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Saliency Driven Gaze Control for Autonomous Pedestrians
Category: Research

Figure 1: Components of the proposed Particle Gaze method. A saliency map is generated in real time from the current agent
view (Left). The values from this saliency map are used to set the Z values of a spline surface, representing a potential field V (x,y)
(Middle). The gradient of this potential field −∇⃗V is used to move the center of gaze towards a minimum in the field.

ABSTRACT

How and why an agent looks at its environment can inform its navi-
gation, behaviour and interaction with the environment. A human
agent’s visual-motor system is complex and requires both an under-
standing of visual stimulus as well as adaptive methods to control
and aim its gaze in accordance with goal-driven behaviour or intent.
Drawing from observations and techniques in psychology, computer
vision and human physiology, we present techniques to procedurally
generate various types of gaze movements (head movements, sac-
cades, microsaccades, and smooth pursuits) driven entirely by visual
input in the form of saliency maps which represent pre-attentive
processing of visual stimuli in order to replicate human gaze be-
haviour. Each method is designed to be agnostic to attention and
cognitive processing, able to cover the nuances for each type of
gaze movement, and desired intentional or passive behaviours. In
combination with parametric saliency map generation, they serve as
a foundation for modelling completely visually driven, procedural
gaze in simulated human agents.

Index Terms: Computing methodologies—Agent / discrete model;
Computing methodologies—Procedural animation

1 INTRODUCTION

Modelling and simulating human gaze is a complicated endeav-
our. There are many approaches for estimating and approximating
how a human agent may observe the world, most of which aim to
replicate it to create believable appearing humans. These methods
are effective and often take advantage of scene information from
the simulation to calculate believable gaze patterns. However, if
one’s goal is to replicate gaze, not starting at the desired end result
but from the basis of vision then it is important to try and follow
a guideline of ‘sensory honesty’; by generating gaze movements
in an agent-encapsulated manner. In other words, without using
information or data that a real human agent would not have. This
work presents two methods for controlling gaze using only visual
information as input. Specifically, saliency maps are used as input
representing pre-attentive processing of the human psycho-visual
system of visual stimulus.

There are many factors and complications to consider when pre-
senting a model of human gaze. As such, we construct a framework
for authoring a variety of gaze behaviours. We use two modes of

controlling gaze with saliency maps as input to develop a novel
method which can cover a wide range of human gaze behaviours.

Thus far, gaze behaviours in crowd simulations have been largely
absent or homogeneous. A robust gaze model requires more than
just saliency maps. Once a saliency map has been generated, how do
we determine which targets to look at, the order in which they should
be gazed at, and the duration of the fixation, in such a way that the
resulting behaviour and animation is robust and convincing, and
also in a way that can be adjusted depending on the situation? This
work proposes two models that provide an authorable framework for
designing a diverse set of gaze behaviours that can be adjusted on a
per-agent basis, promoting heterogeneity in crowd simulation gaze
behaviours.

Our contributions are as follows. First we present a particle gaze
model that uses a potential gradient field to drive gaze towards
salient regions of the saliency map. Second, we present a second
probabilistic saccade model that chooses targets from the saliency
map probabilistically and executes quick saccades, and is capable
of making microsaccades by then choosing fixation points based on
saliency in the localized region of the target. Third, we evaluate our
particle model against pyStar-FC, a notable multi-saccade generator
and demonstrate that our model can be tuned to a high degree of
similarity with other models. Finally we compare our two models
against each other qualitatively.

2 HUMAN GAZE

Human gaze is a complex topic, weaving between physiology and
psychology. Consequently, a model of gaze that neglects either
aspect will be woefully incomplete. One of the core points of this
work is to accurately replicate the suite of human gaze movements
along with their subtle nuances, which involves understanding the
mechanics, limitations and strategies of how people look at things.
This is discussed in more detail in [4].

2.1 Gaze Movements
Human eye movements have been the subject of intense study for
many decades. Over this time eye movements have been classified
into 7 categories. The standard set of eye movements are (from [36]):

• Saccade: voluntary jump-like movements that move the retina
from one point in the visual field to another;
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• Microsaccades: small, jerk-like, eye movements, similar to
miniature versions of voluntary saccades, with amplitudes from
2 to 120 arcminutes;

• Vestibular-Ocular Reflex: these stabilize the visual image on
the retina by causing compensatory changes in eye position as
the head moves;

• Optokinetic Nystagmus: this stabilizes gaze during sustained,
low frequency image rotations at constant velocity;

• Smooth Pursuit: these are voluntary eye movements that track
moving stimuli;

• Vergence: these are coordinated movements of both eyes, con-
verging for objects moving towards and diverging for objects
moving away from the eyes;

• Torsion: coordinated rotation of the eyes around the optical
axis, dependent on head tilt and eye elevation.

There are quite a few different types of eye movements, each
with its complexities and implications on human gaze. For the sake
of this work, we focus on how to model saccades, microsaccades
and smooth pursuits. Vestibular-ocular reflex is responsible for
stabilizing the visual image as the head moves. In addition to eye
movements, head movements are also a crucial part of gaze. We label
the set of eye and head movements as gaze movements. Due to the
slower nature of head movements, these tend to be less categorized.
As a general rule, humans tend to align their heads with what they are
looking at. According to [25], this is because a discrepancy between
the head and eye directions causes interference in visual processing,
as well as a degradation in accuracy for localizing attentional focus
and hand-eye coordination. Head movements are less erratic than
saccades or otherwise would cause strain on the human neck. One
study [5] found that head movement duration can range between
200-800 ms when a series of saccades make up a gaze shift, with
larger head rotation speeds for larger gaze shifts. In contrast, a single
saccade-fixation action requires about 200 ms. In [6], a saccade took
just under 200 ms while a head movement took just under 450 ms
to complete in a single trial, suggesting that head movements are
generally slower than saccades. Most natural gaze shifts utilize a
combination of saccades and head movements, with head rotations
typically following the eyes with a delay of 20-50ms [32]. A model
which aims to emulate human gaze should be able to parameterize
and replicate these types of gaze movements, or at least a sufficient
subset of them. The large problem with generalizing a control
structure however is that human gaze behaviour tends to be very
diverse and idiosyncratic [32]. The selection of gaze targets are
drawn from attention and deliberate intent, which then informs the
gaze. For example, a slow-moving object of interest in view will
elicit a smooth pursuit. However, if this target is moving too fast
smooth pursuit is no longer possible and the human visual system
will resort to “catch-up” saccades to keep track of the object. A
model of gaze should be able to generate a range of plausible eye
movements given knowledge or a map of how the given agent is
attending to their world.

2.2 Memory and Inhibition of Return (IOR)
Inhibition of Return (IOR) is described by [15] as a delayed re-
sponse to stimuli in a peripheral location which was previously
attended to or looked at. Originally found in [30], and followed
up by and defined in [31], IOR’s function appears to be orienting
gaze towards novel locations which facilitates foraging and other
search behaviours. This is fairly intuitive, e.g. if you were search-
ing your office for a specific item it would make sense to avoid
searching where you have already looked. Alternatively, if you
were just trying to gather information about your environment, the

same mechanism aids in information gathering. IOR typically ap-
pears in the literature when the stimulus event is not task-relevant
or there is no task given to the observer [15]. When test subjects
were tasked with making saccadic movements which seemed most
comfortable after viewing a brief stimulus they most often would
look away from the location of the stimulus. [15, 16] found that
across multiple studies it appeared that IOR is often encoded in en-
vironmental coordinates rather than retinal coordinates. This effect
appears in the early IOR literature [30, 31]. Further studies have
also shown that in some instances IOR appears to be encoded on an
object basis [1, 8, 34, 35]. Both environmental location and object
attachment as IOR encodings have strong experimental evidence
to support them. The question becomes, in what cases do either
occur? [15] suggests that this change in encoding occurs depend-
ing on contextual factors such as whether the observer is moving,
objects in the view are moving and what the intent or task of the
observer is. In early studies, IOR appeared as related to a reluctance
of motor response to focus on particular locations, not inhibiting or
suppressing attention. However, studies have found IOR to occur
in spatial tasks as well, not just stimulus-response. These findings
have shifted the general consensus that IOR does indeed occur on
an attentional level as well as oculomotor response. The reasoning
again appears to be contextual. For example, the type of stimuli, as
well as the difficulty in discriminating stimuli within an observer’s
view affects the introduction of IOR on the attentional level. The
presence of IOR on attention is further supported by findings that
IOR also appears in auditory [23, 24, 33] and tactile [34] modes.
Results are consistent in demonstrating that IOR’s effect is to inhibit
responses typically associated with stimuli. Narrowing down how
IOR mechanisms will function is a difficult task affected by many
factors. Studies have found generally that IOR typically takes be-
tween 100ms and 200ms of cued saccade fixation to kick in which
aligns with the time between saccades which typically has latencies
of 200-250 ms [7]. The effects can last several seconds, however,
this can easily be affected by changes in the scene or task of the
observer.

The multitude of open questions as well as contextual changes
makes it difficult to define an inhibition of return mechanism which
can be used as a part of a gaze control system. Factors like environ-
ment, agent factors, intent, and task all need to be taken into account
to decide for example what kind of encoding to use. That’s not to
mention open questions on specific mechanisms within IOR. There
are many valid ways to implement IOR, in this paper we try to focus
on one subset of factors and contexts and suggest an IOR mechanism
contingent on that based on the previously mentioned literature. It is
the hope as well that implementing gaze control systems based on
attention and vision literature opens up possibilities to explore many
of the open challenges yet unexplained.

3 RELATED WORKS

To create a full pipeline modelling the gaze of an agent requires first
defining what to look at and then how to look at it. Our work uses
saliency to capture a visual representation of what/where an agent
may look at. Deciding how to use saliency information to generate
fixations or eye movements is an area of ongoing study. Though
the field is mostly saturated with models for predicting fixations
within 2D images, we draw inspiration from other works in this area
and apply concepts to our problems for 3D characters in a dynamic
simulation.

3.1 Saliency
Saliency models attempt to represent what is important within a
field of view, typically concerning human visual processing. The
most common form of representing this is in the form of a saliency
map, a 2D image which describes which regions within a field of
view are ”salient”. In this sense, saliency is usually interpreted as
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the probability that a human observer will look in a particular loca-
tion. Rule-based models such as [11]’s originative work construct
saliency maps based on things like colours, contrast, location etc.
More recent deep learning models like [12] and [20] aim to emulate
human saliency specifically by training off of human scan-path data
on sets of images. However, the main issue with these models are
inherent biases within datasets, and in the case of human simulation,
they are prohibitively slow to use in real-time simulation. Virtual
saliency models are aimed at implementing saliency specifically for
the purposes of human or agent simulation. For example, it is possi-
ble to construct a model of saliency from a simulation scene database
and assign scores to objects within an agent’s view [26]. This is a
simple and effective approach however is limited in its uses outside
of simulating visually believable gaze animations. To go beyond
these limitations it is possible to use a rule-based model for generat-
ing saliency maps (parametric saliency maps) in real-time during a
simulation using information from embedded in the scene graph and
localized per observer [17]. The advantage of this approach is bring-
ing saliency maps to real time-simulation, which means vision-based
approaches to gaze control and scene understanding are possible. In
follow-up work, the parameters of the parametric saliency map were
learned by minimizing the output difference from state-of-the-art
deep saliency models on a virtual dataset [18]. Work has shown that
visual attention is guided by features depending on the task, and that
pre-attentive features like colour, luminance, motion, orientation,
depth, and size are all key elements of visual attention [39]. All
of these can be compactly encoded into parametric saliency maps,
which is why it is an efficient representation of pre-attentive process-
ing for attentive tasks like fixations. Similarly, work has shown that
bottom-up features (stimuli) guide attention under natural conditions,
for example, simple undirected gaze with no intent or goal [27].

3.2 Fixation Prediction

Many findings summarized in [40] conclude that saccadic selection
avoids areas of little or less structure within an image. When com-
pared with random fixation point selection on datasets of images,
regions chosen by actual fixation locations have consistently higher
signal variance than random selection. [41] found that the mean-
variance ratio of random vs. real fixations σ2

eye/σ2
rand to be around

1.35. Active fixation prediction from [37] aims to generate a tem-
poral series of fixation locations in an image which can be used to
construct scan paths. They accomplish this through a tiered saliency
approach, blending a coarse feature map on the periphery with a high
detail saliency map located at the point of fixation. Combining this
with a temporal inhibition of return mechanism (IOR) they are able
to generate very plausible scan paths. Notable takeaways from this
approach are the importance of selective suppression of attention or
saliency in the periphery, combined with some mode of memory to
implement inhibition of return which from [16], says is consistently
found in studies of fixations and saccadic eye movements. The re-
cent Deepgaze III model from [19] trained a deep neural network
to predict and generate scan paths and fixations from fixation den-
sity maps (i.e. saliency) for free-viewing of natural images. The
model generally outperformed other similar models (such as the
previously mentioned STAR-FC) in various statistical measures on
state-of-the-art datasets. The model is particularly interesting due to
the modular architecture allowing them to conduct ablation studies
to quantify the effects and relevance of input data. It was found that
scene content has much higher importance on fixation prediction
than previous scan path history. As noted by Tstotsos, J., one key
limitation is the static nature of images and how shifting of gaze
does not affect the image. Key challenges we address are how to
implement inhibition of return given dynamic environment, agent
position and agent gaze. As well as how to select fixation points.

The problem generally with all these approaches is the focus on
free viewing of static images. That is useful for trying to predict how

someone may look at an image, however, as noted above, humans
do not see in 2D static images. Human visual systems contend with
stimuli changes from dynamic environments as well as egocentric
effects when gaze movement occurs (i.e., changing where you look
completely changes the information available to your vision). The
pursuit of fixation prediction in active-vision applications; such
as simulation or robotics, must contend with temporally changing
environments, changes in agent position, changes in agent gaze
orientation, and spatial-temporal memory.

3.3 Gaze Control

One of the closest implementations of our approach is [29], where
the Itti-Koch-Niebur (IKN) model [11] is used to generate saliency
maps from the perspective of a virtual agent. This was used to deter-
mine which objects within view would be ‘salient’ and queued them
as targets in the scene database. They also implemented a form of
memory where agents would keep track of scene objects that they
have observed. The spirit of their work was ‘sensory honesty’, in
trying to use as little simulation knowledge as possible. In the same
vein, our work also shares this same goal but attempts to take it
further by including no information about the transforms of objects
in the scene database in gaze, having it entirely driven by visual
stimulus. The most significant limitation of the authors was the
lack of a top-down attention component. This is addressed by our
inclusion of parametric saliency maps from [17]. The benefit of
using saliency maps is that the processing time is limited only by
the cost of the attention model and the rendering pipeline. Another
limitation is simply that humans don’t have a scene database to draw
information from. Approaching the problem of gaze and attention
from a visual stimulus-driven standpoint opens the door for more
grounded modelling of virtual humans. More complex totalistic
models for automating gaze behaviour have been worked on for over
two decades, in the form of cognitive models of attention and intent
which form a high-level controller [3, 14, 22]. These models rather
interestingly attempt to join ideas of task relevance and action to
inform gaze movements. This is an often-overlooked factor despite
environmental conditions impacting visual understanding of the en-
vironment which also impact general locomotion and movements,
such as the increase in foot clearance on steps in different light-
ing levels [10]. Our proposed approach poses a simpler parametric
framework for authoring and generating gaze behaviours in a way
which compartmentalizes attention and intent away from control.
Our work fits in as a link between the vision-based approaches,
like [29], and high-level control structures, such as [3, 14, 22]. Other
pseudo-saliency driven gaze approaches do not use visual stimulus
as input control for gaze by explicitly targeting transforms of ob-
jects within the scene [2, 26]. These approaches create reasonably
believable procedural gaze animations however are limited to scale
as a scene becomes increasingly complex the computational costs of
such gaze models too will increase.

Gaze behaviour modelling is not only important in real-time ap-
plications but for a variety of purposes. For example, gaze behaviour
can be inferred from motion capture data and automatically inte-
grated into animation as done in [28].

A recent paper proposed a real-time method for driving gaze
behaviour using a multi-layered saliency approach similar to ours
[9], but it does not take into account 3D information from the scene
such as velocity of agents, and the customization maps seem to be
created for an entire viewpoint rather than for individual objects, so
new customization maps would have to be made for each viewing
direction of an object whereas our method allows semantic masking
that is attached to the object and works for any viewpoint. Addition-
ally, the use of a ML saliency model limits the customizability of the
saliency maps, whereas our method uses PSM [17] which provides
great flexibility and authorability.
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Figure 2: Examples of generated saliency maps from the perspective
of an agent walking through a simulated urban crowd, using PSM
weights specified in [18].

4 METHODS

Each method presented takes as input a square, grayscale image
representing the saliency of an agent’s view at that time, and then
outputs a new orientation and the speed at which to interpolate to
it from the current orientation. Once the new target orientation is
reached, the process is repeated. Each method is designed to be
simple, yet capable of plausibly generating different types of gaze
movements. At the same time, they are agnostic to top-down atten-
tion which is instead encoded in saliency maps. Through the combi-
nation of saliency and the control parameters for the gaze-control
methods, a wide range of intentional and passive gaze behaviours
can be modelled.

We use the Predictive Avoidance Model (PAM) [13] for agent
navigation, which senses obstacles and neighbours within some field
of view and produces piece-wise predicted repulsive forces to avoid
them. Our gaze behaviour models change the center of the field of
view, which affects the neighbours and obstacles avoided. Further
selecting avoidance targets based on saliency is planned future work.

4.1 Saliency Map Generation

We utilize the parametric saliency maps (PSMs) method from [18].
This allows for saliency maps to be easily generated in real-time for
virtual agents. PSM is a compact way of encoding pre-attentive and
top-down factors. Parameters can be easily adjusted to suit different
attentive loads. The saliency of an object from the perspective of an
observer is computed from the combination of weighted parameters,

S =W · (wdSd +wF SF +wvSv +wRSR +wISI) · (WMSM) · (WASA)
(1)

The factors determining object saliency include depth Sd , orien-
tation saliency SF , normalized speed Sv, normalized angular speed
SR, interestingness value SI , sub-texture masking SM , and visual
attention weighting SA, each parameterized by wd , wF , wv, wR, wI ,
WM , and WA respectively, subject to their respective constraints. For
more details about these terms, see [17].

The values of weights are set by the observer. The parameter
values come from the objects in the scene. For example, the inter-
estingness factor SI is an intrinsic value from an object/character. It
is an effective way to generate saliency maps in a simulation and
change the attentive factors as needed, either globally through fac-
tor values, or on a per-agent basis through the factor weights. A
Gaussian blur is applied afterwards to smooth out hard edges.

4.2 Particle Model

We now introduce the particle model for saliency-driven gaze control.
This model treats the center of gaze as a particle which is acted on
by driving forces. By imagining the center of gaze as a particle in
a potential field we can use equations of motion to describe how
it moves. The potential field comes from the saliency of what the
agent is seeing.

4.2.1 Particle Update
The point which lies in the center of view (from a virtual camera)
can be imagined as a point on the 3D viewing sphere around an
agent. Moving this point around the sphere is equivalent to changing
the direction in which an agent is looking. Treating this point as a
particle, gaze ”forces” can be applied to it which change the direction
of gaze.

For a given discrete time step t, an agents gaze state can be
described by Gt = (θ ,φ), which represents a point in spherical
space for a fixed radius, where (0,0) is the natural or forward-
facing orientation. For a saliency map St ; which represents the
current view’s saliency map, a potential field is defined as V (G). By
interpreting points of high saliency as potential wells in V , following
the gradient will drive the gaze-particle into highly salient regions.
We can formulate the motion of the particle as,

G̈ =−∇⃗V − kdĠ (2)

Where −∇⃗V is the force applied by the potential to the gaze
particle based on what the agent is currently seeing in the current
saliency St . The term −kdĠt represents damping with coefficient
kd . The algorithm to update the position of the particle for step size
λ is given by,

G̈t =−∇⃗V (Gt)− kdĠt

Ġt+1 = Ġt +λ · G̈t

Gt+1 = Gt +λ · Ġt+1

(3)

Additionally, we can include a noise term A · zt ; where zt ∈
[−1,1]2 with amplitude A, in the final position update which gives
added flexibility to model more complex gaze movements. The final
update is then,

Gt+1 = Gt +λ · Ġt+1 +A · zt (4)

An important consideration then is how to construct the potential
fields from the saliency maps. Looking at examples in Fig. 2, one
problem is that in most saliency maps there are large regions of little
or constant saliency. This presents a problem because there would be
no gradient in these regions. Another thing to consider is that highly
salient stimuli should draw gaze towards it regardless of where it is
in the visual field. Of course, the method should be computationally
efficient in order to scale for large groups of agents. Calculating the
potential field from an n×n image could be very costly, especially
scaled to scenarios with many agents. The solution we chose is to
use a parametric surface to model the potential by sampling from
the saliency map. Cubic B-splines have useful properties which
make them very effective and efficient for this task. Assuming an
appropriately chosen number of control points, a cubic B-spline
surface will have a non-zero gradient in almost all regions of the
space, as well as being very fast to compute. Sampling from the
saliency map, the heights of control points on a spline surface can
be set giving a reasonable approximation of a potential field. ∇⃗V (G)
is then the gradient of the surface with respect to the x-y plane.

The max-pool and average-pool algorithms are commonly used
in computer vision to downscale images into a lower resolution
space. We use average-pool to pool values from a saliency map
into the control points of a spline surface. For a lattice of m×m
control points, the saliency map is divided into m×m windows. The
heights of control points are set as negative results of pooling each
window, with the maximum depth being -1. At each time-step t the
control points of the surface are set, giving the potential field. Fig.
3 shows a simple example for an m = 7 surface, while Fig 4 shows
the projection of the environment onto the agent’s view. Since the
gaze-particle is always at the center of the visual field, the gradient is
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Figure 3: Spline surface representing the potential field. Values from
the saliency map are pooled into control points corresponding to
quadrants.

Figure 4: Projection of environment onto the agent’s view. ∇⃗V is
the gradient at the center of the potential field. For small values,
∇⃗V ≃ (∆θ ,∆φ), where (∆θ ,∆φ) are the updates to the current camera
orientation. This moves the view until the center is in a local minimum
(Typically corresponding to the center of an object of interest)

always sampled at the center of the potential field as well. Following
Eq. 3, the gaze-particles position on the viewing sphere is updated,
changing the point of view.

We chose to use a 3D spline surface over other traditional 2D
methods because it provides an intuitive means for adjusting the
behaviour. For example, instead of directly defining interpolation
behaviour, one can simply adjust the 3D spline parameters, and the
interpolation behaviour will automatically adjust. By adjusting the
parameters of the spline surface, we can get a continuous gradient
without the issue of gradient deadzones.

4.2.2 Control
The primary parameters for control are the step size λ and damping
coefficient kd . A large step size will cause the view to move quickly
through the visual field however will struggle to stay on target. A
small step size will have excellent tracking of targets once fixated but
will struggle to move to new targets. For this, we propose a two-state
system for varying the behaviour of the particle’s movement. In
the search state, the step size is set to λsearch. The gaze is free to
move around and will be drawn in by salient regions in the view.

Algorithm 1 Particle Gaze Model
STAT E← search
G← (0.5,0.5) ▷ Center of viewport
Ġ← (0,0)
while true do

V ← SetPotential(St)

G̈ =−∇⃗V (G)− kd · Ġ
if STAT E == search then

λ ← λsearch
if FixationDetected() then

STAT E← f ixation
end if

else if STAT E == f ixation then
λ ← λ f ixation
if f ixationtime > τ f ixation then

STAT E← search
end if

end if
Ġ← Ġ+λ · G̈
G← G+λ · Ġ

end while

As the particle moves into a potential well, the gradient will get
smaller. At this point, there needs to be some definition for detecting
a fixation, which should work regardless of motion either egocentric
or by the target object. We define a simple rule which measures the
average gradient of the potential within some temporal window. If
the average gradient has dropped below a threshold then a fixation
has occurred and the state is changed. In this state, step size is set to
λ f ixation, and this state lasts for τ f ixation seconds.

After the fixation time, the saliency of the target would still affect
the potential field, thus it is important to implement an inhibition
of return mechanism to prevent getting stuck on one target. For the
parametric saliency maps we utilize, the saliency of targets under
the particle can be decayed. This simple rule allows the particle
to move on to new targets naturally, encoding object-based IOR.
A good default value is a decay time of 1-2 seconds for general
searching/foraging gaze behaviour, however, it must be noted that
for accurately replicating specific gaze behaviours this value would
likely need to be different depending on need. There is also some
added complexity to consider in how exactly saliency returns after
it has been decayed, however for the scope of this paper we do not
discuss what/how this might be done as for general use, targets will
be well out of view before IOR would wear off. If one imagines
walking down a busy street people, cars, signs etc. will constantly
be coming in and out of view, so we feel this rule is sufficient.

There are properties of the particle model which lend themselves
well to controlling head movements, as well as smooth-pursuit eye-
movements. First, is the naturally smooth motion which arises
towards targets of high interest. Second, for a small number of
control points; recommended 7 for a degree 3 spline surface, this
method has the natural tendency to align with general areas of high
interest at low resolution. This often means looking at the ”center
of mass” of areas with high saliency targets as opposed to specific
individual elements if there are many within view. If there are
sparse, spaced-out objects of interest the gaze will instead align
with the individual elements. Both these behaviours arise without
explicit programming. Setting the points in the control surface to a
higher resolution will yield more spacial acuity, and thus the gaze
will fall on more narrow targets. Changing the step size λ will
determine how fast the gaze will move towards targets, as well as
how strongly those targets will be tracked. Smooth pursuit eye-
movements can be elicited by having a high resolution in the control
surface; recommended 11 for a degree 3 spline surface, and a larger
λ f ixation value. It is difficult to recommend any particular value for
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λ f ixation because this will be scaled with how the spline surface is
defined, steep peaks are as well as how fast objects move across
the field of view which is limited by the frame rate of a given
simulation. The length of smooth pursuits is something contextual.
For a typical ”search” behaviour, the length of fixations τ f ixation
should average 150− 300 ms. For saccadic movements, a larger
λsearch value will give faster rapid target acquisition. To emulate
micro-saccades we can peturb the final position using a noise term
A ·zt , where the amplitude corresponds less than 0.1◦ of visual angle.
This will depend on camera projection parameters, but a small angle
approximation A ≃ 0.1◦ is acceptable. Additionally to improve
accuracy and avoid oscillations, multiple steps can be taken per
simulation time step. In the scope of this work we do not describe
how to switch between saccades and smooth pursuits. This is largely
because smooth pursuits are typically intentional actions and need
to be specified by the author of the behaviour.

4.3 Probabilistic Model
4.3.1 Target Selection
In this section we introduce another method for saliency driven gaze
control, based largely on prior works in fixation prediction for static
images. A saliency map can be thought of as a probability distribu-
tion for likely gaze targets. With this interpretation, fixation targets
can be sampled from this distribution. For a probability distribution
St , a random point x∼ St is drawn. Based on the projection param-
eters of the virtual camera, this point in the viewing image can be
converted to an orientation. The agents view can then be rotated
accordingly to match this orientation.

4.3.2 Control

Algorithm 2 Probabilistic Gaze Model
Def: LookAt(point, time)
STAT E← search
G← (0.5,0.5) ▷ Center of viewport
while true do

if STAT E == search then
x← SamplePoint(St )
LookAt(x,∆ tsaccade)
STAT E← f ixation ▷ Wait until reached target

else if STAT E == f ixation then
SW ← St .window(R f ocus)
x← SamplePoint(SW )
if f ixationTime > τ f ixation then

STAT E← search
else

LookAt(x,∆ tµ saccade)
Wait(τµ f ixation) ▷ Hold for length of µ-fixation

end if
end if

end while

Given a point x St in viewport coordinates, a line can be drawn
from the camera center through this point in world space. This vector
represents an orientation G′. The current camera orientation G can
then be interpolated to this new orientation over a desired time. The
speed of the rotation is then determined by the interpolation time.

Divide control into two primary states: search and fixation. In the
search state, a point is sampled from the entire field of view. The
view is then oriented to this target over ∆ tsaccade. The angular speed
of the saccade is the amplitude (angular) divided by ∆ tsaccade. Once
this target is picked the state transitions to fixation control. Over a
total time τ f ixation saliency outside a small foveated region of radius
R f ocus is suppressed. Within this fixation, new points are drawn
from the foveated region of interest as targets for micro-fixations.

The point is then interpolated to over ∆ tµ saccade. This point is
looked at for time τµ f ixation, at which point a new target is selected.
This repeats over the entire fixation length. Once the fixation has
concluded, the state returns to search. Each parameter can be set
statically or dynamically depending on desired behaviours.

This method of control is designed to allow modeling of target
point selection saccade and micro-saccade eye-movements. Depend-
ing on the level of detail desired, keeping ∆ tsaccade and ∆ tµsaccade
constant will achieve linear eye velocities expected for angular dis-
tances less than 20◦, which typically reach up to 300◦/s. However,
for most applications it suffices to have a very small or zero travel
time (i.e. instantaneous). Changing the τ f ixation parameter will affect
how much searching is done in the visual field. Veering from typical
reported values of around 100− 200ms will result in either rapid
eye-darting for smaller values, or more focused eye-movements in
the case of larger values. Tightening or increasing the size of the
focus region R f ocus will either restrict the space of micro-saccade
movements (thus decreasing their amplitude) or allow for more out-
side stimuli to draw micro-saccades respectively. Depending on
the desired behaviour either can be appropriate. For example, a
character reading a book would have very infrequent saccades (large
or infinite τ f ixation), frequent micro-saccades (small τµ f ixation, and a
small radius of focus R f ocus. Similarly to the particle method, we
implement inhibition of return as a decay in object saliency.

5 RESULTS AND EVALUATION

Here we present evaluations of our models. First, it should be noted
that the PSM saliency maps our models are predicated on have been
previously evaluated against SALICON, a state-of-the-art machine
learning saliency, with high correspondence [18].

We compare our particle model fixations against pyStar-FC [38],
a notable multi-saccade generator. The pyStar-FC model generates
saccades for static images, so we constructed scenarios in our virtual
environment where neither the viewing agent nor pedestrian agents
are moving in order to create static images for comparison. The
gaze movement of the viewing agent can then be projected onto
this static image to show the scanpath of the agent using our model.
Then we compare this scanpath to the output of pyStar-FC on the
same RGB image. Scanpaths are generated from pyStar-FC for RGB
images by internally computing a saliency map of the image, and
then outputting the scanpath on the original RGB image, similar to
our approach. We used mostly default parameters for pyStar-FC,
using Deepgaze II with ICF as the saliency model [21]. The input
viewing size was modified to match the field of view of our agents.
Changing the IOR (inhibition of return) decay rate parameter in
pyStar-FC did not produce significantly different results, so it was
left at default.

The results emphasize the authorability of our method. By ad-
justing our model parameters, our particle model can be tuned to
match pyStar-FC’s output or any other model. Ten pairs of images
were compared, five of which are shown in Fig. 5. It is worth noting
that our use case was not the intended purpose of either Deepgaze II
nor pyStar-FC, so there may be biases in their output on our virtual
images. The tendency of pyStar-FC to fixate on the neon signage
is likely a result of bias in the datasets used to create these models,
which probably used well-lit, non-virtual environments. Thus the
output given by pyStar-FC may not be representative of what humans
would look at while navigating in this environment. Regardless, our
aim in this comparison is simply to illustrate the authorability of
our model and show that by adjusting the parameters of our particle
model, we can match the output of pyStar-FC or any other model
with a high degree of similarity. Our model maintains authorabil-
ity and control while being able to match other models, whereas
pyStar-FC’s parameters are less flexible and intuitive, and changes
to the underlying ML saliency algorithm, Deepgaze II or SALICON,
would require retraining.
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Table 1: K nearest neighbour similarity scores for five trials comparing
our method’s fixation points with pyStar-FC’s, where k=2.

Trial KNN Similarity
1 0.965
2 0.976
3 0.989
4 0.989
5 0.988

The model parameters and weights of both the saliency model
PSM and the gaze controller were tuned by hand to match the out-
put of pyStar-FC. For example, we increased PSM interestingness
of objects where fixations were generated by pyStar-FC and de-
creased interestingness of objects where no fixations were generated
by pyStar-FC. We also adjusted PSM layer weights. For example
in images where pyStar-FC mostly focused on static objects, the
weights of layers preferring high-velocity or rotational objects were
lowered. For images where pyStar-FC preferred closer or further
objects, the weights for the depth and visual attention layers were
adjusted accordingly, etc. Additionally, we tuned the parameters
of the gaze model, for example choosing appropriate number of
points in the potential field to ensure continuity in the gradient for
the chosen targets. It would also be possible to tune the model
automatically using an optimization framework such as CMA-ES,
similar to [18]. Particle swarm optimization technique could also be
used. This could address some shortcomings in our model discussed
in later sections.

As Star-FC is a static fixation generator however, certain gaze
parameters such as decay rate or fixation duration have no influence
on the result for this comparison, whereas saliency map parameters
have large influence. Gaze parameters would have more influence in
dynamic simulation comparison with head and eye movement.

We compared fixations from our particle model to pyStar-FC
fixations using k-nearest neighbour similarity for the same five trials.
The resulting knn similarity scores were all over 0.95 indicating
a high degree of similarity. The results are summarized in Table
1. Thus we show that we are able to match other models with a
high degree of similarity. Matching it to real human gaze data is
important planned future work. However it should be emphasized
that our goal is not to match human gaze data but to present a
flexible and customizable system for authoring gaze behaviour in
virtual agents, which we have shown.

We can make some comparisons between both models. Figure 6
shows target selection for both models. The particle model drives
gaze in the direction of the potential field gradient. The probabilistic
model identifies potential gaze targets highlighted with red circles,
and chooses one probabilistically based on saliency at that location.
Once the probabilistic model chooses a target, gaze is snapped to
that location–similar to human saccades. Additionally, the ability to
perform microsaccades is one of the defining features of the proba-
bilistic model. Reducing the field of view once a target is selected
produces a zoomed result from which microssaccade targets can
then be selected. Figure 7 shows this zoomed effect in comparison
with the particle model.

Our models also account for saliency decay. While an agent
fixates on something in the scene, we perform a raycast in the
fixation direction, which when it hits the target triggers the saliency
for that object and that viewer to decay, and this continues over time
while that target is fixated on. An example is shown in Figure 9,
where two agents are viewing the same man with different saliencies
due to saliency decay. Decay rates for both models differ in these
examples, however can easily be parameterized to produce different
gaze behaviours–such as nervous eye movements versus watchful

gaze. While the decay rate here for the probabilistic model is fast
in order to encourage quick saccades, the particle model was set
to a slower decay rate. More research is needed to determine an
optimal decay rate and this is important planned future work, and
we hypothesize that these values relate to context and stylization of
the behaviour. An in-depth statistical evaluation of our gaze models
is planned future work.

We also note that our method provides for multi-agent saliency
evaluation as shown in Figure 8. This affords complex scenes with a
multiplicity of independent gaze controllers automatically driven by
diverse scenes. That is, crowds respond naturally to the makeup of a
scene from signage to fellow pedestrians.

6 DISCUSSION

The strength of this approach is that the user does not need to ex-
plicitly define gaze patterns, but instead only needs to define an
agent’s visual task or intent. One of the main principles of this work
is creating control which adheres to the idea of sensory honesty.
Prior works in the area of simulated gaze control have been able to
create reasonably believable gaze movements for characters utilizing
information from the simulation itself such as the scene database
to locate gaze targets and track their position. The hope is that we
can start to think of autonomous virtual humans and how they ac-
tively view their environment in terms such as their intentions, goals
and knowledge. We could describe what they are attending to and
what their visual task is without having to write explicit patterns for
how they should then generate gaze movements. Perhaps the most
obvious addition to our work is definition of high level control for
generating saliency maps and appropriately selecting the correct con-
trol parameters. SDGC only provides only one part of a full solution
for generating plausible gaze movements. Ultimately, this requires
thinking about how saliency (attention) should be defined and the
interplay with an agent’s intent. It fundamentally changes how we
view and approach gaze of virtual agents from asking, ”what is this
character looking at?” to instead asking, ”what is this character
interested in, and what are they trying to do?”. In practical terms
this is deciding how to define saliency, and deciding what kinds of
gaze-movements to use. Of course, an obvious criticism is that due
to this, no general solution is offered which covers all or a large
number of gaze behaviours. Using an optimization framework may
be able to mitigate this issue by finding parameters that work well
across a range of use cases, or to find different sets of parameters that
work well for specific cases and potentially could be set dynamically
during runtime depending on the viewer’s situation. However, even
in light of this our framework does expand the capabilities of similar
works like [29] by including top down pre-attentive component in
the form of parametric saliency maps from [17] which allows encod-
ing things like novelty or task relevance directly into saliency. High
level controllers for automating attending behaviour such as the
extensive work from [3, 14, 22] combined with our Saliency-Driven
Gaze Control (SDGC) approach to create a totalistic saliency driven
model which takes into account agent action and intent, and subse-
quently delegate saliency generation and SDGC methods to generate
the final gaze behaviours. This would also allow us to improve our
implementation of inhibition of return, which currently does not
address how this effect is modulated depending on the intentions of
the viewer.

Our methods are sensitive to the model parameters, and to the
parameters of PSM which controls the saliency map generation.
Parameter sensivity and tuning for PSM was described in [17, 18].
For the particle model, it is important to choose appropriate sampling
points, and gradient step size for the best results. Large step sizes
result in targets being missed which can produce oscillations. The
saliency decay rate, fixation duration, and fixation conditions should
be chosen appropriately for the desired behaviour in both models.
For example, larger decay rates and fixation durations and lower

7



Online Submission ID: 13

(a) (b) (c) (d)

Figure 5: For (a) an RGB image, (b) gaze heatmaps for our particle method overlayed on the RGB image, comparison of scanpath traces between
(c) our method with (d) pyStar-FC.

Figure 6: Comparison of target selection between the two models. Left: Particle model, which drives gaze in the direction of the potential field
gradient. Right: Probabilistic model target selection. Red circles indicate potential target locations, which once selected will trigger a saccade.
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Figure 7: Left: Particle model saliency map. Right: Probabilistic model
view of the same subjects. The Probabilistic model uses a reduced
field of view to produce a zoomed effect for the purpose of facilitating
microsaccades.

Figure 8: Two agents walking while using the particle gaze model
simultaneously. Top: RGB view from behind the agent. Bottom:
Saliency map from the agent’s POV. The small red line in the center
of the saliency map indicates the current direction of the particle
gradient.

Figure 9: One agent walks behind another and both see the same
man sitting on a bench. On the right the man’s saliency is lower due
to saliency decay during fixation. Top: RGB view from behind the
agent so that the head orientation is visible. Bottom: Saliency map
from the agent’s POV using the particle model.

thresholds for triggering fixations produce quicker, darting gaze
behaviours.

A limitation in both of our methods is that only the current view
of the agent is considered, and objects outside the agent’s current
field of view do not impact gaze behaviour. The saliency decay
mechanism models some aspects of memory, since the saliency
amount is remembered even if it leaves an agent’s field of view and
then comes back into it. However, complete models would include
a model of memory that keeps track of objects recently seen but
not currently within the field of view and their relative positions
so that agents could look back at them directly even when they are
not inside the field of view. Matching our model parameters to real
human gaze data and comparing it against other models remains
important planned future work. However we have illustrated that
our model is highly flexible and customizable, and can be used to
author a variety of virtual gaze behaviours.

7 CONCLUSION

We presented two Saliency-Driven Gaze Control (SDGC) methods,
the particle model and probabilistic model, which when combined
with appropriately defined saliency (attention) are able to cover a
wide range of well studied and understood human gaze-movements.
SDGC takes as input a real-time map off attention in an autonomous
agents visual field and generates gaze-movements. The two SDGC
methods, the particle model and probabilistic model, are able to elicit
physiologically based head movements, smooth pursuits, saccades
and microsaccades. For a defined visual task, we show that through
combination of parameterized visual attention and gaze-movements
that appropriate gaze behaviours will arise.
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