problem of automatically 176

generating complex analogies in natural language. 177

2.2 Prompting Language Models 178

Recently, prompts have been either manually cre- 179

ated or learned to successfully leverage PLMs for 180

several natural language tasks (Liu et al., 2021). 181

1https://chegg.com/
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Our work is closest to prompting for Question An-182

swering (Khashabi et al., 2020) and Text Gener-183

ation (Schick and Schütze, 2020; Li and Liang,184

2021). Analogy generation is different from ques-185

tion answering since it also requires more creativity186

to construct new analogies that do not directly ex-187

ist on the web. It is a challenging case of text188

generation that requires reasoning of relational sim-189

ilarities between two concepts or situations. None190

of the existing work has studied prompting PLMs191

for analogy generation.192

3 Problem Formulation193

Motivated by the practical applications of this task194

(e.g., explaining concepts), we study analogy gen-195

eration in the following settings.196

1. Analogous Concept Generation (ACG) or No197

Source(NO_SRC): In this setup, only the target198

concept is provided as the input. The goal is to199

generate a text that contains an analogous source200

concept or situation (e.g., solar system), along with201

some explanation to justify the analogy. Practically,202

this setting could be useful in finding unknown203

analogies and creating novel analogies.204

2. Analogy Explanation Generation (AEG) or205

With Source (WSRC): In this setup, in addition206

to the target, the source concept is also a part of207

input. The goal is to generate a text that should208

be an explanation of how the target and source are209

analogous. If successful, this setup could be use-210

ful in assisting users in creating better analogical211

explanations and seeing connections between two212

seemingly disparate concepts or situations.213

4 Experiment Setup214

In this section, we discuss the data sets and the215

GPT-3 PLM used in our experiments.216

Dataset: As the task of analogy generation has not217

been previously studied, there is no existing data218

set available to use directly for evaluation. We thus219

opted to create new data sets for evaluation.220

Standard Science Analogies (STD): As far as we221

can find, the closest dataset consisting of complex222

analogies is from (Turney, 2008). It consists of223

ten standard science analogies. However, these do224

not contain any explanation in nature language, but225

only the source and target concepts.226

Analogies from Chegg.com (CHG): We searched227

for quiz questions that asked to create analogies on228

Chegg.com 2 by using search queries like ‘create an229

2https://chegg.com/. Terms of Use:

analogy’, ‘analogy to explain’, and downloaded the 230

relevant questions and answers. After manually re- 231

moving irrelevant data, 75 unique question-answer 232

pairs were obtained. Next, we manually extracted 233

the target and source concepts, and the full analo- 234

gies from the answers (containing explanation of 235

the analogical similarity). The final dataset has 236

148 analogies in English for 109 target concepts. 237

The analogies are mostly about middle school sci- 238

ence and few basic computer science concepts. The 239

average length of analogies is 55.63 words. 240

GPT-3 Davinci Instruct Model: Recently, several 241

PLMs have been developed and trained on massive 242

web data (Devlin et al., 2018; Brown et al., 2020; 243

Raffel et al., 2019). In this study, we probe the 244

popular GPT-3 model. With 175 billion parameters, 245

the Davinci model of GPT-3 is the most powerful 246

GPT-3 model. The Davinci “Instruct” model is 247

further optimized to follow instructions better 3. 248

We leave the exploration of other PLMs to future 249

work. 250

We used the Open AI API 4 to generate all analo- 251

gies. Based on initial qualitative explorations, we 252

noticed that setting a high number of maximum 253

tokens worked better in generating more compre- 254

hensive analogies. Thus, we set it to 939. The 255

default value of top_p = 1 was used. Other hyper- 256

parameters are described in Section 5.3.2. 257

5 Experiment Results 258

5.1 Feasibility Analysis 259

We first investigate whether PLMs are capable of 260

generating analogies with simple prompts by look- 261

ing at the results on the smaller STD dataset which 262

contains well-known analogies. Here, we seek stan- 263

dard analogies, so we designed prompts with key- 264

words such as "well-known analogy", "often used 265

to explain", etc. The full list of prompts is in Table 266

11, Appendix A. 267

We observed that all the prompts were success- 268

ful in retrieving natural language analogies to some 269

extent but they differed in several aspects. Table 1 270

shows sample analogies generated by two of our 271

prompts (P7 and P2, Table 11) for the target con- 272

https://www.chegg.com/termsofuse. We do not intend
to distribute the dataset without their permission. We
manually inspected the data and found no personal identifiers
or offensive content.

3https://beta.openai.com/docs/engines/instruct-series-
beta

4https://beta.openai.com/docs/api-
reference/completions/create
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Prompt (P7): What is analogous to natural selection?
GPT Output: The analogous process to natural selection is artificial selection. (9 words)
Prompt (P2) : Explain natural selection using a well-known analogy.
GPT Output: One of the most famous analogies ... Imagine that you have a jar of mixed nuts ... If

you shake the jar ...the big nuts will fall out first ... The analogy is that natural
selection is like a sieve that separates the fit from the unfit. ... (136 words)

Table 1: Selected prompts and GPT-generated analogies for natural selection

cept “natural selection.” In this case, the reference273

answer in the STD dataset is “artifical selection,”274

which P7 successfully retrieved, while P2 gener-275

ated a different but also valid analogy. Such varia-276

tions indicate both the potential of using different277

prompts to generate (multiple) different analogies278

and the model sensitivity to prompt design, which279

we further investigate in Section 5.3.280

To quantify the effectiveness of different281

prompts, we manually evaluated the source con-282

cepts mentioned in the generated analogies (if any).283

Table 2 shows the number of exact matches of284

generated source concepts to those in the refer-285

ence STD dataset, along with the number of “valid”286

source concepts generated. Valid means a reason-287

able analogy that is either commonly known (e.g.,288

available on the internet) or contains a meaningful289

justification. All prompts generated valid analogies290

in many cases, even if they didn’t exactly match291

the reference source concept. This suggests that292

a concept could have several valid analogies and293

it might be infeasible to pre-specify all the valid294

analogies, making it challenging to accurately eval-295

uate such generated analogies without relying on296

manual assessment of each result. We will explore297

automatic evaluation in Sections 5.2, 5.4.298

Table 2: Comparison of prompts for STD analogies

P1 P2 P3 P4 P5 P6 P7
# Match 3 3 6 4 3 5 3
# Valid 6 9 9 8 7 10 10

5.2 Suitability of existing evaluation metrics299

Automatic evaluation of natural language gener-300

ation is known to be challenging (e.g., in case301

of long-form question answering (Krishna et al.,302

2021)) as automatic metrics do not accurately re-303

flect semantic similarity (Callison-Burch et al.,304

2006; Raffel et al., 2019). Evaluation of analogies305

is even more challenging especially when no source306

is provided (NO_SRC), because a target concept307

could have several valid analogies with seemingly308

different meanings (e.g., “artificial selection” vs.309

“sieve” from Section 5.1). 310

Given these challenges, we need to first investi- 311

gate the suitability of existing evaluation metrics 312

for generated analogies before we can trust any 313

evaluation results using them. To this end, we de- 314

sign two testers to examine whether the existing 315

metrics behave as expected: 1) Ordering Tester 316

(OT): This tester is to see if an evaluation metric 317

can order a set of methods that have known orders 318

between them correctly as expected. 2) Random 319

Perturbation Tester (RPT) : This tester checks if 320

an evaluation metric responds to a random pertur- 321

bation to the ground truth data used for evaluation. 322

A reasonable metric is expected to generate lower 323

performance figures after perturbation. 324

We use those two testers to study the suitabil- 325

ity of three popular and representative measures of 326

automatic evaluation of generated text: BLEURT 327

(Sellam et al., 2020), METEOR (Lavie and Agar- 328

wal, 2007), ROGUE-L F1 (Lin, 2004). 329

BLEURT (B) is a recent machine learning-based 330

metric that has been shown to capture semantic 331

similarities between text. ROUGE-L (R)5 measures 332

longest matching subsequence of words. We use 333

its F1-score. METEOR (M)6 matches word stems 334

and synonyms also. 335

Design of testers: We design an OT and a RPT 336

based on the following baseline methods: 337

No Analogy baseline (NO_ANLGY): Here, the 338

prompts instruct the model to generate an expla- 339

nation or description of the target concept and do 340

not ask for an analogy explicitly. Thus, we expect 341

the generated text to be in a different “style” than 342

analogies and the overall performance to be lower. 343

However, the generation would still contain other 344

relevant keywords describing the target. Thus, it is 345

a good baseline to test if the metrics can distinguish 346

between analogies and other descriptions. 347

Random baselines: For each of the three 348

setups, we introduced random baselines 349

(NO_ANLGY_RAND, NO_SRC_RAND, 350

5https://pypi.org/project/rouge-score/
6https://www.nltk.org/api/nltk.translate.meteor_score.html
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and WSRC_RAND, respectively) where a351

generated string is evaluated against a random352

analogy (excluding the correct matching analogy)353

in the reference dataset (i.e., applying a random354

perturbation to the ground truth). These baselines355

preserve the “style” of the text but not the content.356

We expect these methods to perform worse than357

their non-random counterparts.358

Additionally, NO_SRC setting is expected to359

perform worse than WSRC because in WSRC, the360

model has more information (i.e., the source con-361

cept) and thus has better chances of generating the362

correct analogical explanation. Thus, the expected363

order is NO_ANLGY < NO_SRC < WSRC.364

Metric testing results: Table 3 shows the overall365

results of experiments on the CHG dataset. Each366

row shows the highest average scores given by367

a metric in various setups (performances of each368

prompt are in Section 5.3 and Appendix A).369

We can see that all the three metrics order the370

setups as expected, i.e. random baselines are as-371

signed a lower score than non-random setups, and372

scores for NO_ANLGY < NO_SRC < WSRC. This373

suggests that all the three metrics have “passed"374

our two testers and thus can be reasonably used to375

evaluate generated analogies.376

Moreover, this also indicates that the GPT-3377

model is able to “understand” the prompts in the378

three settings to some extent and generate non-379

analogical descriptions, general analogies, and380

analogies containing the source concepts, in those381

settings respectively. However, in terms of dis-382

cernment power, all metrics have small gaps be-383

tween the scores of random and non-random set-384

tings. Similar results were previously reported in385

(Krishna et al., 2021) for ROUGE scores on long-386

form question-answering. Out of the three met-387

rics, the BLEURT score has the largest gaps in388

all the settings, both between the random and non-389

random baselines and also between settings. It is390

also shown to capture semantic similarity well (Sel-391

lam et al., 2020). Thus, we use it as the main metric392

in the rest of the experiments.393

5.3 Comparative analysis of prompts and394

temperature395

As observed in many other applications of396

prompted PLMs, the performance of a task tends397

to be sensitive to the prompts used and the temper-398

ature parameter (Lu et al., 2021; Zhao et al., 2021).399

Thus it is important to experiment with variations400

of both the prompts and the temperature parameter 401

(with frequency_penalty, Section 5.3.2 ) and study 402

how they impact the generated analogy. 403

Specifically, we mainly compare their average 404

performances of the different hyperparameter com- 405

binations (tables 6, 7), and their correlations based 406

on BLEURT scores (figures 1, 2). 407

Similar average BLEURT values would indicate 408

that the prompts are equally good (or bad) on a 409

task, but not necessarily in the same way. On the 410

other hand, Kendall’s Tau (Kendall, 1938) indicates 411

how well the ranks of two variables are correlated. 412

In our case, a high Kendall’s Tau would indicate 413

that the two prompts generally perform better (or 414

worse), with possibly different magnitudes, on the 415

same individual test samples. This would suggest 416

that those prompts have similar strengths and weak- 417

nesses. Thus, we analyze both scores to get a more 418

complete picture of hyperparameter sensitivity. 419

5.3.1 Analysis of prompts 420

To study the effectiveness and robustness of dif- 421

ferent prompts for analogy generation in the un- 422

supervised setting, we manually designed several 423

prompts for all the problem settings. The differ- 424

ent prompt variants are all paraphrases, such that 425

they are semantically similar. The main ways they 426

differ are: 1. Questions vs. Imperative Statements 427

(e.g., P5 vs. P2, Table 5); 2. Synonyms (e.g., P2 428

vs. P3, Table 5); 3. Word Ordering (e.g., P1 vs. 429

P3, Table 4). We only study the zero-shot setting, 430

i.e. we do not provide examples of analogies in 431

the prompt mainly because the choice/number of 432

examples used can significantly impact the results. 433

We leave such explorations for future work. 434

Prompts for the NO_SRC and WSRC settings 435

are in tables 4 ,5, respectively. Here, <target>, 436

<src> are target and source concept placeholders. 437

Results: We discuss our major findings below. 438

Questions are worse than statements: The ques- 439

tion prompts are as follows: P4 in NO_SRC and P5- 440

P7 in WSRC. From Figure 2 top-left and bottom- 441

right, as expected, those questions and statements 442

that share the most words (e.g., P3 and P6) are 443

more strongly correlated. Even so, from Tables 5 444

and 4, questions perform significantly worse, con- 445

sistently. These effects could be an artifact of how 446

the GPT-3 Instruct models are trained and should 447

be investigated in the future. 448

Impact of synonyms and word order: Prompt per- 449

formances vary based on synonyms and word order. 450

For example, some synonymous prompt pairs (e.g, 451
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Table 3: Testing results using OT and RPT. Bold font means the higher score between the random baseline and the
non-random setup. Highest score in a row in underlined.

NO_ANLGY_RAND NO_ANLGY NO_SRC_RAND NO_SRC WSRC_RAND WSRC
B 0.349 0.445 0.375 0.462 0.385 0.515
R 0.122 0.183 0.132 0.196 0.122 0.229
M 0.099 0.158 0.109 0.171 0.109 0.208

Table 4: Prompts for NO_SRC

Id Prompt
P1 Explain <target> using an analogy.
P2 Create an analogy to explain <target>.
P3 Using an analogy, explain <target>.
P4 What analogy is used to explain <target>?
P5 Use an analogy to explain <target>.

Table 5: Prompts for WSRC

Id Prompt
P1 Explain <target> using an analogy involv-

ing <src>.
P2 Explain how <target> is analogous to

<src>.
P3 Explain how <target> is like <src>.
P4 Explain how <target> is similar to <src>.
P5 How is <target> analogous to <src>?
P6 How is <target> like <src>?
P7 How is <target> similar to <src>?

P2-P4, P5-P7 in WSRC) are more correlated than452

others (e.g., P2-P3, P5-P6 in WSRC). This could453

be because “analogous to” and “similar to” share a454

word unlike the other synonym “like”. As expected,455

prompts with the most different meanings (e.g., P1456

in WSRC – involving <src> is not necessarily the457

same as analogous to <src>) are least correlated458

with others. However, from Table 7, the average459

performances of synonymous prompts (e.g., P2tl460

and P3tl, P2tl and P5tl) are not significantly dif-461

ferent. Overall, this suggests that GPT-3 is more462

robust to synonyms/word-order than to the prompt463

style (question/imperative statements) for this task.464

The overall winning prompts (P3 in NO_SRC, P2465

in WSRC) contain some form of of the word “anal-466

ogy” confirming that precise prompts are better.467

5.3.2 Analysis of temperature468

Higher temperature increases the randomness in469

the generated text and is often suggested for cre-470

ative tasks (Lucy and Bamman, 2021). Since some471

analogies require creativity, we are especially inter-472

Table 6: Comparison of performances of different
prompts and temperatures in NO_SRC. * and ** mean
statistically significant at p<0.1 and p<0.05 respectively
based on a two-tailed t-test.

B R M
P1tl 0.46 0.187 0.154
P1th 0.448** 0.181** 0.167
P2tl 0.451 0.193 0.154
P2th 0.45* 0.184 0.161
P3tl 0.462 0.196 0.164
P3th 0.452 0.188 0.171
P4tl 0.427** 0.170** 0.126**
P4th 0.431** 0.179** 0.156
P5tl 0.451 0.188 0.154
P5th 0.449* 0.183* 0.163

Figure 1: Kendall’s Tau correlation between BLEURT
scores of various prompts and temperatures in WSRC

ested in studying the impact of this hyperparameter. 473

We explore two settings. Low Temperature (tl): 474

this is a deterministic setting, where temperature = 475

frequency_penalty = presence_penalty = 0. High 476

Temperature (th): Here temperature is set to 0.85. 477

To avoid repetition of words and topics, we set 478

frequency_penalty = 1.24 and presence_penalty = 479

1.71. These hyperparameters were selected based 480

on initial qualitative exploration. To account for the 481

randomness, we set best_n = 3, i.e., select the best 482

response out of three generated responses, and gen- 483

erate 5 such best responses. In all experiments, we 484
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Table 7: Comparison of performances of different
prompts and temperatures in WSRC. * and ** mean
statistically significant at p<0.1 and p<0.05 respectively
based on a two-tailed t-test.

B R M
P1tl 0.504 0.223 0.187**
P1th 0.497** 0.212** 0.199
P2tl 0.515 0.217 0.203
P2th 0.502* 0.210** 0.208
P3tl 0.504 0.229 0.191
P3th 0.504 0.216 0.203
P4tl 0.506 0.214 0.197
P4th 0.497** 0.206** 0.2
P5tl 0.499* 0.217 0.18**
P5th 0.496** 0.211** 0.191*
P6tl 0.500* 0.216 0.176**
P6th 0.494** 0.212** 0.183**
P7tl 0.497** 0.208** 0.179**
P7th 0.492** 0.204** 0.186**

report the average performance of all 5 responses.485

Results: Firstly, at high temperature, prompts486

are generally well-correlated with each other(lower487

right, figures 1, 2) suggesting lesser sensitivity to488

prompt design at high temperatures. This requires489

further investigation because we expect higher ran-490

domness to generate a variety of different analogies,491

and thus have lower correlations in general.492

Secondly, the overall performances of the high493

temperature variants are generally lower than their494

low temperature counterparts. To investigate when495

high temperature would help, we further looked496

into a case in the WSRC setting where the high497

temperature version of the best prompt, (P2th),498

performed much better. The results are shown in499

Table 8. In this case, unlike P2hl, P2tl fails on500

identifying the target and also generates incorrect501

facts, (“rubber of your lungs”). This shows some502

evidence of high temperature prompts working bet-503

ter for more complex and creative analogies, which504

should be investigated further in the future.505

5.4 Consensus Scoring506

In the previous sections, we have analyzed gen-507

erated analogies in the context of reference text.508

However, one remaining challenge is how to eval-509

uate generated analogies in the absence of a refer-510

ence dataset, which we anticipate to be a common511

scenario (e.g., for generation of novel analogies).512

Although some reference free-metrics have been513

developed, they are mostly task-specific, e.g. for514

dialogue generation (Mehri and Eskenazi, 2020) 515

and thus, not usable. We design a reference-free 516

way to rank generated text based on consensus that 517

we call Consensus Score or con_score. 518

Intuitively, if an analogy generated in one set-
ting (e.g., combination of temperature and prompt)
matches well with those generated in several other
settings, it suggests that the generation is likely
correct. Thus, given analogies generated in K dif-
ferent settings, we estimate the correctness of a
generated analogy ai in a given setting as follows:

con_score(ai) =
∑

k∈K,k ̸=i

1

n
sim(ai, ak)

In other words, con_score is the average of pair- 519

wise similarities of (the embedding of) ai, with 520

(embeddings of) analogies generated in other set- 521

tings. Embeddings were computed using Sentence- 522

BERT(Reimers and Gurevych, 2019). 523

As an extension of this idea, instead of com- 524

puting similarities with all the settings, we investi- 525

gate selecting a subset. This is desirable because 526

of two main reasons: Firstly, as in other consen- 527

sus/ensembling approaches, some subsets of meth- 528

ods/settings could work better than all. Secondly, it 529

is cheaper to generate text from less number of set- 530

tings. The setting selections can be made in several 531

ways. Firstly, we expect the settings with better 532

overall performances to generate better analogies. 533

Secondly, with a fixed number of settings, it is ex- 534

pected that consensus with the more diverse ones 535

would increase the reliability. Thus, we do some 536

exploration with these two criteria. 537

To investigate the goodness of the con_score, 538

we compute their correlation with their BLEURT 539

scores based on Kendall’s Tau (τ ). 540

Results: In WSRC, a τ of 0.217 was obtained 541

(p<0.0001), indicating moderate positive corre- 542

lation (Botsch, 2011). In NO_SRC, τ of 0.07 543

(p<0.0001) was obtained, suggesting very weak 544

positive correlation. This is expected because in 545

NO_SRC, several settings can agree on a valid 546

analogy that is different from the reference. But, 547

in WSRC, there is less likelihood of multiple valid 548

explanations of how two concepts are analogous. 549

We further explore if selecting only two prompts 550

(with high or low temperatures) can improve the 551

correlation in the WSRC setting. For this, we fix 552

the best performing prompt (P2 with low tempera- 553

ture) and test its combinations with other prompts 554

in both the temperatures. Table 9 shows the results. 555
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Table 8: Analogies generated in the high and low temperature setting by the prompt: Explain how breathing
mechanism of frogs is analogous to blowing of the balloon.

Temp. Generated Analogy
High ... When you blow into a balloon, the air pressure ... The frog’s respiratory system works in a

similar way. When you breathe in, you increase the air pressure inside your lungs. This
increased air pressure causes the walls ...

Low When you blow up a balloon, the air inside the balloon is pushing outwards on the rubber of
the balloon. This is the same thing that happens when you breathe in: the air inside your
lungs is pushing outwards on the rubber of your lungs.

Table 9: Kendall’s Tau between BLEURT scores and con_score computed with P2 and another prompt in high and
low temperature settings. p<0.0001 for all values. Highest values per row are bolded.

temp. P1 P2 P3 P4 P5 P6 P7
low 0.217 - 0.159 0.146 0.13 0.172 0.134
high 0.226 0.179 0.177 0.192 0.158 0.173 0.218

We can see that the overall correlation can indeed556

be improved upto 0.226 by selecting 2 prompts557

instead of all 14 settings. Secondly, combining558

with more diverse prompts, namely either high tem-559

perature prompts (e.g., P1_th, P7_th) or prompts560

that are less correlated with P2tl (e.g., P1tl – refer561

figure 1) achieves better results.562

Overall, this suggests a reasonable way to assess563

analogies in the absence of reference data, at least564

in the WSRC setting. Moreover, our analysis gives565

an insight into selecting diverse prompts (e.g., for566

ensembling (Jiang et al., 2020)) based on tempera-567

tures and correlations of prompt performances.568

Characteristics of analogies based on con-569

sensus score The previous section suggests that570

consensus can be used to identify better analo-571

gies. We now qualitatively look at some analogies572

with high and low consensus scores (based on all573

the 14 prompt+temperature combinations in the574

NO_SRC setting). We observed that the analogies575

with higher consensus scores were generally well-576

known analogies on the web (e.g., golgi apparatus577

←→ post office). On the other hand, while some578

analogies with low consensus scores were invalid579

or non-analogies, there were two interesting cases580

with low scores. Firstly, creative analogies (e.g.,581

density wave←→ people walking through crowd)582

were found to be more diverse, as expected. Sec-583

ondly, in case of ambiguous concepts (e.g., ram584

could be either computer RAM or push), analogies585

differed based on the word senses. Thus, both low586

and high consensus scores help identify analogies587

and target concepts with interesting characteristics.588

We show concepts having analogies with top high-589

est and lowest average consensus in Table 10.590

Table 10: Concepts with highest and lowest average
consensus among their own respective analogies.

Highest consensus Lowest Consensus
tumor suppressor genes universe
ligase ram
lysosomes transcription
motherboard resonance hybrid

6 Conclusion 591

In this study, we proposed and studied the novel 592

task of generating analogies by prompting PLMs. 593

Our experiments showed that the PLMs are effec- 594

tive on this task when precise prompts are used, 595

thus offering a promising new way to generate 596

analogies, which can break the limitation of the 597

traditional analogy generation methods in requir- 598

ing a pre-generated structured representation. 599

By evaluating the performances of the various 600

designed prompts in multiple temperature settings, 601

we found that the GPT-3 model is sensitive to those 602

variations, particularly to the prompt style (ques- 603

tion vs. imperative statements) and temperature. 604

Additionally, we studied the automatic evaluation 605

of generated analogies and confirmed that the re- 606

cent BLEURT metric is more effective compared 607

to others. We also designed a promising, diversity- 608

based consensus score for evaluation. 609

A major limitation of our study is that we only 610

used one domain (middle-school science) and one 611

GPT-3 model. Its generalizability to other domains 612

and with other models should be examined further 613

in the future. 614
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7 Ethical Considerations615

The risks associated with using PLMs for anal-616

ogy generation are similar to those of other NLG617

tasks, such as bias and misinformation. Accord-618

ingly, these should be carefully evaluated before619

deploying the models for any practical applications,620

such as education.621

Furthermore, there is a steep monetary and en-622

vironmental cost associated with using the GPT-623

3 model, especially Davinci. The OpenAI API624

charges $0.06 /1K tokens. Including early experi-625

ments, this study costed a total of about $240. Since626

we generated multiple runs in the high tempera-627

ture settings with best_n=3, the cost rose sharply.628

Future work should investigate the capabilities of629

other smaller and more cost-effective models for630

this task.631
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A Appendix741

Table 11: Prompts for STD analogies

Id Prompt
P1 Explain <target> using an analogy.
P2 Explain <target> using a well-known anal-

ogy.
P3 What analogy is often used to explain <tar-

get>?
P4 Using a well-known analogy, explain <tar-

get>.
P5 Using an analogy, explain <target>.
P6 What is a well-known analogy to explain

<target>?
P7 What is analogous to <target>?

Table 12: Prompts for NO_ANLGY

Id Prompt
P1 Explain <target>.
P2 What is <target>?
P3 Explain <target> in plain language to a

second grader.

Table 13: Comparison of performances of different
prompts and temperatures in NO_ANLGY.

B R M
P1tl 0.434 0.183 0.149
P1th 0.432 0.18 0.158
P2tl 0.43 0.175 0.129
P2th 0.425 0.172 0.136
P3tl 0.445 0.180 0.132
P3th 0.444 0.179 0.144

Table 14: Comparison of performances of different
prompts and temperatures in NO_SRC_RAND.

B R M
P1tl 0.375 0.132 0.103
P1th 0.367 0.123 0.108
P2tl 0.359 0.116 0.092
P2th 0.366 0.127 0.105
P3tl 0.362 0.124 0.099
P3th 0.364 0.126 0.109
P4tl 0.338 0.115 0.084
P4th 0.348 0.121 0.1
P5tl 0.358 0.121 0.097
P5th 0.348 0.122 0.107

High TemperatureLow Temperature Low
 Tem

perature
H

igh Tem
perature

Figure 2: Kendall’s Tau correlation between BLEURT
scores of various prompts and temperature values in the
NO_SRC setting
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Table 15: Comparison of performances of different
prompts and temperatures in WSRC_RAND.

B R M
P1tl 0.37 0.120 0.094
P1th 0.363 0.122 0.107
P2tl 0.385 0.117 0.096
P2th 0.381 0.12 0.109
P3tl 0.358 0.117 0.095
P3th 0.359 0.115 0.1
P4tl 0.367 0.113 0.096
P4th 0.37 0.115 0.105
P5tl 0.36 0.113 0.09
P5th 0.356 0.117 0.094
P6tl 0.346 0.111 0.086
P6th 0.347 0.113 0.091
P7tl 0.353 0.114 0.092
P7th 0.352 0.109 0.093

Table 16: Comparison of performances of different
prompts and temperatures in NO_ANLGY_RAND.

B R M
P1tl 0.346 0.115 0.087
P1th 0.349 0.122 0.099
P2tl 0.322 0.116 0.077
P2th 0.327 0.113 0.081
P3tl 0.334 0.111 0.079
P3th 0.336 0.11 0.081

Table 17: Comparison of lengths of generated responses
by question (Q) vs. statement (S) in the WSRC setting.
Question versions of the prompts generate fewer words
on average, than their statement counterparts.

Prompt Pair Avg. Len. (S) Avg. Len. (Q)
P2-P5 43.93 34.53
P3-P6 32.55 31.4
P4-P7 42.51 32.72

Table 18: Comparison of lengths of generated responses
by low and high temperatures in the NO_SRC setting.
High temperature generates consistently longer analo-
gies. Same trend is observed in other settings also.

Prompt Avg. Length (tl) Avg. Length (th)
P1 39.74 47.62
P2 32.67 40.71
P3 40.06 46.62
P4 32.51 40.13
P5 36.53 38.50

Table 19: Most common analogies generated for each
target concept in the STD dataset. #Pmt. means number
of prompts that generated the shown analogy.

Target Most common src. # Pmt.
mind computer 7
atom solar system 6

heat transfer fluid/water flow 4
sounds wave 4

respiration combustion 3
light river 3

planet rock 2
bacterial mutation game of telephone 3
natural selection sieve 2
gas molecules balls 2
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