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Abstract

The promise of mobile health (mHealth) is the ability to use wearable sensors
to monitor participant physiology at high frequencies during daily life to enable
temporally-precise health interventions. However, a major challenge is frequent
missing data. Despite a rich imputation literature, existing techniques are ineffec-
tive for the pulsative signals which comprise many mHealth applications, and a lack
of available datasets has stymied progress. We address this gap with PulseImpute,
the first large-scale pulsative signal imputation challenge which includes realistic
mHealth missingness models, an extensive set of baselines, and clinically-relevant
downstream tasks. Our baseline models include a novel transformer-based architec-
ture designed to exploit the structure of pulsative signals. We hope that PulseImpute
will enable the ML community to tackle this important and challenging task.

1 Introduction

The goal of mobile health (mHealth) is to use continuously collected signals from wearable devices,
such as smart watches, to passively monitor a user’s health states during daily life and deliver
interventions to improve health outcomes. The use of devices such as Fitbit [17] to monitor physical
activity has become an established practice, with large-scale consumer adoption. Even more exciting
is the increasing feasibility of measuring complex health states, such as stress [25], by leveraging high-
frequency physiological signals from wearable sensing technologies. A subset of these physiological
signals are pulsative, which we define as signals that have a quasiperiodic structure with specific signal
morphologies (e.g. the QRS complex in electrocardiography (ECG)), which vary over time and across
populations due to their origins in the cardiopulmonary system. ECG and Photoplethysmography
(PPG) signals are examples of such pulsative signals. The rich signal structure, especially in terms of
shape and timing has significant clinical value, for tasks such as heart disease diagnosis [59].

However, a key challenge is addressing missing data, which is commonplace and arises from multiple
causes such as insecure sensor attachment or data transmission loss [47]. Current mHealth systems
either employ simple imputation methods, such as KNN [44], or simply do not trigger health
interventions when inputs are missing [51]. Since mHealth biomarkers may require multiple signals
as input [25], the latter approach can lead to long intervals of missingness due to the juxtaposition of
missingness patterns across the inputs. However, the quasiperiodic nature of these signals provides
rich information for imputation, which can be exploited by modeling morphological structures over
time. Additionally, the accuracy with which a signal’s morphology can be recovered has a direct
impact on downstream task performance, as specific waveform shapes have clinical significance
and may imply specific disease states. Furthermore, the well-defined signal morphologies allow for
straightforward interpretation of reconstruction. Thus, pulsative signals provide a novel context for
the development of ML imputation methods, especially in comparison to prior imputation tasks.

∗Work was done while the author was at Georgia Tech.
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Our PulseImpute
Challenge

Standard Imputation
Datasets [54, 26]

Imputation for mHealth
Data Cleaning [27, 51]

Clinical Pulsative Signal
Imputation [67, 4]

mHealth Pulsative
Signals ✓ ✓

Publicly Available
Data ✓ ✓ ✓

Realistic
Missingness ✓ ✓ ✓

Directly Evaluates
Imputation ✓ ✓ ✓

Comprehensive
Benchmarks ✓ ✓
Downstream

Tasks ✓ ✓ ✓ ✓

Table 1: Necessary components for an mHealth pulsative signal imputation challenge. Our PulseIm-
pute Challenge is the only work to meet all six criteria.

We introduce PulseImpute, a novel pulsative signal imputation challenge to catalyze and enable
the ML community to address the important missing data problems underlying current and future
mHealth applications. Table 1 describes six criteria that the PulseImpute challenge provides, which
no prior works address in full. We extract real missingness patterns from real-world mHealth field
studies [9, 50] and mimic specific mHealth missingness paradigms [47] in order to apply these
patterns to open source pulsative signal datasets. As a result, we can simulate realistic missingness
while using the original ablated samples as ground truth, making it possible to quantify and visualize
the accuracy of imputation. We also include three clinical downstream tasks, Heartbeat Detection in
ECG, Heartbeat Detection in PPG, and Cardiac Pathophysiology Multi-label Classification in ECG,
which allow us precisely interpret reconstructions in the context of their clinical utility. PulseImpute
features an extensive benchmark suite of imputation methods, covering both traditional and deep-
learning-based approaches. In particular, we introduce a novel transformer baseline with a Bottleneck
Dilated Convolution self-attention module that is designed for the pulsative signal structure and
provides state-of-the-art (SOTA) performance. These baselines provide a strong context for future
research efforts.

To summarize, we make the contribution of introducing the PulseImpute Challenge, which is
composed of 1) a comprehensive benchmark suite for mHealth pulsative signal imputation with
publicly-available data across multiple signal modalities and reproducible missingness models; 2)
nine baseline models which demonstrate the failure of existing time-series imputation methods
to address our novel challenge; and 3) an additional novel baseline incorporating a self-attention
module which learns to attend to quasiperiodic features and delivers SOTA performance. The
challenge code and datasets can be found at www.github.com/rehg-lab/pulseimpute and
www.doi.org/10.5281/zenodo.7129965, respectively.

2 Related Work

Prior works are summarized in Table 1 and include: 1) Standard time-series imputation datasets
and associated deep-learning methods; 2) Imputation approaches in mHealth data cleaning and
preprocessing; and 3) Clinical pulsative signal imputation research. PulseImpute provides the first
comprehensive imputation benchmark for mHealth pulsative signals.

Standard Imputation Datasets: Prior time-series imputation work uses Traffic [15], Air Quality
[26], Billiard Ball Trajectory [18], Sales [2], and other miscellaneous time-series modalities. Health-
related imputation works [53, 16, 66, 36, 10] have benchmarked clinical record imputation [54, 29]
with non-pulsative signals (e.g. hourly body temperature). All of these prior datasets lack the high
frequency and variable yet specific morphologies of pulsative waveforms [25, 27]. For context, the
5-minute, 100 Hz waveforms in our curated dataset are ∼600 times longer than the time-series data
found in the clinical records dataset, PhysioNet 2012 [54].

Furthermore, many of these works [7, 40] simulate missingness by dropping independent time points
at random, which is not representative of real-world mHealth missingness patterns, as visualized in
Figure 1 and Appendix A3. State-of-the-art deep-learning time-series imputation methods [7, 2, 38]
that were developed in these settings perform poorly in our PulseImpute Challenge (see Section 5).

Imputation for mHealth Data Cleaning: [51] develops a stress biomarker with mHealth ECG field
data that handles real-world missingness. However, they do not quantify the effect of missingness
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Figure 1: Visualization of imputation results on ECG and PPG signals. The large gaps found in
real-world missingness patterns create substantial challenges for all methods. BRITS and DeepMVI
produce nearly constant outputs. GAN-based approaches (BRITS w/ GAIL and NAOMI) hallucinate
incorrect structures in incorrect locations. Our BDC Transformer also struggles in the middle of long
gaps, but has the strongest performance overall, most closely reconstructing the ground-truth.

and use a simple KNN multivariate imputation method. Their dataset is not publicly-available and
lacks ground truth imputation values, so it cannot be used as a benchmark. [27] also addresses
stress detection in a private dataset and only benchmarks simple methods to handle missingness: a
multivariate iterative imputer, mean filling, last observation carried forward, or a removal of instances
with missingness. [44] utilizes KNN multivariate imputation in an accelerometry dataset, but these
signals are not pulsative. These representative works illustrate how current mHealth imputation
research has not yet advanced to utilize modern deep learning methods, instead treating imputation as
a data preprocessing problem. PulseImpute fills a unique niche to help advance the mHealth field.

Clinical Pulsative Signals Imputation: Prior work has focused on using non-deep-learning imputa-
tion methods [4, 67, 42] on pulsative signals to address multi-channel ECG imputation on publicly-
available datasets. The key distinction is that these multi-channel methods borrow information
across ECG channels for imputation, a straight-forward task since the channels are highly-correlated
(each channel measures the heart’s electrical activity with respect to a different measurement axis).
Multi-channel ECG recordings are routinely captured in clinical settings, but, in mHealth applications,
where ECG is continuously measured with a wearable sensor, single-channel recording is the only
practical approach. Therefore, we focus on single-channel imputation. This requires the much more
interesting and challenging task of borrowing information across time for imputation rather than
across highly-correlated channels. Please see Appendix A1.2 for further discussion.

3 PulseImpute Challenge Description

We focus PulseImpute on the imputation of ECG and PPG signals, illustrated in Figure 1, because
these widely-available pulsative signals are used in a wide range of mHealth and clinical tasks, such
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as monitoring atrial fibrillation [23], vascular aging [8], respiration rate [21], and stress [25].1 To
quantify imputation performance, we simulate missing data by ablating samples, so that the imputed
samples can be compared to the original ground-truth values. Prior imputation datasets have used
relatively simple approaches to simulate missingness, typically by independently removing samples
at random [7, 40, 38]. We adopt two approaches for generating the block missingness patterns that
characterize the mHealth domain. The first is by extracting patterns of missingness from real-world
mHealth studies [9, 50], illustrated in Figure 1 and Appendix A3. The second is by randomly selecting
samples with a fixed amount of missingness for ablation. Across experiments, we can vary the amount
of missingness to quantify the impact of the amount of missingness on algorithm performance. We
impute each signal modality independently (i.e. univariate time series imputation) because this is
important for the univariate mHealth systems and leads to a more interesting and challenging task.

We generate training and testing sets in the PulseImpute Challenge by applying our missingness
models to waveform data obtained from two existing clinical datasets: MIMIC-III Waveforms [43]
(containing ECG and PPG signals) and PTB-XL [62] (containing ECG signals). These datasets are
large-scale, freely-available, and support a variety of downstream tasks for quantifying the impact of
imputation performance on derived health markers. Specifically, MIMIC-III Waveforms supports
heartbeat detection using both ECG and PPG signals, in which the goal is to localize individual heart
beats. This is a core capability that supports a variety of widely-used mHealth markers such as heart
rate variability [52]. In the case of PTB-XL, the ECG waveforms have associated classification labels
that fall within specific rhythm, form, and diagnosis categories, (e.g. aFib, inverted T-waves, WPW
syndrome, respectively), which are determined at the waveform level. These comprise a complex set
of downstream clinical tasks which will be directly influenced by imputation quality.

In summary, PulseImpute enables the evaluation of imputation algorithm performance at the sig-
nal level (each sample’s reconstruction accuracy) and the downstream task level (quantifying the
degradation in task accuracy due to imputation performance) for two widely-used pulsative signal
types, ECG and PPG. In the next subsections, we describe the curation of our challenge datasets,
our missingness models, and the performance metrics for our three downstream tasks: heartbeat
detection with ECG, heartbeat detection with PPG, and cardiac classification with ECG. In Section 4,
we describe our suite of benchmark imputation methods. In Section 5, we present empirical results
that quantify the performance of SOTA methods on our novel challenge task and highlight directions
for future research enabled by PulseImpute.

3.1 ECG Imputation and Heartbeat Detection

The goal of this task is to apply extracted real-world missingness patterns to ECG waveforms and
formulate a downstream task of heartbeat detection. Imputation performance is assessed with recon-
struction accuracy (signal level) and accuracy in detecting and localizing ECG peaks corresponding
to the heartbeats (task level).

Dataset: We have curated the largest clean public ECG waveform dataset available, containing
440,953 100 Hz 5-minute ECG waveforms from 32,930 patients. Our starting point was the raw ECG
signals from the 6.7 TB MIMIC-III Waveforms dataset.2 This dataset contains a variety of waveform
data (e.g. ECG, PPG, etc.) and up to three ECG leads per patient. MIMIC’s unstructured nature
with variable lead availability and imprecise electrode placements per recording [19] lends itself to a
"union of leads" approach to dataset curation, in which we take each of the lead channels and add
them separately to the dataset as individual univariate time series. This modifies the multivariate
time-series into multiple univariate time-series. As previously discussed, univariate, single-channel
recording is the norm for mHealth applications, and the inclusion of different leads in the union
of leads dataset forces imputation methods to learn to borrow information across time to capture
morphology due to each lead’s distinctive shape. Additionally, while the most popular mHealth lead
is lead I [1, 20], a wide range of lead configurations have been experimented with [32, 55], so this
approach is useful for developing an imputation model that can generalize to different leads.

The key curation step was to filter out waveforms that were too noisy to support beat detection, while
preserving those with irregular heart beat patterns. We used Welch’s method [64] and identified

1We note that pulsative signals can arise in both mHealth and clinical settings, as continuous waveform data
may be captured in the ICU. A more detailed comparison of these settings is in Appendix A1.

2MIMIC-III Waveform is a different dataset from the MIMIC-III Clinical. MIMIC-III Clinical is more
commonly used and only contains low frequency vitals data, not raw waveforms.
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peaks in the periodogram which reveal the harmonics of the QRS complex. Tests on the peak
distribution and spacing were used to identify clean ECG signals corresponding to typical as well as
abnormal heart rhythms, while rejecting noisy samples. Further details can be found in Appendix
A2.1. In contrast to our approach, prior works with MIMIC-III Waveform have used a random subset
(1,000 2-minute ECG signals from 50 patients [3]) of the data or a smaller matched subset that has
corresponding clinical data (30,124 5-second ECG signals from 15,062 patients [31]). We believe we
are the first to preprocess the ECG MIMIC-III Waveform dataset in its entirety.

The resulting curated signals are very long, measuring 30,000 time points, which adds a level of
complexity towards this challenge to have an emphasis on models that are scalable. For example,
a transformer’s self-attention mechanism is O(n2), and therefore, cannot be applied naively. From
an application’s perspective, such long recordings are used because heart rate variability is most
commonly measured in 5-minute intervals [52].

Missingness: We obtained extracted ECG mHealth missingness patterns from our mHealth field study
with 169 participants [9] (See Appendix A2.3 for details). The missingness patterns are variable:
most (69%) of the missingness gaps are 3-9 seconds long, but some (2%) of the gaps last more
than a minute. Appendix A3.1 contains visualizations and further descriptions of the extracted
missingness patterns. We have extracted 102,201 5-minute missingness masks, which capture the
complex, real-life missingness patterns produced by wearable sensors in field conditions.

Downstream Task: We use the Stationary Wavelet Transform peak detector [30] to identify the
sequence of peaks corresponding to individual heartbeats. Ground truth peaks are found by running
the detector on the non-ablated signals. Peaks in the imputed signal are matched to the true peaks
with a 50 ms tolerance window [46] to identify true vs false positives and define a detection problem
(see Appendix A2.4 for details). We use the standard peak detection measures, F1 score, precision,
and recall, in order to quantify performance [37, 6, 45]. 95% confidence intervals are generated by
bootstrapping test samples with 1,000 iterations.

3.2 PPG Imputation and Heartbeat Detection

Analogous to Section 3.1, the goal of this task is to apply extracted real-world missingness patterns
to PPG waveform data and formulate a downstream task of heartbeat detection in PPG.

Dataset: We have curated the largest clean public PPG waveform dataset available, containing
151,738 100 Hz 5-minute waveforms from 18,210 patients. We started with the raw PPG signals from
MIMIC-III Waveforms, comprising of a variable-length univariate time-series for each participant
cropped to be 5 minutes. To identify clean PPG waveforms and reject noisy signals, we used the
approach from [61] to perform beat segmentation and an ensemble averaging approach to identify
a beat template for each waveform, which then is used to obtain a per-beat quality measure. Clean
recordings had 95% of the beats with quality higher than 0.5. Please see Appendix A2.2 for details.

Missingness: We used a real-world mHealth PPG dataset, PPG-DaLiA [50], to obtain extracted PPG
mHealth missingness patterns. See Appendix A2.3 for details and A3.2 for visualizations of the
patterns. We extracted 425 missingness masks which are used to ablate the curated PPG waveforms.

Downstream Task: Analogous to ECG, we used peak detection in PPG to identify individual beats
(see Appendix A2.4 for details). Peaks in the clean waveforms provided ground truth for evaluating
the imputed signals with F1 score, precision, and recall used to measure performance with 95%
confidence intervals generated from 1,000 bootstrapped iterations.

3.3 ECG Imputation and Cardiac Pathophysiology Multi-label Classification

This task focuses on quantifying the downstream impact of imputation on the challenging task of
classifying cardiac disease conditions from ECG signals, by systematically assessing how varying
percentages of missingness impacts downstream performance.

Dataset: We utilize PTB-XL [62], which is composed of 21,837 100 Hz 10-second ECG waveforms
from 18,885 patients, annotated with 71 labels that cover diagnostic, form, and rhythm categories of
cardiac conditions. For each of the categories, the labels within them are not disjoint, resulting in a
multi-label classification problem. We need to adapt the 12-lead ECG PTB-XL data and the SOTA
multivariate xResNet1d classifier [57] to the univariate setting in order to create a downstream task.
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Figure 2: Novel Bottleneck Dilated Convolutional (BDC) Self-Attention Architecture. The sequence
of black dots on the right illustrates the ECG time series input to the module. Each triangle on the
right denotes a BDC block, shown in an expanded view on the left. The magenta dot denotes a
query point for self-attention, while the orange dots denote representative queries. The query/key
functions are composed of stacked blocks, denoted by the hierarchical structure of the colored
triangles which illustrate the exponentially increasing dilation factor and receptive field used in the
query/key functions. This enables efficient comparison of local context comprising 100s of samples.

Since our goal is to assess imputation performance on classification, the domain shifts associated with
using different leads in a "union of leads" approach would be a confounding factor for the classifier.
Our experiment design therefore uses one specific lead, Lead I, the most common mHealth lead
[1, 20], and modifies the classifier to have an input channel size of 1.

Missingness: We simulate two types of missingness patterns corresponding to long and short intervals
of data loss: extended missingness and transient missingness. Extended Missingness ablates a random
single continuous set of samples as a percentage of the waveform duration. This models the most
common source of missingness, sensor attachment issues, which comprise ∼85% of total missingness
[48]. In contrast, Transient Missingness models the sporadic loss of packets of samples due to
communication failures or throttling of the data collection app [48]. It is modeled by dividing the
waveform into disjoint 50 ms blocks and sampling independently according to a fixed percentage
of missingness to select blocks for ablation. The 50 ms block size was selected to match standard
packet sizes in mHealth [25, 63]. Extended and transient missingness are both parameterized by a
missingness percentage that controls (on average) the proportion of ablated samples in a waveform. In
contrast to Section 3.1, our goal is to characterize the impact of varying the percentage of missing data
points at test time on the reconstruction accuracy and downstream performance. Imputation models
are trained at a fixed 30% missingness percentage (30% was most common amount of missingness
found in a 10 sec signal in our mHealth field study [9]). During testing, samples are ablated using
percentages from 10% to 50% at a step size of 10%, making it possible to quantify the effectiveness
of imputation methods in generalizing to varying amounts of missingness at test time.

Downstream Task: With [57], three xResNet1d [22] multi-label classification models for predicting
diagnosis (e.g. WPW Syndrome), form (e.g. inverted T-waves), or rhythm (e.g. aFib) labels were
trained on non-ablated data. Then, for all of the extended and transient missingness scenarios, after
imputing a separate, held-out dataset with a given imputation method, each of the trained xResNet1d
were evaluated on the imputed waveform to quantify the impact of imputation on clinical tasks that
leverage the timings and morphologies of the ECG waveforms. Classification results were measured
using Macro-AUC, which is a common measure for multi-label classification under label imbalance
[56, 11, 28] and has been theoretically proven to be optimized when the instance-wise margin is
maximized [65]. The confidence intervals are generated identically as previously described.

4 Benchmarks and Proposed Bottleneck Dilated Convolutional Self-Attention

This is the first comprehensive study of mHealth pulsative signal imputation, and therefore there is a
lack of prior baselines. We cover a range of classical methods to demonstrate baseline performance
and use SOTA deep-learning methods from the general time-series imputation literature. In total, our
benchmark suite includes the ten methods listed in Table 4 with performance shown in Section 5.

Classical methods include mean filling, linear interpolation, and a Fast Fourier Transformer (FFT)
imputer. Mean filling and linear interpolation are commonly used in mHealth [34, 14] and help
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Figure 3: Visualization of attention weights of BDC self-attention for a given query position. Instead
of encoding a bias for time points close to the query, as done in prior work [39, 7], BDC attends to
locations which are far from the query but similar in morphology, exploiting the quasiperiodicity.

baseline the performance of more complex methods. We include an FFT imputer as a method that is
able to utilize frequency information to exploit the quasiperiodic nature of the data [49].

For deep-learning methods, we include DeepMVI [2], NAOMI [38], BRITS w/ GAIL [38], BRITS [7],
Vanilla Transformer [60], and Conv9 Transformer [35]. DeepMVI is a transformer-based architecture
that achieves SOTA in ten diverse real-world time-series datasets, ranging from air quality to sales
[2]. NAOMI develops a non-autoregressive approach paired with Generative Adversarial Imitation
Learning (GAIL) [24], and achieves SOTA for imputation tasks framed around trajectory modeling
[38]. NAOMI’s backbone architecture is BRITS, a widely-used pure RNN imputation benchmark
with a time-delayed loss propagation, that achieved SOTA in its benchmarked datasets [7]. BERT
[13] used the vanilla transformer [60] with a masked language modeling imputation task for learning
language representations, and the Conv9 Transformer [35] was proposed to address the lack of local
context while modeling time-series, which we will further discuss below.

Most of these methods were not designed to exploit the quasiperiodicity of our pulsative signals,
so we anticipated that each of these methods would perform poorly in our setting. Therefore, we
develop a transformer-based architecture that can provide a SOTA baseline for this domain. We claim
that the pair-wise comparisons in the transformer’s self-attention module are an attractive method
for modeling the quasiperiodic dependency structure of pulsative signals. In order to fully realize
the potential of transformers in this setting, we identify three challenges that must be addressed:
1) local context, 2) permutation equivariance, and 3) quadratic complexity. This then motivates
the development of the Bottleneck Dilated Convolutional (BDC) transformer baseline illustrated in
Figure 2. We now describe how our BDC Transformer addresses the three challenges.

Local Context: Transformers utilize self-attention, which we define below for a given query xq:

A(xq) =
∑

tk∈Stk

exp(⟨fq(xtq ), fk(xtk)⟩)∑
t′k∈Stk

exp(⟨fq(xtq ), fk(xt′k)⟩)
xtkWv (1)

where fq(xtq ) = xtqWq, fk(xtk) = xtkWk, and W{q/k/v} ∈ RDx×D (scaling factor omitted for
brevity). Stk is the set of all time points that are keys, and xt is the tth row of X ∈ RT×Dx , where T
and Dx are the time-series length and dimensionality, respectively. In NLP applications, each input
word token has intrinsic semantic information which allows for meaningful direct comparison via
self-attention in Eq. 1. In contrast, in order to meaningfully compare two timepoints in a time-series, it
is necessary to utilize the local signal context around the queries and keys. This can be accomplished
via convolutional self-attention [35], which models the query and key function as a convolution,
which we demonstrate for fq below:

fq(xtq ) = (X ⋆ h)[tq] =

∞∑
s=−∞

xshtq+s where hu =

{
W(q)

u ⌊ 1−i
2 ⌋ ≤ u ≤ ⌊ i−1

2 ⌋
0 elsewhere

, (2)

where i > 1 is the filter size and with W(q)
u ∈ RDx×D as the uth row of W(q) ∈ Ri×Dx×D. The

original conv transformer implementation [35] had a single convolution with a small filter size of 9.
The key for this approach to be effective in our pulsative signal setting is to achieve a sufficiently
large receptive field (RF) to achieve subsequence comparisons between patterns lasting for 100s of
time points, while maintaining computational efficiency. We use stacked dilated convolutions with
bottleneck 1x1 layers in our novel BDC architecture illustrated in Figure 2. The bottleneck reduces
dimensionality, allowing us to stack filters with exponentially increasing dilation factors, thereby
exponentially and efficiently increasing the RF. We can see empirically in Table 2, that while both
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Models w/ Params fixed at ∼2.6 mil Van Trans RF=1 Conv Trans RF=9 BDC Trans RF=883
MSE ↓ 0.0177 0.0231 0.0123

Table 2: Comparison of models with parameters fixed at ∼2.6 mil. With its stacked dilated convolu-
tions, BDC is able to efficiently increase RF and improve performance relative to vanilla self-attention.

Model BDC Trans PE+BDC Trans Conv Trans PE+Conv Trans
MSE ↓ 0.0118 0.0121 0.0223 0.0225

Table 3: Positional encoding (PE) slightly degrades performance for both BDC and Conv Transformer.

BDC and conv transformers expand receptive field (RF), only BDC improves performance relative to
the vanilla self-attention after controlling for parameter count.

Prior time-series imputation architectures such as BRITS [7], encode a bias for time points that are
close to the query. This is not effective for pulsative signals, where temporal locations which are far
from the query can be similar in morphology, and thus useful for imputation. Our BDC Transformer
is able to exploit this, as shown by the learned attention weights illustrated in Figure 3.

Permutation Equivariance: A permutation of a transformer’s inputs results in a corresponding
permutation of its outputs without any change in values [68]. This is addressed in the original
transformer’s formulation via an additive positional encoding [60], but this does not have a good
inductive bias in our setting. The absolute position relative to the start of a pulsative signal is not
meaningful, due to the arbitrary start-time at which sensors begin recording [52]. Even if the signals
were initially aligned, due to within-subject and between-subject phase variance stemming from the
heart rate variance phenomena [52], the relative position of specific waveform shapes will vary.

Now, from Eq. 2, one can see that conv and BDC self-attention are no longer permutation equivariant
because the calculation at each position depends on its neighbors. An additional additive positional
encoding would perturb the original signal, potentially rendering the imputation task more difficult.
Indeed, we empirically demonstrate in Table 3 that including an additive positional encoding [60]
degrades model performance. Therefore, we design our approach around the BDC self-attention
without a positional encoding, because of its strong inductive bias in its ability to encode local context,
while also breaking permutation equivariance.

Quadratic Complexity: Transformers have quadratic time and space complexity for self-attention
that limits applications to long sequences [58]. The Longformer [5] dilated sliding window attention
restricts the key range in self-attention, Stk , without modifying the query/key functions, allowing it to
be easily combined with our BDC self-attention. We use this longformer variant for the transformer
models in the 5-minute-long (30,000 time points) time-series used in the heartbeat detection tasks.

5 Results

We now present comprehensive results for our baseline models on all of the PulseImpute Challenge
tasks, organized by downstream task as described in Section 3. See Appendix A4 and our code
repository on implementation details and reproducibility.

ECG Imputation and Heartbeat Detection: All prior time-series imputation models perform poorly
on the long ECG time-series (30,000 time points) with complex ECG missingness patterns, which
can be seen in Table 4 and the ECG column in Figure 1. BRITS w/ GAIL and NAOMI hallucinate
realistic ECG patterns but do not match the ground-truth. BRITS fails to effectively impute over
longer gaps. FFT and our BDC model have the best imputation performance and can reconstruct the
rhythm of the missing ECG peaks, as shown in the peak detection statistics, with BDC easily having
the best MSE and F1 score overall, at 0.0194 and 0.64, respectively. BDC transformer can effectively
capture the extended local context in comparison to other transformer models (e.g. DeepMVI, Conv9,
Vanilla), reconstructing realistic ECG signals, reminiscent of the ground-truth. However, as seen in
the further visualizations in Appendix A5.1, none of the models are able to effectively impute over
the extra-long missingness gaps that can last up to one minute.

PPG Imputation and Heartbeat Detection: PPG is morphologically simpler than ECG (see Figure
1), and most methods perform better with respect to their F1 score. However, as seen in Figure 1,
methods such as DeepMVI and BRITS can only impute values near observed data. FFT and BDC
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ECG Imputation and Heartbeat Detection PPG Imputation and Heartbeat Detection

Models ↓ MSE ↑ F1 ↑ Prec ↑ Sens ↓ MSE ↑ F1 ↑ Prec ↑ Sens

Mean Filling .0278 ± .00019 .01 ± .000 .60 ± .000 .00 ± .007 .0971 ± .00123 NaN NaN 0 ± 0
Lin Interp .0467 ± .00046 .01 ± .000 .62 ± .000 .00 ± .009 .1393 ± .00073 NaN NaN 0 ± 0
FFT [49] .0350 ± .00024 .09 ± .001 .07 ± .001 .16 ± .001 .1449 ± .00120 .10 ± .001 .07 ± .001 .16 ± .001
BRITS [7] .0445 ± .00068 .01 ± .000 .32 ± .000 .01 ± .001 .1064 ± .00068 .01 ± .000 .03 ± .000 .01 ± .001
BRITS w/ GAIL [24] .0571 ± .00068 .05 ± .001 .08 ± .001 .03 ± .003 .1102 ± .00068 .07 ± .001 .29 ± .001 .04 ± .003
NAOMI [38] .0392 ± .00061 .05 ± .001 .13 ± .001 .03 ± .001 .0856 ± .00061 .09 ± .001 .09 ± .001 .10 ± .001
DeepMVI [2] .0276 ± .00019 .05 ± .000 .49 ± .000 .02 ± .005 .0802 ± .00061 .25 ± .001 .31 ± .001 .21 ± .002
Vanilla Trans [60] .0368 ± .00021 .02 ± .001 .29 ± .000 .01 ± .005 .0967 ± .00065 .13 ± .001 .15 ± .001 .12 ± .001
Conv9 Trans [35] .0299 ± .00021 .01 ± .000 .47 ± .000 .00 ± .007 .0805 ± .00056 .20 ± .001 .20 ± .001 .19 ± .001
BDC Trans (ours) .0194 ± .00017 .64 ± .003 .83 ± .003 .52 ± .002 .0137 ± .00020 .81 ± .003 .79 ± .003 .83 ± .003

Table 4: ECG and PPG imputation and heartbeat detection results using extracted mHealth miss-
ingness patterns (see Sec. 3.1 and 3.2). Measures are for reconstruction performance (MSE) and
Heartbeat Detection accuracy (F1 Score, Precision, and Sensitivity) with 95% Confidence Intervals.

demonstrate that exploiting quasiperiodicity is useful across signal modalities, and BDC achieves the
best overall results as seen in Table 4. Further visualizations can be found in Appendix A5.2.

ECG Imputation and Cardiac Classification: The imputation visualizations and the downstream
results in Figure 4 show that in the transient missingness setting, many models outperform mean
imputation in mimicking the Rhythm, Form, and Diagnosis features present in the original waveform,
as reflected by their downstream Macro-AUC results for each category. Here missingness gaps are
shorter and learning long-term dependencies is less necessary. BRITS and Vanilla Transformer,
imputation methods that were originally trained and designed for very short missingness gaps [7, 13],
perform well in this setting. FFT imputation performs poorly in this setting, but our BDC model has
the best MSE and does the best in reconstructing rhythm, form, and diagnosis characteristics.

In the more challenging extended missingness setting, imputation performance drops across all
models, resulting in poor downstream performance. The GAN-based methods and FFT have poor
performance, while the BDC model has the best MSE and the best performance in reconstructing
rhythm and form features. However, in the diagnostic category, performance is poor. We hypothesize
that this may be tied to BDC transformer reconstructing much shorter R peaks in the ECG signal under
high missingness percentages, which can be seen in Figure A13 in the Appendix. Some diagnostic
labels are dependent on R peak height (e.g. LAFB is diagnosed with tall R waves [33]), and thus will
be adversely affected. We hypothesize that the minimalistic imputations produced by BRITS, Conv9,
and mean filling (see Figures 3, A13) fare better because there is less misleading signal information
present, suggesting that the current imputation SOTA is inadequate for this challenging task. Full
tabulated results with confidence intervals and extra visualizations can be found in Appendix A5.3.

6 Discussion

Future Work and Limitations: Our BDC architecture demonstrates strong performance in exploiting
quasiperiodicity across different signal modalities and missingness patterns, so future work should
be done to utilize our model in a variety of pulsative signal and missingness settings (e.g. noisy
ECG in fMRI settings, seismocardiogram data corrupted with motion artifacts, etc.). However, the
visualizations in Figure 1 (and in Appendix A5), demonstrate that all existing methods are unable to
impute over missingness gaps lasting up to a minute in the heartbeat detection tasks. Additionally, all
methods are far from the upper-limit of performance in each label group for Cardiac Classification in
the extended missingness setting. A key challenge is to improve imputation in the middle of long
gaps, which might benefit from a generative modeling approach.

A potential benefit of mHealth is the ability to analyze an individual’s health-related behaviors so as
to improve their health outcomes. Future work could include benchmarking for personalized models,
similar to the approach proposed by [12]. Additionally, none of our benchmarked methods explicitly
model the imputation uncertainty, and we plan to explore related architectures with uncertainty
modeling such as [53]. Another potential area is explainability of such imputation models.

We note that the theoretical missingness model for this work is MCAR, as the missingness is
independent of the waveforms that they are applied to [41]. This was necessary to obtain ground-truth
imputation targets, but future work should investigate the inclusion of MAR and MNAR missingness.
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Figure 4: Cardiac Classification in ECG Results for Transient and Extended Missingness on Rhythm,
Form, and Diagnosis label groups. For each label category, a cardiac classifier was trained and tested
on complete data (top, illustrated by dashed line). The trained model was then evaluated on imputed
test data (for five levels of missingness from 10% to 50%) produced by each baseline, yielding the
Macro-AUC curves (top). Six seconds of representative imputation results for the 30% missingness
test case are plotted (below). Extended Missingness proved to be more challenging for all models.

Societal Impacts: We anticipate our work to have positive societal benefits by enabling researchers
to address one of the most common issues found in mHealth, accelerating the field forward to enable
individuals to live healthier lives. As with all ML challenges, there may be a negative environmental
impact due to increased computational usage of researchers working on this challenge.

7 Conclusion

We introduced PulseImpute, a novel imputation challenge for pulsative mHealth signals. We curated
a set of ECG and PPG datasets with realistic mHealth missingness patterns and relevant downstream
tasks. Our comprehensive set of baselines includes a novel Bottleneck Dilated Convolutional (BDC)
transformer architecture that is able to exploit the quasiperiodicity present in our data and defines the
SOTA. At the same time, our findings demonstrate that previous existing methods fail to achieve high
performance, pointing out the need for additional research. PulseImpute addresses a significant gap
in mHealth pulsative signal imputation, providing the first large-scale reproducible framework for the
machine-learning community to engage in this unique challenge.
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throughout the paper.
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