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Abstract

Many recent language models (LMs) are capa-001
ble of in-context learning (ICL), manifested in002
the LMs’ ability to perform a new task solely003
from a natural-language instruction. Previous004
work curating in-context learners assumes that005
ICL emerges from a vast over-parametrization006
or the scale of multi-task training. However,007
recent theoretical work attributes the ICL abil-008
ity to specific properties of training data and009
creates functional in-context learners in small-010
scale, synthetic settings.011

Inspired by these findings, we propose012
Concept-aware Training (CoAT), a frame-013
work for constructing training scenarios that014
make it beneficial for the LM to learn to uti-015
lize the analogical reasoning concepts from016
demonstrations. We find that by using CoAT,017
pre-trained transformers can learn to better018
utilise new latent concepts from demonstrations019
and that such ability makes ICL more robust to020
functional deficiencies of the previous models.021
Finally, we show that concept-aware in-context022
learning improves ICL performance on a major-023
ity of new tasks when compared to traditional024
instruction tuning, resulting in a performance025
comparable to the previous in-context learners,026
necessitating magnitudes of more training data.027

1 Introduction028

The in-context learning (ICL), as initially uncov-029

ered by Brown et al. (2020), is a setting requiring030

language models (LMs) to infer and apply correct031

functional relationships from the pairs of inputs032

and outputs (i.e. demonstrations) presented in user-033

provided input prompt (Li et al., 2023a). Given034

that a small set of demonstrations can be obtained035

for any machine learning task, in-context learning036

presents a much more versatile and practical alter-037

native to task-specific models.038

Modern in-context learners can often perform039

ICL with quality comparable to task-specialized040

models (Zhao et al., 2023; Štefánik et al., 2023).041

"Who was the first black president in Mexico?
[Context] → Prediction: AMG

What are the names of all the stores located in
Khanewal District? [Context] → Prediction: KUF

What is motto of the state whose official symbol is
cranberry? [Context] → Prediction: " 

"TNC"
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Predicted label:

Training instruction

Reasoning chain:

Figure 1: Example of training instruction constructed
from synthetic TeaBReAC dataset where demonstra-
tions share analogical reasoning chain. In Concept-
aware Training (CoAT), we construct such examples
to train in-context learners to rely on latent reasoning
concepts whenever available in demonstrations.

However, it remains unclear why some LMs are 042

able of ICL in such quality while others are not; 043

Initial work introducing GPT3 (Brown et al., 2020) 044

followed by Thoppilan et al. (2022); Chowdhery 045

et al. (2022); inter alia explains ICL as an emergent 046

consequence of models’ scale. But more recent 047

LMs (Sanh et al., 2022; Wang et al., 2022; Wei 048

et al., 2021; Ouyang et al., 2022) are based on 10 049

to 100 times smaller models and reach comparable 050

ICL quality, instead attributing the ICL ability to 051

a vast volume and diversity of pre-training tasks 052

and instruction formats. Hence, should we attribute 053

in-context learning ability to the scale of training 054

data or model size? 055

The complementary branch of theoretical studies 056

is more specific in identifying covariates responsi- 057

ble for the emergence of ICL in data irregularities, 058

i.e. the properties of the data that can not be ex- 059

plained by mere statistical co-occurrence of tokens. 060

Notably, Xie et al. (2022) identify the key property 061

in the occurrence of text dependencies that can be 062

resolved by identifying latent concepts that under- 063

pin these dependencies. In this and other works 064
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surveyed in Section 2, Authors show that ICL can065

also emerge with both small data and small models.066

In this work, we adapt and empirically verify067

recent theories on data irregularities fostering ICL068

in synthetic settings. In Section 3, we propose069

and implement a data construction framework that070

encourages the occurrence of concept-dependent071

irregularity in training samples, and hence, requires072

models to learn to utilise latent concepts that ex-073

plain these irregularities (Fig. 1). We refer to this074

framework as Concept-aware Training (CoAT).075

In Sections 4 and 5, we explore the impact of076

this adjustment in controlled settings. We find that077

(i) pre-trained transformers can be trained for in-078

context learning based on latent concepts and (ii)079

that such concept-aware in-context learning is more080

robust to the functional deficiencies of previous in-081

context learners. Finally, on a set of over 70 tasks of082

SuperGLUE and Natural-Instructions, we find that083

CoAT can also improve practical in-context learn-084

ing performance over traditional instruction tuning085

approach; In many cases, CoAT enables ICL of oth-086

erwise not learnable tasks, and allows reaching ICL087

performance comparable to in-context learners of088

similar or larger size trained on massive collections089

of over 1,600 tasks.090

2 Background091

Methods for training in-context learners In-092

context learning ability, including few-shot ICL,093

was first uncovered in GPT3 (Brown et al., 2020)094

trained unsupervisedly for causal language mod-095

elling. With no other substantial differences to pre-096

vious GPT models, the emergence of ICL was at-097

tributed to GPT3’s scale, having grown to over 170-098

billion parameters since GPT2 (≈800M params).099

Not long after, a pivotal work of Schick and100

Schütze (2020) on a Pattern-exploiting training101

(PET) has shown that even much smaller (110M)102

models like BERT (Devlin et al., 2019) can be fine-103

tuned using self-training in a similarly small data104

regime, first disputing the assumption on the neces-105

sity of the scale in rapidly learning new tasks.106

A new branch of autoregressive generation mod-107

els later undermined the assumption of the size108

conditioning of ICL. In one of the pivotal works,109

Min et al. (2022a) fine-tune smaller pre-trained110

models (<1B parameters) on a large mixture of111

tasks in the few-shot instructional format and shows112

that such models are also able to perform well on113

previously unseen tasks. Following approaches114

also train smaller models for instruction following115

(Sanh et al., 2022; Wang et al., 2022) on large mix- 116

tures of tasks, assuming that the model’s ability to 117

learn an unseen task without updates emerges from 118

a large variety of diverse instruction formats and 119

task types. A recently popularised reinforcement 120

learning approach of InstructGPT (Ouyang et al., 121

2022) also presents an adaptation of an instruction- 122

following objective, training on a large variety of 123

instructions with automatic feedback. 124

Recently, the instruction following approach 125

was complemented by joint training on program- 126

ming code generation tasks (Chen et al., 2021) and 127

by Chain-of-Thought (CoT) objective (Wei et al., 128

2022), where the model is trained to respond with 129

a sequence of natural-language steps deducing its 130

answer (Zhao et al., 2023). Both these extensions 131

were empirically shown to enhance ICL ability (Fu 132

and Khot, 2022) and were adopted by Flan models 133

(Chung et al., 2022). 134

Analyses of ICL Despite the accuracy of ICL in 135

many recent LMs, it remains a matter of open dis- 136

cussion as to why the in-context learning emerges. 137

Recent studies shed some light in this direction 138

through controlled experimentation, finding that 139

the LMs’ decision-making in ICL does not align 140

with human expectations; Notably, Lu et al. (2022) 141

first report on the sensitivity of LMs to the specific 142

formulation of the instructions in the prompt, while 143

Liu et al. (2022) report on LMs’ surprising sensi- 144

tivity to the ordering of in-context demonstrations. 145

Further, it was shown that LMs perform ICL com- 146

parably well when the labels of the demonstrations 147

are randomly shuffled (Min et al., 2022b) or when 148

the presented CoT sequences do not make sense 149

(Wang et al., 2023). We note that such behaviours 150

differ from learning a functional relation of inputs 151

and labels from demonstrations that we might ex- 152

pect from in-context learners (Li et al., 2023a). 153

Still, other studies report that under the right con- 154

ditions, LMs are able to learn functional relation- 155

ships solely from the input prompt; For instance, 156

studies of Akyürek et al. (2023); Li et al. (2023b) 157

show that Transformers can be trained to accurately 158

learn regression functions solely from the prompt. 159

Xie et al. (2022) might be the first to identify the 160

causal effects on ICL quality in specific data proper- 161

ties, rather than data scale, identifying the causal in 162

the presence of the latent concepts that the model 163

needs to utilise to improve in the training task (ei- 164

ther pre-training or fine-tuning). Related work at- 165

tributes ICL to similar data irregularities, such as 166
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already picked

predicted sample

to be picked

predicted sample

predicted samplecandidates

Figure 2: Demonstrations selection in Concept-aware training (CoAT): From all samples of the training dataset,
we first (1) filter out ones sharing a specific reasoning concept # with predicted sample (xpred, ypred). From this
subset, we (2) iteratively pick the candidate demonstration(s) ci such that the trained model Θ’s probability of
generating the correct prediction ypred if we pick ci among demonstrations is minimal.

statistical burstiness (Chan et al., 2022) or compo-167

sitionality (Hahn and Goyal, 2023). Note that these168

studies are not conflicting with the aforementioned169

empirical results, but rather explain the causes of170

their success; For instance, in multi-task training,171

smaller LMs might indeed necessarily learn to iden-172

tify shared concepts from inputs (Wies et al., 2023).173

Our work builds upon this theory, but compared174

to the referenced studies limited to in-silico experi-175

ments, we bring the idea of concept-aware training176

into real-world settings, implemented with publicly177

available datasets and widely-used pre-trained mod-178

els. We are first to measure the impact of concept-179

aware data construction in extrinsic evaluation over180

70 diverse tasks and show its potential to substan-181

tially enhance data efficiency and robustness in182

training in-context learners, compared to previous183

work using magnitudes of more data and compute.184

3 Concept-Aware Training (CoAT)185

Aiming to create language models able to learn186

a new latent reasoning concept in-context, we187

propose a Concept-Aware Training (CoAT) as188

an instruction-tuning framework specifying condi-189

tions for a selection of few-shot demonstrations190

for the training instructions (Figure 2).191

We assume the format of training prompts192

widely used in the previous work training in-193

context few-shot learners, constructing training in-194

structions from k demonstrations consisting of the195

input texts x with labels y followed by the predicted196

sample’s input text xpred:197

[x1, y1, ⟨sep⟩, . . . , xk, yk, ⟨sep⟩, xpred]→ ypred198

In this setting, CoAT proposes to filter in-context199

demonstrations sequentially by two conditions.200

The main condition, denoted as informativeness 201

condition, assures to pick demonstrations exhibit- 202

ing a specific reasoning concept C that is shared 203

between a picked demonstration (xi, yi) and the pre- 204

dicted example (xpred, ypred), thus picking only the 205

demonstrations whose reasoning pattern is informa- 206

tive for the correct prediction. Such settings make 207

it beneficial for the trained model to learn to extract 208

and apply concepts presented in demonstrations. 209

However, as the sole informativeness condition 210

may easily pick demonstrations very similar or 211

identical to the predicted sample, we propose a 212

second, non-triviality condition. This condition 213

chooses from the informative demonstrations the 214

ones with which it is ‘difficult’ for the model to 215

respond correctly. This condition avoids the occur- 216

rence of in-context demonstrations identical to the 217

predicted sample and may also increase the hetero- 218

geneity of different concepts that co-occur among 219

the demonstrations, avoiding the over-reliance on 220

the presence of a small set of specific concepts in 221

small-data settings. 222

3.1 Proposed Implementation 223

In our experiments, we implement the proposed 224

CoAT framework in two training stages: First, we 225

train LM on a scalable synthetic QA dataset con- 226

taining annotations of reasoning concepts. Second, 227

we refresh the LM’s ability to work with natural 228

language prompts by further tuning on a QA dataset 229

with only natural language inputs. Therefore, con- 230

trary to previous instruction tuning work requiring 231

massive multitask training, our resulting models 232

are trained on only two QA datasets. 233

Informativeness condition We find a large 234

collection of annotated reasoning concepts in 235
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a TeaBReaC dataset of Trivedi et al. (2022),236

containing more than 900 unique explanations237

over a relatively large set of synthetic QA con-238

texts. Each TeaBReAC’s explanation maps a nat-239

ural question to the answer span through a se-240

quence of declarative reasoning steps, such as241

“select→group→project”. Within CoAT, we use242

these explanations as the shared conceptsC (Fig. 1);243

In the training prompts, all demonstrations exhibit244

the same reasoning chain as the predicted sample.245

To restore the model’s ability to work with a natu-246

ral language, in the second step, we fit the resulting247

model to natural inputs by further fine-tuning on248

AdversarialQA dataset (Bartolo et al., 2021); As249

the annotations of reasoning concepts in general250

QA datasets are scarce, in this case, we naively use251

the initial word of the question (“Who”, “Where”,252

. . . ) as the shared concept, aware that such-grouped253

samples are not always mutually informative.254

Non-triviality condition In both training stages,255

we implement the non-triviality condition in the256

following steps. (i) We select a random subset of 20257

samples that passed the informativeness condition258

(denoted Xinfo). (ii) From Xinfo, we iteratively pick259

a sequence of i ∈ 1..k demonstrations (with k : 2 ≤260

k ≤ 8) as follows:261

1. For each sample (x j, y j) ∈ Xinfo, we compute262

a probability of generating the correct predic-263

tion ypred if a given sample is included among264

demonstrations. When ypred contains more265

than one token, we compute the probability266

as the average of the likelihoods of all ypred’s267

tokens in the teacher-forced generation.268

2. In each step i, we pick among the demonstra-269

tions a sample with which the likelihood of270

generating correct prediction is minimal.271

An overview of this process is depicted in Figure 2.272

4 Experiments273

Our experiments provide empirical evidence to-274

wards answering three research questions (RQs):275

1. Does concept-aware training improve LMs’276

abilities to extract and apply a new reason-277

ing concept from demonstrations?278

2. Are the concept-aware in-context learners279

more robust to known functional artifacts?280

3. Can concept-aware in-context learning also281

improve performance in new, real-world282

tasks?283

The first two RQs assess the validity of our moti- 284

vation: that (1) the implementation of CoAT indeed 285

improves models’ utilisation of new latent concepts 286

of demonstrations, and that (2) such an ability can 287

make the in-context learning of a CoAT-trained 288

language model more robust to artefacts revealed 289

in previous in-context learners (Wei et al., 2023). 290

Finally, in (3), we assess whether the enhanced 291

models’ ability to rely more on latent concepts also 292

improves practical quality of in-context learning. 293

4.1 Training and Evaluation 294

To maximise comparability with the previous work, 295

we fine-tune our models from T5 pre-trained mod- 296

els of Xue et al. (2021). In both training stages 297

(Sec. 3.1), we fine-tune all model parameters in a 298

teacher-forced next-token prediction (sequence-to- 299

sequence objective) until convergence of evaluation 300

loss.1 We further detail the parameters of the train- 301

ing process in Appendix A. 302

We construct the evaluation scenarios from k = 3 303

randomly but consistently chosen demonstrations 304

consisting of self-containing prompts, with options 305

including expected labels (Sanh et al., 2022). For 306

SuperGLUE tasks, we verbalize both the demon- 307

strations and predicted sample using all available 308

templates within PromptSource library (Bach et al., 309

2022) and report results for the best-performing 310

template for each model. For Natural-Instructions 311

tasks, we prefix the demonstrations with the in- 312

struction provided with each task. We complement 313

all the evaluations with confidence intervals from 314

the bootstrapped evaluation (population n = 100, 315

repeats r = 200). To maximise evaluation reliabil- 316

ity over all models, we analyse the error cases and 317

choose to report the results in ROUGE-L for Su- 318

perGLUE, and in a standard accuracy for Natural- 319

Instructions. We specify the metrics selection anal- 320

ysis and other evaluation details in Appendix B. 321

4.2 Baselines 322

We assess the impact CoAT’s main design choices 323

against two baselines, allowing us to measure the 324

impact of both its data construction conditions. 325

Random demonstrations selection (Tk-random) 326

We evaluate the impact of all CoAT’s compo- 327

nents against a baseline trained in the identical 328

settings but picking the in-context demonstrations 329

randomly with uniform probability over the whole 330

1All our experiments and final models are on https://
github.com/authoranonymous321/concept-training
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training set. This baseline reproduces the methodol-331

ogy of a majority of the referenced work on instruc-332

tion tuning, including Tk-Instruct (Wang et al.,333

2022) and Flan (Chung et al., 2022). Apart from334

the demonstration selection, all other settings, in-335

cluding training data, are identical to §4.1 to assure336

comparability with CoAT models.337

Demonstrations passing only informativeness338

condition (Tk-info) In this baseline, we perform339

ablation of CoAT’s non-triviality condition (Sec. 3)340

by picking the demonstrations passing only the341

informativeness condition. Hence, such-picked342

demonstrations in the training instructions are in-343

formative for the prediction but can exhibit cases344

where some of the demonstrations are similar or345

even identical to the predicted sample, making it346

trivial for the model to perform correct prediction.347

All other training settings are unchanged (§4.1).348

4.3 Other evaluated models349

To give additional context to our results, we also350

evaluate three recent in-context learners for which351

we can assess which datasets were used in their352

training mix: (1) T0 of Sanh et al. (2022) trained353

on a mixture of 35 datasets of different tasks in zero-354

shot settings, mostly of QA type, mapped into a355

self-containing human-understandable interaction356

format; (2) Tk-Instruct of Wang et al. (2022) pre-357

trained in a few-shot format similar to ours, on a358

mixture of 1,616 diverse tasks, and (3) Flan mod-359

els of Chung et al. (2022) that further extend data360

settings of Tk-Instruct to a total of 1,836 tasks, in-361

cluding chain-of-thought labels, i.e. a step-by-step362

reasoning chain mapping input prompt to a label.363

All these models are based on the same pre-364

trained model (T5), making the results compara-365

ble to the level of fine-tuning methodology. Tk-366

Instruct and Flan use the data construction repro-367

duced in our Tk-random baseline, but applied in368

vastly larger data settings.369

4.4 Methodology370

RQ1: CoAT’s ability to improve models utilisa-371

tion of latent reasoning concepts We assume372

that if the model can truly utilize a reasoning con-373

cept C from demonstrations, it will be able to im-374

prove in cases where C is presented in demonstra-375

tions. Thus, to evaluate if training with CoAT im-376

proves models’ utilisation of reasoning concepts,377

we evaluate models’ performance in a few-shot378

setting where we ensure that the demonstrations379

share a specific latent concept with the predicted 380

sample. We quantify models’ ability to improve 381

from the concept by computing the difference in 382

accuracy between such concept-sharing evaluation 383

and conventional evaluation using randomly cho- 384

sen demonstrations. 385

We perform the first analysis on TeaBReAC with 386

annotated reasoning chains as concepts C, which 387

are shared between demonstrations and predicted 388

sample (Fig. 1). To evaluate generalization to un- 389

seen concepts, we filter out all samples with rea- 390

soning chains that were present in training. This 391

results in 316 evaluation scenarios presenting mod- 392

els with 14 previously unseen reasoning patterns. 393

In this setting, we compare the concept-improving 394

ability of CoAT-trained models with the baseline 395

model (Tk-random). 396

The important limitation of evaluation with on 397

TeaBReAC’s concepts is that it remains unclear 398

whether evaluation with synthetic contexts is rep- 399

resentative for concept learning also from natural 400

language demonstrations. To address this limita- 401

tion, in the second analysis, we apply the same 402

approach in evaluation over natural-language tasks. 403

Previous work of Štefánik and Kadlčík (2023) 404

evaluated ICL ability over four different functional 405

concepts, all extracted from explanations of natural- 406

language datasets. We adopt the concepts of this 407

work and evaluate models for in-context learning 408

of the following concepts: (i) reasoning logic of 409

NLI samples of GLUE-Diagnostic dataset (Wang 410

et al., 2018), (ii) entity relations annotated in hu- 411

man explanations (Inoue et al., 2020) in the Hot- 412

potQA dataset (Yang et al., 2018), (iii) functional 413

operations annotated in general elementary-grade 414

tests of OpenBookQA (Mihaylov et al., 2018), and 415

(iv) shared facts in science exams of WorldTree 416

dataset (Jansen et al., 2018; Xie et al., 2020). 417

Identically to the case of synthetic concepts, we 418

evaluate the ability of CoAT models to benefit from 419

these concepts presented in demonstrations and 420

compare to uncontrolled demonstrations’ selection 421

(Tk-random) used in previous work. 422

RQ2: Robustness of concept-aware in-context 423

learners As we overviewed in Section 2, previ- 424

ous work reports functional deficiencies of previous 425

in-context learners, including surprising insensitiv- 426

ity of in-context learners to the assigned demonstra- 427

tions’ labels (Min et al., 2022b). Wei et al. (2023) 428

attribute this to models’ over-reliance on the seman- 429

tic priors obtained in pre-training, which overrides 430
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learning of the functional relations. Such behaviour431

is defective, because the ability to learn functional432

relations is necessary for robust and interpretable433

in-context learning of truly unseen tasks.434

To evaluate the impact of concept-aware training435

on models’ sole reliance on its semantic priors, we436

follow the setup of Wei et al. (2023) and assess437

models’ reliance on labels’ semantics in a standard438

few-shot evaluation (§4.1), with one of the two439

modifications; (i) Changing the labels to tokens440

with irrelevant meaning for the prediction task,441

such as ‘Foo’, ‘Bar’ etc. (ii) Shuffling the labels442

so that semantically incorrect labels are assigned443

in the demonstrations, but the input-label mapping444

remains consistent. In both settings, the task’s func-445

tional relation can still be recovered from demon-446

strations, but the sole reliance on semantics will447

either not help, or will mislead the model.448

In this setting, we evaluate three model types:449

(i) CoAT-trained models, (ii) models with uncon-450

trolled data construction (Tk-random & previous451

work), and (iii) models with uncontrolled data con-452

struction, but fine-tuned only on a natural QA453

dataset (denoted Tk-QA). We perform the evalua-454

tion over 8 SuperGLUE tasks with discrete labels.455

RQ3: Practical efficiency of concept-aware in-456

context learners Finally, we assess whether the457

concept-aware ICL ability obtained with our imple-458

mentation of CoAT (Sec. 3.1) also helps in models’459

ability to in-context learn new tasks, as exhibited460

by models’ performance on a collection of unseen461

tasks. As a primary reference point, we again com-462

pare the results of CoAT-trained models to Tk-463

random, where we can make sure that all other464

training configurations except for the data construc-465

tion method are identical. We also compare to Tk-466

info (without Non-triviality condition; §4.2) to also467

evaluate the importance of non-triviality condition.468

We evaluate models on two collections of tasks:469

(i) SuperGLUE (Wang et al., 2019) consisting of470

10 tasks requiring a variety of reasoning skills, and471

(ii) a test split of Natural-Instructions (Wang et al.,472

2022) from which we pick 60 extractive tasks.473

5 Results474

RQ1: Concept-aware training improves the abil-475

ity to benefit from unseen concepts Figure 3476

evaluates models’ ability to improve from pre-477

sented concepts as the relative difference in per-478

formance between random and concept-sharing479

demonstration selection. First, evaluation with un-480
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Figure 3: In-context learning of new concepts: Rela-
tive change of performance of models when presented
with demonstrations exhibiting an a reasoning concept
informative for prediction. Evaluation with (left) syn-
thetic TeaBReAC samples, and (right) diverse concepts
of natural datasets (§4.4).

seen TeaBReAC concepts (left) assesses models’ 481

ability to extrapolate the utilisation of latent con- 482

cepts to 14 previously unseen reasoning chains. 483

Both CoAT and random-demonstration models 484

(§4.2) can improve from concepts presented in 485

demonstrations. However, the improvement of 486

CoAT-trained models is significantly larger and ex- 487

ceeds gains of Tk-random by 2-fold and 4-fold 488

with the smaller and larger model, respectively. 489

This comparison verifies that CoAT’s data construc- 490

tion really improves our targeted skill of utilizing 491

latent concepts when presented in demonstrations. 492

RQ1: CoAT applied with synthetic data also im- 493

proves the use of natural concepts Evaluation 494

of improvements on selected natural concepts (Fig- 495

ure 3; right) shows that concept-learning ability 496

obtained with synthetic TeaBReAC concepts also 497

transfers to natural-language settings, as the CoAT- 498

trained models can benefit from concepts signifi- 499

cantly more than models trained without concept- 500

aware data construction (Tk-random). 501

Despite that, evaluations over the individual rea- 502

soning concepts (Figure 7 in Appendix C.3) reveal 503

that even CoAT models can not benefit robustly 504

from all concepts. Nevertheless, we note that in 505

the cases where CoAT models do not improve, also 506

none of the baselines benefit from presented con- 507

cepts. This might be attributed to several reasons: 508

(i) the presented concepts are not really informa- 509

tive for prediction, (ii) our training data allowed 510

the models to memorize relevant knowledge and, 511

hence, do not need (and benefit from) the concepts’ 512

exposure, or (iii) our training concepts were simply 513

not sufficient to generalize over these new concepts. 514
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Figure 4: Models’ reliance on semantic priors: Rel-
ative change of models’ performance when we (left)
replace labels with ‘non-sensical’ tokens with no cor-
respondence to the semantics of the task, such as ‘foo’,
‘bar’, etc.; and (right) flip the original labels, so that
e.g. ‘negative’ label corresponds to a positive-sentiment
sample. CoAT models can in-context learn the input-
output mapping similarly well with non-sensical labels
and rely on the labels’ semantics significantly less than
previous in-context learners.

RQ2: CoAT mitigates over-reliance on labels’515

semantic priors Evaluation with non-sensical la-516

bels (Figure 4) shows that all models pre-trained517

on a synthetic TeaBReAC dataset (Tk-random, and518

Tk-CoAT) are more robust to the labels’ semantics519

than our natural-language baseline (Tk-QA). How-520

ever, a comparison of Tk-random and Tk-CoAT521

suggests that Tk-CoAT’s preference for learning522

functional relations is a composition of both using523

a synthetic dataset in pre-training and CoAT’s data524

construction mechanism.525

A comparison to previous models reveals that526

all multitask models experience substantially larger527

decay in performance than our models. We sus-528

pect this feature could be a bias specific to massive529

multi-task learning emerging when label seman-530

tics can explain a large portion of training data.531

This result is consistent with Wei et al. (2023), but532

contrary to their conclusions, we show that ICL533

robust to semantic distractions does not emerge534

exclusively with very large (≥ 100B) model scale.535

Nevertheless, we note that the smaller CoAT536

model still relies on labels’ semantics when recog-537

nizable (Flipped labels case), less significantly than538

previous work, but comparable to our baselines.539

RQ3: Impact of Concept-aware training on ICL540

performance Figure 5 compares the accuracy of541
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Figure 5: Efficiency of Concept-aware training:
Natural-Instructions: Win rate of models utilising
Concept-aware training (CoAT; §3) and traditional in-
struction tuning (Tk-Random; §4.2) evaluated on (top)
all and (bottom) reasoning tasks of Natural-Instructions
collection. Values indicate the number of tasks where
the referenced model reaches significantly higher accu-
racy than the other. For the tasks denoted as similar,
the difference in models’ performance is not statistically
significant.

CoAT-trained models to our baselines (i) without 542

systematic demonstrations selection (Tk-Random) 543

and (ii) without the non-triviality condition (Tk- 544

Info), over 60 tasks of NaturalInstructions collec- 545

tion. In comparison to Tk-Random, CoAT models 546

reach significantly higher accuracy on 41 and 45 547

of 60 tasks, with comparable performance on a ma- 548

jority (13 and 14) of other tasks. The difference 549

is further magnified on reasoning tasks, which we 550

argue might better evaluate models’ ability to in- 551

context learn a functional relation of the new task. 552

A comparison of Tk-Info with Tk-Random shows 553

that the performance on reasoning tasks is mainly 554

fostered by the CoAT’s informativeness condition, 555

but in a full task collection, Tk-CoAT still outper- 556

forms Tk-Info in 19 out of 60 tasks. Evaluations by 557

other task segments can be found in Appendix C.2. 558

In the evaluation over the tasks of SuperGLUE 559

collection (Table 1), we additionally report the 560

specific values of ROUGE-L that our baselines 561

and CoAT models achieve. With a single excep- 562

tion, models utilising a concept-based selection 563

of demonstrations (Tk-CoAT and Tk-Info) consis- 564

tently reach higher scores than Tk-Random. Our 565

analyses of models’ predictions reveal that in 7 out 566

of 20 evaluations, Tk-Randommodels fail to follow 567

the task’s instruction, consequentially responding 568

out of valid label space. Tk-CoAT shows to mit- 569

igate this issue in all cases except for a smaller 570

CoAT-trained model on MultiRC. A comparison 571

of Tk-CoAT with Tk-Info shows that informative- 572
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AxG Ax-b WSC CB RTE WiC ReCoRD BoolQ COPA MultiRC
Tk-random-1B 49.4±5.2 43.6±4.8 52.7±5.1 21.8±3.9 29.3±4.6 18.0±4.0 15.3±3.8 34.0±5.0 74.7±3.4 5.1±2.4

Tk-random-3B 50.2±5.4 57.5±4.8 52.0±5.5 47.8±5.1 48.9±4.8 50.1±4.4 16.3±7.3 62.8±4.6 75.5±2.8 2.1±1.5

Tk-info-1B 50.0±4.2 42.6±5.7 52.0±4.3 47.2±3.9 49.2±4.8 53.2±4.5 15.5±4.0 19.6±2.3 61.5±2.3 3.2±1.2

Tk-info-3B 50.8±4.6 57.2±4.9 53.5±4.8 47.3±5.4 54.7±4.9 53.6±4.7 22.6±4.5 64.4±4.8 76.3±3.0 2.7±2.1

Tk-CoAT-1B 50.4±5.3 52.7±4.6 53.6±5.2 46.9±4.9 53.7±4.9 53.5±5.3 17.0±3.5 63.8±5.4 76.1±3.2 11.4±2.6

Tk-CoAT-3B 57.9±4.9 57.2±4.8 53.6±4.5 60.4±4.8 52.0±5.4 56.9±5.0 23.1±3.8 63.6±4.3 81.3±3.3 56.9±3.6

Table 1: Efficiency of concept-aware training: SuperGLUE: ROUGE-L scores of ICL models evaluated in
few-shot setting on SuperGLUE tasks (Wang et al., 2019), trained using (i) random demonstrations sampling used
in previous work, (ii) informative demonstrations sampling (§4.2) and (iii) informative+non-trivial sampling (CoAT;
§3). Underlined are the best results per each task and model size. See Table 2 for a comparison to previous models.
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Figure 6: Performance comparison to previous work:
Natural-Instructions: : Win rate of CoAT models
trained using two (2) tasks and existing models trained
on mixtures of 35 (T0), 1,616 (Tk-Instruct) and 1,836
tasks (Tk-Flan). Values denote the number of tasks
where the model reaches significantly better accuracy.
Evaluations over (top) all tasks, (middle) reasoning
tasks, (bottom) tasks with labels not present in the train-
ing mix of Tk-Instruct and Tk-Flan.

ness condition is more substantial for a smaller573

model, but the models of both sizes benefit from574

the concept-based selection of demonstrations.575

Comparison to multitask learners Figure 6576

compares the performance of CoAT models with577

the models of previous work, trained on large mix-578

tures of 35–1,836 tasks. In the comparison over all579

the NI tasks (Fig. 6; top), the performance of CoAT580

models is better or comparable for the majority of581

the tasks in 5 out of 6 competitions. The evalua-582

tion on reasoning tasks (Fig. 6; middle) supports583

our hypothesis that CoAT particularly promotes im-584

provements in in-context learning of new reasoning585

ability, winning on reasoning tasks over Flan and 586

Tk-Instruct in a comparable number of cases than 587

the opponents. Finally, we look at a few tasks 588

where Tk-Instruct and Flan can not rely on the 589

semantics of labels presented in their training mix 590

(Fig. 6; bottom). In this segment, CoAT models 591

perform best, reaching significantly better accuracy 592

on the majority of tasks in 3 out of 4 comparisons. 593

Table 2 in Appendix C details models’ scores 594

on SuperGLUE tasks, providing further evidence 595

on a comparability of CoAT models to multitask 596

learners. For instance, a comparison with Tk- 597

Instruct reveals that CoAT’s 1B and 3B models 598

reach higher absolute results on 3 and 5 out of the 599

7 Tk-Instruct’s unseen tasks. 600

6 Conclusion 601

Inspired by the theory on data properties condition- 602

ing the emergence of in-context learning (ICL), we 603

propose Concept-aware Training (CoAT), a frame- 604

work specifying how to construct training samples 605

that make it beneficial for a language model to 606

learn to extract and apply latent reasoning concepts 607

from demonstrations. We implement CoAT and 608

show that language models can learn to perform a 609

concept-based ICL (RQ1), and that concept-based 610

ICL is more robust in learning functional relations 611

of a new task from demonstrations (RQ2). Finally, 612

we find that concept-based ICL also brings perfor- 613

mance gains in the ICL of a majority of unseen 614

tasks (RQ3), performing comparably to models 615

trained on over 1,600 tasks with only two QA tasks. 616

In a broader perspective, our work explores an 617

alternative axis for scaling the quality of in-context 618

learning, complementing the known model and 619

data scale axes. We wish to inspire future work 620

to a more proactive approach to refining train data 621

properties so that fitting such data necessitates the 622

emergence of the specific, robust abilities of the 623

models, such as the concept modelling ability. 624
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Limitations625

Although our main objective is to assess the effi-626

ciency of concept-aware training, we acknowledge627

the limitations of our comparison to the previous628

work, where several aspects convolute the represen-629

tative comparison of different in-context learners:630

(i) each of the multitask learners was trained on a631

different, yet massive set of tasks, making it dif-632

ficult to find a broader collection that is new for633

multiple models; For this purpose, we surveyed634

three standard collections used for few-shot eval-635

uation: CLUES (Mukherjee et al., 2021), RAFT636

(Alex et al., 2021) and FLEX (Bragg et al., 2021),637

but found in total only three tasks unseen by the638

multitask learners of previous work, all of the same639

type (classification). Therefore, we use in our eval-640

uations (a) Tk-Instruct’s own evaluation set and641

(b) SuperGLUE with a significant overlay with the642

training tasks of previous work. (ii) many aspects643

make it “easier” for the model to improve, includ-644

ing the domain of labels or prompt format matching645

the training distribution (relevant to Tk-Instruct646

and Flan evaluated on Natural-Instructions).647

Another aspect that we neglect in our experi-648

ments in favour of more in-depth analyses is the649

impact of pretraining projected into the properties650

of the foundation model that we use. We pick T5651

as a base model for our experiments to maximise652

comparability with previous methods. While we653

do not identify any concrete reason to assume that654

CoAT would perform worse with other base mod-655

els, one should note that our results do not provide656

any evidence in this respect.657

Finally, we note that the applicability of CoAT658

is conditioned by the availability of the annotated659

concepts C in the training datasets, which might660

be difficult to obtain for natural-language datasets.661

Our implementation circumvents this issue by us-662

ing a synthetically curated dataset. Hence, we663

simultaneously show that concept-aware abilities664

can also be obtained in the restrictive settings of665

synthetic-dataset pre-training, where we note that666

the volume and variability of the synthetic dataset667

can be scaled further much easier than the natural668

dataset(s) (Trivedi et al., 2022). Nevertheless, our669

experiments do not provide any empirical evidence670

for answering to what extend could further exten-671

sion of synthetically-generated datasets, possibly672

covering even more complex concepts, scale to673

further performance gains.674

Ethical Considerations & Broader Impact 675

The primary motivation of our work is to minimise 676

the computing demands for the creation of accurate 677

in-context learners by deepening our understand- 678

ing of the covariates of the resulting quality. We 679

believe that our presented method, as well as the 680

future data-efficient methods improving our under- 681

standing of in-context learning, will enable the de- 682

mocratization of the creation of robust and accurate 683

in-context learning models for both research and 684

industry. 685

Finally, we note that data-efficient methods for 686

training ICLs (as opposed to multitask training) 687

might open possibilities for creating more accu- 688

rate ICLs specialized to languages outside English, 689

where training datasets are scarce. We look forward 690

for the future work that will explore the potential of 691

data-efficient instruction tuning specifically on the 692

target-language datasets, creating in-context learn- 693

ers specially tailored for target languages outside 694

English. 695
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A Training details1074

In all our training setups, we fine-tune all model1075

parameters for teacher-forced next-token predic-1076

tion, conventionally used in training sequence-to-1077

sequence language models. In the two training1078

stages (TeaBReAC and AdversarialQA), we use a1079

learning rate of 5e−5 and 2e−5, respectively. Other1080

parameters remain identical between stages: effec-1081

tive batch size = 30 samples and early stopping1082

with the patience of 2,000 updates based on evalu-1083

ation loss on a standardized validation set of each1084

dataset. We do not report the absolute values of1085

evaluation loss as these are not directly comparable.1086

In CoAT training, we use a random subsample of1087

20 informative examples as a candidate set for a1088

selection of non-trivial demonstrations.1089

Other parameters of training configuration de-1090

fault to Training Arguments of Transformers library1091

(Wolf et al., 2020) in version 4.19.1. For readability,1092

we implement the relatively complex demonstra-1093

tions’ selection as a new objective of the Adaptor1094

library (Štefánik et al., 2022). The picked demon-1095

strations are encoded into a format consistent with1096

the evaluation.1097

B Evaluation details1098

SuperGLUE Evaluation format As mentioned1099

in Section 4.1, we verbalize both the demonstra-1100

tions and predicted sample using all available tem-1101

plates of PromptSource library (Bach et al., 2022),1102

obtaining prompts for each demonstration prompt1103

xi and its label yi in a free-text form. The prompts1104

commonly contain the full-text match of the possi-1105

ble labels as options for the model.1106

Following the example of Wang et al. (2022),1107

we additionally prepend the demonstrations and1108

labels with keywords “Input” and “Prediction” and1109

separate demonstrations with new lines. Thus, the1110

resulting input→output pairs in evaluation take this1111

format:1112

“Input: x1 Prediction: y1 <newline>1113

Input: x2 Prediction: y2 <newline>1114

Input: x3 Prediction: y3 <newline>1115

Input: xpred Prediction: ” → “ypred”1116

where demonstrations (xi, yi) are picked randomly 1117

but consistently between all evaluated models. 1118

Natural-Instructions Evaluation format In the 1119

evaluations on Natural-Instructions, we closely fol- 1120

low the example of Wang et al. (2022) and addi- 1121

tionally prepend the sequence of demonstrations 1122

with an instruction provided for each task: 1123

“<task instruction> <newline> 1124

Input: x1 Prediction: y1 <newline> 1125

Input: x2 Prediction: y2 <newline> 1126

Input: x3 Prediction: y3 <newline> 1127

Input: xpred Prediction: ” → “ypred” 1128

where the <task instruction> contains the instruc- 1129

tion as would be given to the annotators of the eval- 1130

uation task, usually spanning between 3–6 longer 1131

sentences. The demonstrations are again picked 1132

randomly but consistently between models. 1133

Evaluation metrics selection Previous work 1134

training in-context few-shot learners is not consis- 1135

tent in the use of evaluation metrics, and the choice 1136

usually boils down to either using the exact-match 1137

accuracy (Sanh et al., 2022; Chung et al., 2022) or 1138

ROUGE-L of Lin (2004) (Wang et al., 2022), eval- 1139

uating the longest common sequence of tokens. We 1140

investigate these two options with the aim of not 1141

penalising the models for minor discrepancies in 1142

the output format (in the accuracy case) but avoid- 1143

ing false positive evaluations in predictions that are 1144

obviously incorrect (in the ROUGE case). 1145

Investigation of the models’ predictions reveals 1146

that the selection of the metric makes a large dif- 1147

ference only in the case of Tk-Instruct models, 1148

where the situation differs between SuperGLUE 1149

and Natural-Instructions, likely due to the charac- 1150

ter of the evaluation prompts. 1151

(1) On SuperGlue, e.g. on MultiRC task, for the 1152

evaluation prompt: "Does answer sound like a valid 1153

answer to the question: question", Tk-Instruct-3B 1154

in our evaluation predicts "Yes." or "Yes it is" (in- 1155

stead of "Yes"), or "No not at all" (instead of "No"), 1156

likely due to the resemblance with the format of 1157

training outputs. As we do not wish to penalize 1158

these cases, we use ROUGE-L over all SuperGLUE 1159

evaluations. 1160

(2) In Natural-Instructions evaluation, we find 1161

that Tk-Instruct often predicts longer extracts 1162

from the input prompt. This is problematic with 1163

ROUGE-L in the cases where the extract contains 1164
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Figure 7: In-context learning of specific natural con-
cepts: While CoAT improves the ability to benefit from
reasoning concepts on average (Fig. 3), per-concept eval-
uation reveals that this ability is not consistently robust.

all possible answers, such as in the Tk-Instruct-1165

1B’s prediction: “yes or no” to the prompt whose1166

instruction ends with “Please answer in the form1167

of yes or no.”. As we encounter this behaviour in a1168

large portion of Natural-Instructions tasks, we eval-1169

uate all models on Natural-Instructions for exact-1170

match accuracy after the normalization of the cas-1171

ing and the removal of non-alphabetic symbols.1172

To make sure that the model is presented with the1173

exact-matching answer option, we exclude from1174

evaluation the tasks where the correct answer is not1175

presented in the task’s instruction. The reference1176

to the list of Natural-Instructions evaluation tasks1177

can be found in Appendix C.4.1178

For the reported evaluations of the Reasoning1179

tasks, we pick from the list of evaluation tasks the1180

ones concerned with the reasoning task by simply1181

matching the tasks with ‘reasoning’ in their name,1182

resulting in the collection of 20 evaluation tasks.1183

C Further evaluations1184

C.1 SuperGLUE evaluations of other models1185

Table 2 compares the performance over the tasks1186

of SuperGLUE collection (Wang et al., 2019) for1187

CoAT models trained on two tasks of the same1188

(QA) type with in-context learners trained on 35–1189

1,836 tasks of the comparable size. Despite the1190

significantly smaller volumes and complexity of1191

the training dataset, CoAT-trained models show1192

competitive results to similar-size or even larger in-1193

context learners of previous work. For instance, the1194

1-billion-parameter Tk-CoAT performs better than1195

the 3-billion T0 in 3 cases (Ax-b, RTE, COPA) and1196

comparably in another 3 cases (WSC, CB, WiC).1197

In comparison with Tk-instruct of the same size,1198

Tk-CoAT-1B outperforms Tk-instruct in 3 out of1199
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Figure 8: Impact of Concept-aware training per dif-
ferent language settings: Pairwise comparison of
models trained using selected training configurations
(§4.2) on (top) Non-English tasks and (bottom) English-
only tasks of Natural-Instructions collection. Values in
green and red bars indicate a number of tasks where the
referenced model reaches significantly higher accuracy
than the other. For the tasks denoted as similar, the
difference in performance falls within the evaluation’s
confidence intervals.

7 unseen tasks (WSC, CB, ReCoRD), and reaches 1200

similar scores in most other cases, even in 2 out of 1201

3 tasks that were included in Tk-instruct’s training 1202

mix. Similarly, larger Tk-CoAT-3B outperforms 1203

Tk-instruct on 4 of 7 new tasks (Ax-b, WSC, WiC, 1204

ReCoRD), but with larger gaps on the others. 1205

C.2 Natural-Instructions: other task types 1206

Figure 8 evaluates the impact of CoAT’s mecha- 1207

nism on the quality of in-context learning sepa- 1208

rately on the English and non-English tasks. The 1209

figure reveals that CoAT works particularly well 1210

for non-English tasks. Our analyses found this is 1211

mainly due to the low performance of the baseline 1212

on the non-English tasks. We speculate that this 1213

can be a consequence of the higher reliance of the 1214

baseline on token semantics (Section 4.4, RQ2); 1215

As our models are fine-tuned on an English-only 1216

QA model, such learnt reliance is not applicable in 1217

multilingual settings. 1218

Figure 9 compares the performance of CoAT 1219

models against the models of previous work, sep- 1220

arately on the English and non-English tasks. We 1221

can see that CoAT is slightly better at the mul- 1222

tilingual portion of Natural-Instructions, but the 1223

difference is not principal. 1224

C.3 Per-concept evaluations 1225

Figure 7 evaluates the performance gains of the 1226

baseline models (§4.2) and CoAT-trained models 1227

individually per each of the concepts of the natural 1228

datasets. While the CoAT models are able to bene- 1229

14



# train tasks AxG Ax-b WSC CB RTE WiC ReCoRD BoolQ COPA MultiRC
Flan-1B 1,836 84.8±3.9 21.9±4.0 70.7±4.8 92.5±2.8* 92.1±3.0* 69.9±5.1* 38.9±5.2* 92.3±2.7* 97.8±1.5* 88.3±3.2*

Flan-3B 1,836 95.3±3.7 22.0±8.0 80.2±9.2 92.7±6.7* 96.0±4.0* 79.7±8.3* 62.2±9.7* 92.1±5.1* 99.3±1.6* 90.4±6.4*

Tk-Instruct-1B 1,616 51.9±4.9 57.2±5.8 49.8±4.9 46.0±5.5 55.5±4.8 53.5±5.3 13.1±3.7 63.4±3.4* 76.9±3.2* 62.2±5.1*

Tk-Instruct-3B 1,616 53.5±4.7 49.9±4.9 51.2±4.9 66.3±4.6 62.7±4.6 50.4±4.8 18.6±4.2 68.8±4.4* 73.8±3.5* 59.9±4.9*

T0-3B 35 65.0±4.5 36.1±4.6 53.5±5.2 48.0±5.4 51.3±5.2 54.0±5.0 20.5±4.0 60.1±4.9 56.8±3.6 56.2±4.4

Tk-CoAT-1B 2 50.4±5.3 52.7±4.6 53.6±5.2 46.9±4.9 53.7±4.9 53.5±5.3 17.0±3.5 63.8±5.4 76.1±3.2 11.4±2.6

Tk-CoAT-3B 2 57.9±4.9 57.2±4.8 53.6±4.5 60.4±4.8 52.0±5.4 56.9±5.0 23.1±3.8 63.6±4.3 81.3±3.3 56.9±3.6

Table 2: ICL performance: comparison to previous ICL models ROUGE-L of CoAT-trained ICL models and
models of comparable size in previous work. Evaluation setup is consistent with Table 1. In cases marked with ∗,
the task was used in the model’s training; Underlined are the best results per unseen task and model size.
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Figure 9: Comparison to previous work per dif-
ferent language settings: Pairwise comparison of
CoAT models vs. the models of previous work on (top)
Non-English tasks and (bottom) English-only tasks of
Natural-Instructions collection. Values denote the num-
ber of tasks where the model reaches significantly better
accuracy. For the tasks denoted as similar, the difference
in performance falls within the evaluation’s confidence
intervals.

fit from concepts the largest in the relative change1230

of quality, they are also not consistent in the ability1231

to benefit from all the concepts. However, as dis-1232

cussed in Section 5, this does not imply that CoAT1233

is unable to utilize these concepts.1234

C.4 Evaluation tasks and other configurations1235

SuperGLUE (Wang et al., 2019) consists of the1236

following tasks (as ordered in our Results, §5):1237

Winogender Schema Diagnostics (AxG) (Rudinger1238

et al., 2018), Broadcoverage Diagnostics (CB),1239

The Winograd Schema Challenge, Commitment-1240

Bank (CB), Recognizing Textual Entailment (RTE),1241

ContextWords in Context (WiC) (Pilehvar and1242

Camacho-Collados, 2019), Reading Comprehen-1243

sion with Commonsense Reasoning (ReCoRD) 1244

(Zhang et al., 2018), BoolQ (Clark et al., 2019), 1245

Choice of Plausible Alternatives (COPA), Multi- 1246

Sentence Reading Comprehension (MultiRC). 1247

Natural-Instructions consists of a larger mixture 1248

of tasks, which we do not enumerate here to main- 1249

tain readability; the full list of evaluation tasks can 1250

be found in the original work of Wang et al. (2022) 1251

in Figures 11 and 12. 1252

To maintain comparability of evaluations among 1253

models, we deterministically fix the demonstration 1254

selection procedure so that only the full prediction 1255

prompts for all the models are the same. In the 1256

analyses comparing the differences in performance 1257

(§4.4; RQ1+2), we fixed the prediction samples 1258

(xpred) between different demonstrations’ sampling 1259

strategies to avoid perplexing our comparison with 1260

possible data selection biases. Further details can 1261

be found in the referenced implementation. 1262

D Computational Requirements 1263

We run both training and evaluation experiments 1264

on a machine with dedicated single NVIDIA A100- 1265

SXM-80GB, 40GB of RAM and a single CPU core. 1266

Hence, all our reproduction scripts can run on this 1267

or a similar configuration. Two stages of training in 1268

total take at most 6,600 updates and at most 117h 1269

of training for Tk-CoAT to converge. 1270
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