
Under review as a conference paper at ICLR 2022

TR-NAS: MEMORY-EFFICIENT NEURAL ARCHITEC-
TURE SEARCH WITH TRANSFERRED BLOCKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Architecture Search (NAS) is one of the most rapidly growing research
fields in machine learning due to its ability to discover high-performance architec-
tures automatically. Although conventional NAS algorithms focus on improving
search efficiency (e.g., high performance with less search time), they often re-
quire a lot of memory footprint and power consumption. To remedy this problem,
we propose a new paradigm for NAS that effectively reduces the use of mem-
ory while maintaining high performance. The proposed algorithm is motivated by
our observation that manually designed and NAS-based architectures share simi-
lar low-level representations, regardless of the difference in the network’s topol-
ogy. Reflecting this, we propose a new architectural paradigm for NAS, called
Transfer-NAS, that replaces several first cells in the generated architecture with
conventional (hand-crafted) pre-trained blocks. As the replaced pre-trained blocks
are kept frozen during training, the memory footprint can significantly be reduced.
We demonstrate the effectiveness of the proposed method by incorporating it into
Regularized Evolution and Differentiable ARchiTecture Search with Perturbation-
based architecture selection (DARTS+PT) on NAS-Bench-201 and DARTS search
spaces. Extensive experiments show that Transfer-NAS significantly decreases the
memory usage up-to 50% while achieving higher/comparable performance com-
pared to the baselines. Furthermore, the proposed method is 1.98× faster in terms
of search time when incorporated to DARTS+PT on NAS-Bench-201 compared
to the conventional method.

1 INTRODUCTION

Neural Architecture Search (NAS) has become an important domain in the machine learning field
due to its superior performance. Many NAS algorithms have been developed (Zoph & Le, 2017;
Zoph et al., 2018; Liu et al., 2019; Cai et al., 2019), and continue to raise in the future. The major
advantage of NAS is to automatically discover the best architecture from a large search space on a
target dataset. Since the solution can be found without human involvement, NAS has a wide range of
applications such as image classification (Wu et al., 2019; Tan et al., 2019), object detection (Chen
et al., 2020; Wang et al., 2020), and pruning (Dong & Yang, 2019).

Researchers have made a lot of attempts to improve the performance of NAS and reduce the search-
ing time (Pham et al., 2018; Liu et al., 2019; Cai et al., 2019). Query-based NAS such as Regularized
Evolution (RE) (Real et al., 2019) trains and evaluates thousands of small models before restoring
the best model into the original size (enlarge the network’s depth and number of channels) for eval-
uation. Gradient-based NAS algorithms (Liu et al., 2019; Xu et al., 2020) train a supernet which
requires a lot of memory footprint. A natural question arises: Can we perform the search step in
NAS by training only a few cells rather than the whole network? Technically, this paradigm shortens
the training time and reduces the memory footprint, because the memory required for calculating
the gradients in this case is smaller than the conventional approaches.

In this paper, we show that it is possible to perform efficient searching in NAS by replacing several
first cells of a child network with pre-trained layers and let NAS search for the remaining cells. By
analyzing the feature maps between the networks sampled from NAS-Bench-201 (Dong & Yang,
2020) search space and a hand-crafted one, namely ResNet (He et al., 2015), we observe that the
representations are very similar among low-level features compared to their high-level features as

1



Under review as a conference paper at ICLR 2022

shown in Figure 1. It is noted that similar observation was reported in Kornblith et al. (2019).
However, they compared the similarity among simple and similar architectures (ResNet’s family and
plain networks) which cannot directly lead us to our main motivation, while we compared similarity
between a hand-crafted architecture with generated ones in NAS-Bench-201 that have high diversity
in both topology and operations (e.g., skip connection, conv3× 3, maxpooling, ...).

Motivated from our preliminary experimental results in Figure 1, we propose to leverage several
low-level features generated by a pre-trained network to speedup the search phase in NAS. This also
helps to reduce the memory footprint significantly because we do not need to calculate the gradient
for these pre-trained layers. To this end, the contributions of our paper are summarized as follows:

• We find out that the low-level features learned by a DARTS’s supernet and networks sam-
pled from NAS-Bench-201 search space, are similar to that of ResNet, regardless of their
topology and operations.

• We leverage the features generated by a pre-trained baseline to improve the efficiency of
NAS. Specifically, we replace several first layers of NAS-based networks with several pre-
trained layers and freeze them, while leaving the other layers as trainable. This results in
reduction of memory footprint and training time of the supernet and/or subnetworks.

• We demonstrate the effectiveness of our method by incorporating the proposed method
into two search algorithms: evolutionary-based REA (Real et al., 2019) and gradient-based
DARTS+PT (Wang et al., 2021). On NAS-Bench-201, we save up to 2.28× memory foot-
print and run 1.98-1.32× faster than the conventional method, while achieving a higher test
accuracy. On DARTS search space, DARTS+PT using our proposed method can find the
best cell in 0.53 GPU day and allocates 1.6× less memory, while maintaining competitive
compared to the conventional method.

2 RELATED WORK

Similarity of neural network representations. Recently, studies on learning the similarity of neu-
ral network representations have widely been conducted (Raghu et al., 2017; Morcos et al., 2018;
Wang et al., 2018; Kornblith et al., 2019; Nguyen et al., 2021). Especially, Kornblith et al. (2019)
provides a powerful similarity index for comparing neural network representations, namely Cen-
tered Kernel alignment (CKA). We adopt CKA to analyze the output feature similarity between
hand-crafted and NAS-generated layers.

Given n examples, let X ∈ Rn×p1 and Y ∈ Rn×p2 are the representations of p1 and p2 neuron for
this n examples. Let K = XXT and L = Y Y T be the Gram matrices, which are the similarities
between a pair of examples in X and Y . Let H = In− 1

n11
T denotes the centering matrix. Hilbert-

Schmidt Independence Criterion (HSIC) is defined as HSIC(K,L) = vec(HKH)·vec(HLH)/(n−
1)2. The normalization index is applied to HISC to make it invariant to isotropic scaling, which is
denoted as CKA and is defined as:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
. (1)

Neural Architecture Search. The goal of NAS is to automatically discover high-performance
networks on a specific task. Reinforcement Learning (RL)-based, evolutionary-based, and gradient-
based search algorithms are widely used for NAS (Zoph & Le, 2017; Pham et al., 2018; Zoph
et al., 2018; Real et al., 2019; Liu et al., 2019). In the work of Zoph & Le (2017), the authors use
RL and train a controller to generate the network’s configurations (e.g., topology and operations).
This method requires a lot of computational resources. Evolutionary-based NAS such as (Real
et al., 2019) outperforms RL-based NAS in terms of accuracy and efficiency as it reaches higher
accuracy given the same amount of time during searching. The major drawback of RL-based and
evolutionary-based is the repetition process of training and evaluation of candidate networks, which
demands a huge amount of GPU hours.

On the other hand, Gradient-based NAS (Liu et al., 2019; Xu et al., 2020; Chen et al., 2019) uti-
lizes the back-propagation process to find the optimal network where the optimal model parameters
and operations are found during training in an alternative manner. For example, Differentiable AR-
chiTecture Search (DARTS) (Liu et al., 2019) introduces architectural weights α beside network’s

2



Under review as a conference paper at ICLR 2022

1 3 5 7 9 11 13 15
ResNet Block

1
3

5
7

9
11

13
15

17
N

A
S-

B
en

ch
-2

01
 C

el
l Arch ID 935

1 3 5 7 9 11 13 15
ResNet Block

Arch ID 4174

1 3 5 7 9 11 13 15
ResNet Block

Arch ID 5979

1 3 5 7 9 11 13 15
ResNet Block

Average

0.3

0.4

0.5

0.6

0.7

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.3
0.4
0.5
0.6
0.7
0.8

0.3

0.4

0.5

0.6

0.7

Si
m

ila
rit

y

Figure 1: The similarity of representations between ResNet-32 blocks (x-axis) and NAS-Bench-
201 cells (y-axis) for different architectures using CKA. The first, second, and third plots are the
similarity for individual network. These networks obtain 80.36%, 89.63%, and 93.75% test accuracy
on CIFAR-10. The last plot is the average similarity of 1000 architectures selected randomly.

weights w, forming a supernet consisting of large candidate networks. In order to find the optimal
α and w, the process requires a bi-level optimization (Anandalingam & Friesz, 1992; Colson et al.,
2007), which is computationally expensive. DARTS gets rid of this issue by approximating the
architecture gradient by using only a single training step, which optimizes α and w alternately.

Relation between similarity of representations and NAS. Even though studying the similarity
of neural network representations and NAS are two different research areas, it is important to un-
derstand whether the findings from the previous works on the similarity of feature maps between
networks still hold for NAS. Not surprisingly, NAS-based architectures and hand-crafted networks
generate similar representations for some layers after training, as depicted in Figure 1. This moti-
vates us to develop a simple yet effective method to reduce the memory footprint in NAS. In our
work, we use CKA proposed by Kornblith et al. (2019) for calculating the similarity1.

3 METHOD

In this part, we first study the similarity of neural network representations from NAS perspective.
We first show that NAS-based networks and hand-crafted networks learn and generate similar rep-
resentations for several shallow layers. We then propose a simple method that reuses the features
from a pre-trained hand-crafted network, which can help to improve the efficiency of NAS in terms
of memory footprint and training time.

3.1 KEY OBSERVATIONS

1 2 3 4 5 6 7 8 9
ResNet Block

1
2

3
4

5
6

7
8

Su
pe

rn
et

 C
el

l

0.6

0.7

0.8

0.9

Si
m

ila
rit

y

Figure 2: The similarity be-
tween ResNet-20 blocks (x-
axis) and DARTS’s supernet
cells (y-axis) using CKA.

We consider comparing the similarity for two cases: (i) query-based
NAS algorithms (Zoph & Le, 2017; Real et al., 2019) which train
a lot of subnetworks; (ii) gradient-based NAS methods (Liu et al.,
2019; Chen et al., 2019) which train a supernet.

Case 1. We train a ResNet-32 on CIFAR-10 dataset (Krizhevsky
& Hinton, 2009) using the same hyper-parameters used in NAS-
Bench-201 (Dong & Yang, 2020). More details can be found in
Appendix A.1. We randomly select 1000 architectures from NAS-
Bench-201 and measure the similarity between the representations2

generated by these architectures and the trained ResNet-32 via CKA
(Kornblith et al., 2019) similarity metric. The weights of NAS-
Bench-201 architectures are obtained from their official website.
We take the average of 1000 similarities and plot them in Figure 1.
It can be seen that the feature maps generated by NAS-Bench-201 architectures share similar char-
acteristics to those from ResNet-32. Especially, the similarity is significantly higher for low-level
representations while lower for high-level representations. This suggests that some of the initial

1Current work uses this method due to its simplicity. However, we believe that a proper metric will tell us
how many pre-trained layers should be used before performance collapse (i.e., the searched network achieves
inferior accuracy).

2The feature maps generated by a ResNet block or a cell from NAS-Bench-201 architectures.

3



Under review as a conference paper at ICLR 2022

layers of candidate networks in NAS can be replaced with layers from pre-trained hand-crafted net-
works. Moreover, this approach reduces the memory footprint since it reduces the search space size
(during backpropagation).

Case 2. We further investigate the similarity between a pre-trained ResNet-20 and a supernet, which
is used in DARTS. We compute the similarity for the representations generated by supernet cells and
ResNet blocks. Figure 2 demonstrates that the supernet and ResNet generate similar low-level and
mid-level patterns. This behavior is consistent with previous observation.

3.2 PROPOSED MEMORY-EFFICIENT NEURAL ARCHITECTURE SEARCH

In this section, we introduce our method for reducing the memory footprint in NAS. Based on our
observation about similarity of representations between hand-crafted and NAS based networks, we
propose replacing a first few layers of NAS based networks with pre-trained layers of hand-crafted
networks. Figure 3 shows the differences between the conventional and the proposed method for
NAS.

N
O
R
M
A
L

R
E
D
U
C
E

F
C

I
M
A
G
E

a) Conventional Subnetwork/Supernet

b) Proposed Subnetwork/Supernet

Searching Phase

✖N ✖N ✖N

N
O
R
M
A
L

R
E
D
U
C
E

N
O
R
M
A
L

R
E
D
U
C
E

N
O
R
M
A
L

F
C

I
M
A
G
E

✖N ✖N ✖N

N
O
R
M
A
L

R
E
D
U
C
E

N
O
R
M
A
L

Trainable
Cell

Pre-trained
Block

Forward Backward

Figure 3: Comparison between the conventional method and the proposed method. (a) The conven-
tional method trains all layers of a network, which requires memory for calculating the gradients of
all layers. (b) The proposed method replaces first few layers of NAS-based network with pre-trained
layers of a hand-crafted network. The weights in these pre-trained layers are frozen, while others are
learned through backpropagation. Since we only need to compute the gradients for the remaining
layers, the memory footprint is reduced while preserving the performance.

Let A be an untrained network with L cells and is expressed as A = {lA1, lA2, ..., lAL}. Simi-
larly, let B be a pre-trained baseline with K blocks and is expressed as B = {lB1, lB2, ..., lBK}.
Since A and B share similar representations for some cells and blocks after training, a straight-
forward way3 to reuse the features from pre-trained network B is to plug these features to un-
trained network A. Hence, the proposed network which replaces i cells with j blocks is defined as
S = {lB1, ..., lBj , lA(i+1), ..., lAL}, where i and j are sandwiched between 1 and L− 1. The choice
of j controls how many pre-trained blocks from B are used while i controls how many cells of A
are replaced. If j and i are large meaning that we only train a few cells, the pre-trained blocks are
dominating the NAS cells. Intuitively, this makes the proposed network S looks like the pre-trained
network B, thus degrading the performance of NAS. During training the network S, we only up-
date the weights from lA(i+1) to lAL. The proposed method can be used for query-based NAS and
gradient-based NAS. Here, we formally describe how to use the proposed method for NAS.

Query-based NAS. In many query-based NAS algorithms (Zoph & Le, 2017; Real et al., 2019), a
large number of child networks are sampled and trained for limited epochs. Instead of training these
networks, which requires computing the gradient for all cells, we replace them with the proposed
paradigm and keep other settings as default. LetA be the search space and a ∈ A be an architecture.

3There are other ways to reuse features. Despite directly plug-in, we find that, with a simple learning rate,
warmup paradigm can make training stable as it makes the untrained cells to adapt pre-trained blocks gradually.

4



Under review as a conference paper at ICLR 2022

Instead of training a, we train s = {lb1, ..., lbj , la(i+1), ..., laL} where b is a pre-trained architecture
and is shared for all networks in A. The performance of s on the validation set is used for updating
the controller in Zoph & Le (2017) or selecting the parent for mutation in Real et al. (2019). We
term s as Transfer-Net-i-j (Tr-Net-i-j).

Gradient-based NAS. Differentiable architecture search (Liu et al., 2019; Xu et al., 2020) trains
a supernet from which subnetworks are generated. Although the supernet comprises of a highly
complex topology, the starting cells still produce similar representations to a hand-crafted one after
training as demonstrated in Figure 2. Thus, the proposed method is also applicable for Gradient-
based NAS. Let A be the orginal supernet. The proposed network S now acts as the supernet,
which we denote as Transfer-Supernet-i-j (Tr-Supernet-i-j). The search phase is now conducted
on Tr-Supernet-i-j, which requires less memory footprint. Since Tr-Net and Tr-Supernet utilize
pre-trained blocks, they belong to Tr-NAS family.

4 EXPERIMENTS

In this section, we first compare the rank correlation between the validation accuracy and final test
accuracy of the proposed method and the conventional one on NAS-Bench-201. Then, we evaluate
the performance of REA and DARTS+PT using the proposed method. Unless stated otherwise, the
training time and memory footprint are measured on a single Nvidia Geforce 1080 Ti with PyTorch
deep learning framework.

4.1 RANK CORRELATION COMPARISON

Dataset and baseline. We use NAS-Bench-201 (Dong & Yang, 2020), a benchmark dataset for
NAS. NAS-Bench-201 consists of 15,625 networks where five operations exist in the search space,
namely none, average pooling, conv1× 1, conv3× 3, and skip connection. These networks are
trained on CIFAR-10, CIFAR-100, and ImageNet-16-120. The baseline chosen for comparison is
the conventional one, which trains for 12 epochs. We term this as ’Original’.

Architectures. We randomly sample 1000 networks from NAS-Bench-201. We replace these net-
works with the proposed paradigm. The pre-trained network is a ResNet-324. We set i and j to 5,
meaning that we replace the first 5 cells of these networks with the first 5 pre-trained ResNet blocks.

Table 1: Rank correlation of 1000 networks sampled randomly on NAS-Bench-201.

Dataset KROCC SROCC Rank
PreservedOriginal Tr-Net-5-5 Gain↑ Original Tr-Net-5-5 Gain↑

CIFAR-10 0.6128 0.7883 0.1755 0.7888 0.9381 0.1493 !

CIFAR-100 0.6600 0.6864 0.0264 0.8384 0.8698 0.0314 !

ImageNet-16-120 0.6656 0.7018 0.0362 0.8394 0.8786 0.0392 !

Table 2: Average allocated memory in GB.

Method Original Tr-Net-5-5

CIFAR-10 1.12 0.53
CIFAR-100 1.12 0.53
ImageNet-16-120 0.28 0.13

Performance criteria. Once the training is finished,
we compute Spearman Rank Order Correlation Coef-
ficient (SROCC) and Kendall Tau Rank-Order Corre-
lation Coefficient (KROCC) between the accuracy on
the validation set and the test set for the Original and
the proposed method. We obtain the accuracy on the
validation set and test set for the original networks
from NAS-Bench-201 dataset.

Training setup. We use the same training set and validation set in our experiments following NAS-
Bench-201 for fair comparison. We use the same hyper-parameters as in NAS-Bench-201, except
that we train our methods for 18 epochs (including 13 warmup epochs). It should be noted that even
we train our networks with more epochs, the total training time of our networks is still less than the
conventional method. Please refer to Appendix A.2 for more information.

4A good starting point for choosing the depth of the pre-trained baseline is to minimize the difference
between the receptive field of blocks and cells. We did not conduct extensive tuning the depth of the baseline
because we want to utilize a pre-trained model, which is already available to speedup NAS.

5



Under review as a conference paper at ICLR 2022

Result. Table 1 summarizes the results on three datasets i.e., CIFAR-10, CIFAR-100, and ImageNet-
16-120. It can be seen that the proposed method achieves a higher correlation than the conventional
method for all of the datasets. Notably, there is a huge improvement in rank correlation on CIFAR-
10 when using the proposed method. The results from Table 1 indicate that, despite sharing the
same representations for several first layers, the proposed method is able to preserve the ranking
(even better). We obtain the allocated memory on GPU during training and present in Table 2.
The results suggest that the proposed method significantly reduces the memory footprint (2.11×
reduction) compared to the conventional method. We further evaluate the rank correlation for top-k
architectures, which is crucial for assessing the performance as good methods should have a strong
correlation for top-performing networks. We set k to 1000 and summarize the results in Table 3.

Table 3: Rank correlation of top-k networks on NAS-Bench-201

Dataset KROCC SROCC Rank
PreservedOriginal Tr-Net-5-5 Gain↑ Original Tr-Net-5-5 Gain↑

CIFAR-10 0.4135 0.4476 0.0341 0.5909 0.6351 0.0442 !

CIFAR-100 0.3189 0.3652 0.0463 0.4623 0.5173 0.0550 !

ImageNet-16-120 0.1628 0.2087 0.0459 0.2391 0.3021 0.0630 !

As shown in Table 3, the proposed method performs consistently well for all datasets. In general,
the proposed method achieves a higher rank correlation than the conventional method. These sets of
experiments indicate that the proposed method is well-suited for NAS.

4.2 RESULT ON QUERY-BASED NAS

0 25 50 75 100

0.5

1.0

1.5

A
vg

. M
em

 (G
B

)

Original Tr-Net-5-5

0 25 50 75 100

0.5

1.0

1.5

A
vg

. M
em

 (G
B

)

Original Tr-Net-5-5

0 25 50 75 100

0.2

0.4

A
vg

. M
em

 (G
B

)
Original Tr-Net-5-5

0 25 50 75 100
Number of evaluated nets

90

92

94

A
vg

. T
es

t A
cc

ur
ac

y 
(%

)

(a) CIFAR-10

Original
Tr-Net-5-5

0 25 50 75 100
Number of evaluated nets

68

70

72

A
vg

. T
es

t A
cc

ur
ac

y 
(%

)

(b) CIFAR-100

Original
Tr-Net-5-5

0 25 50 75 100
Number of evaluated nets

40

42

44

46

A
vg

. T
es

t A
cc

ur
ac

y 
(%

)

(c) ImageNet-16-120

Original
Tr-Net-5-5

Figure 4: Performance comparison of REA on NAS-Bench-201. Top: The average memory foot-
print during training. Bottom: The average test accuracy on NAS-Bench-201.

We now demonstrate the effectiveness of the proposed method by incorporating to NAS algorithms.
For this purpose, we use Regularized Evolution REA (Real et al., 2019), a query-based NAS al-
gorithm. We train ours for 18 epochs (including 13 warmup epochs), other hyper-parameters are
identical to those used in NAS-Bench-201. The search phase is terminated when the number of
evaluated networks exceeds 100. We conduct the experiment 10 times with different seeds and plot
the average test accuracy in Figure 4.

As shown in Figure 4, using the proposed method, REA is able to find the top-performing network.
Compared to the original method, the proposed method achieves similar performance (Figure 4.
Bottom) while using roughly 2× less memory footprint (Figure 4. Top). It is noticeable that REA
outputs higher average test accuracy during the search phase using our method. This behavior is
natural since our method achieves a good rank correlation than the conventional one.

6



Under review as a conference paper at ICLR 2022

4.3 RESULT ON DIFFERENTIABLE NAS

We shift our evaluation to another type of NAS algorithms, which uses the gradient to guide the
search. We incorporate the proposed method to DARTS+PT (Wang et al., 2021), a perturbation-
based architecture selection that performs on top of DARTS. The authors of DARTS+PT show that
the architectural weights α do not represent the strength of the operations. Thus, they introduce an
alternative way to derive the final architecture, which relies on the contribution of the operations
to the supernet’s accuracy. Specifically, after the supernet converged, the operation which has less
impact on the supernet’s accuracy is removed from the supernet. Then, we tune the supernet for
some epochs and repeat the process until the stopping criteria is met (e.g., becoming a network with
a single-path).

4.3.1 NAS-BENCH-201 SEARCH SPACE

In this section, we evaluate the performance of DARTS+PT using our proposed method on NAS-
Bench-201 search space.

0 2500 5000 7500 10000 12500
Seconds

87

88

89

90

91

92

93

Av
g.

 T
es

t A
cc

ur
ac

y 
(%

)

(a) CIFAR-10

Speedup

Original Supernet
Tr-Supernet-5-5

0 5000 10000 15000 20000
Seconds

60

62

64

66

68

70

72

Av
g.

 T
es

t A
cc

ur
ac

y 
(%

)

(b) CIFAR-100

Speedup

Original Supernet
Tr-Supernet-5-5

0 10000 20000 30000
Seconds

25

30

35

40

45

Av
g.

 T
es

t A
cc

ur
ac

y 
(%

)

(c) ImageNet-16-120

Speedup

Original Supernet
Tr-Supernet-5-5

Figure 5: Performance of DARTS+PT on CIFAR-10, CIFAR-100, and ImageNet-16-120.

CI
FA
R
10 CI

FA
R

10
0

Im
ag
eN
et

16
-12
0

0

1

2

3

G
PU

 M
em

 (G
B
)

2.28 2.28

2.20

x x

x

Original Supernet Tr-Supernet-5-5

Figure 6: The allocated memory of the
supernet with a batch size of 128.

Supernet. The original supernet is a cell-based paradigm,
which repeatedly stacks cell. Each cell has 6 edges and is
stacked for 5 times for the first, second, and third stages.
Our Tr-Supernet-5-5 is formed by replacing the first stage
of the original supernet with those from a pre-trained
ResNet-32 (i.e., the first 5 residual blocks).

Training setup. We train Tr-Supernet-5-5 and Original
Supernet for 50 epochs (including 13 warmup epochs for
ours) and then perform architecture selection followed
DARTS+PT. After the operation is removed from the su-
pernet, we tune the supernet for 10 epochs. The search
phase is finished when all edges are processed. Other
hyper-parameters are the same as in previous work (Wang
et al., 2021). Additionally, we enable Cutout (Devries &
Taylor, 2017) during training and tuning the proposed su-
pernet and the original one. The results obtained without
Cutout is presented in Ablation 4.4.2.

Table 4: Test Accuracy using
DARTS+PT on NAS-Bench-201.

Dataset Original Ours

CIFAR-10 93.04 93.49
CIFAR-100 69.88 72.67
ImageNet-16-120 43.94 44.8

Result. We run experiments 25 times on CIFAR-
10/CIFAR-100 and 5 times on ImageNet-16-120 with dif-
ferent random seeds and report the mean test accuracy.
Figure 5 illustrates our results on NAS-Bench-201. As
we can see from Figure 5, using the proposed super-
net, DARTS+PT finishes the search phase faster than the
conventional supernet (about 1.98× reduction on CIFAR-
10/CIFAR-100 and 1.32× on ImageNet-16-120). We
summarize the average test accuracy in Table 4. Specifically, the proposed method achieves a per-

7



Under review as a conference paper at ICLR 2022

formance gain of 0.45%, 2.79%, and 0.86% on CIFAR-10, CIFAR-100, and ImageNet-16-120,
respectively. We plot the allocated memory required to train the supernet in Figure 6. Notably, the
proposed supernet reduces the memory footprint by 2.2× for all datasets while achieving higher test
accuracy compared to the conventional supernet.

4.3.2 DARTS SEARCH SPACE

Table 5: Performance comparison on DARTS
search space.

Method Test Error Search GPU
(%) Cost? Mem∗

DARTS+PT 2.78 (2.68) 0.82 8.12
+ Cutout 2.77 (2.71) 0.85 8.12
+ Ours 2.94 (2.70) 0.50 4.64
+ Ours + Cutout 2.81 (2.60) 0.53 4.64
∗ in GB
? GPU day

We perform experiments on DARTS search
space, which is much larger than NAS-Bench-
201 search space. The supernet is formed by
stacking the cells for 8 times. The position of
reduction cell is at 1/3 and 2/3 of the depth
of the supernet. We use a pre-trained ResNet-
20 to provide intermediate features for the su-
pernet. We replace the first stage of supernet
with those from ResNet-20 (i.e., the first two
supernet cells are replaced with the first three
ResNet-20 blocks). The configuration for the
pre-trained ResNet can be found in Appendix
A.1. We use the same hyper-parameters for training and tuning the supernet (Liu et al., 2019; Wang
et al., 2021). Additionally, we apply warmup for 5 epochs and enable Cutout (Devries & Taylor,
2017) during the search phase. We run the experiment 4 times with different random seeds and
report the average (best) test error in Table 5. The result of DARTS+PT is obtained by running the
official code provided by authors. From Table 5, we can see that the proposed method works well on
a larger search space. The conventional DARTS takes 0.4 day to finish the search phase and 0.85 day
when applying perturbation-based architecture selection. Using the proposed method, DARTS+PT
finishes the search phase in 0.53 day and allocates 1.6× less memory, while maintaining the perfor-
mance.

4.4 ABLATION STUDIES

4.4.1 STABILIZING THE TRAINING VIA LEARNING RATE WARMUP

0 1 5 9 13 17
Warmup Epoch

0.60

0.62

0.64

0.66

0.68

0.70

K
R

O
C

C Baseline

Tr-Net-5-5 Tr-Net-10-10

Figure 7: Rank correlation un-
der different warmup epochs on
CIFAR-100, NAS-Bench-201.
The baseline is the conventional
method, which trains the network
for 12 epochs.

Since the proposed method utilizes some pre-trained blocks
while others are randomly initialized, the network may fail to
converge using the conventional optimization technique. We
suggest stabilizing the network via learning rate warmup for a
few epochs. It is noted that the warmup phase does not intro-
duce any extra cost. The warmup phase begins with a learning
rate of 0, and gradually increases to the initial learning rate for
n epochs. This step encourages the untrained cells to adapt to
the pre-trained blocks slowly. To find the best warmup epochs
for our setting, we randomly sample 250 networks from NAS-
Bench-201 search space, replace the first i cells with j pre-
trained ResNet blocks, and train them on CIFAR-100 for 18
epochs with different warmup epochs n. We use KROCC as a
criterion for comparison.

We investigate two cases: (i) i and j are equally set to 5, de-
noted as Tr-Net-5-5; (ii) i and j are set to 10, denoted as Tr-
Net-10-10. We set n from 1 to 17 with a step size of 4 and
show the results in Figure 7. For the first case, we can see that
without the warmup phase (0 warmup epochs), the rank correlation of the proposed method is below
the conventional method. This indicates that the training is unstable that causes the network failed to
converge. When using learning rate warmup, the rank correlation gradually increases and reaches its
peak when n is 13, then starts decreasing. In addition, the proposed method always outperforms the
conventional method when we perform warmup for more than 3 epochs. For the second case, one
can observe that if we replace too many cells with pre-trained blocks, the rank correlation is lower
than the baseline. This suggests that choosing the right i and j can have a good trade-off between
performance and memory reduction.

8



Under review as a conference paper at ICLR 2022

4.4.2 THE EFFECTIVENESS OF CUTOUT AUGMENTATION

0 1 5 9 13 17
Warmup Epoch

68.5

69.0

69.5

70.0

70.5

71.0

71.5

72.0

72.5

Av
g.
 T
es
t A

cc
 (%

)

Original
Original w/o Cutout
Tr-Supernet-5-5
Tr-Supernet-10-10

Figure 8: Performance of DARTS+PT
with Cutout on CIFAR-100, NAS-
Bench-201.

We investigate how Cutout (Devries & Taylor, 2017) can
help to improve the performance of the proposed method
for gradient-based NAS algorithms. We study two cases:
(i) i and j is set to 5 which is denoted as Tr-Supernet-5-5;
(ii) i and j is set to 10 which is denoted as Tr-Supernet-10-
10. We perform the experiment on NAS-Bench-201 using
CIFAR-100 with different warmup epochs n. We compare
the performance of DARTS+PT using our supernet and the
conventional one trained with and without Cutout. We show
the results in Figure 8. For the first case, DARTS+PT us-
ing our supernet outperforms the original supernet when n
is greater than 7. Tr-Supernet-5-5 achieves the best per-
formance with 13 warmup epochs. For the second case,
Tr-Supernet-10-10 achieves comparable performance com-
pared to the original supernet trained with Cutout. How-
ever, when comparing to the conventional method trained
without Cutout, there is a little drop in accuracy.

25 50 75
Search Epoch

5

10

15

20

Ei
ge

nv
al

ue

w/o Cutout
Cutout

25 50 75
Search Epoch

w/o Cutout
Cutout

Figure 9: Dominant Eigenvalue dur-
ing search (Left: Original Supernet,
Right: Tr-Supernet-5-5, warmup 13
epochs).

To find out the reason that Cutout helps to improve the
performance of our method, we compute the full Hessian
∇2
αLvalid of validation loss w.r.t the architectural parame-

ters α and show the dominant eigenvalue in Figure 9. Zela
et al. (2020) reveals that large dominant eigenvalue of the
Hessian degrades the performance and suggests that us-
ing regularization technique may improve the performance.
As demonstrated in Figure 9, applying Cutout to the orig-
inal supernet does not help to reduce the dominant eigen-
value as it continues to raise. By contrast, the proposed
method achieves better results because the dominant eigen-
value fluctuates around some values when enabling Cutout.

5 DISCUSSION & FUTURE WORK

Since, the proposed method fuses pre-trained blocks and untrained cells in a straight-forward man-
ner, there are several potential directions to further improve the performance of NAS while reducing
the memory footprint and training time. First, a proper similarity index may help to determine how
many untrained cells are suitable for replacement. Second, there is a possibility to develop a single
pre-trained baseline, which can be used as a starting point for NAS to perform on other target tasks
that are similar to each other (Kornblith et al., 2019). Also, the performance of NAS may depend on
the performance of the pre-trained network. Thus, designing a good pre-trained baseline which can
be applied for various NAS algorithms can be a promising work. In our work, we keep things as sim-
ple as possible to demonstrate the usefulness of the proposed method, and leave other improvements
as future works.

6 CONCLUSION

In this work, we propose a simple yet effective method to reduce the memory footprint and shorten
the training time in NAS, by replacing several first NAS-cells with those from a pre-trained hand-
crafted network. Our work is motivated by the observation that once converged, both hand-crafted
and NAS-based architectures learn similar representations especially at low-level layers. Our
method outperforms the conventional method in terms of rank correlation of validation accuracy to
test accuracy on NAS-Bench-201 while requiring less memory footprint. Additionally, our method
can be incorporated into different types of NAS algorithms, such as query-based or gradient-based
methods, without any modification. Overall, the proposed method uses less memory footprint and
shortens the training time while achieving comparable or even higher performance than the conven-
tional methods.

9



Under review as a conference paper at ICLR 2022

REFERENCES

G. Anandalingam and T. L. Friesz. Hierarchical optimization: An introduction. Annals of Oper-
ations Research, 34(1):1–11, Dec 1992. ISSN 1572-9338. doi: 10.1007/BF02098169. URL
https://doi.org/10.1007/BF02098169.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HylVB3AqYm.

Bo Chen, Golnaz Ghiasi, Hanxiao Liu, Tsung-Yi Lin, Dmitry Kalenichenko, Hartwig Adam, and
Quoc V. Le. Mnasfpn: Learning latency-aware pyramid architecture for object detection on mo-
bile devices. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. CoRR, abs/1904.12760, 2019. URL http://
arxiv.org/abs/1904.12760.

Benoît Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization. An-
nals of Operations Research, 153(1):235–256, Sep 2007. ISSN 1572-9338. doi: 10.1007/
s10479-007-0176-2. URL https://doi.org/10.1007/s10479-007-0176-2.

Terrance Devries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout. CoRR, abs/1708.04552, 2017. URL http://arxiv.org/abs/1708.04552.

Xuanyi Dong and Yi Yang. Network pruning via transformable architecture search. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
a01a0380ca3c61428c26a231f0e49a09-Paper.pdf.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architec-
ture search. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=HJxyZkBKDr.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neu-
ral network representations revisited. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pp. 3519–3529. PMLR, 09–15 Jun 2019. URL https:
//proceedings.mlr.press/v97/kornblith19a.html.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=S1eYHoC5FX.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper/2018/file/a7a3d70c6d17a73140918996d03c014f-Paper.pdf.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same
things? uncovering how neural network representations vary with width and depth. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=KJNcAkY8tY4.

10

https://doi.org/10.1007/BF02098169
https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=HylVB3AqYm
http://arxiv.org/abs/1904.12760
http://arxiv.org/abs/1904.12760
https://doi.org/10.1007/s10479-007-0176-2
http://arxiv.org/abs/1708.04552
https://proceedings.neurips.cc/paper/2019/file/a01a0380ca3c61428c26a231f0e49a09-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a01a0380ca3c61428c26a231f0e49a09-Paper.pdf
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
http://arxiv.org/abs/1512.03385
https://proceedings.mlr.press/v97/kornblith19a.html
https://proceedings.mlr.press/v97/kornblith19a.html
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://proceedings.neurips.cc/paper/2018/file/a7a3d70c6d17a73140918996d03c014f-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a7a3d70c6d17a73140918996d03c014f-Paper.pdf
https://openreview.net/forum?id=KJNcAkY8tY4
https://openreview.net/forum?id=KJNcAkY8tY4


Under review as a conference paper at ICLR 2022

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In Proceedings of the 35th International Conference on Machine
Learning, pp. 4095–4104, 2018.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pp.
6078–6087, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. Proceedings of the AAAI Conference on Artificial Intelligence, 33
(01):4780–4789, Jul. 2019. doi: 10.1609/aaai.v33i01.33014780. URL https://ojs.aaai.
org/index.php/AAAI/article/view/4405.

Oleg Semery. Pytorchcv convolutional neural networks for computer vision. https://github.
com/donnyyou/torchcv, 2020.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Liwei Wang, Lunjia Hu, Jiayuan Gu, Yue Wu, Zhiqiang Hu, Kun He, and John Hopcroft. Towards
understanding learning representations: To what extent do different neural networks learn the
same representation. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, pp. 9607–9616, Red Hook, NY, USA, 2018. Curran Associates
Inc.

Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian, Chunhua Shen, and Yanning Zhang. Nas-
fcos: Fast neural architecture search for object detection. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethinking
architecture selection in differentiable NAS. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=PKubaeJkw3.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=BJlS634tPr.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hut-
ter. Understanding and robustifying differentiable architecture search. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
H1gDNyrKDS.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

11

https://ojs.aaai.org/index.php/AAAI/article/view/4405
https://ojs.aaai.org/index.php/AAAI/article/view/4405
https://github.com/donnyyou/torchcv
https://github.com/donnyyou/torchcv
https://openreview.net/forum?id=PKubaeJkw3
https://openreview.net/forum?id=BJlS634tPr
https://openreview.net/forum?id=BJlS634tPr
https://openreview.net/forum?id=H1gDNyrKDS
https://openreview.net/forum?id=H1gDNyrKDS


Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 DETAIL OF ARCHITECTURES AND TRAINING SETUP FOR PRE-TRAINED RESNET

Table 6: The hyper-
parameters for training.

Optimizer SGD
Learning rate 0.1
Epoch 200
Nesterov Yes
Momentum 0.9
LR Schedule Cosine
Weight decay 0.0005
Batch size 256

Actually one can use a pre-trained ResNet available in PyTorchCV
(Semery, 2020) database as we do not modify the ResNet architec-
ture. We do train our ResNet for a fair comparison to the conven-
tional method because on NAS-Bench-201, the original train and test
sets of CIFAR-10, CIFAR-100 are split into new train, validation, test
sets.

ResNet-32. The network is created by stacking basic residual block
for 15 times. The downsampled block is located at 6-th and 11-st
block. The number of channel is 16, 32, 64 for the first, second, and
third stages, respectively.

ResNet-20. Similar to ResNet-32, we stack the basic residual block
for 9 times, reduce the dimension by half at 4-th and 7-th block. The
number of channel is set to 64, 128, and 256 for the first, second, and
third stages, respectively.

The hyper-parameters for training ResNet are summarized in Table 6.

A.2 TRAINING TIME OF THE PROPOSED METHOD

The training time of a random network sampled from NAS-Bench-201 is displayed in Figure 10. We
can see that the proposed method require less time to finish one epoch. As a result, we can increase
the number of epochs for training the proposed method as long as it does not exceed the training
time of conventional method for a fair comparison. In addition, we observe a similar trend for other
datasets (e.g.,CIFAR-10 and ImageNet-16-120) and networks. In our work, we set the number of
epochs for training ours to 18.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Epochs

0

50

100

150

200

250

Se
co
nd

s

Original
Tr-Net-5-5

Figure 10: Training time comparison between the conventional method and proposed method on
CIFAR-100.

12


	Introduction
	Related work
	Method
	Key observations
	Proposed Memory-Efficient Neural Architecture Search

	Experiments
	Rank correlation comparison
	Result on query-based NAS
	Result on Differentiable NAS
	NAS-Bench-201 search space
	DARTS search space

	Ablation studies
	Stabilizing the training via learning rate warmup
	The effectiveness of Cutout augmentation


	Discussion & Future Work
	Conclusion
	Appendix
	Detail of architectures and training setup for pre-trained ResNet
	Training time of the proposed method


