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Abstract

We propose a novel application of Pre-trained
Language Models (PLMs) to generate analo-
gies and study how to design effective prompts
to prompt a PLM to generate a source concept
analogous to a given target concept as well as
to generate an explanation of the similarity be-
tween given pair of target concept and source
concept. We found that it is feasible to prompt
a GPT-3 PLM to generate meaningful analogies
and the best prompts tend to be precise impera-
tive statements especially with low temperature
setting. We systematically analyzed the sen-
sitivity of the GPT-3 model to prompt design
and temperature and found that the model is
particularly sensitive to certain variations (e.g.,
questions vs. imperative statements). We also
investigated the suitability of using the exist-
ing reference-based metrics designed for eval-
uating natural language generation (NLG) to
evaluate analogy generation and found that the
recent BLEURT score is better than the oth-
ers. We further propose a promising consensus
measure based on diverse prompts and settings,
which can be potentially used to both automati-
cally evaluate the generated analogies in the ab-
sence of reference text (e.g., in novel domains)
and rank a set of generated analogies to select
analogies of different characteristics. Overall,
our study shows that PLMs offer a promising
new way to generate analogies in unrestricted
domains, breaking the limitation of existing
analogy generation methods in requiring struc-
tured representation.

1 Introduction

Pre-trained Language Models (PLMs) such as
BERT and GPT have been applied to many tasks
of text generation (e.g., summarization, dialogue
system) with promising results (Li et al., 2021).
However, no existing work has studied how to ap-
ply PLMs to generate analogies.

Generating analogies has a wide range of appli-
cations, such as explaining concepts and scientific

innovation, and analogies play a crucial role in hu-
man cognition. Analogical matching and reasoning
enables humans to understand and learn unfamiliar
concepts (aka target concepts) by means of famil-
iar ones (aka source concepts), e.g. understanding
the Bohr’s model of atoms using the solar system;
and to make scientific innovations, e.g. the Wright
brothers developed a steerable aircraft based on bi-
cycles. As a result, computing analogies has been a
long-standing goal of Al (Mitchell, 2021). This is a
challenging problem because it requires computing
structural similarities that are beyond the surface-
level similarity. For example, at a surface level,
the Bohr’s atom model and the solar system do not
share any attributes, but their relational similarities
(i.e., atoms orbit around the nucleus just as planets
around the sun) makes them analogous.

Much work has been done to compute such ana-
logical similarities. However, existing approaches
generally rely on structured representations, thus
they can only work on limited domains where such
representations already exist. Moreover, they can-
not generate analogies in natural language. For
example, one of the most popular models is Struc-
tural Mapping Engine (SME) (Forbus et al., 2017),
which aligns structured representations of the tar-
get and source concepts using predicate logic.

Inspired by the recent success in applying PLMs
to many NLP tasks (see, e.g., (Li et al., 2021)), we
propose and study the application of PLMs to anal-
ogy generation. We consider two typical applica-
tion scenarios of analogy generation: 1) Analogous
Concept Generation (ACG): Given a target concept,
generate a source concept analogous to the target
concept possibly with an explanation of the simi-
larity of the two concepts. 2) Analogy Explanation
Generation (AEG): Given a target concept and an
analogous source concept, generate an explanation
of their similarity.

We note the similarity of the two tasks defined
above and other text generation problems, thus in-



spired by the recent success of using prompted
PLMs for text generation, we hypothesize that anal-
ogy generation can also be solved by using a PLM
with appropriately designed prompts.

Large pre-trained language models (e.g., GPT-3)
have already been successful for other tasks like
question answering with minimal further training
for downstream tasks. Along this direction, prompt-
ing language models (Liu et al., 2021) is a promis-
ing emerging paradigm that uses textual prompts
with unfilled slots, and directly leverages the lan-
guage models to fill those slots and obtain the de-
sired output. Our problem setup is similar to the
use of PLMs for text generation (Li et al., 2021),
but the task of analogy generation is challenging
and different from the existing text generation tasks
in multiple ways:

Firstly, analogical reasoning and explanation re-
quire deep knowledge of the attributes, functions
and relations of both source and target concepts.
Secondly, analogies are most useful when they ex-
plain target concepts using everyday-life scenarios.
Both commonsense reasoning and creativity are
required to generate plausible yet interesting ana-
logical texts (e.g., electrical resistance is like cats
blocking mice). It is unclear whether PLMs are
capable of such tasks. Moreover, since this is a new
problem, it is unclear how to evaluate the quality
of the generated analogies.

In this paper, we address those challenges and
study the following main research questions: RQ1)
How effective is a modern PLM such as GTP-3 in
generating meaningful analogies? RQ2) Are exist-
ing NLG evaluation metrics suitable for evaluating
generated analogies and can they give meaning-
ful results? RQ3) How sensitive are the generated
analogies to prompt design and other hyperparame-
ters? RQ4) Can we automatically assess analogies
in the absence of reference dataset?

To study these questions, we design several ex-
periments on analogies generated from the GPT-3
model. Firstly, to assess whether existing NLG
metrics (e.g., BLEURT (Lin, 2004)) can be reliably
used for evaluating the quality of generated analo-
gies, we design two sanity tests. The tests check
whether the metrics generally behave as expected,
i.e. give higher scores to higher quality analogies.
Using these tests, we select the best metric for auto-
matically evaluating the GPT-3 generated analogies
against a reference dataset of analogies of middle-

school science concepts created from Chegg.com'.

We also design and systematically vary prompt vari-
ants (e.g., imperative statements -> questions) and
investigate the corresponding variations in gener-
ated text. Finally, since it is not always feasible
to obtain reference datasets (e.g., for new domains
or novel analogies), we design a scoring method
based on consensus of generated analogies in var-
ious settings (e.g., prompt design, temperature),
called Consensus Score, to automatically evaluate
the analogies without reference text. We also in-
vestigate its effectiveness as an evaluation method
based on its correlation with BLEURT.

Our study confirms that PLMs offer a promising
general approach to generate analogies with prop-
erly designed prompts. Furthermore, the GPT-3
model is found to be sensitive to the prompt design
and temperature for this task, particularly to the
prompt style (i.e., question vs. imperative state-
ment). Precise imperative statements in low tem-
perature setting are found to be the best prompts.
We also confirm the effectiveness of the recent
BLEURT(Sellam et al., 2020) score for evaluat-
ing analogies. We show that our Consensus Score
metric with diversity offers a promising way of
reference-free evaluation of generated analogies.
We will release all the GPT-3 generated analogies
(= 6k) for the community’s further study of this
novel problem.

2 Related Work
2.1 Computational Models of Analogies

There has been a lot of work on computational
modeling of analogies (Mitchell, 2021). The SME
model (Forbus et al., 2017) is one of the most popu-
lar symbolic model that finds the mapping between
structured representations of source and target con-
cepts. The recent deep learning-based approaches
(Mikolov et al., 2013; Rossiello et al., 2019; Ushio
et al., 2021), perform analogical reasoning on un-
structured text, but are currently limited to simple
word-level or proportional analogies, such as (Paris:
France:: London: ?). However, none of the exist-
ing work has studied the problem of automatically
generating complex analogies in natural language.

2.2 Prompting Language Models

Recently, prompts have been either manually cre-
ated or learned to successfully leverage PLMs for
several natural language tasks (Liu et al., 2021).

"https://chegg.com/



Our work is closest to prompting for Question An-
swering (Khashabi et al., 2020) and Text Gener-
ation (Schick and Schiitze, 2020; Li and Liang,
2021). Analogy generation is different from ques-
tion answering since it also requires more creativity
to construct new analogies that do not directly ex-
ist on the web. It is a challenging case of text
generation that requires reasoning of relational sim-
ilarities between two concepts or situations. None
of the existing work has studied prompting PLMs
for analogy generation.

3 Problem Formulation

Motivated by the practical applications of this task
(e.g., explaining concepts), we study analogy gen-
eration in the following settings.

1. Analogous Concept Generation (ACG) or No
Source(NO_SRC): In this setup, only the target
concept is provided as the input. The goal is to
generate a text that contains an analogous source
concept or situation (e.g., solar system), along with
some explanation to justify the analogy. Practically,
this setting could be useful in finding unknown
analogies and creating novel analogies.

2. Analogy Explanation Generation (AEG) or
With Source (WSRC): In this setup, in addition
to the target, the source concept is also a part of
input. The goal is to generate a text that should
be an explanation of how the target and source are
analogous. If successful, this setup could be use-
ful in assisting users in creating better analogical
explanations and seeing connections between two
seemingly disparate concepts or situations.

4 Experiment Setup

In this section, we discuss the data sets and the
GPT-3 PLM used in our experiments.
Dataset: As the task of analogy generation has not
been previously studied, there is no existing data
set available to use directly for evaluation. We thus
opted to create new data sets for evaluation.

Standard Science Analogies (STD): As far as we
can find, the closest dataset consisting of complex
analogies is from (Turney, 2008). It consists of
ten standard science analogies. However, these do
not contain any explanation in nature language, but
only the source and target concepts.

Analogies from Chegg.com (CHG): We searched
for quiz questions that asked to create analogies on
Chegg.com 2 by using search queries like ‘create an

“https://chegg.com/. Terms of Use:

analogy’, ‘analogy to explain’, and downloaded the
relevant questions and answers. After manually re-
moving irrelevant data, 75 unique question-answer
pairs were obtained. Next, we manually extracted
the target and source concepts, and the full analo-
gies from the answers (containing explanation of
the analogical similarity). The final dataset has
148 analogies in English for 109 target concepts.
The analogies are mostly about middle school sci-
ence and few basic computer science concepts. The
average length of analogies is 55.63 words.
GPT-3 Davinci Instruct Model: Recently, several
PLM:s have been developed and trained on massive
web data (Devlin et al., 2018; Brown et al., 2020;
Raffel et al., 2019). In this study, we probe the
popular GPT-3 model. With 175 billion parameters,
the Davinci model of GPT-3 is the most powerful
GPT-3 model. The Davinci “Instruct” model is
further optimized to follow instructions better 3.
We leave the exploration of other PLMs to future
work.

We used the Open AI API 4 to generate all analo-
gies. Based on initial qualitative explorations, we
noticed that setting a high number of maximum
tokens worked better in generating more compre-
hensive analogies. Thus, we set it to 939. The
default value of top_p = 1 was used. Other hyper-
parameters are described in Section 5.3.2.

S Experiment Results

5.1 Feasibility Analysis

We first investigate whether PLMs are capable of
generating analogies with simple prompts by look-
ing at the results on the smaller STD dataset which
contains well-known analogies. Here, we seek stan-
dard analogies, so we designed prompts with key-
words such as "well-known analogy", "often used
to explain", etc. The full list of prompts is in Table
11, Appendix A.

We observed that all the prompts were success-
ful in retrieving natural language analogies to some
extent but they differed in several aspects. Table 1
shows sample analogies generated by two of our
prompts (P7 and P2, Table 11) for the target con-

https://www.chegg.com/termsofuse. =~ We do not intend
to distribute the dataset without their permission. We
manually inspected the data and found no personal identifiers
or offensive content.

3https://beta.openai.com/docs/engines/instruct-series-
beta

*https://beta.openai.com/docs/api-
reference/completions/create



Prompt (P7): | What is analogous to natural selection?

GPT Output: | The analogous process to natural selection is artificial selection. (9 words)

Prompt (P2) : | Explain natural selection using a well-known analogy.

GPT Output: | One of the most famous analogies ... Imagine that you have a jar of mixed nuts ... If
you shake the jar ...the big nuts will fall out first ... The analogy is that natural
selection is like a sieve that separates the fit from the unfit. ... (136 words)

Table 1: Selected prompts and GPT-generated analogies for natural selection

cept “natural selection.” In this case, the reference
answer in the STD dataset is “artifical selection,”
which P7 successfully retrieved, while P2 gener-
ated a different but also valid analogy. Such varia-
tions indicate both the potential of using different
prompts to generate (multiple) different analogies
and the model sensitivity to prompt design, which
we further investigate in Section 5.3.

To quantify the effectiveness of different
prompts, we manually evaluated the source con-
cepts mentioned in the generated analogies (if any).
Table 2 shows the number of exact matches of
generated source concepts to those in the refer-
ence STD dataset, along with the number of “valid”
source concepts generated. Valid means a reason-
able analogy that is either commonly known (e.g.,
available on the internet) or contains a meaningful
justification. All prompts generated valid analogies
in many cases, even if they didn’t exactly match
the reference source concept. This suggests that
a concept could have several valid analogies and
it might be infeasible to pre-specify all the valid
analogies, making it challenging to accurately eval-
uate such generated analogies without relying on
manual assessment of each result. We will explore
automatic evaluation in Sections 5.2, 5.4.

Table 2: Comparison of prompts for STD analogies

|PL|[P2|P3|P4|P5|P6|P7
# Match | 3 3 6 4 3 5 3
#Valid | 6 9 9 8 7 110 |10

5.2 Suitability of existing evaluation metrics

Automatic evaluation of natural language gener-
ation is known to be challenging (e.g., in case
of long-form question answering (Krishna et al.,
2021)) as automatic metrics do not accurately re-
flect semantic similarity (Callison-Burch et al.,
2006; Raffel et al., 2019). Evaluation of analogies
is even more challenging especially when no source
is provided (NO_SRC), because a target concept
could have several valid analogies with seemingly
different meanings (e.g., “artificial selection” vs.

“sieve” from Section 5.1).

Given these challenges, we need to first investi-
gate the suitability of existing evaluation metrics
for generated analogies before we can trust any
evaluation results using them. To this end, we de-
sign two testers to examine whether the existing
metrics behave as expected: 1) Ordering Tester
(OT): This tester is to see if an evaluation metric
can order a set of methods that have known orders
between them correctly as expected. 2) Random
Perturbation Tester (RPT) : This tester checks if
an evaluation metric responds to a random pertur-
bation to the ground truth data used for evaluation.
A reasonable metric is expected to generate lower
performance figures after perturbation.

We use those two testers to study the suitabil-
ity of three popular and representative measures of
automatic evaluation of generated text: BLEURT
(Sellam et al., 2020), METEOR (Lavie and Agar-
wal, 2007), ROGUE-L F1 (Lin, 2004).

BLEURT (B) is a recent machine learning-based
metric that has been shown to capture semantic
similarities between text. ROUGE-L (R)’ measures
longest matching subsequence of words. We use
its F1-score. METEOR (M)° matches word stems
and synonyms also.

Design of testers: We design an OT and a RPT
based on the following baseline methods:

No Analogy baseline (NO_ANLGY): Here, the
prompts instruct the model to generate an expla-
nation or description of the target concept and do
not ask for an analogy explicitly. Thus, we expect
the generated text to be in a different “style” than
analogies and the overall performance to be lower.
However, the generation would still contain other
relevant keywords describing the target. Thus, it is
a good baseline to test if the metrics can distinguish
between analogies and other descriptions.

Random baselines: For each of the three
setups, we introduced random baselines
(NO_ANLGY_RAND, NO_SRC_RAND,

Shttps://pypi.org/project/rouge-score/
®https://www.nltk.org/api/nltk.translate.meteor_score.html



and WSRC_RAND, respectively) where a
generated string is evaluated against a random
analogy (excluding the correct matching analogy)
in the reference dataset (i.e., applying a random
perturbation to the ground truth). These baselines
preserve the “style” of the text but not the content.
We expect these methods to perform worse than
their non-random counterparts.

Additionally, NO_SRC setting is expected to
perform worse than WSRC because in WSRC, the
model has more information (i.e., the source con-
cept) and thus has better chances of generating the
correct analogical explanation. Thus, the expected
order is NO_ANLGY < NO_SRC < WSRC.
Metric testing results: Table 3 shows the overall
results of experiments on the CHG dataset. Each
row shows the highest average scores given by
a metric in various setups (performances of each
prompt are in Section 5.3 and Appendix A).

We can see that all the three metrics order the
setups as expected, i.e. random baselines are as-
signed a lower score than non-random setups, and
scores for NO_ANLGY < NO_SRC < WSRC. This
suggests that all the three metrics have “passed"
our two testers and thus can be reasonably used to
evaluate generated analogies.

Moreover, this also indicates that the GPT-3
model is able to “understand” the prompts in the
three settings to some extent and generate non-
analogical descriptions, general analogies, and
analogies containing the source concepts, in those
settings respectively. However, in terms of dis-
cernment power, all metrics have small gaps be-
tween the scores of random and non-random set-
tings. Similar results were previously reported in
(Krishna et al., 2021) for ROUGE scores on long-
form question-answering. Out of the three met-
rics, the BLEURT score has the largest gaps in
all the settings, both between the random and non-
random baselines and also between settings. It is
also shown to capture semantic similarity well (Sel-
lam et al., 2020). Thus, we use it as the main metric
in the rest of the experiments.

5.3 Comparative analysis of prompts and
temperature

As observed in many other applications of
prompted PLMs, the performance of a task tends
to be sensitive to the prompts used and the temper-
ature parameter (Lu et al., 2021; Zhao et al., 2021).
Thus it is important to experiment with variations

of both the prompts and the temperature parameter
(with frequency_penalty, Section 5.3.2 ) and study
how they impact the generated analogy.

Specifically, we mainly compare their average
performances of the different hyperparameter com-
binations (tables 6, 7), and their correlations based
on BLEURT scores (figures 1, 2).

Similar average BLEURT values would indicate
that the prompts are equally good (or bad) on a
task, but not necessarily in the same way. On the
other hand, Kendall’s Tau (Kendall, 1938) indicates
how well the ranks of two variables are correlated.
In our case, a high Kendall’s Tau would indicate
that the two prompts generally perform better (or
worse), with possibly different magnitudes, on the
same individual test samples. This would suggest
that those prompts have similar strengths and weak-
nesses. Thus, we analyze both scores to get a more
complete picture of hyperparameter sensitivity.

5.3.1 Analysis of prompts

To study the effectiveness and robustness of dif-
ferent prompts for analogy generation in the un-
supervised setting, we manually designed several
prompts for all the problem settings. The differ-
ent prompt variants are all paraphrases, such that
they are semantically similar. The main ways they
differ are: 1. Questions vs. Imperative Statements
(e.g., P5 vs. P2, Table 5); 2. Synonyms (e.g., P2
vs. P3, Table 5); 3. Word Ordering (e.g., P1 vs.
P3, Table 4). We only study the zero-shot setting,
i.e. we do not provide examples of analogies in
the prompt mainly because the choice/number of
examples used can significantly impact the results.
We leave such explorations for future work.
Prompts for the NO_SRC and WSRC settings
are in tables 4 ,5, respectively. Here, <target>,
<src> are target and source concept placeholders.
Results: We discuss our major findings below.
Questions are worse than statements: The ques-
tion prompts are as follows: P4 in NO_SRC and P5-
P7 in WSRC. From Figure 2 top-left and bottom-
right, as expected, those questions and statements
that share the most words (e.g., P3 and P6) are
more strongly correlated. Even so, from Tables 5
and 4, questions perform significantly worse, con-
sistently. These effects could be an artifact of how
the GPT-3 Instruct models are trained and should
be investigated in the future.
Impact of synonyms and word order: Prompt per-
formances vary based on synonyms and word order.
For example, some synonymous prompt pairs (e.g,



Table 3: Testing results using OT and RPT. Bold font means the higher score between the random baseline and the

non-random setup. Highest score in a row in underlined.

NO_ANLGY_RAND | NO_ANLGY | NO_SRC_RAND | NO_SRC | WSRC_RAND | WSRC
B 0.349 0.445 0.375 0.462 0.385 0.515
R 0.122 0.183 0.132 0.196 0.122 0.229
M 0.099 0.158 0.109 0.171 0.109 0.208

Table 4: Prompts for NO_SRC

Id | Prompt

P1 | Explain <target> using an analogy.

P2 | Create an analogy to explain <target>.
P3 | Using an analogy, explain <target>.

P4 | What analogy is used to explain <target>?
P5 | Use an analogy to explain <target>.

Table 5: Prompts for WSRC

Id | Prompt

P1 | Explain <target> using an analogy involv-
ing <src>.

P2 | Explain how <target> is analogous to
<src>.

P3 | Explain how <target> is like <src>.

P4 | Explain how <target> is similar to <src>.
P5 | How is <target> analogous to <src>?

P6 | How is <target> like <src>?

P7 | How is <target> similar to <src>?

P2-P4, P5-P7 in WSRC) are more correlated than
others (e.g., P2-P3, P5-P6 in WSRC). This could
be because “analogous to” and “similar to” share a
word unlike the other synonym “like”. As expected,
prompts with the most different meanings (e.g., P1
in WSRC — involving <src> is not necessarily the
same as analogous to <src>) are least correlated
with others. However, from Table 7, the average
performances of synonymous prompts (e.g., P2y
and P3;;, P24 and P5y) are not significantly dif-
ferent. Overall, this suggests that GPT-3 is more
robust to synonyms/word-order than to the prompt
style (question/imperative statements) for this task.
The overall winning prompts (P3 in NO_SRC, P2
in WSRC) contain some form of of the word “anal-
ogy” confirming that precise prompts are better.

5.3.2 Analysis of temperature

Higher temperature increases the randomness in
the generated text and is often suggested for cre-
ative tasks (Lucy and Bamman, 2021). Since some
analogies require creativity, we are especially inter-

Table 6: Comparison of performances of different
prompts and temperatures in NO_SRC. * and ** mean
statistically significant at p<0.1 and p<0.05 respectively
based on a two-tailed t-test.

B R M
Ply 0.46 0.187 0.154
Pl | 0.448%% | 0.181** | 0.167
P2, | 0.451 0.193 0.154
P24, | 0.45% 0.184 0.161
P3; | 0.462 0.196 0.164
P3;, | 0.452 0.188 0.171
P4y | 0.427%*% | 0.170%* | 0.126**
P4, | 0.431%% | 0.179%* | 0.156
P54 0.451 0.188 0.154
P5;, | 0.449% | 0.183% 0.163
Ply Low Temperature High Temperature

P2y 045
P3, 0.5 054
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Figure 1: Kendall’s Tau correlation between BLEURT
scores of various prompts and temperatures in WSRC

ested in studying the impact of this hyperparameter.

We explore two settings. Low Temperature (tl):
this is a deterministic setting, where temperature =
frequency_penalty = presence_penalty = 0. High
Temperature (th): Here temperature is set to 0.85.
To avoid repetition of words and topics, we set
frequency_penalty = 1.24 and presence_penalty =
1.71. These hyperparameters were selected based
on initial qualitative exploration. To account for the
randomness, we set best_n = 3, i.e., select the best
response out of three generated responses, and gen-
erate 5 such best responses. In all experiments, we



Table 7: Comparison of performances of different
prompts and temperatures in WSRC. * and ** mean
statistically significant at p<0.1 and p<0.05 respectively
based on a two-tailed t-test.

B R M
Pl | 0.504 0.223 | 0.187**
Ply, | 0.497#% | 0.212%* | 0.199
P2, | 0.515 0.217 0.203
P2y, | 0.502*% | 0.210%* | 0.208
P3; | 0.504 0.229 0.191
P3, | 0.504 0.216 0.203
P4, | 0.506 0.214 0.197
P4, | 0.497%% | 0.206%** 0.2
P5; | 0.499% 0.217 0.18%*
P54 | 0.496%% | 0.211** | 0.191*
P6,; | 0.500% 0.216 | 0.176%*
P6:, | 0.494%% | 0.212%* | 0.183%**
P74 | 0.497%% | 0.208%** | 0.179%*
P7:, | 0.492%% | 0.204** | 0.186**

report the average performance of all 5 responses.

Results: Firstly, at high temperature, prompts
are generally well-correlated with each other(lower
right, figures 1, 2) suggesting lesser sensitivity to
prompt design at high temperatures. This requires
further investigation because we expect higher ran-
domness to generate a variety of different analogies,
and thus have lower correlations in general.

Secondly, the overall performances of the high
temperature variants are generally lower than their
low temperature counterparts. To investigate when
high temperature would help, we further looked
into a case in the WSRC setting where the high
temperature version of the best prompt, (P2;,),
performed much better. The results are shown in
Table 8. In this case, unlike P2p;, P2 fails on
identifying the target and also generates incorrect
facts, (“rubber of your lungs”). This shows some
evidence of high temperature prompts working bet-
ter for more complex and creative analogies, which
should be investigated further in the future.

5.4 Consensus Scoring

In the previous sections, we have analyzed gen-
erated analogies in the context of reference text.
However, one remaining challenge is how to eval-
uate generated analogies in the absence of a refer-
ence dataset, which we anticipate to be a common
scenario (e.g., for generation of novel analogies).
Although some reference free-metrics have been
developed, they are mostly task-specific, e.g. for

dialogue generation (Mehri and Eskenazi, 2020)
and thus, not usable. We design a reference-free
way to rank generated text based on consensus that
we call Consensus Score or con_score.
Intuitively, if an analogy generated in one set-
ting (e.g., combination of temperature and prompt)
matches well with those generated in several other
settings, it suggests that the generation is likely
correct. Thus, given analogies generated in K dif-
ferent settings, we estimate the correctness of a
generated analogy a; in a given setting as follows:

1
Z —sim(a;, ay)

con_score(a;) =
heK ki

In other words, con_score is the average of pair-
wise similarities of (the embedding of) a;, with
(embeddings of) analogies generated in other set-
tings. Embeddings were computed using Sentence-
BERT(Reimers and Gurevych, 2019).

As an extension of this idea, instead of com-
puting similarities with all the settings, we investi-
gate selecting a subset. This is desirable because
of two main reasons: Firstly, as in other consen-
sus/ensembling approaches, some subsets of meth-
ods/settings could work better than all. Secondly, it
is cheaper to generate text from less number of set-
tings. The setting selections can be made in several
ways. Firstly, we expect the settings with better
overall performances to generate better analogies.
Secondly, with a fixed number of settings, it is ex-
pected that consensus with the more diverse ones
would increase the reliability. Thus, we do some
exploration with these two criteria.

To investigate the goodness of the con_score,
we compute their correlation with their BLEURT
scores based on Kendall’s Tau (7).

Results: In WSRC, a 7 of 0.217 was obtained
(p<0.0001), indicating moderate positive corre-
lation (Botsch, 2011). In NO_SRC, 7 of 0.07
(p<0.0001) was obtained, suggesting very weak
positive correlation. This is expected because in
NO_SRC, several settings can agree on a valid
analogy that is different from the reference. But,
in WSRC, there is less likelihood of multiple valid
explanations of how two concepts are analogous.

We further explore if selecting only two prompts
(with high or low temperatures) can improve the
correlation in the WSRC setting. For this, we fix
the best performing prompt (P2 with low tempera-
ture) and test its combinations with other prompts
in both the temperatures. Table 9 shows the results.



Table 8: Analogies generated in the high and low temperature setting by the prompt: Explain how breathing
mechanism of frogs is analogous to blowing of the balloon.

Temp. | Generated Analogy

High

increased air pressure causes the walls ...

... When you blow into a balloon, the air pressure ... The frog’s respiratory system works in a
similar way. When you breathe in, you increase the air pressure inside your lungs. This

Low

When you blow up a balloon, the air inside the balloon is pushing outwards on the rubber of
the balloon. This is the same thing that happens when you breathe in: the air inside your
lungs is pushing outwards on the rubber of your lungs.

Table 9: Kendall’s Tau between BLEURT scores and con_score computed with P2 and another prompt in high and
low temperature settings. p<0.0001 for all values. Highest values per row are bolded.

temp. | P1 | P2 | P3 | P4 | P5 | P6 | P7
low [0217 | - [0.159 | 0.146 | 0.13 | 0.172 | 0.134
high | 0.226 | 0.179 | 0.177 | 0.192 | 0.158 | 0.173 | 0.218

We can see that the overall correlation can indeed
be improved upto 0.226 by selecting 2 prompts
instead of all 14 settings. Secondly, combining
with more diverse prompts, namely either high tem-
perature prompts (e.g., P1_th, P7_th) or prompts
that are less correlated with P2y (e.g., P1y — refer
figure 1) achieves better results.

Overall, this suggests a reasonable way to assess
analogies in the absence of reference data, at least
in the WSRC setting. Moreover, our analysis gives
an insight into selecting diverse prompts (e.g., for
ensembling (Jiang et al., 2020)) based on tempera-
tures and correlations of prompt performances.

Characteristics of analogies based on con-
sensus score The previous section suggests that
consensus can be used to identify better analo-
gies. We now qualitatively look at some analogies
with high and low consensus scores (based on all
the 14 prompt+temperature combinations in the
NO_SRC setting). We observed that the analogies
with higher consensus scores were generally well-
known analogies on the web (e.g., golgi apparatus
<— post office). On the other hand, while some
analogies with low consensus scores were invalid
or non-analogies, there were two interesting cases
with low scores. Firstly, creative analogies (e.g.,
density wave <— people walking through crowd)
were found to be more diverse, as expected. Sec-
ondly, in case of ambiguous concepts (e.g., ram
could be either computer RAM or push), analogies
differed based on the word senses. Thus, both low
and high consensus scores help identify analogies
and target concepts with interesting characteristics.
We show concepts having analogies with top high-
est and lowest average consensus in Table 10.

Table 10: Concepts with highest and lowest average
consensus among their own respective analogies.

Highest consensus ‘ Lowest Consensus

tumor suppressor genes | universe

ligase ram

lysosomes transcription
motherboard resonance hybrid

6 Conclusion

In this study, we proposed and studied the novel
task of generating analogies by prompting PLMs.
Our experiments showed that the PLMs are effec-
tive on this task when precise prompts are used,
thus offering a promising new way to generate
analogies, which can break the limitation of the
traditional analogy generation methods in requir-
ing a pre-generated structured representation.

By evaluating the performances of the various
designed prompts in multiple temperature settings,
we found that the GPT-3 model is sensitive to those
variations, particularly to the prompt style (ques-
tion vs. imperative statements) and temperature.
Additionally, we studied the automatic evaluation
of generated analogies and confirmed that the re-
cent BLEURT metric is more effective compared
to others. We also designed a promising, diversity-
based consensus score for evaluation.

A major limitation of our study is that we only
used one domain (middle-school science) and one
GPT-3 model. Its generalizability to other domains
and with other models should be examined further
in the future.



7 Ethical Considerations

The risks associated with using PLMs for anal-
ogy generation are similar to those of other NLG
tasks, such as bias and misinformation. Accord-
ingly, these should be carefully evaluated before
deploying the models for any practical applications,
such as education.

Furthermore, there is a steep monetary and en-
vironmental cost associated with using the GPT-
3 model, especially Davinci. The OpenAl API
charges $0.06 /1K tokens. Including early experi-
ments, this study costed a total of about $240. Since
we generated multiple runs in the high tempera-
ture settings with best_n=3, the cost rose sharply.
Future work should investigate the capabilities of
other smaller and more cost-effective models for
this task.
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A Appendix

Table 11: Prompts for STD analogies

Id | Prompt

P1 | Explain <target> using an analogy.

P2 | Explain <target> using a well-known anal-
ogy.

P3 | What analogy is often used to explain <tar-
get>?

P4 | Using a well-known analogy, explain <tar-
get>.

P5 | Using an analogy, explain <target>.

P6 | What is a well-known analogy to explain
<target>?

What is analogous to <target>?

pP7

Table 12: Prompts for NO_ANLGY

Id | Prompt
P1 | Explain <target>.
P2 | What is <target>?

P3 | Explain <target> in plain language to a

second grader.

10

Table 13: Comparison of performances of different
prompts and temperatures in NO_ANLGY.

B R M
Pl, | 0.434 | 0.183 | 0.149
Ply, | 0432 | 0.18 | 0.158
P2, | 043 | 0.175 | 0.129
P2, | 0425 | 0.172 | 0.136
P3, | 0.445 | 0.180 | 0.132
P3,, | 0.444 | 0.179 | 0.144

Table 14: Comparison of performances of different
prompts and temperatures in NO_SRC_RAND.

B R M
Pl, | 0.375 | 0.132 | 0.103
P1;, | 0.367 | 0.123 | 0.108
P2, | 0.359 | 0.116 | 0.092
P2;, | 0.366 | 0.127 | 0.105
P3; | 0.362 | 0.124 | 0.099
P3;, | 0.364 | 0.126 | 0.109
P4, | 0.338 | 0.115 | 0.084
P4;, | 0.348 | 0.121 0.1
P5; | 0.358 | 0.121 | 0.097
P5;, | 0.348 | 0.122 | 0.107
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Figure 2: Kendall’s Tau correlation between BLEURT
scores of various prompts and temperature values in the
NO_SRC setting



Table 15: Comparison of performances of different
prompts and temperatures in WSRC_RAND.

B R M
Pl | 0.37 | 0.120 | 0.094
Pl | 0363 | 0.122 | 0.107
P2, | 0.385 | 0.117 | 0.096
P2, | 0381 | 0.12 | 0.109
P3; | 0.358 | 0.117 | 0.095
P3,, | 0359 | 0.115 | 0.1
P4, | 0.367 | 0.113 | 0.096
P4, | 037 | 0.115 | 0.105
P5; | 036 | 0.113 | 0.09
PS5, | 0.356 | 0.117 | 0.094
P6; | 0346 | 0.111 | 0.086
P6y, | 0.347 | 0.113 | 0.091
P7, | 0353 | 0.114 | 0.092
P7,, | 0.352 | 0.109 | 0.093

Table 19: Most common analogies generated for each
target concept in the STD dataset. #Pmt. means number
of prompts that generated the shown analogy.

Table 16: Comparison of performances of different
prompts and temperatures in NO_ANLGY_RAND.

B R M
Ply | 0346 | 0.115 | 0.087
Ply, | 0.349 | 0.122 | 0.099
P2, | 0322 | 0.116 | 0.077
P24, | 0327 | 0.113 | 0.081
P3; | 0334 | 0.111 | 0.079
P3;, | 0336 | 0.11 | 0.081

Table 17: Comparison of lengths of generated responses
by question (Q) vs. statement (S) in the WSRC setting.
Question versions of the prompts generate fewer words
on average, than their statement counterparts.

Prompt Pair ‘ Avg. Len. (S) ‘ Avg. Len. (Q)

P2-P5
P3-P6
P4-P7

43.93
32.55
42.51

34.53
314
32.72

Table 18: Comparison of lengths of generated responses
by low and high temperatures in the NO_SRC setting.
High temperature generates consistently longer analo-
gies. Same trend is observed in other settings also.

Prompt | Avg. Length (tI) | Avg. Length (th)
P1 39.74 47.62
P2 32.67 40.71
P3 40.06 46.62
P4 32.51 40.13
P5 36.53 38.50

Target Most common src. Pmt.
mind computer 7
atom solar system 6

heat transfer fluid/water flow 4
sounds wave 4
respiration combustion 3
light river 3
planet rock 2
bacterial mutation | game of telephone 3
natural selection sieve 2
gas molecules balls 2




