
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MESANET: SEQUENCE MODELING BY LOCALLY
OPTIMAL TEST-TIME TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequence modeling is currently dominated by causal transformer architectures that
use softmax self-attention. Although widely adopted, transformers require scaling
memory and compute linearly during inference. A recent stream of work linearized
the softmax operation, resulting in powerful recurrent neural network (RNN)
models with constant memory and compute costs such as DeltaNet, Mamba or
xLSTM. These models can be unified by noting that their recurrent layer dynamics
can all be derived from an in-context regression objective, approximately optimized
through an online learning rule. Here, we join this line of work and introduce a
numerically stable, chunkwise parallelizable version of the recently proposed Mesa
layer (von Oswald et al., 2024), which could only run sequentially in time and was
therefore not scalable. This layer again stems from an in-context loss, but which is
now minimized to optimality at every time point using a fast conjugate gradient
solver. Through an extensive suite of experiments study up to the billion-parameter
scale, we show that optimal test-time training enables reaching lower language
modeling perplexity and higher downstream benchmark performance than previous
RNNs, especially on tasks requiring long context understanding. This performance
gain comes at the cost of additional flops spent during inference time. Our results
are therefore intriguingly related to recent trends of increasing test-time compute to
improve performance – here by spending compute to solve sequential optimization
problems within the neural network itself.

1 INTRODUCTION

While Transformers dominate sequence modeling, their per-token computational and memory require-
ments scale linearly with sequence length during inference. This limitation motivates the development
of efficient recurrent neural networks (RNNs) with constant complexity, particularly for autoregres-
sive tasks like language modeling. Recent progress has focused on fast weight programming layers,
which process a given sequence by representing and learning a linear model in their activations
(Schmidhuber, 1992; Schlag et al., 2021a; Yang et al., 2024c; Dao & Gu, 2024). Such ‘fast weights’
undergo one learning step whenever the input sequence advances, following simple Hebbian (Hebb,
1949) or error-correcting (delta) rules (Widrow & Hoff, 1960). Both rules correspond to gradient
descent on a suitable quadratic loss function, measured on the latest input.

Here, we take this concept one step further, and design an optimal fast weight programming layer.
Following previous related work, we consider linear fast weight models, and measure how well a given
context is modeled using a quadratic loss. However, instead of gradually learning through gradient
descent, we design a layer that always responds with the optimal fast weights, which achieve minimum
loss on all data seen so far. This allows retaining past information while adapting to new evidence
quickly as a sequence unfolds. Our work builds off the recent recurrent Mesa layer (von Oswald
et al., 2024), proposing a version of this layer that is parallelizable leveraging matrix multiplication
accelerators, numerically stable, and that allows for context-dependent forgetting. Moreover, the layer
dynamically adapts its computational cost at test time to the sequence at hand. This is because the
layer introduced here explicitly invokes an external solver, for which the number of iterations required
to reach a given stopping criterion differs across sequences. We summarize our contributions below:

• A novel Mesa layer which is parallelizable over sequence length and flexibly allocates test-
time computation: We adapt the previously proposed Mesa layer (von Oswald et al., 2024) to
allow for chunkwise parallel training. We leverage an equivalence of the conjugate gradient (CG)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Linear Linear

Linear

(C) Recurrent block

RMSNorm

Linear

Conv

Mesa Rule

Conv Conv

Linear

Linear

Linear

Sequence

mixing block

RMSNorm

MLP

RMSNorm

(A) Residual block

(B) Gated MLP block

LinLinMHA, xLSTM, Mamba2, DeltaNet or Mesa

Figure 1: Model Architecture of the MesaNet. (A) We adopt the widespread decoder-only transformer
architecture (Touvron et al., 2023) stacking N residual blocks of a channel mixing (B) and sequence mixing (C)
components. (B) Channel mixing is a vanilla SwiGLU MLP. (C) Sequence mixing is performed by the Mesa
layer. From its inputs, it generates keys, queries and values as well as input and forget strengths. These are then
processed according to the Mesa Rule (Equation 7). We compare the MesaNet to models which share the exact
same architecture and only change the sequence mixing rule to multi-head-attention (MHA), xLSTM, Mamba2
or (Gated) DeltaNet.

method over multiple time steps with gated linear self-attention, which allows using established
hardware-efficient training (Yang et al., 2024a). During inference, the layer reallocates test-time
compute dynamically as different sequences lead to varying CG iterations to reach a stopping
criterion, allowing to trade off test-time compute and performance.

• The MesaNet is a strong language model: We train 140M, 440M and 1B parameters MesaNets,
see Figure 1, on the SlimPajama dataset (Soboleva et al., 2023). On all of these scales, the
MesaNet reaches lower validation perplexity compared to models such as Mamba2 (Gu & Dao,
2024), xLSTM (Beck et al., 2024), DeltaNet (Yang et al., 2024c), Gated DeltaNet (Yang et al.,
2024a) and Transformers (Vaswani et al., 2017) with the same base architecture.

• In-depth analyses of modern RNNs including MesaNet: Intriguingly, we find that while
reaching the same or better perplexity on language modeling, all RNN models reduce perplexity
remarkably differently, namely focus on early tokens in the sequence while transformers excel at
later tokens. We further disentangle downstream language benchmarks according to their need for
global or only local language modeling, through controlled Sliding-Window Attention ablations.
We find that MesaNet outperforms all modern RNNs on global reasoning, in-context learning &
in-context recall benchmarks, but unsurprisingly still lack behind Transformers in in-context recall.

2 A PARALLELIZABLE MESA LAYER

We consider autoregressive sequence modeling tasks where the objective is to predict element
et+1 ∈ Rne given a sequence of token embeddings e = (et)

T
t=1. At present, autoregressive sequence

modeling is dominated by architectures based on the causally-masked softmax self-attention layer,
whose token updates et ← et + ∆esa

t follow the rule ∆esa
t =

∑H
h=1 PhVh,t α(K

⊤
h,tqh,t), where

qh,t = Wh,qet ∈ Rna is referred to as a query, each column kh,t′ = Wh,ket′ ∈ Rna of matrix
Kh,t ∈ Rna×t as a key, and each column vh,t′ = Wh,vet′ ∈ Rnv of matrix Vh,t ∈ Rnv×t as a
value; in this paper, we follow the convention that vectors are column vectors. The parameters of
this layer are the matrices {(Ph,Wh,q,Wh,k,Wh,v)}Hh=1 for all H heads; for notational simplicity,
we omit positional encodings and absorb bias terms, and assume here for conciseness that all heads
are equally sized. The function α applied to vector a ∈ Rt returns an attention weight vector: in the
standard transformer, α(a)i = softmax(a)i := (

∑t
t′=1 exp(at′))

−1 exp(ai) (Vaswani et al., 2017).
Since each head is processed independently and only interacts through the summation in ∆esa

t , for
simplicity we drop the head index h and the projection matrix P in what follows.

Linear self-attention and test-time training. We focus on the case where α is the identity function.
This yields a linear attention layer (Schmidhuber, 1992), which as we will see next turns out to be a
linear RNN (Katharopoulos et al., 2020):

∆elsa
t = Φtqt. (1)

Unlike its softmax counterpart, linear attention can be implemented recurrently, by maintaining and
updating a matrix-valued state Φ ∈ Rnv×na according to the linear dynamics

Φt = γtΦt−1 + βtvtk
T
t . (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Above, we add forget gates γt and input gates βt which have been shown to improve performance
(Yang et al., 2024a). Both are usually a function of the current input et, like queries, values and keys,
but bounded within [0, 1]. Importantly, and in contrast to softmax self-attention, linear attention only
requires constant memory and compute to predict the next token. As we review below and more
extensively in Appendix A, a series of recent high-performance models (e.g., Gu & Dao, 2024; Peng
et al., 2023; Beck et al., 2024; Schlag et al., 2021a; Yang et al., 2024c;a) can be cast into the same
basic linear self-attention model (equation 1) using variations of equation 2.

Such modern RNNs can also be seen from the unifying perspective of test-time training (Schlag et al.,
2021a; Liu et al., 2025; von Oswald et al., 2024; Wang et al., 2025; Behrouz et al., 2025b). Under
this view, the key-value linear map Φt : Rna → Rnv introduced in equation 1 is learned from the
data in context e1:t. Let us introduce a time-varying loss, from which we will derive a gradient-based
dynamics for Φ:

Lt(Φ) = lt(Φ) +
1

2
Tr(ΦΛtΦ

⊤). (3)

Above, lt measures the instantaneous loss incurred at the current time step, and the second term
acts as a regularizer with strength controlled by a symmetric na × na matrix Λt. Now, setting
lt(Φ) = lHopfield

t (Φ) := −v⊤t Φkt and Λt = 1−γt

βt
I , and letting Φ evolve through online gradient

descent, Φt = Φt−1 − βt∇ϕLt(Φt−1) = γtΦt−1 + βtvtk
T
t , we recover gated linear attention

(equation 2). In passing, we have also connected modern linear attention to classical associative
memory models (Schlag et al., 2021a): lHopfield

t is the energy function that governs continuous-state
Hopfield networks, and Φ is learned through Hebb’s associative rule (Hopfield, 1984; Hertz et al.,
1991). If we take instead the squared error loss lt(Φ) = lsq-err

t (Φ) := 1
2∥vt − Φkt∥2, we recover

DeltaNet (Schlag et al., 2021a; Yang et al., 2024c;a), which learns a linear model with the online
delta rule (Widrow & Hoff, 1960). Recent work has extended the DeltaNet to perform mini-batch
updates, and to perform gradient updates on a 1-hidden-layer MLP (Sun et al., 2025), and Titans
adds momentum to the mini-batched gradient update (Behrouz et al., 2024). We return to this point
in Appendices A and B, where we discuss additional related work from the viewpoint of test-time
regression, and derive in more detail the update rules above.

The Mesa layer: optimal test-time regression. In this work, we revisit the recently proposed
Mesa layer (von Oswald et al., 2024), also referred to as an intention layer in the context of non-
autoregressive models (Garnelo & Czarnecki, 2023). This layer again updates tokens according to the
linear self-attention rule (equation 1) but now defines the linear map Φt as the solution of a test-time
optimization problem, where a symmetric positive definite matrix Λt ∈ Rnk×nk

+ controls the strength
of a quadratic regularizer:

Φ̂mesa
t = argmin

Φ
Lt(Φ), with Lt(Φ) =

1

2

t∑
t′=1

ζtt′ ||vt′ − Φkt′ ||2 +
1

2
Tr(ΦΛtΦ

⊤).

(4)
In all our experiments, we take a static, diagonal regularizer, with Λt = Λ ∀t and Λii > 0. Above,
the cumulative forget factor ζtt′ = 1t≥t′

∏t
s=t′+1 γs causally weighs the contribution of past losses

until the present (t′ = 1, . . . , t), taking into account the forget factors γt′ ∈ [0, 1] so far. The output
∆emesa

t of the Mesa layer depends on the (unique) solution Φ̂mesa
t , which can be expressed in closed

form:

∆emesa
t = Φ̂mesa

t qt =

(
t∑

t′=1

ζtt′vt′k
⊤
t′

)(
t∑

t′=1

ζtt′kt′k
⊤
t′ + Λ

)−1

qt (5)

= Gt(Ht + Λ)−1qt. (6)

We compute Φ̂mesa
t step by step in Appendix D.

The Mesa layer differs from the test-time training models reviewed above in two key ways. First,
instead of considering an instantaneous loss measured only at the current input et as in equation 3,
the Mesa layer optimizes the cumulative regularized squared-error loss taking into account all data
e1:t so far. While at first this may seem impossible to achieve under a constant memory requirement,
the Mesa layer circumvents the need to explicitly keep past tokens in memory (as in softmax self-
attention) and exploits the fact that Lt is a quadratic function of Φ (Gauss, 1821). Second, instead
of taking a single gradient descent step, the Mesa layer learns Φ to optimality at every time point.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We note that the related Longhorn model (Liu et al., 2025) also derives a recurrent layer via the
minimization of a quadratic loss, but its loss is evaluated only on the latest input as in equation 3,
yielding a variant of DeltaNet. We further note that concurrent work (Atlas; Behrouz et al., 2025a)
corresponds to a sliding-window variant of the Mesa layer, while also allowing the model to be
optimized at test-time to be nonlinear, as in (Sun et al., 2025). We present the update rules and
test-time objective functions of these two related works in Appendix B.

The Mesa layer is the optimal (in the squared-error sense) linear associative memory (Kohonen &
Ruohonen, 1973), and it can store a new association instantaneously (one-shot), whereas DeltaNet
requires in general multiple pattern presentations to reduce memorization error (Hertz et al., 1991).
This fast learning property of the Mesa layer can be further understood by recasting it as a second-
order online learner (cf. Appendix H); DeltaNet only uses first-order derivative information to learn.

Von Oswald et al. (2024) proposed to determine Φ̂mesa
t following classical recursive least-squares.

Although computationally attractive at inference, we now stress two shortcomings of this approach.
First, forgetting (0 ≤ γt < 1) leads to numerical instabilities, and requires a regularization term Λ
that decays exponentially with time. Second, this original version of the layer is not parallelizable,
and it therefore heavily underutilizes current matrix-matrix multiplication accelerators such as GPUs
and TPUs during training. We explain this in detail in Appendix H.

A new parallelizable Mesa layer with adaptive forgetting and regularization. To overcome
these issues, we propose a novel parallelizable version of the Mesa layer which allows for dynamic
forgetting. Instead of computing Φ̂mesa

h,t recurrently, we solve a linear system of equations in parallel,
for each query qt:

∆emesa
t = Gt(Ht + Λ)−1qt = Gtlinsolve(Ht + Λ, qt). (7)

The equation above can be computed by maintaining and updating two state variables, St = {Gt, Ht},
through the following linear recurrence relations:

Gt = γtGt−1 + βtvtk
⊤
t , Ht = γtHt−1 + βtktk

⊤
t , (8)

where as before γt ∈ [0, 1] is a forget gate and βt ∈ [0, 1] is an input gate. We adopt the conjugate
gradient method to obtain a solution q∗t = linsolve(Ht + Λ, qt) = (Ht + Λ)−1qt (Lanczos, 1950;
Hestenes et al., 1952). This yields a numerically stable Mesa layer as linsolve(Ht + Λ, qt) is stable
irrespective of forgetting strength, albeit at a higher memory cost compared to single matrix state
RNN models, as an additional matrix of size na × na needs to be propagated forward alongside the
standard matrix of size nv × na. Although the RNN state size increases, this expansion amounts to
less than 1% of the entire memory footprint of models trained in this paper, which includes both state
and parameters.

To enable efficient training, we introduce a chunkwise parallelized (Hua et al., 2022; Yang &
Zhang, 2024) algorithm to compute equation 7. Our method builds on top of established efficient
implementations of GLA, that we briefly review now. First, note that the output of this layer can
be written as oGLA

t = Gtqt =
∑t

i=1 ζtivik
⊤
i qt. Let us chunk a sequence of length T in T/C

chunks of size C, with c ∈ {0, C, . . . , T − C}. The crucial insight to enable leveraging matrix-
matrix multiplication and parallelization across time for GLA is that, given a chunked state variable
Gc, we can compute the output at time c < t ≤ c + C as oGLA

t = (Gc +
∑t

i=c+1 ζtivik
⊤
i)qt =

Gcqt+
∑t

i=c+1 ζtivik
⊤
i qt, which can be done in parallel for t ∈ {c+1, ...c+C}. In matrix notation

we write
OGLA

c = GcQc + Vc(Zc ⊙ (K⊤
c Q∗

c)), (9)

where Kc = [kc, ..., kc+C] and OGLA
c , Vc, Qc accordingly, and Zc is a upper triangular matrix of size

C × C containing the appropriate forgetting terms.

Now, we highlight that the Mesa layer can be decomposed into two parts:

omesa
t =

t∑
i=1

ζtivik
⊤
i q

∗
t , and q∗t = (Ht + Λ)−1qt. (10)

The first part is equivalent to GLA, and can therefore be computed efficiently as just described. It
therefore remains to be shown how to obtain Q∗

h,c = [q∗h,c, . . . , q
∗
h,c+C] within a given chunk of size

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

C in parallel. As we explain in detail in Appendices C & D, the key observation is that the compute-
intensive part of a CG iteration boils down to

∑t
i=1 ζtikik

⊤
i p, with p its current search direction, a

computation that is once again in the GLA form. Alongside its fast convergence properties, this is
the reason for picking the CG method as our solver, as it allowed us to leverage existing efficient
chunkwise parallel linear attention implementations. The new Mesa layer proposed in this paper
therefore admits a parallel training mode with O(T) complexity, alongside the recurrent inference
mode with O(1) complexity. In Appendix D, we further show how to efficiently compute gradients
through the layer in chunkwise parallel form. Finally, we discuss details on precision within our CG
solver in Appendix G.5.

3 TRAIN AND INFERENCE TIME OF THE MESA LAYER

Chunkwise parallel Mesa layer leads to competitive train time. In Figure 2, we report training
and inference times on a TPUv5 and H100 for both transformers (MHA), common RNN alternatives
and the MesaNet. Despite having to solve t ·H linear systems of equations per layer during training
as well as compute gradients through the found solutions, the MesaNet remains competitive at train
time with respect to MHA and RNN alternatives.

The Mesa layer, applied with static k, is relatively slow especially early in the sequence. We
present in Appendix Table 5 an analysis of the memory and computational costs of inference,
comparing the Mesa layer to MHA as well as recently developed RNNs. This overview highlights a
tension that the MesaNet faces. On the one hand, if the number of conjugate gradient (CG) steps k is
set to zero we obtain q∗t = qt, and so recover gated linear self-attention (GLA) and its compute and
memory requirement. Thus, we require k > 0 for the Mesa layer to differ from GLA, which provides
a lower bound for the computational cost of the Mesa layer. Note that the Mesa layer is, in terms of
flops, roughly k times as costly as linearized transformer models such as GLA, Mamba2 and xLSTM
and k − 1 times more costly as (Gated) DeltaNet. Furthermore, because the total cost of executing
the CG method grows with kn2

a, there is a maximal value of k for which the Mesa uses fewer flops
than MHA for a given sequence length.

256 2k 4k 8k
Sequence Length

0

10

20

30

Tr
ai

n
tim

e
(m

s) Mesa-CG=0
Mesa-CG=5
Mesa-CG=15
Mesa-CG=30
MHA

256 2k 4k 8k
Sequence Length

0

1

2

In
fe

re
ce

 ti
m

e
(m

s)

2K x 16 4K x 8 8K x 4 16k x 2 32k x 1
Sequence length x Batch size

0

20

40

60

80

K
To

ke
n

Th
ro

ug
hp

ut
 /

s

Transformer
GLA
DeltaNet

Gated DeltaNet
Mesa-CG=30
Mesa-CG=15

Figure 2: Train and inference time of a Mesa layer using different number of CG steps. Left: Train time
of a single Mesa later on a TPUv5: output the entire sequence, compute the cross entropy loss, and gradients
w.r.t. layer parameters. We use batch size of 4, key size of 128 and 8 heads. Center: Inference time of a single
Mesa layer on a TPUv5: compute the next token given a certain context length. We use batch size of 128, key
size of 128 and 8 heads. Right: Token throughput (in thousands) when training 1B parameter models on a H100
GPU. We compare a Flash-Attention-2 (Dao, 2023) transformer implementation with a triton-based chunkwise
parallel implementation of RNN models, including the MesaNet which uses 30 or 15 CG steps across all layers.
All models use a key size of 128 and share the same backbone, see Appendix G. We observe competitive token
throughput on H100s of the MesaNet despite using substantially more flops.

We show this in Figure 2 (center) for a typical choice of na = 128, where we plot inference time as
a function of sequence length for both MHA and the Mesa layer, when varying k. These numbers
reflect the runtime of a single layer and might vary across inference use cases and accelerators.

The Mesa layer allocates test-time compute dynamically. Being a test-time optimizer, the Mesa
layer offers a principled way for dynamically allocating test-time compute. The number of CG
steps k required to reach a given desired error tolerance ϵ is generally head-, sequence- and token-
specific due to the context-dependence of the linear systems Ht + Λ to be solved. Via utilization
of a stopping criterion, the Mesa layer thus exhibits dynamic inference (and potentially training)
costs. This dynamic test-time compute feature of the Mesa layer draws both parallels and differences
to softmax self-attention: whereas softmax self-attention increases compute (and memory) as a
function of sequence length independently of the sequence being processed, the Mesa layer adjusts

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Layer Recurrence Memory read-out

Mamba2 Gt = γtGt−1 + vtk
⊤
t ot = Gtqt

GLA Gt = γtGt−1 + βtvtk
⊤
t ot = Gtqt

DeltaNet Gt = Gt−1(I − βtktk
⊤
t) + βtvtk

⊤
t ot = Gtqt

Gated DeltaNet Gt = Gt−1(γt(I − βtktk
⊤
t)) + βtvtk

⊤
t ot = Gtqt

mLSTM Gt = γtGt−1 + βtvtk
⊤
t , zt = γtzt−1 + βtkt ot = Gtqt/max{1, |z⊤t qt|}

Mesa Gt = γtGt−1 + βtvtk
⊤
t , Ht = γtHt−1 + βtktk

⊤
t ot = Gtlinsolve(Ht + Λ, qt)

Table 1: Overview of recent linear recurrent models which we compare to in this work, except for LRU layers,
see De et al. (2024).

compute dynamically, according to the incoming data it needs to process. We provide in Section 5 an
experimental analysis of this property of the Mesa layer in trained MesaNets.

4 MESANET IN A LANGUAGE WORLD

Here we present results obtained on 1B-parameter models trained on 50B tokens from the SlimPa-
jama (Soboleva et al., 2023) dataset, and refer to Section L for an extended analysis, comparing
models ranging from 140M, 440M up to 1B parameters, each on 15B and 50B tokens. Furthermore,
we report strong results on synthetic environments in Section K, which we omit for brevity here.

Architecture & baselines. For the main model backbone, we follow the architecture of common
transformers, and employ N stacked residual blocks with 1) a sequence modeling part such as
multi-head-attention (MHA) or the Mesa layer and 2) a gated MLP block (see Figure 1). As baselines,
we compare to a number of other efficient alternatives to MHA based on linear recurrent layers:
Mamba2 (Dao & Gu, 2024), Gated Linear Attention (GLA) (Yang et al., 2024b; Katharopoulos et al.,
2020), xLSTM (Beck et al., 2024), (Gated) DeltaNet (Schlag et al., 2021a; Yang et al., 2024c;a)
and Hawk (De et al., 2024), see Table 1. The latter differs from the models reviewed in Section 2
by employing a vector-valued state, being closer in spirit to a (now linearized) traditional LSTM
(Hochreiter & Schmidhuber, 1997). Furthermore we investigate a recurrent hybrid Hawk-Mesa model
alternating between a linear recurrent unit (Hawk) and the Mesa layer which we motivate in the next
section.

Controls. On top of related work, we train transformer models with Sliding-Window Attention
(SWA) (Beltagy et al., 2020) of varying window sizes. These models have constant per-token memory
and compute cost. The motivation to study SWA models is based on the assumption that transformers
as well as SWA models have near perfect recall capabilities, at least within their attention window.
Therefore, they provide a simple and interpretable control to study language modeling, reasoning
and in-context recall capabilities of RNNs.

Setup. We tokenize the SlimPajama datasets using the byte-level BPE tokenizer introduced in
GPT-2 (Radford et al., 2018; Brown et al., 2020a) following Beck et al. (2024) and train all modes on
a sequence length of 2048 and a fixed ordering of training data. For each model configuration, we
scan over a range of learning rates, and select the model that minimizes perplexity on the holdout
validation dataset of SlimPajama. For exact hyperparameters and training specifications for each
model, see Appendix G. For all results, unless otherwise specified, we use MesaNets with a fixed
amount of 30 CG steps. See Appendix M on varying CG steps during training and Section 5 on using
the CG stopping criterion to invoke dynamic test-time compute.

We stress that through sharing the exact same architecture backbone, tokenizer, data and data order
across all models, while using the same number of parameters and independently tuned learning
rate for all models, we aim to provide a fair 1-1 comparison1. This controlled setup should allow to
solely assess differences on the sequence mixing layer while reducing noise. Note, however, that
this backbone might be a suboptimal choice for RNNs, including the MesaNet. Related work has
tuned architectures to their specific sequence layers (Beck et al., 2024; Gu & Dao, 2024). However,
these architectural optimizations prevent the integration of Mixture-of-Experts layers, a heavily used

1Related work such as Yang et al. (2024a), Behrouz et al. (2024) and Behrouz et al. (2025a) use a single
learning rate for all models which likely leads to biased and unfair comparisons. Behrouz et al. (2025a) further
inherit baseline results from previous work which use a different tokenizer, confounding the comparison further.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

SLIM LMB. WIKI. PG19 GOV. QASP. AVG
ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓

- Hawk 11,24 26,67 12,23 10,93 10,63 14,89 14.43
- Mamba2 11,39 28,02 12,23 11,42 10,42 14,02 14.58
- GLA 10,99 29,77 11,77 10,95 9,99 13,52 14.03
- xLSTM 11,01 26,93 11,81 10,94 10,00 13,55 14.03
- DeltaNet 11,01 27,08 11,73 11,00 10,02 13,44 14.05
- Gated DeltaNet 10,89 26,79 11,58 10,81 9,88 13,28 13.87
- Mesa 10,83 26,78 11,49 10,71 9,80 13,13 13.79
- Hawk-Mesa 10,78 26,59 11,53 10,60 9,79 13,20 13.75

- SWA-4 16,46 29,93 19,42 16,42 17,86 29,15 21.54
- SWA-64 12,37 27,76 14,14 12,51 11,56 16,77 15.85
- SWA-1024 11,00 27,22 11,78 10,92 9,79 13,11 13.97

- Transformer 10,86 27,16 11,42 10,74 9,69 12,86 13.79

Table 2: Language Modeling Performance (PPL ↓)
of 1B Models (50B Tokens) evaluated on sequence
length of 2048). Mesa and Hawk-Mesa show strong
performance on all benchmarks, matching or exceeding
a Transformer baseline w.r.t. to avg. per-token PPL.
Lambada (LMB.) scores are higher due to significantly
shorter sequences (≤ 256) with an average of 78 tokens.

64 256 512 1024 2048
Token Position

0.04

0.02

0.00

0.02

0.04

NL
L

Di
ffe

re
nc

e
to

 M
HA

20 22 24 26 28

Token Position

HAWK
GLA
MAMBA2

XLSTM
DELTANET
GATED-DELTANET

MESA
HAWK-MESA
SWA-64

SWA-1024
MHA

Figure 3: NLL Difference relative to a Trans-
former (1B models, 50B tokens) on SlimPajama.
Most recurrent layers show superior language mod-
eling performance in terms of NLL up to the 64’th
token. MesaNet and Hawk-Mesa extend the advan-
tage beyond 512 tokens. The advantage early in the
sequence is even more apparent in log-scale (right).

building block in current language models. Therefore, we carefully evaluate all sequence layers on the
same backbone, based on the widespread decoder-only transformer architecture – here, the Llama2
model (Touvron et al., 2023), including rotary position encodings (RoPE; Su et al., 2024) when using
softmax attention layers. This backbone does not fuse MLPs with sequence layers, allowing for a
direct comparisons between layers. Furthermore, we did not attempt to optimize the architecture e.g.,
key size and number of heads for the Mesa layer.

Comparison to the original mesa layer. We considered comparing to the original sequential-in-
time Mesa layer (von Oswald et al., 2024). However, because this model was already an order
of magnitude slower when training at the 400M parameter scale, and suffered a large increase in
SlimPajama language modeling perplexity of about 3.2 points (∼23% performance degradation) due
to the inability to train with forget gates, we did not pursue these comparisons further. These results
directly motivate the new Mesa layer introduced in this paper.

4.1 LANGUAGE MODELING (WITHIN AND BEYOND TRAIN SEQUENCE LENGTH)
We measure a model’s general language modeling capabilities first by assessing average per-token
perplexity (PPL) (Jelinek et al., 1977) on a set of benchmarks. We report PPL on the hold-out
validation set of SlimPajama (Soboleva et al., 2023), as well as Lambada (Paperno et al., 2016),
Wikitext-2 (Merity et al., 2016), PG19 (Rae et al., 2019), GovReport (Huang et al., 2021), and Qasper
(Dasigi et al., 2021) on the train sequence length and beyond. Because uniformly averaging over all
tokens might masquerade important differences between models, we additionally investigate average
per-token PPL conditional on sequence position. As we see below, this turns out to be a crucial factor
when comparing RNNs to transformers.

0 2k 4k 8k 16k 32k
Seq. Length

10

12

14

PP
L

HAWK
MAMBA2
GLA
XLSTM

DELTANET
GATED-DELTANET
MESA
HAWK-MESA

MHA-SWA-64
MHA-SWA-1024
MHA

Figure 4: Avg. Mean-so-Far PPL on 3 Long-
Context Benchmarks (WIKI, GOV, QASPER).

MesaNet is a strong language model early in se-
quences. When evaluating on the training sequence
length of 2048, MesaNet and Hawk-MesaNet outper-
form all recurrent baselines on all benchmarks on the
common metric of average per-token PPL (see Ta-
ble 2). MesaNet matches on average the performance
of the transformer baseline, while Hawk-MesaNet
even surpasses it. Notably, a SWA model with a win-
dow size of 1024 outperforms the majority of recurrent
baselines. However, attaining similar PPL scores does
not imply equivalent language modeling abilities at
different sequence lengths (Lin et al., 2025). Condi-
tioning on the token position, and assessing the NLL
difference relative to a transformer, reveals, surprisingly, that most recurrent layers exhibit superior
language modeling performance early in the sequence but fall behind later in the sequence (see
Figure 3). Recurrent models show especially strong performance on short sequences up to 64 tokens.
While Hawk exhibits the best performance up to this depth, the model exhibits a sharp performance
decline after that. This finding motivated us to introduce and investigate the Hawk-Mesa model,
which combines the best short-sequence and long-sequence modeling layers (as measured by negative
log-likelihood). Confirming this intuition, the Hawk-Mesa outperforms the remaining recurrent

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Reasoning Reasoning In-Context Scramble Translation
Global Local Recall 100-shot 50-shot
(Acc ↑) (Acc ↑) (Acc ↑) (Acc ↑) (bleu-sb ↑)

Hawk 37.42 50.04 21.29 4.70 3.51
Mamba2 37.58 48.19 32.21 3.38 2.55
GLA 39.45 48.86 36.50 5.06 2.57
xLSTM 38.97 48.90 34.89 5.56 2.74
DeltaNet 39.72 48.91 35.19 5.14 2.47
Gated DeltaNet 40.19 49.10 35.96 6.17 2.98
Mesa 40.88 49.64 39.30 6.22 3.83
Hawk-Mesa 40.13 49.53 36.23 5.19 3.25

SWA-4 28.63 48.20 9.79 0.82 0.14
SWA-64 38.17 48.76 24.84 3.66 2.59
SWA-1024 41.30 48.84 38.21 5.43 5.65

Transformer 42.15 48.80 49.95 6.01 5.89

(a) 400M Params, 50B Tokens

Model Reasoning Reasoning In-Context Scramble Translation
Global Local Recall 100-shot 50-shot
(Acc ↑) (Acc ↑) (Acc ↑) (Acc ↑) (bleu-sb ↑)

Hawk 41.17 51.57 25.04 6.49 4.73
Mamba2 41.62 50.51 37.67 4.19 4.18
GLA 44.34 51.44 39.64 7.29 7.58
xLSTM 42.99 51.50 39.25 7.78 7.68
DeltaNet 43.86 51.58 40.46 7.93 5.37
Gated DeltaNet 44.84 50.76 39.54 8.90 8.53
Mesa 45.03 50.49 41.79 10.10 8.17
Hawk-Mesa 44.62 51.51 39.99 8.61 8.81

SWA-4 31.20 49.62 11.87 1.66 0.51
SWA-64 42.33 50.52 26.72 5.91 4.70
SWA-1024 45.68 51.35 40.84 6.66 14.17

Transformer 45.54 51.62 52.27 6.98 13.61

(b) 1B Models, 50B Tokens

Table 3: Grouped Benchmark Scores (↑) on models trained on 50B Tokens from SlimPajama with a
context length of 2048. We compare the aggregated performance of models with Linearized Recurrent Unit,
Gated Linearized Multi-Head Attention, DeltaNet and MESA layers on 5 different subsets of benchmarks. As a
reference, we show the performance of Sliding Window-Attention models (SWA) with varying window sizes.

models, with the MesaNet being second best: MesaNet and Hawk-MesaNet not only attain the
strongest early-in-the-sequence modeling ability, but also extend the advantage beyond a depth of
512 tokens.

MesaNet is competitive on length extrapolation with recurrent baselines, but SWA-1024 is
a hard-to-beat baseline. Next, we evaluate the ability to extrapolate to sequences of up to 32k
tokens (see Figure 4). While transformer, Mamba2, DeltaNet and HawkMesa fail to extrapolate catas-
trophically to longer sequences on all evaluated benchmarks, MesaNet exhibits length-extrapolation
capabilities superior to Hawk, GLA, xLSTM and on-par with Gated DeltaNet on all evaluated long-
sequence benchmarks with respect to PPL scores (aggregated and conditional on token positions).
However, these results should be tempered by the fact that a SWA model with an attention window
of 1024 attains competitive benchmark scores, even superior at a sequence length of 32k on some
benchmarks. This finding is in line with recent criticism that PPL may not distinguish a model’s
ability to capture local vs. long-range dependencies between tokens (Hu et al., 2024; Fang et al.,
2024). We refer to Section L for detailed score breakdown and results on the Needle-in-the-haystack
(NIAH) benchmark (Hsieh et al., 2024), where MesaNet shows strong performance.

4.2 LANGUAGE BENCHMARKS

We next evaluate MesaNet’s capabilities on a comprehensive set of downstream tasks, ranging
across zero-shot reasoning, in-context recall and in-context learning tasks. We evaluate on various
benchmarks considered in prior work (Gu & Dao, 2024; Yang et al., 2024a; Beck et al., 2024),
and complement them with few-shot learning tasks involving token-manipulation and translation.
We present the aggregated results of 400M and 1B models trained on 50B tokens in ??, and report
detailed scores in Section L. Across most evaluated benchmarks, the MesaNet matches or exceeds
the performance of the evaluated recurrent baselines.

Zero-Shot Common-Sense Reasoning Performance: Transformers & MesaNet ≥ other RNNs.
Prior work (Gu & Dao, 2024; Yang et al., 2024a; Behrouz et al., 2024; Beck et al., 2024) commonly
reports the average performance of a set of common-sense reasoning benchmarks to compare models.
However, evaluations of SWA models with different window sizes reveal that competitive, or even
superior, scores on many of these frequently reported benchmarks can be attained with attention
window size as short as 4 (see Table 13). This observation strongly indicates that some of these
benchmarks are exploitable by short-range language heuristics, and do not require longer-range
language modeling capabilities to reach competitive scores, or are simply too hard such that we end
up measuring noise. To reduce the potential benchmark noise and deconfound the results, we hence
report the zero-shot reasoning benchmarks in two separate splits:

• The Global Reasoning Benchmark Set encompasses all benchmarks where we observe a signifi-
cant performance increase with a growing attention window size. This includes Lambada (Paperno
et al., 2016), HellaSwag (Zellers et al., 2019) and RACE-{M,H} (Lai et al., 2017). Within both
reported model sizes (400M and 1B), MesaNet outperforms all other recurrent models on average
on these benchmarks. However, MesaNet still underperforms the transformer baseline.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

• The Local Reasoning Benchmark Set includes all benchmarks where we see little to marginal
improvement with a growing attention window size. This includes PIQA (Bisk et al., 2020),
WinoGrande (Sakaguchi et al., 2021), ARC-{E,C} (Clark et al., 2018), SIQA (Sap et al., 2019),
BoolQ (Clark et al., 2019), OpenBookQA (Mihaylov et al., 2018) and StoryCloze (Srinivasan et al.,
2018). Unsurprisingly, we observe very similar average scores for all models. Notably, Hawk, the
worst performing recurrent model on global reasoning and in-context recall benchmarks, shows
excellent performance on this benchmark subset. This observation supports the hypothesis that these
subsets of benchmarks are likely to measure different capabilities, and highlights the differences
between Hawk to e.g. the MesaNet. These analyses motivate the recurrent hybrid Hawk-Mesa
model, which tries to capitalize on the complimentary strengths of the two layers.

In-Context Recall Performance: Transformers > MesaNet ≥ other RNNs. To gauge the ability
to recall in-context information, we follow Arora et al. (2024) and Yang et al. (2024a) and evaluate
models on SWDE (Lockard et al., 2019), SQUAD (Rajpurkar et al., 2016), FDA (Arora et al., 2023b),
TQA (Kembhavi et al., 2017), NQ (Kwiatkowski et al., 2019) and DROP (Dua et al., 2019). We
adopt the minimal-transformed versions of the benchmarks from Arora et al. (2024) that adjust for the
evaluation of non-instruction-tuned models. In line with the observations on synthetic benchmarks
in Section K, MesaNet outperforms all other recurrent models on these tasks. Moreover, MesaNet
exceeds the performance of a SWA-1024, the only recurrent model to do so. However, there remains
a gap in performance relative to the transformer baseline with an attention window size of 2048.

Few-Shot Learning Performance: Transformers & MesaNet > other RNNs. Finally, we measure
the model’s ability to learn from few-shot demonstrations. We evaluate on two GPT3 word scrambling
tasks (cycle letters in word, anagrams of all but first and last two characters) (Brown et al., 2020b) and
three translation tasks (WMT-14 FR-EN (Bojar et al., 2014) , WMT-16 DE-EN and RO-EN (Bojar
et al., 2016)). MesaNet demonstrates strong performance on all few-shot learning tasks. While it
exceeds the performance of the Transformer on word scrambling tasks, it fails to do so in translations.

5 TEST-TIME COMPUTE ANALYSIS

0 20 40
Accuracy

=1e-2
=1e-3
=1e-4
=1e-5
CG=0
CG=1
CG=5

CG=10
CG=20
CG=30

44.13
44.79
45.03
45.02

21.37
29.10

43.62
45.25
45.09
45.03

Reasoning
(Global, 0-shot)

0 20 40
Accuracy

49.91
50.39
50.40
50.46

37.50
47.65
50.00
50.42
50.54
50.49

Reasoning
(Local, 0-shot)

0 20 40
Accuracy

39.76
41.97
41.96
42.06

33.46
41.96
41.76
41.79

In-Context Recall

0 2k 4k 8k
Seq. Length

0.00

0.02

0.04

0.06

 M
ea

n-
so

-fa
r N

LL
 to

 C
G=

30

0 2k 4k 8k
Seq. Length

-1e-4

0

1e-4

0 2k4k 8k
Seq. Length

4

6

8

10

Av

g.
 C

G
St

ep
s

=3e-2
=1e-2

=1e-3
=1e-4

=1e-5
CG=4

CG=5
CG=6

CG=7
CG=10

CG=20
CG=30

Figure 5: Effect of Number of Conjugate Gradient (CG) Steps on SlimPajama Perplexity within and
beyond train context length. We show here the effect of reducing the number of CG steps during inference on
token perplexity across token position of a 1B MesaNet trained on 50B tokens. We either use a fixed number CG
steps uniformly across the model or apply a dynamic stopping criterion ϵ > 0.

In the previous section we showed results from models trained and evaluated with 30 CG steps. We
study now the effect of using the MesaNet trained on 30 CG steps but evaluate the model when using
a dynamic stopping criterion aiming to reducing the CG steps used at inference time. We refer again
to Appendix C for a description of the CG method used in this work.

Mesa objectives differ widely across heads and layers. When analysing the internals of the Mesa
layer on sequences of the SlimPajama validation set, we observe a bimodal distribution of condition
numbers of Hh,t +Λh across heads almost in every layer, see Figure 14. In particular, we observe
that heads either have 1) large and growing condition number with sequence length, or 2) rather low
and constant condition number over the sequence. In every layer, there are roughly 1-2 heads for
which the condition number of linsolve(Hh,t + Λh, qh,t) (and therefore the number of CG steps)
grows with t. This motivates dynamic allocation of CG steps in every head.

MesaNets allocate test-time compute dynamically. We test 1) reducing the number of CG steps of
all layers and heads uniformly, and 2) varying the solver’s stopping criterion ϵ to dynamically allocate
test-time compute. As shown in Figure 7, when reducing CG steps uniformly, we observe an increase
in negative log-likelihood when comparing to our model evaluated with 30 steps, especially on tokens
later in the sequence. This is in line with our findings on the need for higher number of steps as t

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

grows. By contrast, with a dynamic stopping criterion ϵ, increasing ϵ yields a uniform degradation
over sequence length. A model with a stopping criterion of ϵ = 10−4 performs on-par with the base
model using a fixed number of 30 CG steps, while reducing the average CG steps used to ≈ 9.

6 DISCUSSION

We present a chunkwise parallelized, numerically stable version of the Mesa layer (von Oswald et al.,
2024), and scale it up to 1B parameter language models. This layer generates a prediction by solving
an optimization problem, which yields a linear model that best fits a given sequence. Our Mesa layer
can allocate test-time compute dynamically according to the stopping criterion. Complex sequences
are then modeled by many of such layers, while interleaving them with MLPs, into MesaNets.

This approach has ties to multiple long-running lines of research. It relates to alternatives to end-
to-end differentiation based on stacks of greedy local learners (e.g., Hinton et al., 2006; Nøkland &
Eidnes, 2019; Veness et al., 2021), bringing these to the fast inference timescale, and then delegating
to nonlocal backpropagation-based learning the role of determining which optimization problems
must be solved at inference time. This in turn relates to mesa-optimization (Hubinger et al., 2019),
since test-time optimization objectives (though not the optimizers themselves) are discovered by
(base) sequence prediction loss optimization. The idea of specifying the output of a neural layer
through an optimization problem is an old one (Amos & Kolter, 2017; Gould et al., 2021), with roots
at least to energy-based neural models (Hopfield, 1984). Finally, the Mesa layer is perhaps most
related to fast weights of Schmidhuber (1992), replacing Hebbian with locally-optimal learning.

The Mesa layer extends state-of-the-art recurrent language models such as Mamba (Gu & Dao,
2024), RWKV (Peng et al., 2023), xLSTM (Beck et al., 2024), and (Gated) DeltaNet (Schlag et al.,
2021a; Yang et al., 2024c;a), which can also be motivated by an in-context regression loss, but update
their fast weights with a slower GD process. In a new in-depth evaluation, we show that RNNs, in
particular MesaNets, outperform transformers significantly early in sequences, while underperforming
in next-token prediction and benchmark performance when longer contexts are needed. It should
be stressed that it is exactly in the long-context regime, however, that RNNs show advantages over
transformers in terms of inference time. In our view, these observations merit further investigation,
and may serve as the starting point for novel RNN scaling law analyses.

The biggest shortcoming of the MesaNet in its current form is the increase in test-time compute
despite its dynamic nature. One possible way around this may lie on the findings of Figure 14,
where we see that heads which require more CG steps often do not forget, i.e. γ ≈ 1 irrespective of
the input data. This motivates leveraging the similarity of solutions from neighboring time steps,
to warm-start optimization of consecutive steps. Moreover, one could envision a hybrid approach
where the chunkwise parallel CG method introduced in this paper is used during training, while then
reverting back to using the efficient Sherman-Morrison recursion at inference time, which could work
given the almost-no-forgetting γ ≈ 1 condition. We point to additional discussion points in Appendix
J and leave investigating these directions for future work.

REPRODUCIBILITY STATEMENT

We provide pseudocode for the conjugate-gradient implementation of the Mesa layer in Section C and
Section D, and provide detailed descriptions regarding numerical precision in Section G.5. All other
important aspects for training (e.g. tokenizer, data, context length) are given in Section 4. We will
furthermore, upon publication, provide a triton-based open source implementation of the MesaNet and
Mesa layer, as well as educational colab notebooks to further ease reproduction and experimentation
with our layer and models. Moreover, we focused not only on improving the numbers of our proposed
method but scanned hyperparameters of the related works extensively (see Section E). Lastly, we
focused on an apples-to-apples comparison between methods by using the exact same backbone
while only varying the sequence layer.

REFERENCES

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Architec-
tures and algorithms, 2024. URL https://arxiv.org/abs/2401.12973.

10

https://arxiv.org/abs/2401.12973

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, 2017.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
and Christopher Ré. Zoology: Measuring and improving recall in efficient language models. arXiv
preprint arXiv:2312.04927, 2023a.

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel, Immanuel Trummer,
and Christopher Ré. Language models enable simple systems for generating structured views of
heterogeneous data lakes. arXiv preprint arXiv:2304.09433, 2023b.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance the
recall-throughput tradeoff. arXiv preprint arXiv:2402.18668, 2024.

Jimmy Ba, Geoffrey E. Hinton, Volodymyr Mnih, Joel Z. Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. In Advances in Neural Information Processing Systems,
volume 29, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 2019.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael K Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM:
Extended long short-term memory. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=ARAxPPIAhq.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time, 2024.
URL https://arxiv.org/abs/2501.00663.

Ali Behrouz, Zeman Li, Praneeth Kacham, Majid Daliri, Yuan Deng, Peilin Zhong, Meisam Raza-
viyayn, and Vahab Mirrokni. Atlas: Learning to optimally memorize the context at test time. arXiv
preprint arXiv:2505.23735, 2025a.

Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. It’s all connected: A journey
through test-time memorization, attentional bias, retention, and online optimization. arXiv preprint
arXiv:2504.13173, 2025b.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi,
Alham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, et al. Lessons from
the trenches on reproducible evaluation of language models. arXiv preprint arXiv:2405.14782,
2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
2020.

Ond rej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias
Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri,
Aurelie Neveol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia
Specia, Marco Turchi, Karin Verspoor, and Marcos Zampieri. Findings of the 2016 conference
on machine translation. In Proceedings of the First Conference on Machine Translation, pp.
131–198, Berlin, Germany, August 2016. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/W/W16/W16-2301.

11

https://openreview.net/forum?id=ARAxPPIAhq
https://arxiv.org/abs/2501.00663
http://www.aclweb.org/anthology/W/W16/W16-2301

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Ale s Tamchyna. Findings of the 2014 workshop on statistical machine translation.
In Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 12–58, Baltimore,
Maryland, USA, June 2014. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology/W/W14/W14-3302.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020a.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, 2020b.

Ryan Burnell, Wout Schellaert, John Burden, Tomer D Ullman, Fernando Martinez-Plumed, Joshua B
Tenenbaum, Danaja Rutar, Lucy G Cheke, Jascha Sohl-Dickstein, Melanie Mitchell, et al. Rethink
reporting of evaluation results in ai. Science, 380(6641):136–138, 2023.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans
(eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association for Computational Linguistics.
doi: 10.3115/v1/D14-1179. URL https://aclanthology.org/D14-1179/.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy
Colwell, and Adrian Weller. Rethinking attention with performers. In International Conference of
Learning Representations, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Kevin Clark, Kelvin Guu, Ming-Wei Chang, Panupong Pasupat, Geoffrey Hinton, and Mohammad
Norouzi. Meta-learning fast weight language models. In Yoav Goldberg, Zornitsa Kozareva,
and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 9751–9757, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.661. URL
https://aclanthology.org/2022.emnlp-main.661/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality, 2024. URL https://arxiv.org/abs/2405.21060.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins,

12

http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
https://aclanthology.org/D14-1179/
https://aclanthology.org/2022.emnlp-main.661/
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2405.21060

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas, and Caglar
Gulcehre. Griffin: mixing gated linear recurrences with local attention for efficient language
models, February 2024. URL http://arxiv.org/abs/2402.19427. arXiv:2402.19427
[cs].

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers, 2019. URL https://arxiv.org/abs/1807.03819.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng Zhang, Stefanie Jegelka, Jinyang Gao, Bolin
Ding, and Yisen Wang. What is wrong with perplexity for long-context language modeling? arXiv
preprint arXiv:2410.23771, 2024.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry
hungry hippos: towards language modeling with state space models. In International Conference
of Learning Representations, 2023.

Marta Garnelo and Wojciech Marian Czarnecki. Exploring the space of key-value-query models with
intention. arXiv preprint arXiv:2305.10203, 2023.

Carl Friedrich Gauss. Theoria combinationis observationum: erroribus minimis obnoxiae. Societas
Regia Scientiarum Gottingensis, 1821.

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit
models. In Proceedings of the 35th International Conference on Neural Information Processing
Systems, NIPS ’21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

F.A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction with LSTM. In
1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No.
470), volume 2, pp. 850–855 vol.2, 1999. doi: 10.1049/cp:19991218.

Stephen Gould, Richard Hartley, and Dylan John Campbell. Deep declarative networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

Alex Graves. Adaptive computation time for recurrent neural networks, 2017. URL https:
//arxiv.org/abs/1603.08983.

Riccardo Grazzi, Julien Siems, Jörg K.H. Franke, Arber Zela, Frank Hutter, and Massimiliano
Pontil. Unlocking state-tracking in linear RNNs through negative eigenvalues. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=UvTo3tVBk2.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskw1VY2.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining Recurrent, Convolutional, and Continuous-time Models with Linear State Space Layers.
In Advances in Neural Information Processing Systems, volume 34, pp. 572–585. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
05546b0e38ab9175cd905eebcc6ebb76-Abstract.html.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The International Conference on Learning Representations (ICLR), 2022.

Donald O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Wiley, New York,
1949.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs), 2023. URL https:
//arxiv.org/abs/1606.08415.

13

http://arxiv.org/abs/2402.19427
https://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1603.08983
https://arxiv.org/abs/1603.08983
https://openreview.net/forum?id=UvTo3tVBk2
https://openreview.net/forum?id=UvTo3tVBk2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

John Hertz, Richard G. Palmer, and Anders S. Krogh. Introduction to the Theory of Neural Computa-
tion. Perseus Publishing, 1st edition, 1991.

Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 49(6):409–436, 1952.

Geoffrey Hinton, Simon Osindero, and Yee Whye Teh. A Fast Learning Algorithm for Deep Belief
Nets. Neural Computation, 18:1527–1554, 2006.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997. URL http://dblp.uni-trier.de/db/journals/neco/neco9.
html#HochreiterS97.

John J Hopfield. Neurons with graded response have collective computational properties like those of
two-state neurons. Proceedings of the National Academy of Sciences, 81(10):3088–3092, 1984.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Yutong Hu, Quzhe Huang, Mingxu Tao, Chen Zhang, and Yansong Feng. Can perplexity reflect large
language model’s ability in long text understanding? arXiv preprint arXiv:2405.06105, 2024.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 9099–9117. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/hua22a.html.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for long
document summarization. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 1419–1436,
Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.
112. URL https://aclanthology.org/2021.naacl-main.112.

Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott Garrabrant. Risks from
learned optimization in advanced machine learning systems. arXiv preprint 1906.01820, 2019.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of the Acoustical Society of America, 62(S1):
S63–S63, 1977.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: fast autoregressive transformers with linear attention. In International Conference on
Machine Learning, 2020.

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, Jonghyun Choi, Ali Farhadi, and Hannaneh
Hajishirzi. Are you smarter than a sixth grader? textbook question answering for multimodal
machine comprehension. In Proceedings of the IEEE Conference on Computer Vision and Pattern
recognition, pp. 4999–5007, 2017.

Teuvo Kohonen and Matti Ruohonen. Representation of associated data by matrix operators. IEEE
Transactions on Computers, 100(7):701–702, 1973.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation of neural
sequence models. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 2766–2775. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
krause18a.html.

14

http://dblp.uni-trier.de/db/journals/neco/neco9.html#HochreiterS97
http://dblp.uni-trier.de/db/journals/neco/neco9.html#HochreiterS97
https://proceedings.mlr.press/v162/hua22a.html
https://aclanthology.org/2021.naacl-main.112
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://proceedings.mlr.press/v80/krause18a.html
https://proceedings.mlr.press/v80/krause18a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators. Journal of Research of the National Bureau of Standards, 45(4):
255–282, 1950.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, maxime gazeau, Himanshu
Sahni, Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm
distillation. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=hy0a5MMPUv.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems, 2024. URL https://arxiv.org/abs/2402.12875.

Zhixuan Lin, Evgenii Nikishin, Xu Owen He, and Aaron Courville. Forgetting transformer: Softmax
attention with a forget gate. arXiv preprint arXiv:2503.02130, 2025.

Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, and qiang liu. Longhorn: State space
models are amortized online learners. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=8jOqCcLzeO.

Colin Lockard, Prashant Shiralkar, and Xin Luna Dong. Openceres: When open information extrac-
tion meets the semi-structured web. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pp. 3047–3056, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence of Learning Representations, 2019.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=NjNGlPh8Wh.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models,
2025. URL https://arxiv.org/abs/2404.08819.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Černocký, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Proceedings of Interspeech 2010, pp. 1045–1048, 2010.
doi: 10.21437/Interspeech.2010-343.

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In
International Conference on Machine Learning, 2019.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

15

https://openreview.net/forum?id=hy0a5MMPUv
https://arxiv.org/abs/2402.12875
https://openreview.net/forum?id=8jOqCcLzeO
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://arxiv.org/abs/2404.08819

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Leon Derczynski, Xingjian Du, Matteo Grella, Kranthi Gv,
Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartłomiej Koptyra,
Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song,
Xiangru Tang, Johan Wind, Stanisław Woźniak, Zhenyuan Zhang, Qinghua Zhou, Jian Zhu, and
Rui-Jie Zhu. RWKV: Reinventing RNNs for the transformer era. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 14048–14077, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.936. URL https://aclanthology.org/2023.
findings-emnlp.936/.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong.
Random Feature Attention, March 2021. URL http://arxiv.org/abs/2103.02143.
arXiv:2103.02143 [cs].

Michael Poli, Armin W. Thomas, Eric Nguyen, Pragaash Ponnusamy, Björn Deiseroth, Kristian
Kersting, Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Ré, Ce Zhang, and Stefano Massaroli.
Mechanistic design and scaling of hybrid architectures. In ICML, 2024. URL https://
openreview.net/forum?id=GDp7Gyd9nf.

Matt Post. A call for clarity in reporting BLEU scores. In Ondřej Bojar, Rajen Chatterjee, Christian
Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes,
Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia
Specia, Marco Turchi, and Karin Verspoor (eds.), Proceedings of the Third Conference on Machine
Translation: Research Papers, pp. 186–191, Brussels, Belgium, October 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-6319. URL https://aclanthology.
org/W18-6319/.

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei, Baohong
Lv, Xiao Luo, Yu Qiao, and Yiran Zhong. Transnormerllm: A faster and better large language
model with improved transnormer, 2024. URL https://arxiv.org/abs/2307.14995.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8), 2018.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Amal Rannen-Triki, Jorg Bornschein, Razvan Pascanu, Marcus Hutter, Andras György, Alexandre
Galashov, Yee Whye Teh, and Michalis K. Titsias. Revisiting dynamic evaluation: Online adapta-
tion for large language models, 2024. URL https://arxiv.org/abs/2403.01518.

Tanya Rodchenko, Natasha Noy, Nino Scherrer, and Jennifer Prendki. Not every ai problem is a data
problem: We should be intentional about data scaling. arXiv preprint arXiv:2501.13779, 2025.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Yash Sarrof, Yana Veitsman, and Michael Hahn. The expressive capacity of state space models: A
formal language perspective, 2024. URL https://arxiv.org/abs/2405.17394.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, 2021a.

Imanol Schlag, Tsendsuren Munkhdalai, and Jürgen Schmidhuber. Learning associative inference
using fast weight memory. In International Conference on Learning Representations, 2021b. URL
https://openreview.net/forum?id=TuK6agbdt27.

16

https://aclanthology.org/2023.findings-emnlp.936/
https://aclanthology.org/2023.findings-emnlp.936/
http://arxiv.org/abs/2103.02143
https://openreview.net/forum?id=GDp7Gyd9nf
https://openreview.net/forum?id=GDp7Gyd9nf
https://aclanthology.org/W18-6319/
https://aclanthology.org/W18-6319/
https://arxiv.org/abs/2307.14995
https://arxiv.org/abs/2403.01518
https://arxiv.org/abs/2405.17394
https://openreview.net/forum?id=TuK6agbdt27

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. Diploma thesis, Institut für Informatik, Technische Universität München,
1987.

Jürgen Schmidhuber. Learning to control fast-weight memories: an alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Mark Schöne, Babak Rahmani, Heiner Kremer, Fabian Falck, Hitesh Ballani, and Jannes Gladrow.
Implicit language models are RNNs: Balancing parallelization and expressivity, 2025. URL
https://arxiv.org/abs/2502.07827.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017.
URL https://arxiv.org/abs/1701.06538.

Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corresponding to a change
in one element of a given matrix. The Annals of Mathematical Statistics, 21(1):124–127, 1950.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel
Hestness, and Nolan Dey. SlimPajama: A 627B token cleaned and
deduplicated version of RedPajama. https://cerebras.ai/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Siddarth Srinivasan, Richa Arora, and Mark Riedl. A simple and effective approach to the story cloze
test. arXiv preprint arXiv:1803.05547, 2018.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to
(learn at test time): RNNs with expressive hidden states, 2025. URL https://arxiv.org/
abs/2407.04620.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models, 2023. URL
https://arxiv.org/abs/2307.08621.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Transformer dissection: a unified understanding of transformer’s attention via the lens
of kernel. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

17

https://arxiv.org/abs/2502.07827
https://arxiv.org/abs/1701.06538
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/2307.09288

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Joel Veness, Tor Lattimore, David Budden, Avishkar Bhoopchand, Christopher Mattern, Agnieszka
Grabska-Barwinska, Eren Sezener, Jianan Wang, Peter Toth, Simon Schmitt, et al. Gated linear
networks. In Proceedings of the AAAI conference on artificial intelligence, 2021.

Max Vladymyrov, Johannes von Oswald, Nolan Andrew Miller, and Mark Sandler. Efficient
linear system solver with transformers. In AI for Math Workshop @ ICML 2024, 2024. URL
https://openreview.net/forum?id=qc2adlhAWF.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, 2023.

Johannes von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind Niklas-
son, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Blaise Agüera y Arcas, Max
Vladymyrov, Razvan Pascanu, and João Sacramento. Uncovering mesa-optimization algorithms in
transformers, 2024. URL https://arxiv.org/abs/2309.05858.

Johannes von Oswald, Seijin Kobayashi, Yassir Akram, and Angelika Steger. Learning random-
ized algorithms with transformers. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=UV5p3JZMjC.

Ke Alexander Wang, Jiaxin Shi, and Emily B. Fox. Test-time regression: a unifying framework
for designing sequence models with associative memory, 2025. URL https://arxiv.org/
abs/2501.12352.

Jos Westhuizen and Joan Lasenby. The unreasonable effectiveness of the forget gate. arXiv preprint
arXiv:1804.04849, 2018.

Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. In IRE WESCON convention
record, volume 4, 1960.

Songlin Yang and Yu Zhang. FLA: a triton-based library for hardware-efficient implemen-
tations of linear attention mechanism, 2024. URL https://github.com/fla-org/
flash-linear-attention.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule. arXiv preprint arXiv:2412.06464, 2024a.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In Proceedings of ICML, 2024b.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024c. URL https://openreview.net/forum?id=
y8Rm4VNRPH.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization. In Advances in Neural
Information Processing Systems 32, Vancouver, Canada, 2019. URL https://openreview.
net/references/pdf?id=S1qBAf6rr.

Yu Zhang, Songlin Yang, Ruijie Zhu, Yue Zhang, Leyang Cui, Yiqiao Wang, Bolun Wang, Freda Shi,
Bailin Wang, Wei Bi, Peng Zhou, and Guohong Fu. Gated slot attention for efficient linear-time
sequence modeling. In Proceedings of NeurIPS, 2024.

18

https://openreview.net/forum?id=qc2adlhAWF
https://arxiv.org/abs/2309.05858
https://openreview.net/forum?id=UV5p3JZMjC
https://arxiv.org/abs/2501.12352
https://arxiv.org/abs/2501.12352
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://openreview.net/forum?id=y8Rm4VNRPH
https://openreview.net/forum?id=y8Rm4VNRPH
https://openreview.net/references/pdf?id=S1qBAf6rr
https://openreview.net/references/pdf?id=S1qBAf6rr

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A RELATED WORK

Linear Attention. As already described above, Tsai et al. (2019) demonstrated that the softmax
attention mechanism can be linearized by replacing the softmax kernel κ(k, q) = exp(kT q) with a
surrogate kernel κ′ = ⟨σ(k), σ(q)⟩. The resulting linear attention mechanism iteratively accumulates
the outer product of key-value pairs into a recurrent state that is queried at each step, resembling
RNNs (Katharopoulos et al., 2020). Since then, numerous works have proposed different designs
of the feature map σ(·) (Katharopoulos et al., 2020; Choromanski et al., 2021; Schlag et al., 2021a;
Peng et al., 2021; Sun et al., 2023; Dao & Gu, 2024) and key-value normalization (Yang et al.,
2024c; Schlag et al., 2021a; Sun et al., 2023). Notably, a more general form of (unnormalized) linear
attention was introduced in the early ‘90s as Fast Weight Programmers (Schmidhuber, 1992; Schlag
et al., 2021a; Ba et al., 2016), connected to Meta-Learning (Schmidhuber, 1987).

Test-time regression. Contrary to softmax attention, linear attention variants are only capable of
storing a finite number of key-value associations. Given key dimension dkey, there exist at most dkey
orthogonal keys, and therefore, retrieval beyond dkey tokens cannot be error-free. Inspired by the
error-correcting delta rule (Widrow & Hoff, 1960), Schlag et al. (2021b;a) proposed to interpolate
the value with the previously stored association, yielding the DeltaNet. The DeltaNet update rule is
equivalent to performing a gradient descent step with respect to the recurrent state Φ on ||Φkt − vt||2.
Yang et al. (2024a) demonstrated that the DeltaNet is parallelizable and achieved strong language
modeling performance when embedded into a modern architecture. Motivated this online regression
loss, other works derived the same update rule as the DeltaNet. Instead of a parallel implementation,
Liu et al. (2025) approximate the update with a diagonal matrix, while Sun et al. (2025) perform the
DeltaNet update on a per-chunk basis, implicitly performing batched gradient descent. Building on
this, Titans (Behrouz et al., 2024) adds momentum to the batched gradient descent update. Wang
et al. (2025); Behrouz et al. (2025b) unify numerous efficient foundation models from the perspective
of test-time regression. Extending Titans, concurrent follow-up work Atlas Behrouz et al. (2025a)
is effectively a sliding-window variant of the Mesa layer. It is worth highlighting that this line of
research is an instance of Dynamic Evaluation (Mikolov et al., 2010; Krause et al., 2018; Clark et al.,
2022; Rannen-Triki et al., 2024), where model weights are updated at test time via gradient descent
steps on a prediction loss.

Models with recurrent depth. The MesaNet is related to a broader class of models building on
fixed point iterations. Universal Transformers (Dehghani et al., 2019) apply transformer blocks
iteratively, using Adaptive Computation Time (Graves, 2017) to make the number of recurrent steps
token-dependent. Deep Equilibrium Models (DEQs) (Bai et al., 2019) take this idea further by directly
solving the corresponding fixed point iteration using quasi Newton methods. More recently, Schöne
et al. (2025) introduced an implicit State Space Model that also relies on a fixed-point iteration, which
is trainable in parallel utilizing the Phantom Gradient technique (Geng et al., 2021). In contrast to
DEQ-style methods, the Mesa layer benefits from the linear structure of fast weight memory, which
allows for a more efficient optimization using conjugate gradient steps.

Linear RNNs with forgetting. Forget gates were first introduced by Gers et al. (1999) within the
framework of Long Short-Term Memory networks (LSTMs) (Hochreiter & Schmidhuber, 1997),
and have since become part of the standard LSTM architecture. Even more, studies on simplified
LSTM variants, such as the Gated Recurrent Unit (Cho et al., 2014), have shown the forget gate to be
fundamental for the effectiveness of recurrent sequence models (Westhuizen & Lasenby, 2018).

Compared to LSTMs, modern linear attention variants have adopted more coarse grained forgetting
mechanisms on the matrix-valued recurrent state. RetNet (Sun et al., 2023) and TransNormerLLM
(Qin et al., 2024) both utilize a trainable decay factor on the recurrent matrix. More recent work
found that data-dependent forgetting improves language modeling performance, although the data
dependency is usually limited to the current input, but not the recurrent state, to allow for parallel
training. Using an input-dependent decay factor as in this work is the de-facto standard in modern
linear attention variants, such as Mamba-2 (Dao & Gu, 2024), xLSTM (Beck et al., 2024), and Gated
DeltaNet (Yang et al., 2024a). Gated Linear Attention (Yang et al., 2024b) opts for a data-dependent
decay vector, effectively using a separate forget gate for each row of the matrix-valued recurrent state.
Similarly, Gated Slot Attention (Zhang et al., 2024) applies separate input-dependent forget gates to
each row of both matrices of a fixed size Key-Value cache.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

State Space Models. State Space Models (SSMs) (Gu et al., 2021; 2022; Fu et al., 2023; Gu &
Dao, 2024) build upon first-order differential equations used to describe dynamical systems, which
are then discretized for sequence modeling. In linear time-invariant (LTI) SSMs, the recurrent state
can be obtained through a fixed linear combination of previous recurrent states, which allows for
a parallel mode using convolutions. Gu et al. (2022) identified the computation of the convolution
kernel as the primary bottleneck and proposed Structured State Space Models (S4), a parametrization
for LTI SSMs that enables efficient computation. Mamba (Gu & Dao, 2024) introduces selectivity to
State Space Models, making the recurrent state transitions dependent on the input. Since the resulting
time-varying SSM cannot leverage global convolutions, the authors propose a hardware-efficient
parallel scan implementation. Mamba-2 further constrains the transition matrix to scalar times
identity, and demonstrates that the resulting State Space Model is equivalent to (gated) linear attention
(Dao & Gu, 2024).

B DERIVATION OF PREVIOUS TEST-TIME TRAINING RULES

For completeness, we discuss in more detail the update rules for a number of closely related previous
sequence modeling layers discussed above and in the main text section 2. Like the Mesa layer, the
update rules of these models perform some form of test-time learning by optimizing a sequence of
objective functions (Lt′)

t
t′=1. We summarize in Table 4 the update rules and corresponding online

objective functions that we cover below.

Layer Objective function Update rule
GLA Lt = −v⊤t Φkt +

1−γt

2βt
Tr(ΦΦ⊤) Φt = Φt−1 − βt∇ϕLt(Φt−1)

DeltaNet Lt =
1
2∥vt − Φkt∥2 Φt = Φt−1 − βt∇ϕLt(Φt−1)

LongHorn Lt =
1
2 (vt−Φkt)

⊤ diag(βt)(vt−Φkt)
+ 1

2 Tr(Φ− Φt−1)
⊤(Φ− Φt−1)

Φt = argminΦ Lt(Φ)

Atlas Lt =
∑t

t′=t−c+1 ζtt′∥vt′ −MΦ(kt′)∥2 Φ̃t = θ̃tΦ̃t−1 +∇ΦLt(Φt−1)

Φt = γtΦt−1 − βtNewtonSchulzk(Φ̃t)
Mesa Lt =

1
2

∑t
t′=1 ζtt′ ||vt′ − Φkt′ ||2

+ 1
2 Tr(ΦΛtΦ

⊤)

Φt = argminΦ Lt(Φ)

Table 4: Overview of test-time training recurrent layers, whose update rules can be derived from an online
learning objective function.

GLA and DeltaNet update rules. For convenience, we first restate equation 3 below:

Lt(Φ) = lt(Φ) +
1

2
Tr(ΦΛtΦ

⊤). (11)

We show in detail how to obtain the basic GLA and DeltaNet update rules by letting Φt follow an
online gradient-based learning dynamics,

Φt = Φt−1 − βt∇ϕLt(Φt−1), (12)
where the input gate βt plays the role of a time-dependent step size.

For GLA, we choose lt to be the quadratic continuous-state Hopfield energy,

lt(Φ) = lHopfield
t (Φ) := −v⊤t Φkt,

and we set the quadratic regularizer to depend on the forget gate γt and input gate βt as follows:

Λt =
1− γt
βt

I.

Now, plugging lt and Λt into equation 12 yields

Φt = Φt−1 − βt∇ϕ

[
−v⊤t Φkt +

1− γt
2βt

Tr(ΦΦ⊤)

]∣∣∣∣∣
Φ=Φt−1

(13)

= Φt−1 − (1− γt)Φt−1 + βtvtk
⊤
t (14)

= γtΦt−1 + βtvtk
⊤
t , (15)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

which corresponds to gated linear attention as defined in the main text (equation 2).

To obtain DeltaNet, we choose instead lt to be the squared error loss,

lt(Φ) = lsq-err
t (Φ) :=

1

2
∥vt − Φkt∥2,

and we disable the regularizer (Λt = 0), as it was not included in the original DeltaNet model (Schlag
et al., 2021a). Performing again the same computation as above, but now with this squared error
online loss, yields the DeltaNet update:

Φt = Φt−1 − βt∇ϕ

[
1

2
∥vt − Φkt∥2

]∣∣∣∣∣
Φ=Φt−1

(16)

= Φt−1 + βt(vt − Φt−1kt)k
⊤
t . (17)

LongHorn update rule. Yet another recent method called LongHorn (Liu et al., 2025) can be
derived as online learning on a sequence of loss functions (lt). Its update rule can be derived by
minimizing an objective function:

Φt = argmin
Φ

LLongHorn
t (18)

= argmin
Φ

1

2
(vt − Φkt)

⊤ diag(βt)(vt − Φkt) +
1

2
Tr(Φ− Φt−1)

⊤(Φ− Φt−1), (19)

with βt now a vector of the same dimension as vt, instead of a scalar, determining an elementwise
squared error precision. The solution can be obtained in closed-form, following the derivation
provided in Appendix C of (Liu et al., 2025):

Φt = Φt−1 + diag(ϵt)(vt − Φt−1kt)k
⊤
t , (20)

with ϵti =
βti

1+βtik⊤
t kt

. This is a variant of DeltaNet with a particular diagonal input-dependent step
size that is both a function of kt and βt (which is chosen to be a vector in this model, as opposed to
the scalar gates used in our DeltaNet and in our current MesaNet implementation). For computational
efficiency, the actual implementation of LongHorn approximates the update above with a simpler
rule that makes use of elementwise multiplications, denoted here by ⊙:

Φt = (1− ϵt(kt ⊙ kt)
⊤)⊙ Φt−1 + (ϵt ⊙ vt)k

⊤
t , (21)

where ⊮ is a matrix of ones. Like the DeltaNet, the LongHorn objective still only takes into account
the instantaneous squared error for the current key-value pair, with an additional memory quadratic
potential pulling towards the previous solution to avoid forgetting it entirely through the full argmin.
By contrast, the Mesa layer explicitly optimizes the full forget-weighted sum of squared errors from
the beginning of the sequence until the present (t′ = 1 to t).

Omega/Atlas update rule. Concurrent work by Behrouz et al. (2025a) investigated online learning
layers that are intimately related to the Mesa layer. The paper focuses on a sliding window variant of
our objective function:

LOmega
t =

t∑
t′=t−c+1

ζtt′∥vt′ −MΦ(kt′)∥2, (22)

where c is the sliding window length, and ζtt′ determines the cumulative forget at time step t for the
past loss t′, as in the Mesa layer objective. The authors further allowMΦ to be a 1-hidden-layer
MLP with parameters Φ, similarly to (Sun et al., 2025), and unlike the Mesa layer, which derives a
specialized update exploiting the fact thatM is a linear model. Behrouz et al. (2025a) optimize the
sequence of loss functions (lt) online using a second-order Muon method (Jordan et al., 2024):

Φ̃t = θ̃tΦ̃t−1 +∇Φl
Omega
t (Φt−1), (23)

Φt = γtΦt−1 − βtNewtonSchulzk(Φ̃t), (24)

where NewtonSchulzk denotes the execution of k steps of the NewtonSchulz algorithm, Φ̃t is an
auxiliary momentum gradient accumulation state variable, and θ̃t is a dynamic (time-dependent)
momentum decay factor, which determines the retention of past accumulated gradients.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C RANK-ONE UPDATE CONJUGATE GRADIENT METHOD

In the next two sections, we describe how we can use the conjugate gradient method to obtain a
solution for (Ht +Λt)

−1qt = q∗t for many t in parallel. As we will discuss below, the aim is to show
how one can do this without materializing Ht for all time steps as this would lead to unnecessary
memory overhead, see Yang et al. (2024b) for a detailed discussion of this problem and a ”chunkwise
parallel” solution. We therefore aim to show here, as a starting point, how to compute q∗t without
materializing Ht = Ht−1γt + ktk

T
t and only relying on Ht−1 as well as on yt and kt. This will

eventually allow us, see the next Appendix section D, to compute and materialize Ht only every
T/C steps with train length T and chunksize C times, leading to a drastic decrease in memory
usage. We will do this while approximating Q∗

c = [q∗c+1, . . . , q
∗
c+C] numerically in parallel by only

materializing Hc where c ∈ {0, C, 2C, . . . T − C}.
We opted to initialize the conjugate gradient method with x← qt · diag(Ht + Λt)

−1 in this work.

Algorithm 1 Rank-One Update Conjugate Gradient Method

1: procedure RANKONECONJUGATEGRADIENT(Ht−1, γt, kt, qt, ϵ, kmax)
2: Input: Symmetric positive-definite matrix Ht−1 ∈ Rn×n, forget strength γt ∈ (0, 1), key

kt ∈ Rn, query qt ∈ Rn, tolerance ϵ > 0, maximum iterations kmax.
3: Output: Approximate solution x.

4: k ← 0
5: x← qt · diag(Ht−1 + Λt)

−1 ▷ Initial guess x ∈ Rn

6: r ← qt − (Ht−1γt + ktk
⊤
t + Λt)x ▷ Initial residual r

7: p← r ▷ Initial search direction p
8: δold ← rT r ▷ Squared norm of the initial residual
9: δ0 ← δold ▷ Store initial squared norm for relative tolerance

10: while k < kmax do ▷ Loop until max iterations reached
11: q ← (Ht−1γt + ktk

⊤
t + Λt)p ▷ Matrix-vector product (Ht−1γt + ktk

⊤
t + Λt)p

12: α← δold
pT q

▷ Step length α

13: x← x+ αp ▷ Update solution x
14: r ← r − αq ▷ Update residual r
15: δnew ← rT r ▷ Squared norm of the new residual, δnew

16: if
√
δnew ≤ ϵ

√
δ0 then ▷ Check relative convergence: ||rk+1|| ≤ ϵ||r0||

17: break ▷ Converged
18: end if

19: β ← δnew

δold
▷ Improvement factor β

20: p← r + βp ▷ Update search direction p
21: δold ← δnew ▷ Store new norm as old for next iteration
22: k ← k + 1 ▷ Increment iteration counter
23: end while

24: return x ▷ Return the approximate solution
25: end procedure

On top of Ht−1p, all other parts of the (Ht−1γt + ktk
T
t + Λt)p computation can be reduced to

one vector inner-product k⊤t p as well as element-wise products and a final addition of the results.
One can therefore approxiamte q∗t numerically without materializing Ht, which we will extend
in the following to chunks i.e. compute Q∗

c = [q∗c+1, . . . , q
∗
c+C] in parallel without explicitly

materializing Ht with c < t ≤ c+ C. This will become obvious after realizing that the computation
of (Ht−1γt + ktk

T
t + Λt)p is equivalent to GLA, therefore allowing for the chunkwise parrallel

computation proposed in Yang et al. (2024b) of GLA.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Note that the most flops during inference are spend in the matrix-vector product Htp where we apply
the CG method simply to (Ht + Λt)

−1qt (and not do not use the ”rank-one” update formulation
above) resulting in the O(kn2

a) of Table 5.

We refer to Appendix G.5 for further details about numerical precisions considerations within our
CG solver.

D CHUNKWISE PARALLEL FORM OF GATED LINEAR ATTENTION AND THE
MESA LAYER

Mesa layer forward pass. The main Mesa recurrence (Equation 7) can be rewritten as follows,
considering only one head and assuming without loss of generality that input gates are absorbed in
keys and values:

Ht = Ht−1γt + ktk
⊤
t

Gt = Gt−1γt + vtk
⊤
t

q∗t = (Ht + Λ)−1qt

ot = Gtq
∗
t

(25)

Note that Ht is symmetric, and Λ is symmetric positive definite, so Ht + Λ is also symmetric. Let’s
define

ζts =

{∏t
i=s+1 γi if t ≥ s

0 otherwise

with which the computation of ot (unrolling the definition of Gt) has the following form:

ot =

t∑
i=1

ζtivik
⊤
i q

∗
t . (26)

To connect to Section 2 where the Mesa layer is defined through a set of optimized linear model fast
weights Φ, we note that this is equivalent to minimizing the following objective w.r.t. Φ,

Φ̂mesa
t = argmin

Φ

1

2

t∑
i=1

ζti||vi − Φki||2 +
1

2
Tr(ΦΛΦ⊤), (27)

and then computing the output through ot = Φ̂mesa
t qt.

To see why this is the case, let us compute the stationarity condition

∇Φ

[
1

2

t∑
i=1

ζti||vi − Φki||2 +
1

2
Tr(ΦΛΦ⊤)

]
= 0 (28)

⇐⇒ ΦΛ−
t∑

i=1

ζti(vi − Φki)k
⊤
i = 0 (29)

⇐⇒ ΦΛ−
t∑

i=1

(ζtivik
⊤
i − Φζtikik

⊤
i) = 0 (30)

⇐⇒ ΦΛ+ ΦK̃tK̃
⊤
t = ṼtK̃

⊤
t (31)

⇐⇒ Φ = ṼtK̃
⊤
t (K̃tK̃

⊤
t + Λ)−1 (32)

⇐⇒ Φ =

(
t∑

i=1

ζtivik
⊤
i

)(
t∑

i=1

ζtikik
⊤
i + Λ

)−1

. (33)

To simplify the calculation we introduced the auxiliary matrix variables Ṽt and K̃t, which absorbed
square roots of the cumulative forget factors ζt. We denote the above (unique, for Λ > 0) solution by
Φmesa

t .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Now, the recurrence relation for the state variable Ht can be solved analytically, yielding

Ht = γtHt−1 + ktk
⊤
t =

t∑
i=1

 t∏
j=i+1

γj

 kik
⊤
i =

t∑
i=1

ζtikik
⊤
i , (34)

assuming H0 = 0. The same holds for the other state variable, Gt = γtGt−1 + vtk
⊤
t =∑t

i=1 ζtivik
⊤
i .

Therefore, as claimed, we recover equation 25:

ot = Φ̂mesa
t qt (35)

=

(
t∑

i=1

ζtivik
⊤
i

)(
t∑

i=1

ζtikik
⊤
i + Λ

)−1

qt (36)

= Gt(Ht + Λ)−1qt (37)
= Gtq

∗
t . (38)

Chunkwise form. We remark that if q∗t is given, this computation is equivalent to a Gated Linear
Attention (GLA) layer Yang et al. (2024b), and thus can be efficiently computed on GPUs and TPUs
by splitting the sequence in blocks of opportune sizes C resulting in a “chunkwise parallel” form of
the layer. In short, given Gc, where c ∈ {0, C, . . . , T − C} dividing the training sequence length T
in T/C chunks of size C, we can compute the output at time c < t ≤ c+ C as

ot = (Gc +

t∑
i=c+1

ζtivik
⊤
i)q

∗
t = Gcq

∗
t +

t∑
i=c+1

ζtivik
⊤
i q

∗
t (39)

Similar to softmax self-attention, this computation can be done in parallel for t ∈ {c+ 1, ...c+ C}
which becomes clearer when using matrix notation

Oc = GcQ
∗
c + Vc(Zc ⊙ (K⊤

c Q∗
c)) (40)

where Kc = [kc, ..., kc+C] and Oc, Vc, Q
∗
c accordingly. Zc is a upper triangular matrix of size

C × C with Zc[i, j] = ζc+j,c+i. Please see for Triton-based implementation of this chunked parallel
formulation of GLA at https://github.com/fla-org/flash-linear-attention.

We differ from GLA as the Mesa layer replaces qt which is the standard query qt = Wqet by
q∗t = (Ht + Λ)−1qt which, as we alluded to above, can as well be computed equivalently to
GLA in chunkwise parallel form. Indeed, as shown in the previous section, the conjugate gradient
method relies purely on simple vector additions and multiplications which can be trivially realized in
chunkwise parallel form without extensive memory overhead, with the exception of (Ht +Λ)p. This
operation suffers from the same memory problems as a naive GLA layer implementation as storing
Ht for all time steps is costly which we therefore wish to circumvent. Fortunately, this can easily be
done with the exact same chunkwise parallel trick just discussed, which we now leverage to compute

(Ht + Λ)p = Htp+ Λ · p =

t∑
i=1

ζtikik
⊤
i p+ Λ · p. (41)

which is required in the conjugate gradient algorithm.

Note that the first term
∑t

i=1 ζtikik
⊤
i p is in an equivalent form of GLA (by replacing vi with ki) for

which we just established that a fast chunkwise parallel formulation exist, if we again store only some
intermediate states Hc. We conclude that the computation of q∗t = (Ht +Λ)−1qt and therefore the
whole Mesa layer can be approximated by repeatedly applying a in chunkwise parallel computation
leveraging matrix-matrix accelerators on GPUs or TPUs.

Mesa layer backward pass: Let et be the error coming from future layers at time t and L be the
final loss. Then we have the following:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

e∗t = (Ht + Λ)−1G⊤
t et

dL

dqt
=

dot
dqt

et = e∗t

dL

dΛt,i
=

dot
dΛt,i

et = −q∗t,ie∗t,i

dot
dvs

et = etζtsk
⊤
s (Ht + Λ)−1qt

dL

dvs
=
∑
t≥s

ζtsetq
∗⊤
t ks

dL

dks
=
∑
t≥s

ζts(q
∗
t e

∗⊤
t vs − e∗t q

∗⊤
t ks − q∗t e

∗⊤
t ks)

dL

dγs
=
∑
t≥s

ζts(q
∗⊤
t Gs−1et − e∗⊤t Hs−1q

∗
t)

This is a time-reversed version of the formulas to compute the derivatives with respect to vs and
ks. Note that dL

dvs
and dL

dks
can again be computed in chunkwise parallel manner as they are sums

of expressions which are all GLA formulation equivalent. e∗t is also chunkwise parallel compatible
since, as we just established, running conjugate gradient (chunked) parallelized in time is possible.

It remains to see how to quickly compute the derivatives with respect to γs. To that purpose, let us
consider the first term in the equation defining the derivative, as the second can be handled similarly;
we have that: ∑

t≥s

ζtsq
∗⊤
t Gs−1et =

∑
t≥s

Tr[ζtsq
∗⊤
t Gs−1et] =

=
∑
t≥s

Tr[Gs−1ζtsetq
∗⊤
t] =

= Tr

Gs−1

∑
t≥s

ζtsetq
∗⊤
t


This already gives a way to compute the derivatives that is linear in sequence length (as it is sufficient
to accumulate the t-dependent part as s decreases). However, for maximum efficiency we would
like to also split the computation into blocks and make use of matrix multiplication units for this
computation.

Let Fs =
∑

t≥s ζtsetq
∗⊤
t . We now explain how to compute the value above simultaneously for a

block of indices s = L+ 1, . . . ,U − 1.

Gs−1 = GLζs−1L +
∑

L<p<s

ζs−1pvpk
⊤
p∑

t≥s

ζtsetq
∗⊤
t =

∑
s≤t<U

ζtsetq
∗⊤
t + ζUsFU

Tr

Gs−1

∑
t≥s

ζtsetq
∗⊤
t

 = Tr

GLζs−1L +
∑

L<p<s

ζs−1pvpk
⊤
p

 ∑
s≤t<U

ζtsetq
∗⊤
t + ζUsFU

 =

= Tr [GLFUζUsζs−1L] + Tr

GLζs−1L
∑

s≤t<U

ζtsetq
∗⊤
t

+

+Tr

FUζUs

∑
L<p<s

ζs−1pvpk
⊤
p

+Tr

 ∑
s≤t<U

ζtsetq
∗⊤
t

∑
L<p<s

ζs−1pvpk
⊤
p

 =

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

= Tr [GLFU] ζUsζs−1L +
∑

s≤t<U

ζtsζs−1L Tr
[
GLetq

∗⊤
t

]
+

+
∑

L<p<s

ζUsζs−1p Tr
[
FUvpk

⊤
p

]
+
∑

L<p<s

∑
s≤t<U

ζtsζs−1p Tr
[
etq

∗⊤
t vpk

⊤
p

]
For computing the last term, we can make use of the fact that ζab = 0 if a < b to rewrite it in the
equivalent forms∑

L<p<s

∑
s≤t<U

ζs−1p(q
∗⊤
t vp)(k

⊤
p et)ζts =

∑
L<p<U

∑
L<t<U

ζs−1p(q
∗⊤
t vp)(k

⊤
p et)ζts

which can be computed as the product of the three matrices Z∗, Q, Z with Z∗
ij = ζi−1j , Qij =

(q∗⊤j vi)(k
⊤
i ej), Zij = ζij ; the requested values appear then as the main diagonal of this matrix.

The second term can be similarly rewritten as

ζs−1L
∑

s≤t<U

(q∗⊤t GLet)ζts = ζs−1L
∑

L<t<U
(q∗⊤t GLet)ζts

which can be computed by multiplying the vector pt = q∗⊤t GLet by the Z matrix defined above, and
then by doing a point-wise vector multiplication by ζs−1L.

Finally, the first term can be computed simply by computing the trace once and then doing a point-wise
vector multiplication, and the third term can be computed as the second.

E A FULL DESCRIPTION OF THE MESA LAYER, RELATED WORK AND THE
MESANET

For completion, we repeat the Mesa layer computation which is described throught the following
equations

∆emesa
t =

H∑
h=1

PhΦ̂
mesa
h,t qh,t =

H∑
h=1

PhGh,tlinsolve(Hh,t + Λh, qh,t). (42)

The equation above depends on two state variables, Sh,t = {Gh,t, Hh,t}, which we obtain through
the linear recurrence relations:

Gh,t = Gh,t−1γh,t + vh,tk
⊤
h,tβh,t, Hh,t = Hh,t−1γh,t + kh,tk

⊤
h,tβh,t, (43)

where as before γh,t ∈ [0, 1] is a forget gate and βh,t ∈ [0, 1] is a input gate, where we adopt the
conjugate gradient method as the solver (Lanczos, 1950; Hestenes et al., 1952). Before the Mesa
layer computation, we compute the keys, queries, values as well as input and forget strength in the
following way.

First, we normalize the embeddings with an RMS norm ei ← RMSNorm(ei). After projections
kt = Wket, qt = Wqet, vt = Wkvt we convolve them in time with a window size of 4 e.g.
kt ←

∑3
i=0 kt−ibi+1 with learnable parameters b1, . . . , b4. Furthermore, after applying a SiLU(x) =

x ∗ σ(x) non-linearity we normalize the keys and queries (but not values) to have L2-norm of 1 i.e.
kt ← SiLU(kt)/||SiLU(kt)|| and qt ← SiLU(qt)/||SiLU(qt)||.
For the forgetting and input gate we simply squeeze the RMS normed et projections through a
sigmoid i.e. βt = σ(etWβ) and γt = σ(etWγ). After computing the output of every head, we apply
a RMS norm i.e. the actual output of the Mesa layer amounts to

∆emesa
t =

H∑
h=1

PhRMSNormh(Gh,tlinsolve(Hh,t + Λh, qh,t)). (44)

The regularization parameters are simply send through a softplus function to ensure positivity i.e.
Λh ← softplus(Λh). We did experiment with a input / time dependent regularization strength but
in this work opted for a fixed lambda over time, see Section J

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Comparison to related work: To ensure a 1-1 comparison with related work, we use the exact same
parametrization of the keys, values and queries as well as forget and input strength parametrization for
the GLA, Mamba2 and (gated) DeltaNet. Here, only the state update as well as output computation
differ depending on the rule, see Table 1 for an overview. The mLSTM layers, which we also compare
to, have a different parametrization of the forgetting as well as input strength and keys and quries are
not normalized by their L2 norm, see Beck et al. (2024).

Layer Output & state update Memory Flops output & state update

MHA ot =
∑t

t′=1 vt′α(K
⊤
t qt)t′ (vh,t′ , kt′)

t
t′=1

— 2nat O(nat) — O(1)

GLMHA ot = Φtqt with Φt — n2
a O(n2

a) — O(n2
a)

Φt = Φt−1γt + βtvtk
T
t

DN ot = Φtqt with Φt — n2
a O(n2

a) — O(n2
a)

Φt = Φt−1(yt(I − βtk
⊤
t kt)) + βtv

⊤
t kt

MESA Equation 7 St = {Gt, Ht} — 2n2
a O(n2

a) +O(kn2
a) — O(n2

a)

Table 5: Flops as well as state size comparison between MHA, gated linearized multi-head-attention
(GLMHA) such as xLSTM or Mamba2, (gated) DeltaNet (DN) and the Mesa layer during inference. All
softmax attention alternatives require O(n2

a) flops, with key size na, to compute the output as well as update the
state(s). The Mesa layer requires an additional k steps of the CG method which costs O(kn2

a). For simplicity
we assume nv = na.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.1 MODEL DESIGN

We give an overview over the network architecture for all models compared in this work in bullet
points. The only difference is the way how to do the ”sequence” mixing of the keys, valyes and
queries (and forget and input gates), with an exception of the LRU layer (De et al., 2024), see Table 1.

• The model consists of an embedding layer of size ne, which is also shared at the end of
the model to compute the logits. We do not apply regularization on the parameters of the
embedding.

• The model is then followed by N number of blocks consisting of a sequencing layer e.g.
MHA, GLMHA, DN or Mesa, described in Section 2, followed by an MLP layer. The
input of both the MLP as well as sequencing layer go through a RMSNorm (Zhang &
Sennrich, 2019), see Figure 1. After computing the logits, we apply a soft hyperbolic
tangent clip with c = 30 with logits = tanh(logits/c)c, again following the open source im-
plementation of De et al. (2024), see https://github.com/google-deepmind/
recurrentgemma/blob/main/recurrentgemma/jax/griffin.py.

• To compare all different sequencing layers as closely as possible and focus on their ability
to incorporate information from the context, MHA, GLA, Mamba2, xLSTM, the (gated)
DeltaNet, as well as the Mesa all use the exact same key size and therefore the exact
same amount of parameters to compute the queries, keys and values. All RNN layers, for
direct comparison, additionally only use per head a one dimensional gate for forgetting
as well as writing which we squeeze through a sigmoid function i.e. βt = σ(Wβet) and
γt = σ(Wγet), except the mLSTM layer. This stands in some contrast to how the models
were originally designed e.g. Gated Linear Attention (Yang et al., 2024a) or RWKV (Peng
et al., 2023) use higher dimensional forget gates. Furthermore, all RNN layers convolve the
keys and queries with a window size of 4. This is by now a standard feature of contemporary
RNN/SSM architectures, motivated by earlier analyses (Arora et al., 2023a; Fu et al., 2023).
Note that for all models, except from mLSTM which uses a special parameterization and
normalization, we apply a SiLU (or swish) non-linearity (Hendrycks & Gimpel, 2023)
before we normalize the keys and queries by their L2-norm. The output of each head is
independently before the linear projection back to the residual stream send through an
additional RMSNorm.

• We define Mamba2 as forget-gated linearized multi-head attention following Yang et al.
(2024c), and GLA as its forget- and input-gated counterpart; both methods with et-dependent
gates.

• When using the LRU layer (De et al., 2024), we notice that the layer, in its default hy-
perparameter configuration, subsumes more parameters than MHA and the other RNN
alternatives, as they use exactly the same number of parameters to each other. We therefore
decrease the hidden size multiplier which determines the increase of the RNN state when
compared to the embedding size, to match parameter count.

• The Hawk-Mesa model simply alternates between blocks that have either a LRU layer or a
Mesa layer.

• For the MLP layers we follow again De et al. (2024). We create two branches both with
dimension of ne · 3, apply a SiLU non-linearity to one of the branches and merge them by
multiplying. We then down project with a simple linear layer into ne dimension.

• All weights are initialized by sampling them from a normal distribution and in ”fan in”
mode, while scaling the variance of the weights which project back to the residual stream by
2.0/N .

F EXPERIMENTAL DETAILS: MESANET IN SYNTHETIC ENVIRONMENTS

F.1 MAD BENCHMARK SUITE

We follow the benchmarking procedure detailed in Poli et al. (2024) precisely: For each task in
the suite, we evaluate the architectures on subtasks of varying difficulty (i.e. varying sequence
length, number of training examples, vocabulary sizes and further, task-specific parameters) and

28

https://github.com/google-deepmind/recurrentgemma/blob/main/recurrentgemma/jax/griffin.py
https://github.com/google-deepmind/recurrentgemma/blob/main/recurrentgemma/jax/griffin.py

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Hyper Parameter Search
Embedding dimension 128
Number of layers 2
Number of heads 8
Key size 16
Epochs 200
Batch size 32
Optimizer AdamW

Learning rate [3e-3, 1e-3, 5e-4, 1e-4]
Weight decay [0.01, 0.1]
βs (0.9, 0.98)

Scheduler Cosine Scheduler with Warmup
Minimum learning rate 1e-5
Warm-up start learning rate 1e-7
Warm-up steps 750

Table 6: MAD benchmark suite hyper-parameters, taken from Poli et al. (2024).

Hyper Parameter Search
Embedding dimension [64, 128, 256, 512, 1024]
Number of layers [1, 2, 4, 8, 12]
Number of heads [1, 2, 4]
Epochs 50
Batch size 32
Optimizer AdamW

Learning rate [1e-4, 2.5e-4, 1e-3]
Weight decay [0.01, 0.1]
βs (0.9, 0.99)

Scheduler Cosine Scheduler with Warmup
Minimum learning rate 2.5e-5
Warm-up start learning rate 1e-7
Warm-up steps 25000

Table 7: RegBench hyper-parameter search-space, taken from Akyürek et al. (2024). For all models, we keep
the key size fixed to 128 across combinations of embedding dimension and number of heads.

compute the mean accuracy. We further sweep over varying learning rates and weight decay values
for each model and report the maximum average task accuracy. For each architecture, we fix a set of
hyper-parameters that can be found in Table 6.

F.2 REGBENCH IN-CONTEXT LANGUAGE LEARNING BENCHMARK

Following Akyürek et al. (2024), we report the test-accuracy of the configuration obtained from a
grid-search over a pre-defined set of shared hyper-parameters for all models, which can be found in
Table 7.

G EXPERIMENTAL DETAILS: MESANET IN A LANGUAGE WORLD

We follow closely the experimental setup of Beck et al. (2024) as well as De et al. (2024).

G.1 DATA

We train models on SlimPajama Soboleva et al. (2023) and use the GPT-2 tokenizer Radford et al.
(2018) which uses a vocab size of 50257, as in Beck et al. (2024). We pre-tokenize the dataset

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

and fill up sequences with context length shorter than the train length, which is set to 2048, with
other randomly sampled sequences until the context train length is full. We separate these separate
sequences with a BOS token. We follow the same recipe when creating the validation data. Note that
this procedure might bias the training as well as evaluation of the model towards shorter sequences.

We train on two dataset sizes: 15 billion and 50 billion tokens.

G.2 MODEL DESIGN

We give an overview over the network in bullet points.

• The model consists of an embedding layer of size ne, which is also shared at the end of
the model to compute the logits. We do not apply regularization on the parameters of the
embedding. We follow again De et al. (2024) and initialize the parameters of the embedding
matrix in ”fan in” mode but scale back the embedding during inference by

√
ne leading to a

variance of 1 in the residual stream.
• The model is then followed by N number of blocks consisting of a sequencing layer e.g.

MHA, GLMHA, DN or Mesa, described in Section 2, followed by an MLP layer. The input
of both the MLP as well as sequencing layer go through a RMSNorm (Zhang & Sennrich,
2019), see Figure 1. After computing the logits, we apply a soft hyperbolic tangent clip with
c = 30 with logits = tanh(logits/c)c, again following De et al. (2024).

• To compare all different sequencing layers as closely as possible and focus on their ability
to incorporate information from the context, MHA, GLA, Mamba2, xLSTM, the (gated)
DeltaNet, as well as the Mesa all use the exact same key size and therefore the exact same
amount of parameters to compute the queries, keys and values. All RNN layers, for direct
comparison, additionally only use per head a one dimensional gate for forgetting as well
as writing which we squeeze through a sigmoid function i.e. βt = σ(Wβet + bβ), γt =
σ(Wγt

et + bγt
), except the mLSTM layer which has a more elaborate parametrization.

This stands in some contrast to how the models were originally designed e.g. Gated Linear
Attention (Yang et al., 2024a) or RWKV (Peng et al., 2023) use higher dimensional forget
gates. Furthermore, all RNN layers convolve the keys and queries with a window size of
4. Note that for all models, except from mLSTM which uses a special parameterization
and normalization, we apply a SiLU (or swish) non-linearity (Hendrycks & Gimpel, 2023)
before we normalize the keys and queries by their L2-norm. The output of each head is
independently before the linear projection back to the residual stream send through an
additional RMSNorm.

• We define Mamba2 as non-gated linearized multi-head attention following Yang et al.
(2024c) and GLA as its gated counterpart with et-dependent forget strength γt.

• When using the LRU layer (De et al., 2024), we notice that the layer, in its default hy-
perparameter configuration, subsumes more parameters than MHA and the other RNN
alternatives, as they use exactly the same number of parameters to each other. We therefore
decrease the hidden size multiplier which determines the increase of the RNN state when
compared to the embedding size, to match parameter count.

• The Hawk-Mesa model simply alternates between blocks that have either a LRU layer or a
Mesa layer.

• For the MLP layers we follow again De et al. (2024). We create two branches both with
dimension of 3ne, apply a SiLU non-linearity to one of the branches and merge them by
multiplying. We then down project with a simple linear layer into ne dimension.

• All weights are initialized by sampling them from a normal distribution and in ”fan in”
mode, while scaling the variance of the weights which project back to the residual stream by
2.0/N .

G.3 TRAINING DETAILS

We train over all the models in this work with batch size of 256, the AdamW optimizer (Loshchilov
& Hutter, 2019) with weight decay strength 0.1, ϵ = 1× 10−8, β1 = 0.9, β2 = 0.98, and a cosine
learning rate scheduler with initial learning rate 1× 10−6, warmup steps of 2000 and a peak learning

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Model size Train size Transformer Mamba2 GLA xLSTM DeltaNet Gated DeltaNet Hawk Hawk-Mesa Mesa

Small 15 0.0025 0.003 0.002 0.0025 0.003 0.001 0.002 0.0025 0.003
Small 50 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.00095
Medium 15 0.0015 0.0025 0.0025 0.003 0.003 0.0025 0.0025 0.002 0.0025
Medium 50 0.001 0.001 0.00095 0.0009 0.00085 0.00095 0.0009 0.0009 0.001
Large 15 0.002 0.002 0.002 0.0015 0.0015 0.002 0.002 0.002 0.002
Large 50 0.0008 0.0009 0.00085 0.0008 0.0008 0.0009 0.0009 0.00085 0.00085

Table 8: Peak learning rate for all models trained for this work determined by a learning rate grid scan.

rate of l which is scanned for each experiment, see below. We cosine decay the learning rate to
10% of the peak learning rate till the end of the training determined by the train set size. We use as
loss the classic cross entropy on the next token; we do not compute the loss on the BOS token. We
apply gradient norm clipping to norm 1. We apply mixed precision training where the weights are
float32 but activations are bfloat16 following Beck et al. (2024). Interestingly, we find that
this actually improves next token perplexity slightly compared to using float32 everywhere.

G.4 HYPERPARAMETER SCANS

We train 3 model sizes: 140 million, 440 million and 940 million parameters following roughly
Beck et al. (2024). As already mentioned, all architectures have by construction almost exactly the
same number of parameters for the same architectrual dimensions. All recurrent neural network
types have the same parameters as multi-head attention but additionally have two parameter vectors
of size na which produce the two gates per head. The Mesa layer has additionally na (fixed in
time) parameters for (meta-)learned Λ regularization. Since the parametrization of the LRU layer is
different by construction, we simply adjust the hidden size scaling to 1.25 to match the parameters
of the other RNN layers. The 3 different model sizes use key size na = 128 and otherwise are setup
as follows:

• 140 million — Small: N = 14 blocks, h = 6 heads, embedding dimension ne = 768.
• 440 million — Medium : N = 28 blocks, h = 8 heads, embedding dimension ne = 1024.
• 940 million — Large : N = 28 blocks, h = 12 heads, embedding dimension ne = 1536.

The exact number of parameters and peak learning rate can be found in Table 8. For all models, we
scan the same range of learning rates: for models trained for 15 billion tokens we scanned {0.003,
0.0025, 0.002, 0.001, 0.0015}, and for models trained for 50 billion tokens, we observe, similar to
Beck et al. (2024), that smaller learning rates were beneficial and thus scan {0.001, 0.00095, 0.0009,
0.0085, 0.0008}. We train all sliding window attention (SWA) models, as they are only reference
points, with learning rate 0.001.

G.5 NOTES ON PRECISION USED IN THE CG-SOLVER, MESA LAYER DESIGN CONSIDERATIONS
OR Why you shouldn’t scream at your Mesa layer

The MesaNet, for the model sizes we consider for the language experiments, solves during training
millions of linear systems of equations numerically in one forward pass. Somewhat surprisingly,
we did not encounter many training instabilities when setting some crucial hyperparameters and
architectural details accordingly. First, we follow related work and normalize keys and queries - this
is a crucial first step to stabilize the Mesa layer. Second, the most important hyperparameter for the
Mesa layer, which strongly influences the conditioning number and therefore the number of CG steps
needed to solve the linear systems, is the regularization strength Λ. Due to experimentation when
training small models, we initialized Λ = I but restricted its values to be lower-bounded by 0.25. We
hypothesize that this lower bound is important to, implicitly, upper bound the condition number. We
determined the Λ lower bound by a grid scan when training the medium sized model on 15B tokens.
See Figure O for some Λ values of a trained model. We parameterize Λ through a softplus function
i.e. Λ = 0.25 + softplus(Λ) and adjusted the initialization of the Λ parameter accordingly.

When training on SlimPajama and using the GPT-2 tokenizer, we noticed that the dataset, especially
the sequences which contain code, contains sequences which consist of many repeated tokens such as
the empty token ” ”. We call this ”screaming at your language model”. These kind of inputs to the

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Mesa layer lead to a matrix Hh,t = Kh,tK
T
h,t which contains sums of the same vector outer product

which we analysed leads to instabilities when γt ≈ 1. We therefore upper-bound γt by bγ = 0.9975
(which might be train length specific) and adjust its value depending the input strength βt: when
training on SlimPajama, we use γt = γtsγt with sγt = (1− (1− bγ)β

2
t). Note that other tokenizers

which merge repeated ” ” should solve this problem partially. This correction improves perplexity in
scans on small models and so we adopted it throughout our experiments.

A final comment on the precision of the CG solver: The opted to use FP32 matrix multiplication
precision inside the CG solver solely within our Pallas kernel. Note that we used BF16 everywhere
else to compare other RNN and transformer models with our MesaNet fairly. This reduces memory
loading times as we only load data with BF16 precision, compute q∗ in our solver with FP32 precision,
and cast it down in our solver to FB16.

Although we did not investigate in depth FP16 or BF16 precision within the CG solver for which
convergence problems are well known, we found the training times when using FP32 acceptable. We
leave this important investigation for future work.

We end here with a note of caution when using these lower precisions on GPUs as more work might
be needed to ensure stable convergence to the approximate solution of the linear solver.

G.6 EXPERIMENTS COMPUTE RESOURCES

We provide here an estimate of the compute resources used for a single run of a 1B model. We note
that transformers, MesaNets and other RNNs were of somewhat comparable speed on average and
so estimate compute by averaging and not differentiating costs across models. We mostly relied on
TPUv5 to conduct our experiment. Here we used multi-pod TPUv5s which fit the whole models,
without model sharding, and therefore were able to rely solely on batch sharding. For the 1B models,
one training run, with sparse intermediate evaluation, when training on 50B tokens lasted around 36
hours on average. When training on smaller models, the train time significantly dropped. All Mesa
layer investigations were done on the 400million scale when training on 15B tokens resulting in
train runs which last 3-12 hours depending on the amount of CG steps used and data parallelization
applied.

Running our evaluation pipeline for all downstream benchmarks took on average 3 hours on the same
hardware, although we note that we did not optimize this pipeline for run time.

G.7 TOKEN THROUGHPUT COMPARISONS OF RECURRENT MODELS FOR 1B MODELS

We report in Figure 6 the throughput (in tokens / second) of the 1B MesaNet (for different fixed
CG steps), Gated DeltaNet, Gated Linear Attention, as well as standard (global softmax-attention)
Transformers. The MesaNet performs competitively, especially with a fixed number of 10 CG steps.
We note that 10 CG steps are sufficient to obtain the superior MesaNet results reported in the main
text. Gated linear attention, due to the limited flops and matrix multiplications needed to perform a
forward pass, reaches significantly higher throughput than all other models. As expected, transformer
throughput degrades with increasing sequence length.

H THE ORIGINAL RECURSIVE LEAST-SQUARES MESA LAYER

We now review the original version of the Mesa layer (Von Oswald et al., 2024), where Φ̂mesa
t

was determined through the classical recursive least-squares algorithm. The key observation is

that Φ̂mesa
t = VtK

⊤
t R−1

t =
∑t

t′=1 vt′k
⊤
t′

(∑t
t′=1 kt′k

⊤
t′ + Λ

)−1

, and that one can calculate the

inverse R−1
t recursively through the Sherman-Morrison formula (Sherman & Morrison, 1950; Gauss,

1821), R−1
t = R−1

t−1 −
R−1

t−1ktk
⊤
t R−1

t−1

1+k⊤
t R−1

t−1kt
, with R−1

0 = Λ−1. While efficient for sequential inference,

this solution is problematic for two reasons. First, when introducing time-dependent forget gates
γt ∈ [0, 1] which scale the previous state, i.e., (Rt−1γt + ktk

⊤
t)

−1, the matrix inversion for small γt
can introduce numerical instabilities as R−1

t−1
1
γt

can grow unbounded. Moreover, note that this Mesa
layer version forgets the regularization term Λ exponentially fast, as it only enters through the initial

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

21 23 25 27 29

Batch Size

103

104

Th
ro

ug
hp

ut
 to

ke
ns

/s
ec

Length: 512

Attention
Transformer
Mesa-10
Mesa-20
Mesa-30
Gated DeltaNet
Gated Linear Attention

27 28 29 210 211 212 213 214 215

Length

28

29

210

211

212

Th
ro

ug
hp

ut
 to

ke
ns

/s
ec

Batch Size: 8

Attention
Transformer
Mesa-10
Mesa-20
Mesa-30
Gated DeltaNet
Gated Linear Attention

Figure 6: 1B model throughput (tokens / sec) with bfloat16 activation and float32 weight precision
on a H100 GPU (top row) using the open source framework of https://github.com/fla-org/
flash-linear-attention or our custom TPUv5 implementation (bottom row). We show the effect
of scaling the batch size (left), while fixing the generation length, or scaling the generation length, while fixing
the batch size on the token throughput / sec. For this experiment, we averaged over 5 iterations to reduce noise.
On both hardware systems, we see that 1) MesaNet and Gated DeltaNet perform competitive despite MesaNet
consuming significantly more flops, 2) Gated Linear Attention outperforming other layers significantly as well
as 3) the throughput of the Transformer degrading with larger batchsize and especially sequence length. We
chose sequence length for left panels and batch size for the right panels small enough, such that the (global
softmax) Transformer does not run out of memory for the H100. On the TPUv5 and the left configuration, the
Transformer is running out of memory for the largest batchsize.
.

0 20 40
Accuracy

=1e-2
=1e-3
=1e-4
=1e-5
CG=0
CG=1
CG=5

CG=10
CG=20
CG=30

44.13
44.79
45.03
45.02

21.37
29.10

43.62
45.25
45.09
45.03

Reasoning
(Global, 0-shot)

0 20 40
Accuracy

49.91
50.39
50.40
50.46

37.50
47.65
50.00
50.42
50.54
50.49

Reasoning
(Local, 0-shot)

0 20 40
Accuracy

39.76
41.97
41.96
42.06

33.46
41.96
41.76
41.79

In-Context Recall

0 2k 4k 8k
Seq. Length

0.00

0.02

0.04

0.06

 M
ea

n-
so

-fa
r N

LL
 to

 C
G=

30

0 2k 4k 8k
Seq. Length

-1e-4

0

1e-4

0 2k4k 8k
Seq. Length

4

6

8

10

Av

g.
 C

G
St

ep
s

=3e-2
=1e-2

=1e-3
=1e-4

=1e-5
CG=4

CG=5
CG=6

CG=7
CG=10

CG=20
CG=30

Figure 7: Effect of Number of Conjugate Gradient (CG) Steps on SlimPajama Perplexity within and
beyond train context length. We show here the effect of reducing the number of CG steps during inference on
token perplexity across token position of a 1B MesaNet trained on 50B tokens. We either use a fixed number CG
steps uniformly across the model or apply a dynamic stopping criterion ϵ > 0.

33

https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

state R−1
0 . Second, we are not aware of a way of computing R−1

t in a parallel-in-time fashion. This
precludes efficient parallel training at scale in current hardware.

The Mesa layer as a second-order in-context learning method. As reviewed in Sections 2 and A,
the closely related DeltaNet model (Schlag et al., 2021a) updates a matrix-valued state variable
Φ ∈ Rnv×na following online gradient descent on a squared error loss. Omitting the head index, the
dynamics of this layer reads

Φt = Φt−1 − βt∇lsq-err
t (Φt−1) = Φt−1 + βt(vt − Φt−1kt)k

⊤
t . (45)

To make comparison with this layer easier, we now express the Mesa layer (equation 4) in a similar
recurrent form. We assume that we are in the case where the Sherman-Morrison recursion explained
above holds, so that we can write H−1

t as a function of H−1
t−1. This requires that forgetting is disabled

(∀tγt = 1), or that the regularizer Λ decays exponentially with time. For simplicity, we assume in
what follows that there is no forgetting. Then, using the convention that H0 = Λ, we have that

Φt = GtH
−1
t (46)

= (Gt−1 + vtk
⊤
t)H

−1
t (47)

= (Φt−1Ht−1 + vtk
⊤
t)H

−1
t (48)

= Φt−1

(
Ht − ktk

⊤
t

)
H−1

t + vtk
⊤
t H

−1
t (49)

= Φt−1 − Φt−1ktk
⊤
t H

−1
t + vtk

⊤
t H

−1
t (50)

= Φt−1 − (Φt−1kt − vt)k
⊤
t H

−1
t (51)

= Φt−1 −∇2
ϕϕLt(Φt−1)

−1∇Φl
sq-err
t (Φt−1), (52)

recalling that Lt is the cumulative regularized loss (equation 4) and lsq-err
t = ∥v2t − Φkt∥2. To go

from equations 47 to 48, we used the fact that Φt−1 = Gt−1H
−1
t−1. From equations 48 to 49, we used

the identity Ht−1H
−1
t = (Ht − ktk

⊤
t)H

−1
t .

Thus, while the DeltaNet and related layers perform (first-order) online gradient descent on a squared
error loss, the Mesa layer implements instead an online (second-order) Newton descent algorithm.

I A PRELIMINARY INVESTIGATION INTO STATE TRACKING WITH THE MESA
LAYER

64 128 192 256
Train samples (x104)

0.0

0.5

1.5

Tr
ai

n
lo

ss

t (0, 1)
t (1, 1)

40 64 128 192 256
Sequence length

0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 A
cc

ur
ac

y

t (1, 1)
t (0, 1)

Train length
Random guessing

Figure 8: Negative γt and high Λ allow MesaNets to solve parity: When using γt ∈ (−1, 1) as well as
enforce high Λ, we enforce the MesaNet into functionality close to GLA as q∗t = qt which allows us to use
MesaNet with γt ∈ (−1, 1) which naive applied does not lead to a well-defined mesa-optimization problem.

Recent work has investigated the (missing) state-tracking ability of transformers, modern state space
models and linearized transformer RNN models, see e.g. (Merrill et al., 2025). It remains an active
research direction to study under which circumstances these in-time parallelizable RNN models can
better track state than transformers (Merrill & Sabharwal, 2024; Li et al., 2024).

One simple architecture change proposed in Sarrof et al. (2024); Grazzi et al. (2025) which allows
layers such as Mamba, GLA or gated DeltaNet to solve certain state tracking tasks is to use forget
strength γt ∈ (−1, 1) instead of γt ∈ (0, 1). We highlight that this change naively is not possible

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

to incorporate into the Mesa layer. Indeed, γt ∈ (−1, 1) could violate the positive definiteness
of (Ht−1γt + ktk

⊤
t + Λ) leading to a potentially ill-defined linear system of equations problem.

The Mesa layer is equivalent to GLA if q∗t = qt which can be enforced by setting Λ to very large
values such that (Ht + Λ)−1 ≈ Λ−1 and rescaling qt by Λ. Although undesirably from an online
learning perspective, high Λ should lead to (Ht−1γt + ktk

⊤
t + Λ) rendering positive definite even

if γt ∈ (−1, 1) leading to state tracking capabilities as observed in Grazzi et al. (2025) for models
such as Mamba or DeltaNet with γt ∈ (−1, 1). We show first state tracking results for MesaNets
with γt ∈ (−1, 1) or γt ∈ (0, 1) while initializing Λ = 50 · I and restricting its lower value to 49.
These values are chosen by hand, generally a wide range of (large) Λ actually gave us the same
results. When now learning parity, see Figure 8, MesaNets, as hypothesized, start solving parity
with perfect accuracy when endowed with γt ∈ (−1, 1), similar to results presented for Mamba
and gated DeltaNet in Grazzi et al. (2025) when using γt ∈ (−1, 1). Although this parametrization
showcases the flexibility of the Mesa layer encompassing the capacity of GLA (and similar layers
such as Mamba and mLSTM) by enforcing high regularization, we stress that this solution is in our
opinion rather a bug than a feature. This is because we actually wish to utilize the extra flops spend
to compute q∗t . We leave investigating how the MesaNet could track state while not falling back to
GLA functionally for future work.

Experimental details. We train a MesaNet with 2 layers, an embedding dimension of 128, and
4 heads per sequence mixing module (each head with dimension 128) amounting to roughly 1M
parameters. For training we sample bitstrings on the fly and compute the respective ground truth parity
scores at each sequence position. We then train the model to predict the parity score at each position
in the sequence. During training bitstrings are restricted to a length of 40. In a final evaluation, we
test the trained model on sequences up to length 256. We train on a batch size of 256 and train in the
infinite data regime sampling a total of 10000 batches. We use a weight decay of 0.03 and a learning
rate of 0.001. To obtain the results displayed in Figure 8 we initialize Λ = 50 and lower bound
it to 49 and train once with positive eigenvalues only (γt ∈ (0, 1)) and once allowing for negative
eigenvalues (γt ∈ (−1, 1)).

J FURTHER DISCUSSION POINTS

We list here some additional discussion points which we couldn’t place in the main text because of
space constraints

• Backpropagation through the conjugate gradient method: Currently, we are computing
the gradient through the Mesa layer assuming that we have approximated q∗t numerically
well. We believe this current version is a shortcoming of the Mesa layer and speculate that it
is actually feasible to train the MesaNet to cope better with fewer steps (and not approximate
q∗t as well). For this we would use a stochastic number of CG steps during training, ranging
for example from 0 to 30, and backpropagate through the unrolled process, potentially
obtaining a model which is trained to be behave ”optimally” given a certain number of
CG steps. This would allow for an even better dynamic test-time compute allocation of
the MesaNet during inference as users could flexibly decide to spend more compute for
a better model. Interestingly, one could additionally condition (e.g. with a set of BOS
token indicating the number of CG steps used during the forward pass) the models forward
computation and therefore allow the model to learn to adjust its representation at every layer
dependent on the CG steps used in the Mesa layers. We speculate that we therefore would
obtain a MesaNet which behaves on par with e.g. GLA, Mamba or xLSTM with 0 CG steps
and outperforms these RNNs when allocating more CG steps.

• Architecture considerations: We decided to benchmark related work while using the
common transformer backbone allowing for a direct 1-1 comparison between all models.
This architecture is extremely widespread and has the advantage to allow for a direct usage
of Mixture-of-Experts Shazeer et al. (2017) layers. xLSTM and Mamba, see e.g. Beck
et al. (2024), use a different backbone which notably merges the MLP layer and the RNN
layer in one while matching parameter count. This architecture change leads to overall
better perplexity but question if the particular RNN layer or the architecture change, or its
combination offers better results. We leave an investigation of a fair comparison of the
Mesa layer and other related work when changing the architecture backbone for future

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

work. Generally, we acknowledge that it is unclear if these architecture changes address the
shortcomings of RNNs, which we show in the evaluation section, namely to incorporate
sequential long range information. We are excited to study the influence of the backbone
when optimizing for incorporating long-range understanding and not perplexity.

• Learning fast matrix inversion algorithms from data: To obtain (Ht+Λ)−1qt we decided
to use the well known and powerful conjugate gradient method. While this algorithm is
widespread, we hypothesis that learning a neural network to solve (Ht + Λ)−1qt directly or
adjusting the CG method by learned parameterization, could lead to significant speed ups.
We generally find extending well-known algorithms with the help of deep learning or using
them as building blocks of deep neural networks an exciting research direction (von Oswald
et al., 2023; 2025; Vladymyrov et al., 2024).

• Mesa layer to model sequences outside the language domain: We speculate that the
Mesa layer is a promising layer for sequence modeling of continuous data, where in-context
generalization and not memory is the driving factor of improving next token prediction.
Therefore the Mesa layer might excel in domains which require some form of in-context
(control or reinforcement learning) algorithm distillation (Laskin et al., 2023).

• The fundamental limit of RNNs with finite memory: (Modern) RNNs do have a finite
amount of state which they can use to save information for future access. This has two
interconnected, intermediate shortcomings when comparing to softmax: The interpretation
and the relevance of certain information in a sentence can drastically change even at the last
token. Since softmax stores all information of the past (all input text and its representations
in all layers), it can recall information relevant to the current query (for example, a particular
question about the text. RNNs need to anticipate when processing information which needs
saving such that it can be accessed later on.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

K MESANET TRAINED IN SYNTHETIC ENVIRONMENTS

We evaluate the token manipulation and in-context learning capabilities by training and evaluating
MesaNets on two purely synthetic benchmarks: (i) Mechanistic Architecture Design (MAD) (Poli
et al., 2024) and (ii) RegBench (Akyürek et al., 2024). For MAD, we train 2-layer models and sweep
over a range of optimization hyperparameters for each task. For RegBench, we follow Akyürek et al.
(2024) and sweep over a larger grid of hyperparameters for each task, including number of layers and
heads, see Appendix F.

MesaNet excels at the MAD benchmark. MAD comprises a suite of recall, memorization, compres-
sion, and copying tasks. As shown in Table 9, the MesaNet achieves the highest average performance,
outperforming all linear recurrent architectures and matching the performance of transformers. These
strong results demonstrate the MesaNet’s efficacy in managing its fixed-size recurrent state to store
and retrieve necessary information across diverse manipulation challenges.

MesaNet and Transformers perform on par on the RegBench. This benchmark requires models to
infer the underlying grammar of pseudo-languages, defined by probabilistic finite automata (PFAs),
solely from context sequences. At test time, this in-context learning capability is tested on token
sequences generated with held-out PFAs. Again, the MesaNet surpasses other RNN models and
matches transformers, demonstrating its capability to infer rules at test time (Figure 9).

IC & Noisy
Recall

Fuzzy
Recall

Memorize
Train Data

Selective
Copy

Compress Avg.

Mamba2 100 51.2 42.0 95.4 41.3 66.0
GLA 100 39.0 82.5 96.1 42.3 72.0
xLSTM 100 47.6 79.8 95.4 43.4 73.2
DeltaNet 100 55.5 40.8 98.8 43.3 67.7
Gated DeltaNet 100 32.7 81.7 95.7 45.0 71.0
Hawk 93.0 13.6 91.3 77.0 47.7 64.5
MesaNet 100 58.5 77.2 99.2 45.4 76.1
Hawk-MesaNet 100 30.2 85.6 99.6 52.3 73.5
Transformer 100 48.6 84.7 96.0 49.5 75.8

Table 9: Performance (% Accuracy ↑) on the MAD bench-
mark (Poli et al., 2024). The MesaNet performs strongly
compared to other RNNs and matches the transformer.

Figure 9: Performance on RegBench (Akyürek
et al., 2024). MesaNet outperforms other linear
architectures and closes the gap to transformers.

L EXTENDED RESULTS IN LANGUAGE ENVIRONMENT

L.1 LANGUAGE MODELLING / PERPLEXITY ANALYSES

The common approach to measure language modeling performance on a set of sequences S =
{s1, . . . , sN} is perplexity (PPL), which is defined as the exponential of the average negative log-
likelihood per token (Jelinek et al., 1977; Brown et al., 2020b; Biderman et al., 2024):

NLL = − 1∑|S|
j=1 |sj |

|S|∑
j=1

|sj |∑
i=1

logP (sj,i|sj,1, . . . , sj,i−1)

PPL = exp [NLL]

(53)

where |S| is the number of sequences, sj is the j’th sequence in S and sj,i is the i’th token in the
sequence sj . However, all tokens are weighted equally in these metrics, independent of their token
position. This is especially critical, as the magnitudes of the log-likelihood scores tend to be quite
different for early and late tokens in a sequence. As a consequence, interesting differences between
models might be masked in these aggregated metrics, especially when comparing different model
families with different inductive biases. Therefore, one needs to condition on the sequence position
to pinpoint qualitative model differences in a quantitative manner.

Mean-so-far {NLL, PPL}. To investigate whether models exhibit different language modelling
capabilities at different sequence depths k, we therefore assess mean-so-far NLL and PPL:

Mean-so-far-NLL:k = − 1∑|S|
j=1 min(|sj |, k)

|S|∑
j=1

min(|sj |,k)∑
i=1

logP (sj,i|sj,1, . . . , sj,i−1)

Mean-so-far-PPL:k = exp [Mean-so-far-NLL:k]

(54)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Intuitively, these metrics can be interpreted as how well are sequences modeled up to length k.
While these metrics give a more granular picture of the loss behavior dependent on sequence length,
they still mask important transition points due to the cumulative aggregation up to position k. For
instance, the mean-so-far NLL could still be decreasing for higher k (decreasing slope), despite the
token-position-dependent NLL may have already plateaued or increased (Lin et al., 2025).

Token-Position-Dependent NLL. Consequently, we follow (Lin et al., 2025) and assess the average
negative log-likelihood conditional on the token-position k (for which only sum over sequences with
|sj | ≥ k):

NLLk = − 1

|S|

|S|∑
j=1

logP (sj,k|sj,1, . . . , sj,k−1). (55)

Difference in Token-Position-Dependent NLL Relative to a multi-head-attention transformer.
As the field’s main interest is to improve upon the current state-of-the-art transformer architecture,
we investigate the difference in token-position-dependent NLL with respect to a transformer (MHA):

∆NLLmodel
k = NLLmodel

k − NLLMHA
k , (56)

where a negative ∆NLLmodel
k means superior language modelling ability at position k relative to a

transformer as the model’s loss is lower. The same difference can be formulated for the mean-so-far
metrics. Certainly, such a relative metric requires a well-tuned transformer baseline.

L.1.1 WITHIN TRAIN CONTEXT-LENGTH

Here, we expand upon the results shown in Section 4.1 and present within-train-context-length
language modelling evaluations on all evaluated pairs of model sizes (i.e., 145M, 400M and 1B
parameters) and number of training tokens (15B and 50B tokens).

PPL. We present the PPL scores on the five evaluated datasets in Table 10. Across all model sizes
and number of training tokens, Hawk-MesaNet exhibits the best PPL performance on the majority of
benchmarks among the recurrent models, closely followed by MesaNet. Notably, Hawk-Mesa and
Mesa match or exceed the transformer baseline with respect to PPL on the majority of benchmarks
on all model sizes. Furthermore, one can clearly observe the impact of the attention window size on
PPL based on our SWA baselines. PPL is decreasing with an increasing window size in all settings.
Notably, SWA-1024 reaches competitive performance with the majority of recurrent models, i.e.
Hawk, Mamba2, GLA, xLSTM and DeltaNet.

Conditioning on the Sequence Position. As indicated in the metrics description, and shown in
Section 4.1, uniformly averaging over all tokens in the PPL computation, independent of a token’s
depth in a sequence, may masquerade important qualitative difference between models. Therefore,
we condition on the token position and investigate the difference in token-position-dependent NLL
relative to a multi-head-attention transformer NLLmodel

k . As shown in Figure 10, most recurrent models
demonstrate superior language modelling abilities early in a sequence relative to the transformer
baseline. However, beyond a certain token position, transformers surpass the performance of all
recurrent models.

• Which model performs strongest early in the sequence? Notably, MesaNet and Hawk-MesaNet
exhibit the strong performance early-in-the-sequence tokens except Hawk. However, while Hawk
exhibits the best performance up to a certain depth, the model exhibits a sharp performance decline
after that and falls behind most models. See Figure 11 for a clearer visualization (equivalent to
Figure 10, but token-position in log-scale).

• Which model offers superior performance to a transformer “for the longest”? While Hawk
losses its advantage the earliest, Hawk-MesaNet extends the performance advantage to the largest
token depths, closely followed by MesaNet.

For completeness, we also show the mean-so-far NLL difference ∆Mean-so-far-NLLmodel
:k rela-

tive to a Transformer in Figure 12. However, as indicated, the cummulative aggregation in the metric
skews the important token depth transition point where a transformer surpasses the recurrent models
in terms of language modeling.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

64 512 1024 2048
0.075
0.050
0.025
0.000
0.025
0.050
0.075

NL
L

Di
ffe

re
nc

e
to

 M
HA

145M Models:

15
B

To
ke

n:

64 512 1024 2048
0.075
0.050
0.025
0.000
0.025
0.050
0.075

400M Models:

64 512 1024 2048
0.075
0.050
0.025
0.000
0.025
0.050
0.075

1B Models:

64 512 1024 2048
Token Position

0.075
0.050
0.025
0.000
0.025
0.050
0.075

NL
L

Di
ffe

re
nc

e
to

 M
HA

50
B

To
ke

n:

64 512 1024 2048
Token Position

0.075
0.050
0.025
0.000
0.025
0.050
0.075

64 512 1024 2048
Token Position

0.075
0.050
0.025
0.000
0.025
0.050
0.075

HAWK
GLA

MAMBA2
XLSTM

DELTANET
GATED-DELTANET

MESA
HAWK-MESA

MHA-SWA-4
MHA-SWA-64

MHA-SWA-256
MHA-SWA-1024

MHA

Figure 10: NLL Difference (per token-position) ∆NLLmodel
k relative to a Transformer on SlimPajama

Validaton Dataset. Most recurrent models demonstrate superior language modelling abilities early in a sequence
relative to the transformer baseline, across all settings. However, beyond a certain token position, transformers
surpass the performance of all recurrent models.

21 23 25 27 29 211
0.075
0.050
0.025
0.000
0.025
0.050
0.075

NL
L

Di
ffe

re
nc

e
to

 M
HA

145M Models:

15
B

To
ke

n:

21 23 25 27 29 211
0.075
0.050
0.025
0.000
0.025
0.050
0.075

400M Models:

21 23 25 27 29 211
0.075
0.050
0.025
0.000
0.025
0.050
0.075

1B Models:

21 23 25 27 29 211

Token Position

0.075
0.050
0.025
0.000
0.025
0.050
0.075

NL
L

Di
ffe

re
nc

e
to

 M
HA

50
B

To
ke

n:

21 23 25 27 29 211

Token Position

0.075
0.050
0.025
0.000
0.025
0.050
0.075

21 23 25 27 29 211

Token Position

0.075
0.050
0.025
0.000
0.025
0.050
0.075

HAWK
GLA

MAMBA2
XLSTM

DELTANET
GATED-DELTANET

MESA
HAWK-MESA

MHA-SWA-4
MHA-SWA-64

MHA-SWA-256
MHA-SWA-1024

MHA

Figure 11: NLL Difference (per token-position) ∆NLLmodel
k relative to a Transformer on SlimPajama

Validaton Dataset in log-scale. MesaNet and Hawk-MesaNet exhibit the strong language modeling performance
early-in-the-sequence tokens except Hawk. While Hawk exhibits the best performance up to a certain depth, the
model exhibits a sharp performance decline relatively early in the seq. depth.

64 512 1024 2048

0.04

0.02

0.00

0.02

0.04

M
ea

n-
so

-fa
r N

LL
Di

ffe
re

nc
e

to
 M

HA

145M Models:

15
B

To
ke

n:

64 512 1024 2048

0.04

0.02

0.00

0.02

0.04

400M Models:

64 512 1024 2048

0.04

0.02

0.00

0.02

0.04

1B Models:

64 512 1024 2048
Sequence Length

0.04

0.02

0.00

0.02

0.04

M
ea

n-
so

-fa
r N

LL
Di

ffe
re

nc
e

to
 M

HA

50
B

To
ke

n:

64 512 1024 2048
Sequence Length

0.04

0.02

0.00

0.02

0.04

64 512 1024 2048
Sequence Length

0.04

0.02

0.00

0.02

0.04

HAWK
GLA

MAMBA2
XLSTM

DELTANET
GATED-DELTANET

MESA
HAWK-MESA

MHA-SWA-4
MHA-SWA-64

MHA-SWA-256
MHA-SWA-1024

MHA

Figure 12: Mean-so-far NLL Difference ∆Mean-so-far-NLLmodel
:k relative to a Transformer on SlimPa-

jama Validaton Dataset. The cummulative aggregation in the mean-so-far metric skews the important token
depth transition point where a transformer surpasses the recurrent models in terms of language modeling.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

15B Tokens 50B Tokens

SLIM LMB. WIKI. PG19 GOV. QASP. AVG SLIM LMB. WIKI. PG19 GOV. QASP. AVG
ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓

145M - Hawk 19.73 38.94 23.06 19.87 19.23 29.66 25.08 18.34 37.43 21.25 18.49 18.17 27.83 23.59
- Mamba2 18.29 40.34 20.86 19.17 17.03 23.71 23.23 17.05 38.22 19.24 17.87 15.90 22.10 21.73
- GLA 17.37 37.96 19.57 18.11 15.86 22.37 21.87 16.30 36.20 18.43 16.90 15.02 20.91 20.62
- xLSTM 17.35 37.97 19.57 18.12 15.88 22.50 21.90 16.20 36.19 18.31 16.97 14.91 20.85 20.57
- DeltaNet 17.26 38.18 19.29 17.93 15.67 21.75 21.68 16.17 36.55 18.08 16.78 14.81 20.53 20.49
- Gated-DeltaNet 17.12 37.62 19.18 17.77 15.55 22.13 21.56 16.05 35.80 18.04 16.79 14.77 20.67 20.35
- Mesa 17.02 37.64 19.10 17.72 15.44 21.87 21.47 16.05 36.17 17.96 16.60 14.72 20.57 20.34
- Hawk-Mesa 16.81 37.20 18.87 17.14 15.29 21.62 21.15 15.82 35.51 17.70 16.19 14.55 20.38 20.02
- Transformer 16.95 38.69 18.65 17.47 15.00 20.80 21.26 15.81 36.54 17.35 16.25 14.04 19.33 19.89

400M - Hawk 14.40 31.54 16.12 14.23 13.67 19.85 18.30 12.87 29.44 14.30 12.71 12.24 17.54 16.52
- Mamba2 14.45 33.38 15.99 14.80 13.27 18.36 18.37 13.07 31.05 14.28 13.28 12.10 16.37 16.69
- GLA 13.69 31.64 15.01 13.89 12.36 17.08 17.28 12.61 29.93 13.73 12.75 11.52 15.77 16.05
- xLSTM 13.71 31.70 14.95 13.88 12.28 17.10 17.27 12.56 29.79 13.60 12.72 11.49 15.72 15.98
- DeltaNet 13.80 31.98 15.07 14.01 12.51 17.20 17.43 12.59 30.00 13.68 12.70 11.49 15.57 16.00
- Gated-DeltaNet 13.48 31.40 14.71 13.59 12.16 16.64 17.00 12.44 29.57 13.45 12.52 11.31 15.42 15.79
- Mesa 13.44 31.38 14.65 13.51 12.02 16.56 16.93 12.34 29.57 13.36 12.40 11.15 15.19 15.67
- Hawk-Mesa 13.37 31.10 14.55 13.32 12.07 16.68 16.85 12.30 29.38 13.33 12.30 11.28 15.32 15.65
- SWA-4 23.36 38.65 29.29 23.51 26.94 48.24 31.66 19.32 33.76 23.43 19.35 21.50 35.41 25.46
- SWA-64 15.98 32.97 18.89 16.31 15.20 23.08 20.40 14.04 30.51 16.35 14.19 13.25 19.37 17.95
- SWA-256 14.69 32.64 16.99 15.04 13.42 19.36 18.69 13.23 30.36 14.94 13.38 12.08 17.09 16.85
- SWA-1024 13.95 32.63 15.40 14.09 12.36 17.05 17.58 12.52 30.13 13.71 12.56 11.12 15.26 15.88
- Transformer 13.64 32.25 14.71 13.73 12.06 16.51 17.15 12.40 30.10 13.23 12.42 10.96 14.84 15.66

1B - Hawk 12.71 28.72 13.95 12.44 11.90 17.30 16.17 11.24 26.67 12.23 10.93 10.63 14.89 14.43
- Mamba2 12.78 30.30 13.97 12.92 11.68 15.97 16.27 11.39 28.02 12.23 11.42 10.42 14.02 14.58
- GLA 12.28 29.13 13.29 12.35 11.08 15.20 15.55 10.99 26.98 11.77 10.95 9.99 13.52 14.03
- xLSTM 12.38 29.21 13.43 12.40 11.16 15.33 15.65 11.01 26.93 11.81 10.94 10.00 13.55 14.04
- DeltaNet 12.23 29.13 13.20 12.28 11.04 15.11 15.50 11.01 27.08 11.73 11.00 10.02 13.44 14.05
- Gated-DeltaNet 12.06 28.67 13.00 12.05 10.85 14.86 15.25 10.89 26.79 11.58 10.81 9.88 13.28 13.87
- Mesa 12.02 28.57 12.92 11.96 10.76 14.76 15.17 10.83 26.78 11.49 10.71 9.80 13.13 13.79
- Hawk-Mesa 11.91 28.45 12.79 11.83 10.72 14.60 15.05 10.78 26.59 11.53 10.60 9.79 13.20 13.75
- SWA-4 20.27 34.66 24.56 20.33 22.98 40.37 27.20 16.46 29.93 19.42 16.42 17.86 29.15 21.54
- SWA-64 14.08 30.01 16.47 14.33 13.34 19.78 18.00 12.37 27.76 14.14 12.51 11.56 16.77 15.85
- SWA-256 12.98 29.63 14.76 13.18 11.82 16.82 16.53 11.60 27.39 12.89 11.71 10.58 14.69 14.81
- SWA-1024 12.33 29.65 13.47 12.35 10.92 14.93 15.61 11.00 27.22 11.78 10.92 9.79 13.11 13.97
- Transformer 12.16 29.55 12.90 12.10 10.68 14.47 15.31 10.86 27.16 11.42 10.74 9.69 12.86 13.79

Table 10: PPL at a Maximum Sequence Length of 2048. The score of the best recurrent model with respect
to PPL on each dataset is highlighted, and PPL scores from SWA and the transformer baseline are shown as
reference. Across all model sizes and number of training tokens, Hawk-Mesa exhibits the best PPL performance
on most benchmarks, closely followed by Mesa.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

L.1.2 BEYOND TRAIN CONTEXT-LENGTH

PPL. We present the PPL scores for context lengths of 4k (see Table 11) and 32k (see Table 12)
respectively on all model sizes and number of training tokens.

15B Tokens 50B Tokens

WIKI. PG19 GOV. QASP. AVG WIKI. PG19 GOV. QASP. AVG
ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓

145M - Hawk 23.80 24.23 19.64 30.09 24.44 21.90 22.63 18.54 28.10 22.79
- Mamba2 24.28 27.31 20.07 27.51 24.79 24.13 27.85 22.56 29.17 25.93
- GLA 20.07 22.14 15.68 21.38 19.82 18.83 20.70 14.73 19.95 18.55
- xLSTM 20.04 22.13 15.56 21.43 19.79 18.68 20.67 14.61 19.89 18.46
- DeltaNet 19.85 22.05 15.47 20.85 19.55 18.66 20.64 14.64 19.76 18.42
- Gated-DeltaNet 19.64 21.75 15.23 21.03 19.41 18.46 20.47 14.45 19.63 18.25
- Mesa 19.52 21.60 15.10 20.78 19.25 18.38 20.25 14.42 19.52 18.14
- Hawk-Mesa 19.33 20.86 15.03 20.69 18.98 18.15 19.72 14.31 19.48 17.91
- Transformer 27.68 34.18 23.59 30.77 29.06 52.12 65.58 47.93 59.37 56.25

400M - Hawk 16.61 17.35 13.80 19.73 16.87 14.70 15.45 12.33 17.35 14.96
- Mamba2 18.31 20.59 15.33 20.59 18.70 17.94 20.75 16.07 20.48 18.81
- GLA 15.31 16.84 12.08 16.20 15.11 14.05 15.43 11.26 14.95 13.92
- xLSTM 15.31 16.82 11.98 16.18 15.07 13.90 15.39 11.22 14.87 13.85
- DeltaNet 15.49 17.07 12.27 16.37 15.30 14.09 15.50 11.35 14.86 13.95
- Gated-DeltaNet 14.99 16.46 11.84 15.73 14.76 13.75 15.13 11.04 14.60 13.63
- Mesa 15.02 16.41 11.73 15.72 14.72 13.67 14.98 10.87 14.36 13.47
- Hawk-Mesa 14.90 16.15 11.82 15.86 14.68 13.67 14.83 11.05 14.54 13.52
- SWA-4 30.09 29.68 28.80 50.69 34.82 24.31 24.55 22.88 37.16 27.23
- SWA-64 19.58 20.23 15.65 23.38 19.71 16.93 17.48 13.55 19.44 16.85
- SWA-256 17.54 18.41 13.59 19.29 17.21 15.47 16.44 12.19 16.88 15.25
- SWA-1024 15.90 17.28 12.32 16.58 15.52 14.22 15.41 11.27 14.92 13.95
- Transformer 33.17 46.81 34.34 41.51 38.96 74.74 130.23 122.52 142.67 117.54

1B - Hawk 14.37 15.11 12.01 17.10 14.65 12.59 13.25 10.67 14.68 12.80
- Mamba2 15.90 18.03 13.33 17.85 16.28 17.56 20.90 16.28 19.98 18.68
- GLA 13.56 14.90 10.81 14.37 13.41 12.05 13.15 9.77 12.80 11.94
- xLSTM 13.71 14.98 10.88 14.54 13.53 12.11 13.15 9.79 12.86 11.98
- DeltaNet 13.55 14.90 10.82 14.30 13.39 12.11 13.32 9.84 12.79 12.02
- Gated DelaNet 13.26 14.50 10.56 14.01 13.08 11.86 12.98 9.62 12.54 11.75
- Mesa 13.21 14.43 10.50 13.93 13.02 11.78 12.90 9.57 12.43 11.67
- Hawk-Mesa 13.08 14.27 10.49 13.85 12.92 11.81 12.72 9.60 12.53 11.66
- SWA-4 25.40 25.64 24.58 42.51 29.53 20.17 20.71 18.99 30.44 22.58
- SWA-64 17.05 17.70 13.74 20.02 17.13 14.66 15.34 11.81 16.84 14.66
- SWA-256 15.25 16.11 11.98 16.71 15.01 13.33 14.24 10.65 14.49 13.18
- SWA-1024 13.89 15.03 10.84 14.45 13.56 12.20 13.27 9.75 12.71 11.98
- Transformer 24.40 31.60 24.06 30.51 27.64 46.14 64.04 57.04 74.80 60.50

Table 11: PPL at a Maximum Sequence Length of 4k.

15B Tokens 50B Tokens

WIKI. PG19 GOV. QASP. AVG WIKI. PG19 GOV. QASP. AVG
ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓

145M - Hawk 23.93 29.50 20.16 30.73 26.08 21.98 27.62 19.01 28.78 24.35
- Mamba2 37.56 96.96 44.95 38.47 54.48 49.51 174.03 106.47 50.52 95.13
- GLA 20.28 27.32 16.21 21.40 21.30 18.96 26.30 15.23 20.09 20.15
- xLSTM 20.30 28.02 15.91 21.61 21.46 18.78 26.25 15.11 20.02 20.04
- DeltaNet 25.11 979.34 43.10 24.93 268.12 26.79 883.32 52.20 26.31 247.16
- Gated-DeltaNet 19.73 27.03 15.46 21.05 20.82 18.59 27.27 14.77 19.77 20.10
- Mesa 19.70 26.67 15.26 20.79 20.61 18.58 25.72 14.65 19.62 19.64
- Hawk-Mesa 19.72 26.79 15.69 20.97 20.79 18.44 26.09 14.69 19.99 19.80
- Transformer 42.42 72.04 43.19 41.64 49.82 528.05 4436.78 2029.43 324.84 1829.77

400M - Hawk 16.65 21.10 14.04 20.10 17.97 14.72 18.82 12.53 17.64 15.93
- Mamba2 26.64 65.40 34.37 28.00 38.60 53.90 919.97 172.39 41.73 297.00
- GLA 15.43 23.08 12.76 16.33 16.90 14.25 20.36 11.74 15.08 15.36
- xLSTM 15.34 20.86 12.02 16.20 16.11 14.00 20.21 11.29 14.97 15.12
- DeltaNet 18.59 487.01 28.09 19.28 138.24 19.13 359.90 31.71 17.98 107.18
- Gated-DeltaNet 15.16 21.19 12.27 15.85 16.12 13.82 20.72 11.37 14.67 15.14
- Mesa 15.40 21.94 12.31 15.98 16.40 13.83 19.55 11.17 14.51 14.77
- Hawk-Mesa 15.43 22.70 12.98 16.40 16.88 14.04 31.61 12.27 15.04 18.24
- SWA-4 30.07 37.94 29.66 52.16 37.46 24.29 31.49 23.59 38.40 29.44
- SWA-64 19.69 25.07 16.01 23.90 21.17 16.98 21.53 13.81 19.83 18.04
- SWA-256 17.63 22.43 13.82 19.62 18.38 15.59 20.07 12.37 17.17 16.30
- SWA-1024 16.01 21.02 12.40 16.73 16.54 14.48 19.01 11.89 15.26 15.16
- Transformer 118.84 538.89 188.16 94.22 235.03 428.15 4312.79 2013.32 473.55 1806.95

1B - Hawk 14.40 18.44 12.20 17.42 15.61 12.62 16.07 10.84 14.95 13.62
- Mamba2 21.43 48.14 23.28 23.01 28.96 47.30 240.81 101.96 39.52 107.40
- GLA 13.61 18.72 10.96 14.44 14.43 12.11 16.85 9.98 12.89 12.96
- xLSTM 13.74 18.38 10.91 14.58 14.40 12.20 16.95 10.02 13.03 13.05
- DeltaNet 14.75 145.22 17.33 15.54 48.21 14.65 150.90 21.92 14.95 50.60
- Gated DeltaNet 13.25 17.75 10.55 13.97 13.88 11.87 15.77 9.60 12.53 12.44
- Mesa 13.35 18.17 10.80 14.04 14.09 11.92 16.29 9.71 12.58 12.63
- Hawk-Mesa 13.57 139.08 19.41 14.55 46.65 12.31 17.50 17.51 13.03 15.09
- SWA-4 25.35 32.78 25.33 43.92 31.85 20.15 26.44 19.55 31.49 24.41
- SWA-64 17.10 21.83 14.05 20.49 18.37 14.68 18.83 12.03 17.21 15.69
- SWA-256 15.31 19.61 12.17 17.00 16.02 13.39 17.28 10.78 14.71 14.04
- SWA-1024 13.93 18.15 10.84 14.58 14.38 12.27 16.04 9.80 12.87 12.75
- Transformer 48.41 119.56 56.09 53.95 69.50 228.12 1326.59 563.97 234.95 588.41

Table 12: PPL at a Maximum Sequence Length of 32k.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Global Subset Local Subset
LMB. Hella. RACE-M RACE-H AVG PIQA Wino ARC-E ARC-C SIQA BOOLQ OBQA SC. AVG
acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑

400M Parameters / 15B Tokens
- SWA-4 4,62 34,97 25,97 25,93 22,87 66,81 49,33 43,81 24,23 39,82 57,31 30,00 63,78 46,89
- SWA-16 27,11 37,20 28,18 28,04 30,13 67,63 52,64 43,52 23,81 39,71 54,89 27,60 65,82 46,95
- SWA-64 38,54 39,35 32,87 30,24 35,25 68,93 52,17 44,40 22,87 39,76 58,56 29,20 64,99 47,61

- SWA-256 40,52 40,44 34,25 31,48 36,67 69,21 50,67 43,35 24,91 40,89 56,82 30,20 66,90 47,87
- SWA-1024 41,43 40,90 37,57 34,26 38,54 67,90 52,80 44,49 22,61 40,58 60,37 30,20 66,58 48,19

- Transformer 41,12 41,27 37,29 34,45 38,53 68,23 51,07 44,28 24,57 40,23 58,10 28,40 66,58 47,68

400M Parameters / 50B Tokens
- SWA-4 18,28 39,02 29,56 27,66 28,63 67,85 51,93 44,49 24,83 39,71 58,23 32,40 66,14 48,20
- SWA-16 35,03 41,52 29,01 28,33 33,47 68,99 52,72 45,88 24,32 39,56 57,40 33,00 67,54 48,68
- SWA-64 42,34 44,14 34,53 31,67 38,17 69,53 53,75 45,24 24,74 40,28 56,45 31,60 68,49 48,76

- SWA-256 43,86 45,31 36,46 35,79 40,36 70,24 52,33 45,79 23,98 40,23 57,00 32,40 68,94 48,86
- SWA-1024 45,08 46,43 38,95 34,74 41,30 69,64 52,25 45,71 25,00 40,07 57,92 32,20 67,92 48,84

- Transformer 44,96 46,30 41,44 35,89 42,15 69,91 52,64 45,96 24,06 40,48 57,31 30,40 69,64 48,80

1B Parameters / 15B Tokens
- SWA-4 8,46 38,56 27,62 27,18 25,46 67,95 51,30 46,72 23,72 40,17 56,73 30,40 65,50 47,81
- SWA-16 33,81 41,52 28,73 27,66 32,93 68,77 52,64 47,26 24,32 40,28 55,26 33,40 67,41 48,67
- SWA-64 42,60 44,04 31,49 30,72 37,21 69,91 51,30 46,72 24,66 41,10 58,56 33,20 67,98 49,18

- SWA-256 45,82 45,64 35,91 34,35 40,43 69,86 52,09 47,26 25,26 41,91 58,53 31,40 69,06 49,42
- SWA-1024 45,06 46,23 39,50 34,74 41,38 70,29 53,99 47,39 24,15 40,94 59,54 30,60 69,00 49,49

- Transformer 45,31 46,65 41,16 35,79 42,23 70,78 52,25 48,19 23,55 40,28 52,91 31,40 67,98 48,42
1B Parameters / 50B Tokens
- SWA-4 24,63 44,90 28,18 27,08 31,20 70,35 52,49 48,19 24,83 39,56 60,15 32,80 68,56 49,62
- SWA-16 39,03 48,10 28,73 29,47 36,33 72,09 53,04 48,99 25,43 41,15 53,39 32,80 70,78 49,71
- SWA-64 46,11 51,30 38,40 33,49 42,33 71,87 53,35 49,62 26,71 40,74 56,70 33,40 71,74 50,52

- SWA-256 50,28 52,08 40,88 35,69 44,74 72,20 52,64 49,37 27,05 40,84 58,35 32,80 73,01 50,78
- SWA-1024 50,38 53,69 41,44 37,22 45,68 72,47 53,35 49,41 27,13 41,61 62,20 32,60 72,06 51,35

- Transformer 48,92 53,63 42,27 37,32 45,54 72,31 54,62 49,41 28,24 40,17 60,73 35,20 72,25 51,62

- Random ≈ 0 25,00 25,00 25,00 - 50.00 50.00 25.00 25.00 33.33 50.00 25.00 50.00 -

Table 13: Reference Scores of Sliding Window Attention (SWA) Models on Common-Sense Reasoning
Benchmarks. On LAMBADA, HellaSwag and RACE-M and RACE-H, we observe significant performance
increases with a growing attention window. On the remaining benchmarks, we only observe marginal perfor-
mance differences between a Transformer with a sliding window-size of 4 (SWA-4) and a full-window attention
Transformer (attention window of 2048). We highlight the scores of the first short-range SWA model (window
sizes = {4,16,64}) that matches or exceeds the Transformer performance.

L.2 DOWNSTREAM BENCHMARKS

To evaluate the performance of the investigated models on downstream task, we investigate three
classes of benchmarks:

• Zero-Shot Common-Sense Reasoning Benchmarks (Section L.2.1)

• In-Context Recall Benchmarks (Section L.2.2)

• Few-Shot Learning Benchmarks (Section L.2.3)

Within each benchmark section, we report all raw numbers on all model sizes and number of training
tokens, and complement them with reference scores of Sliding-Window Attention models with
varying attention-window sizes.

L.2.1 ZERO-SHOT COMMON-SENSE REASONING BENCHMARKS

When tracking the performance of “many models” on “many benchmarks”, it is common to resort to
aggregated benchmark scores. However, aggregated scores tend to masquerade important sub-trends
and limit our understanding (Burnell et al., 2023). For instance, prior work (Gu & Dao, 2024; Yang
et al., 2024a; Beck et al., 2024) averages over a set of common-sense reasoning benchmarks. However,
evaluations with 400M and 1B Sliding-Window Attention (SWA) models with different attention-
window sizes reveal that competitive, or even superior, scores on a subset of these benchmarks can be
attained with an attention windows as short as 4, 16 or 64 (see Table 13). This observation strongly
indicates that a subset of these benchmarks are either exploitable by short-range language heuristics,
and do not require longer-range language modeling capabilities to reach competitive scores, or are
simply too hard such that we end up measuring noise.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Splitting Reasoing Benchmark into Two Groups. To reduce the potential benchmark noise and
deconfound the results, we aim to split the benchmark into two subsets. Therefore, we employ the
following benchmark splitting protocol:

1. Reference Scores. Run every selected benchmark on SWA-{4,16,64} models and a trans-
former model (attention window of size 2048) on 400M and 1B parameters trained on 15B or
50B tokens each.

2. Splitting Conditions. We then assess the following splitting conditions:
• Condition 1: Analyze for every benchmark whether benchmark scores increase with in-

creasing attention windows (from SWA-4 to SWA-64).
• Condition 2: Verify whether no short-range SWA model (window sizes = 4, 16 and 64)

outperforms the transformer baseline with an attention windows of 2048.
3. Benchmark Grouping. Finally, we split the benchmark into two subsets:

• Local Reasoning Benchmark Set: One of the above conditions is violated.
• Global Reasoning Benchmark Set: None of the above conditions is violated.

We refer to Table 13 for a detailed score breakdown, including two additional SWA reference models
(SWA-256 and SWA-1024). Additionaly, we want to highlight that these findings, and the bench-
mark splitting, are based on experiments 400M and 1B models trained on SlimPajama (Soboleva
et al., 2023). The benchmark splitting is likely to change slightly when training with bigger model
sizes or on different datasets.

Results on all Model Configurations. We report the full set of benchmark scores on all model
configuration (model sizes and number of training tokens) in Table 14. Across all settings, we observe
similar trends – MesaNet and Hawk-MesaNet show strong performance especially on the global
reasoning benchmark set. Among the remaining recurrent models, only Gated DeltaNet reaches
competitive scores with MesaNet on this benchmark subset. In contrast, we do not observe much
score variation on the local reasoning benchmark set. Hawk, the worst performing model on the
global set, reaches competitive or even close-to-best scores within this set on average. This confirms
the hypothesis that this set of benchmark are likely to measure different aspects of language modeling,
or are potentially noisy, or are not suited for our models as they might be still too challenging.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Global Subset Local Subset
Model LMB. Hella. RACE-M RACE-H AVG PIQA Wino ARC-E ARC-C SIQA BOOLQ OBQA SC. AVG

acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑

145M Models / 15B T.
- Hawk 21,87 33,54 29,01 28,52 28,23 64,64 50,83 40,24 21,93 39,41 59,11 27,80 62,25 45,78
- Mamba2 27,83 33,21 32,04 30,53 30,90 64,47 50,36 39,27 22,27 39,00 51,44 26,40 62,13 44,42
- GLA 31,05 34,20 33,43 28,71 31,84 63,66 52,09 41,41 21,76 38,89 56,85 28,80 63,97 45,93
- xLSTM 31,19 34,41 30,94 29,47 31,50 65,13 52,17 40,78 21,76 38,79 56,64 27,40 63,40 45,76
- DeltaNet 32,02 33,89 32,04 30,43 32,10 65,45 50,91 40,82 21,42 39,15 60,89 28,00 63,97 46,33
- Gated DeltaNet 31,65 34,53 33,98 29,09 32,31 64,53 51,07 41,62 21,59 39,05 60,03 28,40 63,21 46,19
- Mesa 31,65 34,49 32,87 30,43 32,36 66,43 51,85 40,03 22,27 38,43 56,73 27,40 63,34 45,81
- Hawk-Mesa 32,14 34,99 32,87 31,96 32,99 65,40 52,96 41,16 23,55 39,05 55,26 28,00 62,89 46,03

- Transformer 33,84 33,91 35,91 30,62 33,57 65,34 52,49 39,27 22,44 39,10 59,63 28,40 63,78 46,31

145M Models / 50B T.
- Hawk 22,14 35,09 28,18 30,33 28,94 65,94 51,62 41,33 22,87 39,46 59,45 28,20 63,97 46,60
- Mamba2 29,23 34,24 33,15 29,86 31,62 65,78 51,46 41,08 21,67 39,82 59,30 28,00 61,74 46,11
- GLA 32,16 35,57 32,04 29,86 32,41 65,56 51,07 43,18 23,81 39,82 52,23 29,40 63,72 46,10
- xLSTM 32,74 35,89 32,87 30,14 32,91 66,59 51,54 41,67 23,12 39,15 58,65 27,00 64,23 46,49
- DeltaNet 32,89 35,39 32,32 31,67 33,07 66,10 51,93 40,53 22,78 38,74 57,46 29,00 64,29 46,36
- Gated DeltaNet 32,85 36,15 33,15 31,96 33,53 66,76 51,22 41,92 23,55 38,38 60,43 29,00 64,10 46,92
- Mesa 32,33 36,24 34,53 30,24 33,33 65,40 51,70 41,62 22,61 38,89 54,65 28,80 63,53 45,90
- Hawk-Mesa 34,31 36,40 32,04 31,20 33,49 66,21 51,93 41,54 22,53 38,54 55,57 30,00 64,74 46,38

- Transformer 35,40 36,03 35,08 31,10 34,40 64,58 52,09 41,41 22,01 40,12 59,79 30,20 64,23 46,80

400M Models / 15B T.
- Hawk 32,97 42,33 33,15 32,06 35,13 68,66 50,99 44,53 25,00 39,66 59,69 30,80 67,09 48,30
- Mamba2 35,92 39,95 33,70 32,25 35,46 68,44 51,70 43,31 23,46 39,71 59,54 30,40 66,45 47,88
- GLA 40,09 42,49 34,53 32,54 37,41 68,61 51,78 44,99 24,91 39,61 60,40 28,40 68,30 48,37
- xLSTM 39,67 41,99 35,08 33,11 37,46 68,50 52,25 45,12 23,46 39,87 59,72 31,60 68,17 48,59
- DeltaNet 39,28 41,49 36,46 32,34 37,39 69,26 51,70 46,00 23,81 39,76 52,51 31,20 67,47 47,71
- Gated DeltaNet 39,98 42,55 32,87 33,68 37,27 69,59 52,33 45,20 25,17 40,02 59,14 29,40 67,60 48,56
- Mesa 40,17 42,71 34,53 33,21 37,65 67,79 50,51 45,12 22,87 39,10 52,42 29,80 68,43 47,00
- Hawk-Mesa 39,84 43,15 34,81 31,67 37,37 69,64 52,17 45,33 22,27 40,23 58,04 29,80 67,41 48,11

- SWA-4 4,62 34,97 25,97 25,93 22,87 66,81 49,33 43,81 24,23 39,82 57,31 30,00 63,78 46,89
- SWA-64 38,54 39,35 32,87 30,24 35,25 68,93 52,17 44,40 22,87 39,76 58,56 29,20 64,99 47,61
- SWA-1024 41,43 40,90 37,57 34,26 38,54 67,90 52,80 44,49 22,61 40,58 60,37 30,20 66,58 48,19

- Transformer 41,12 41,27 37,29 34,45 38,53 68,23 51,07 44,28 24,57 40,23 58,10 28,40 66,58 47,68
400M Models / 50B T.
- Hawk 36,70 47,02 33,43 32,54 37,42 71,93 52,25 47,26 24,06 40,89 59,91 34,20 69,83 50,04
- Mamba2 38,23 44,22 35,64 32,25 37,58 68,72 52,17 45,33 23,98 40,74 54,31 31,80 68,49 48,19
- GLA 41,98 46,00 35,08 34,74 39,45 69,86 54,14 46,46 23,98 40,07 56,57 29,80 69,96 48,86
- xLSTM 41,82 46,22 34,53 33,30 38,97 68,99 53,35 46,00 23,46 41,61 57,43 31,00 69,32 48,90
- DeltaNet 42,25 45,92 37,02 33,68 39,72 70,18 52,72 45,24 24,23 40,48 57,37 32,20 68,87 48,91
- Gated DeltaNet 43,99 46,57 35,36 34,83 40,19 70,18 51,85 46,38 25,77 40,58 54,89 32,60 70,53 49,10
- Mesa 43,39 46,93 38,95 34,26 40,88 70,73 54,46 46,21 24,91 41,10 57,89 32,40 69,38 49,64
- Hawk-Mesa 41,94 46,96 38,12 33,49 40,13 70,46 54,78 46,46 25,51 40,74 57,80 30,00 70,46 49,53

- SWA-4 18,28 39,02 29,56 27,66 28,63 67,85 51,93 44,49 24,83 39,71 58,23 32,40 66,14 48,20
- SWA-64 42,34 44,14 34,53 31,67 38,17 69,53 53,75 45,24 24,74 40,28 56,45 31,60 68,49 48,76
- SWA-1024 45,08 46,43 38,95 34,74 41,30 69,64 52,25 45,71 25,00 40,07 57,92 32,20 67,92 48,84

- Transformer 44,96 46,30 41,44 35,89 42,15 69,91 52,64 45,96 24,06 40,48 57,31 30,40 69,64 48,80

1B Models / 15B T.
- Hawk 37,98 47,71 35,08 32,25 38,25 71,93 50,43 48,61 25,43 41,50 58,53 31,80 70,59 49,85
- Mamba2 39,63 45,06 36,74 34,35 38,95 70,13 52,33 46,97 25,43 39,41 57,34 31,80 70,34 49,22
- GLA 43,24 47,20 33,43 33,68 39,39 70,95 52,41 46,97 25,00 41,15 58,59 33,00 70,34 49,80
- xLSTM 44,05 46,10 35,91 33,40 39,86 70,73 54,30 47,14 25,00 40,63 59,27 32,40 69,64 49,89
- DeltaNet 43,45 47,47 36,46 33,30 40,17 70,78 52,80 48,48 25,09 39,92 60,46 31,20 69,00 49,72
- Gated DeltaNet 45,37 48,49 35,36 34,07 40,82 71,60 53,99 48,57 24,83 40,07 53,76 32,40 70,46 49,46
- Mesa 44,21 47,70 37,02 33,49 40,60 70,89 54,46 47,56 25,26 41,04 56,06 32,20 70,21 49,71
- Hawk-Mesa 44,05 48,70 39,23 33,40 41,34 71,22 53,20 49,54 24,74 40,89 51,93 32,00 70,78 49,29

- SWA-4 8,46 38,56 27,62 27,18 25,46 67,95 51,30 46,72 23,72 40,17 56,73 30,40 65,50 47,81
- SWA-64 42,60 44,04 31,49 30,72 37,21 69,91 51,30 46,72 24,66 41,10 58,56 33,20 67,98 49,18
- SWA-1024 45,06 46,23 39,50 34,74 41,38 70,29 53,99 47,39 24,15 40,94 59,54 30,60 69,00 49,49

- Transformer 45,31 46,65 41,16 35,79 42,23 70,78 52,25 48,19 23,55 40,28 52,91 31,40 67,98 48,42

1B Models / 50B T.
- Hawk 41,80 54,25 34,25 34,35 41,17 72,91 52,33 51,52 28,75 40,84 56,51 35,00 74,67 51,57
- Mamba2 42,13 51,46 37,85 35,02 41,62 71,76 53,35 48,95 26,54 40,58 55,90 33,60 73,39 50,51
- GLA 47,27 53,05 41,44 35,60 44,34 72,25 54,14 50,46 27,56 41,25 56,85 35,00 74,03 51,44
- xLSTM 46,57 53,08 37,57 34,74 42,99 72,52 54,62 49,45 27,05 41,76 58,78 35,80 72,06 51,50
- DeltaNet 47,08 53,21 40,33 34,83 43,86 72,20 54,30 48,19 27,90 40,84 60,49 34,40 74,28 51,58
- Gated DeltaNet 49,19 54,10 39,78 36,27 44,84 71,93 54,06 51,22 26,88 41,35 53,27 34,20 73,14 50,76
- Mesa 48,83 53,58 40,88 36,84 45,03 71,71 53,59 49,37 25,68 40,58 53,30 35,60 74,09 50,49
- Hawk-Mesa 47,02 54,47 40,61 36,36 44,62 72,52 56,04 50,80 26,88 40,17 56,02 35,60 74,03 51,51

- SWA-4 24,63 44,90 28,18 27,08 31,20 70,35 52,49 48,19 24,83 39,56 60,15 32,80 68,56 49,62
- SWA-64 46,11 51,30 38,40 33,49 42,33 71,87 53,35 49,62 26,71 40,74 56,70 33,40 71,74 50,52
- SWA-1024 50,38 53,69 41,44 37,22 45,68 72,47 53,35 49,41 27,13 41,61 62,20 32,60 72,06 51,35

- Transformer 48,92 53,63 42,27 37,32 45,54 72,31 54,62 49,41 28,24 40,17 60,73 35,20 72,25 51,62

Table 14: Benchmark Scores on Common Reasoning Benchmarks on all model configurations. Best scores
among the recurrent models are highlighted for each training setting.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

L.2.2 IN-CONTEXT RECALL BENCHMARKS

To evaluate in-context recall, we adopted the minimal-transformed version of the benchmarks from
Arora et al. (2024) to allow evaluation of non-instruction-tuned models. We truncate inputs to 2000
tokens, and sample greedily until either 48 tokens or a new-line delimiter is generated. We then
parsed whether the target was contained in the generation (non-case-sensitive), as in Arora et al.
(2024) .

Sliding-Window Attention Controls. As expected, we observe consistent score increases with
a growing attention window size (see Table 15). However, we observe that the SWA-1024 is
consistently better on SQUAD than the transformer baseline with an attention window of 2048.
Closer inspection of the SQUAD benchmarks reveals that the tokens-to-recall are most frequently
located in the last 1k tokens of the sequence. Similarly for FDA, most tokens-to-recall are located at
the very beginning of the sequence with an average of length 2000. Hence, we observe a significant
performance increase from SWA-1024 to the transformer baseline with an attention window of 2048.

Results on all Model Settings. MesaNet consistently attains best, or in few cases second-best,
performance scores on average across all evaluated model settings (see Table 16). Moreover, we
observe that our insights from the PPL analysis in L.1 directly translate to the observed results in
here, e.g., Hawk attaining the worst in-context recall performance.

15B Tokens 50B Tokens
SWDE SQUAD FDA TQA NQ DROP AVG SWDE SQUAD FDA TQA NQ DROP AVG

acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑
400M Models: - SWA-4 7,38 5,60 0,18 14,51 3,52 9,15 6,72 10,98 7,77 0,45 21,27 5,16 13,13 9,79

- SWA-16 9,63 10,82 0,27 24,88 4,88 15,33 10,97 13,05 18,30 1,09 33,35 6,59 17,35 14,95
- SWA-64 13,14 26,74 10,07 39,34 5,23 19,12 18,94 19,17 38,44 11,43 48,76 7,25 23,96 24,84
- SWA-256 21,69 40,92 12,25 50,95 6,87 23,67 26,06 30,96 42,19 14,70 56,16 10,10 24,20 29,72
- SWA-1024 54,91 43,06 17,79 52,67 10,86 26,45 34,29 60,04 46,82 22,60 58,06 13,84 27,89 38,21

- Transformer 77,50 37,13 79,13 53,08 16,57 26,59 48,33 79,66 36,93 75,86 58,95 18,94 29,37 49,95

1B Models: - SWA-4 9,00 6,53 0,27 17,06 4,40 11,60 8,14 13,05 10,66 0,27 26,54 7,10 13,61 11,87
- SWA-16 9,54 15,25 0,27 29,15 6,46 16,44 12,85 16,74 23,76 2,09 39,28 8,46 18,59 18,15
- SWA-64 16,74 30,56 16,61 44,55 7,19 20,46 22,69 22,32 39,85 12,70 51,90 9,63 23,91 26,72
- SWA-256 25,74 45,34 17,79 56,10 8,81 26,45 30,04 35,82 46,45 17,33 59,77 12,54 27,46 33,23
- SWA-1024 60,76 40,65 24,23 56,99 11,88 27,65 37,03 63,73 47,65 26,68 61,43 15,52 30,04 40,84

- Transformer 79,21 42,76 77,04 56,99 18,69 29,47 50,69 83,35 46,92 70,96 63,21 21,79 27,41 52,27

- Random ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 15: Reference Scores of SWA Models on In-Context Recall Benchmarks. The pattern of best scores
(highlightreded) is very consistent across the evaluated settings. As expected, we see increasing performance
with increasing sizes of attention windows. Except on SQUAD, the transformer commonly attains the best
scores.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

15B Tokens 50B Tokens
SWDE SQUAD FDA TQA NQ DROP AVG SWDE SQUAD FDA TQA NQ DROP AVG

acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑
145M Models: - Hawk 11,43 11,09 0,27 30,39 4,09 14,18 11,91 10,08 14,08 0,36 35,25 5,38 14,85 13,33

- Mamba2 29,52 24,83 14,34 40,17 7,57 20,89 22,89 37,62 26,34 14,70 44,43 7,67 20,27 25,17
- GLA 37,08 38,20 14,07 44,73 8,58 23,38 27,67 39,69 30,46 15,88 48,16 10,80 23,86 28,14
- xLSTM 33,39 25,00 11,34 44,79 10,45 25,44 25,07 34,65 36,03 19,96 48,76 11,43 23,53 29,06
- DeltaNet 33,57 29,69 15,61 46,27 9,66 23,48 26,38 39,24 31,60 18,06 46,39 11,40 20,27 27,83
- Gated DeltaNet 32,31 30,83 16,42 46,68 10,48 23,43 26,69 38,07 32,44 15,79 48,34 10,74 21,23 27,77
- Mesa 36,90 34,35 14,88 47,22 10,20 25,68 28,21 40,50 29,99 15,79 47,04 11,97 23,77 28,18
- Hawk-Mesa 34,65 30,33 13,61 46,33 9,79 22,86 26,26 34,38 36,03 9,89 46,86 11,31 21,80 26,71

- Transformer 63,73 23,89 54,63 46,50 12,01 25,59 37,72 67,78 30,97 70,87 50,30 14,70 23,62 43,04
400M Models: - Hawk 16,47 23,86 1,09 42,42 8,01 19,65 18,58 22,05 23,86 1,45 48,93 10,83 20,60 21,29

- Mamba2 43,11 29,86 20,42 47,04 11,47 22,81 29,12 51,04 29,76 22,23 52,90 12,58 24,77 32,21
- GLA 52,30 39,04 20,96 50,12 14,16 28,41 34,17 54,10 41,59 26,23 55,04 16,00 26,07 36,50
- xLSTM 51,67 38,94 23,32 51,13 14,76 23,48 33,88 50,86 38,87 25,23 53,67 16,09 24,63 34,89
- DeltaNet 50,23 35,62 27,40 50,00 14,38 25,16 33,80 55,90 35,59 27,40 53,50 15,11 23,67 35,19
- Gated DeltaNet 53,20 35,15 27,04 51,72 15,96 24,82 34,65 56,53 37,23 29,49 53,55 15,01 23,96 35,96
- Mesa 53,11 38,54 28,58 52,13 14,29 27,02 35,61 59,05 47,05 28,95 57,17 17,29 26,31 39,30
- Hawk-Mesa 52,66 39,95 23,05 52,78 13,62 26,26 34,72 53,65 39,95 25,14 55,51 15,62 27,55 36,23

- Transformer 77,50 37,13 79,13 53,08 16,57 26,59 48,33 79,66 36,93 75,86 58,95 18,94 29,37 49,95
1B Models: - Hawk 20,25 15,72 2,09 48,34 10,42 21,61 19,74 26,73 29,96 3,27 52,96 14,63 22,66 25,04

- Mamba2 54,10 33,68 26,41 51,66 13,97 25,11 34,15 59,68 37,84 31,13 56,64 15,39 25,35 37,67
- GLA 59,68 41,29 29,67 55,04 16,25 25,97 37,98 60,58 43,67 30,40 59,24 18,69 25,25 39,64
- xLSTM 57,61 39,11 24,50 54,50 15,17 26,64 36,26 63,37 38,91 31,58 58,00 18,06 25,59 39,25
- DeltaNet 58,15 37,60 36,84 55,15 16,63 25,35 38,29 62,56 39,01 38,29 59,54 17,96 25,40 40,46
- Gated DeltaNet 59,59 39,48 37,30 55,86 17,39 25,87 39,25 60,22 39,81 32,12 59,54 18,56 26,98 39,54
- Mesa 60,40 49,06 22,50 54,38 17,55 27,46 38,56 63,10 46,25 32,67 61,37 19,64 27,74 41,79
- Hawk-Mesa 61,03 41,55 27,77 54,74 15,33 25,68 37,68 60,31 45,51 28,68 60,13 17,61 27,70 39,99

- Transformer 79,21 42,76 77,04 56,99 18,69 29,47 50,69 83,35 46,92 70,96 63,21 21,79 27,41 52,27

Table 16: Benchmark Scores for In-Context Recall Benchmarks on all Model Settings. MesaNet consistently
attains the best or second-best score on average across all evaluated model settings.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

L.2.3 FEW-SHOT LEARNING BENCHMARKS

To evaluate the few-shot learning ability, we tested two distinct types of few-shot tasks, (i) word
scrambling tasks introduced in (Brown et al., 2020b) and (ii) a couple of language-to-language
translation tasks.

Word Scrambling Tasks. We report the few-shot performances in Table 17 for 0-,1-,10- and 100-
shot settings. As few-shot evaluation tend to be sensitive to the selection and ordering of few-shot
examples (Lu et al., 2021), we report the mean performance over 10 randomly drawn few-shot prefixes.
We observe consistent improvements with an increasing number of fewshots for all models except
for SWA-4. MesaNet attains the strongest performance scores in most settings, and outperforms the
transformer baseline significantly.

While we evaluate on all five word scrambling tasks introduce in Brown et al. (2020b), we observe
only observe signal (performance above 1%) for models in the ranges 145M to 1B on two tasks:
gpt3/cycle letters in word and gpt3/mid word 2 anagrams. On the three remain-
ing tasks, we observe performance score close to 0%, in line with the results of Brown et al. (2020b),
and hence omit the scores here.

gpt3/cycle letters in word gpt3/mid word 2 anagrams
0-shot 1-shot 10-shot 100-shot 0-shot 1-shot 10-shot 100-shot

145M Models - Hawk 0.2 0.4±0.2 1.3±0.5 1.7±0.5 0.2 0.4±0.1 0.8±0.2 0.7±0.2
- Mamba2 0.0 0.2±0.2 1.7±0.4 1.4±0.3 0.0 0.2±0.3 0.6±0.2 0.3±0.1
- GLA 0.1 0.2±0.3 2.4±0.7 3.0±0.4 0.2 0.1±0.1 1.0±0.4 1.5±0.1
- xLSTM 0.1 0.4±0.5 2.8±0.6 3.8±0.5 0.3 0.1±0.2 0.9±0.3 1.6±0.1
- DeltaNet 0.1 0.5±0.4 2.6±0.9 3.2±0.6 0.1 0.2±0.1 1.2±0.3 1.1±0.2
- Gated DeltaNet 0.1 0.8±0.6 2.5±0.7 3.4±0.6 0.0 0.4±0.4 1.4±0.2 1.7±0.2
- Mesa 0.1 0.2±0.3 2.2±0.5 3.3±0.5 0.1 0.2±0.2 1.1±0.3 1.7±0.1
- Hawk-Mesa 0.0 0.3±0.2 1.7±0.5 2.4±0.6 0.2 0.2±0.3 0.9±0.3 1.4±0.2

- Transformer 0.1 0.5±0.4 2.6±0.5 3.7±0.3 0.1 0.2±0.2 1.2±0.3 1.7±0.2
400M Models - Hawk 0.1 1.7±1.2 5.3±1.2 6.6±0.4 0.1 0.9±0.7 2.4±0.1 2.8±0.2

- Mamba2 0.4 2.0±1.4 4.5±0.6 5.1±0.5 0.4 0.9±0.5 1.6±0.3 1.6±0.1
- GLA 0.0 1.7±1.1 5.2±1.0 7.6±0.3 0.4 1.0±0.7 2.4±0.2 2.6±0.2
- xLSTM 0.0 2.3±1.3 5.7±1.3 8.2±0.5 0.2 1.1±0.5 2.5±0.3 2.9±0.3
- DeltaNet 0.1 1.5±1.0 5.7±1.3 7.6±0.6 0.0 1.1±0.5 2.4±0.3 2.6±0.3
- Gated DeltaNet 0.1 2.1±1.7 6.5±1.0 9.0±0.8 0.1 0.9±0.5 2.6±0.3 3.4±0.2
- Mesa 0.4 2.2±1.2 6.6±1.0 9.2±0.6 0.6 1.1±0.5 2.6±0.3 3.2±0.2
- Hawk-Mesa 0.0 1.3±0.9 4.0±1.4 7.3±0.5 0.1 0.9±0.7 2.6±0.3 3.1±0.1

- SWA-4 0.0 0.4±0.3 0.8±0.3 0.8±0.2 0.0 0.3±0.3 0.9±0.3 0.9±0.3
- SWA-64 0.1 2.5±1.5 4.6±1.1 4.7±0.9 0.1 1.2±0.5 2.7±0.2 2.7±0.1
- SWA-1024 0.3 2.5±1.6 6.1±0.9 7.7±0.5 0.8 1.2±0.8 2.9±0.4 3.1±0.3

- Transformer 0.4 2.4±1.8 6.7±1.2 8.5±0.4 0.5 1.4±0.7 3.3±0.4 3.6±0.2
1B Models - Hawk 0.2 1.5±1.0 6.8±1.5 9.2±0.6 0.1 0.9±0.8 3.5±0.4 3.8±0.2

- Mamba2 0.8 3.7±1.7 6.3±0.8 6.4±0.7 1.1 1.8±0.3 2.4±0.3 2.0±0.4
- GLA 0.3 4.1±2.1 8.4±1.2 10.3±0.5 0.5 2.3±0.7 3.9±0.5 4.2±0.2
- xLSTM 0.0 2.2±1.3 7.7±1.8 11.0±0.4 0.3 1.8±0.5 3.9±0.3 4.6±0.3
- DeltaNet 0.0 2.9±1.9 8.7±1.3 11.7±0.8 0.1 1.6±0.8 3.7±0.5 4.1±0.3
- Gated DeltaNet 0.3 4.0±1.8 8.9±1.4 11.8±0.7 0.5 2.5±0.9 4.7±0.6 6.1±0.4
- Mesa 0.5 3.3±2.0 9.7±1.3 14.0±0.5 1.1 2.1±1.1 4.7±0.6 6.2±0.4
- Hawk-Mesa 0.4 2.1±1.5 7.2±1.5 11.4±0.5 0.6 2.0±0.9 4.4±0.4 5.8±0.3

- SWA-4 0.1 1.1±0.9 1.5±0.7 2.0±0.8 0.2 0.6±0.5 1.4±0.3 1.4±0.3
- SWA-64 1.3 3.5±1.8 6.3±1.3 7.8±0.6 1.0 2.4±0.7 3.8±0.3 4.0±0.3
- SWA-1024 0.1 3.4±1.8 7.5±1.3 9.0±0.5 0.1 1.9±0.9 4.3±0.4 4.3±0.2

- Transformer 0.0 3.0±2.2 6.8±1.7 9.2±0.6 0.1 2.4±0.6 4.2±0.4 4.7±0.2

Table 17: Few-Shot Performance (Accuracy ± Std.) on GPT-3 Word Scrambling Tasks (Brown et al.,
2020b) of Models Trained on 50B Tokens. Best 50-shot scores are highlighted, and standard deviation is
reported over 10 random drawn few-shot selections. MesaNet attains the strongest scores in most settings, and
outperforms the transformer baseline significantly.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Language-to-Language Translation. We evaluated a model’s capability to translate from three
different languages to English: (i) French to English (Bojar et al., 2014), (ii) German to English (Bojar
et al., 2016) and (iii) Romanian to English (Bojar et al., 2016). We follow the exact prompt setup of
Brown et al. (2020b) evaluate with {0,1,5,10} -and 50-shots, and report the performance in Table 18
with respect to BLEU-sb (Post, 2018) for models trained on 50B tokens.

We observe scores of different performance magnitudes across the three languages, which is most
likely caused by the multi-lingual distribution of the training data corpus and French being more
prevalent than German and Romanian. MesaNet attains superior scores among the recurrent models.
However, MesaNet, and more general all recurrent models, fail to match the transformer performance
by a relatively big margin, especially at the scale of 1B models. This finding is non-surprising given
the impact of the attention mechanism on the field of machine translation (Bahdanau et al., 2014),
indicating that pure model- and data-scaling based on recurrent models will not be enough to match
the performance of attention-based architecture (Rodchenko et al., 2025).

WMT14 FR-EN WMT16 DE-EN WMT16 RO-EN
0 1 5 10 50 0 1 5 10 50 0 1 5 10 50

145M Models: - Hawk 0,61 0,31 0,25 0,08 0,11 0,49 0,16 0,20 0,19 0,19 0,44 0,16 0,06 0,19 0,29
- Mamba2 1,68 0,56 0,73 0,73 0,19 2,13 0,40 0,28 0,51 0,37 1,68 0,32 0,44 0,50 0,46
- GLA 1,47 0,21 0,69 0,66 0,63 1,78 0,52 0,35 0,52 0,44 1,52 0,24 0,12 0,50 0,51
- xLSTM 1,64 0,07 0,73 0,87 0,67 2,09 0,63 0,33 0,81 0,77 1,68 0,22 0,34 0,50 0,85
- DeltaNet 1,57 0,20 0,78 0,90 0,59 1,68 0,49 0,32 0,73 0,81 1,56 0,80 0,55 0,58 0,61
- Gated DeltaNet 1,31 0,25 0,28 0,35 0,89 1,64 0,42 0,35 0,68 0,64 0,80 0,67 0,49 0,51 0,35
- Mesa 1,26 0,66 0,33 1,10 1,06 1,53 0,49 0,58 0,46 0,62 1,56 0,32 0,51 0,45 0,52
- Hawk-Mesa 1,62 0,19 0,80 0,77 0,94 2,03 0,51 0,67 0,47 0,79 1,77 0,24 0,54 0,49 0,90

- Transformer 1,55 0,05 0,59 0,70 0,87 1,90 0,39 0,86 0,61 0,71 1,75 0,28 0,30 1,41 0,50

400M Models: - Hawk 1,54 2,28 3,95 4,25 4,97 1,34 1,36 3,24 3,87 3,67 0,91 1,29 2,03 1,52 1,89
- Mamba2 2,15 4,05 6,07 4,55 3,49 2,17 1,43 3,13 3,19 2,52 1,68 0,86 1,36 1,94 1,64
- GLA 1,83 3,20 2,74 4,83 4,23 2,15 2,60 1,88 2,04 2,19 1,72 0,62 1,42 1,96 1,30
- xLSTM 2,14 3,08 3,48 3,66 3,28 2,29 2,06 2,68 2,79 2,77 1,63 1,10 1,37 2,20 2,15
- DeltaNet 1,72 3,09 4,43 3,89 3,49 1,84 1,53 3,52 2,83 2,47 1,79 1,67 1,63 1,29 1,45
- Gated DeltaNet 1,87 3,92 3,86 4,16 3,77 2,00 0,85 3,35 3,18 2,94 1,80 1,05 2,56 2,13 2,22
- Mesa 2,23 2,75 4,33 5,05 5,33 2,06 0,80 2,62 3,11 3,70 1,75 0,68 2,09 1,63 2,47
- Hawk-Mesa 1,90 2,83 3,89 4,54 4,27 2,00 2,55 3,66 3,26 3,20 1,74 0,68 1,71 1,71 2,28

- SWA-4 0,34 0,13 0,14 0,13 0,12 0,25 0,19 0,26 0,21 0,26 0,29 0,10 0,06 0,07 0,05
- SWA-64 1,35 3,82 4,46 4,94 4,92 1,45 2,17 1,66 2,09 1,57 1,18 1,10 1,38 0,88 1,29
- SWA-1024 4,09 4,55 8,49 7,77 9,16 3,09 3,66 4,57 5,14 5,11 1,96 0,55 1,82 2,99 2,67

- Transformer 2,61 8,27 8,77 8,92 9,63 2,04 3,13 5,73 5,34 5,49 1,94 1,02 1,29 2,23 2,56

1B Models: - Hawk 3,72 5,88 8,56 7,15 4,17 3,33 3,79 3,77 5,20 5,86 2,37 2,69 4,39 4,22 4,17
- Mamba2 4,20 11,81 11,90 11,28 5,83 3,07 3,62 6,79 8,18 3,35 2,04 4,27 6,83 4,75 3,38
- GLA 3,15 10,60 11,87 10,90 10,31 2,58 7,90 9,41 7,77 7,46 2,15 2,59 6,60 4,30 4,95
- xLSTM 4,96 5,11 11,71 10,32 10,56 4,13 5,52 9,17 8,99 8,59 2,60 2,33 4,74 3,81 3,90
- DeltaNet 5,24 8,34 10,79 10,08 7,88 4,02 6,91 8,72 6,01 5,66 2,29 1,01 4,32 3,39 2,58
- Gated DeltaNet 4,71 8,24 10,03 11,25 11,31 4,31 7,59 9,07 8,60 8,76 2,45 4,63 5,67 5,33 5,51
- Mesa 3,58 11,80 12,44 11,57 11,64 3,10 6,98 10,20 8,49 7,81 1,88 5,05 2,96 6,05 5,07
- Hawk-Mesa 3,68 7,99 10,58 13,16 12,01 2,92 8,03 10,50 8,67 8,43 2,36 4,73 4,91 5,81 5,99

- SWA-4 0,54 0,72 0,72 0,72 0,74 0,49 0,75 0,89 0,87 0,72 0,22 0,12 0,14 0,11 0,06
- SWA-64 5,58 6,69 2,92 8,43 7,61 4,09 5,27 4,69 4,05 3,45 2,26 1,68 1,85 3,12 3,05
- SWA-1024 8,75 16,65 18,09 18,70 19,83 5,99 10,85 14,58 14,91 14,30 3,36 4,19 10,14 10,05 8,38

- Transformer 8,30 18,49 17,81 17,70 19,14 6,10 13,06 11,99 13,99 13,85 3,54 5,92 7,11 7,35 7,82

Table 18: Performance Scores (in BLEU-sb) on three Translation Tasks on Models Trained on 50B Tokens.
Best 50-shot scores among recurrent models are highlighted, as well as Transformer reference scores. While
MesaNet attains the best-score among the recurrent models in most settings, it under-performs transformer by
relative big margin.

L.3 NEEDLE IN THE HAYSTACK (NIAH) RESULTS

Setup. We conducted a sweep of experiments on single-needle tasks (NIAH) from the RULER
benchmark (Hsieh et al., 2024) suite for 1B models trained on 50B tokens. We ran experiments for
both haystack types (noise and essays) for all key/value combinations (both can be in the form of:
words, numbers or uuids) on context lengths 2048 and 4096.

Results. As scores are quite sensitive to the chosen key and values types, we report mean±std percent
accuracy over all 9 key/value combinations, with 1000 evaluation samples for each setting. On the
“noise” haystack, MesaNet demonstrates strong scores with very low fluctuations across key/value
combinations. On the “essay” haystack, we observe relatively high score fluctuations across key/value
combinations for all models which makes it hard to form conclusions. However, we would still like
to highlight the strong performance of Hawk-Mesa on the essay haystack.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

NIAH Noise NIAH-Essay
L=2048 L=4096 L=2048 L=4096

- Hawk 4.0 ± 5.9 1.7 ± 2.9 3.0 ± 2.2 2.1 ± 1.6
- Mamba2 79.7 ± 17.9 0.7 ± 1.0 51.3 ± 22.3 0.0 ± 0.0
- GLA 96.2 ± 4.2 68.5 ± 18.9 73.5 ± 34.7 41.4 ± 26.9
- xLSTM 94.8 ± 5.0 80.4 ± 14.9 69.1 ± 20.5 24.3 ± 9.9
- DeltaNet 99.3 ± 1.0 96.5 ± 6.3 68.9 ± 32.3 27.9 ± 15.3
- Gated-DeltaNet 98.3 ± 4.1 96.3 ± 8.1 52.1 ± 33.7 11.0 ± 9.4
- MesaNet 99.5 ± 0.5 95.1 ± 3.9 66.8 ± 28.9 17.9 ± 9.0
- Hawk-Mesa 97.6 ± 3.5 65.3 ± 21.6 90.9 ± 10.5 55.5 ± 28.5
- SWA-1024 51.8 ± 0.9 24.3 ± 1.3 47.5 ± 11.8 21.6 ± 7.2

- MHA 99.7 ± 0.3 0.0 ± 0.0 98.2 ± 2.5 0.0 ± 0.0

Table 19: NIAH Benchmark results for 1B models trained on 50B tokens.

M VARYING THE NUMBER OF CONJUGATE GRADIENT STEPS WHEN
TRAINING MESANETS

Here we present the effect when training the MesaNet on less than 30 steps. We opted for training
with 30 steps, as we were not optimizing for training flops but first investigate a fully converge Mesa
layer, and because of early experiments on our 400million model which indicated little improvement
after 30 steps.

As shown in Figure 13, we see a small, interestingly, uniform increase of training loss across the
sequence length when comparing to a model which is trained on 30 steps. Only when dropping
the number of CG steps below 10, we see a more drastic jump in loss increase. As we have show
in section C, the backward pass also relies on running the CG method to solve linear systems of
equations and we leave investigating for future work varying the number of steps in the forward and
backward pass.

0 1024 2048
Token Position

0

0.01

0.02

Di
ffe

re
nc

e
in

 N
LL

 to
 M

es
a

(C
G=

30
)

Mesa (Train CG=5)
Mesa (Train CG=5, Inference=30)
Mesa (Train CG=10)
Mesa (Train CG=15)

Mesa (Train CG=20)
Mesa (Train CG=25)
Mesa (Train CG=50)

Figure 13: We compare the validation loss across the sequence of 400 million parameter MesaNets trained on
15B tokens, when varying the number of conjugate gradient steps during training. We observe a slight uniform
increase of validation loss across the sequence length when comparing to a model which is trained on 30 steps.
Only when dropping the CG steps drastically to 5 we see a substantial increase in loss.

N EVALUATION METHODOLOGY

Mulitple Choice Tasks: For a given question x, we assess for all possible options y the loss NLL(y|x)
of the option conditional on the question, and then normalize by the number of tokens of y. In contrast
to related work (Gu & Dao, 2024; Yang et al., 2024a; Beck et al., 2024), we do not heuristically
choose between byte-normalized and non-normalized scoring schemes as we have a fixed tokenizer
across all models.

Greedy Matching Tasks. For a given input x and an expected target sequence y (e.g., one or multiple
tokens), we check whether t would be matched under greedy sampling. This is done by obtaining
the logits for the concatenated input of x+ y, and checking whether all tokens belonging to y are
matched by taking the argmax over the logits.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

In-Context Recall Tasks. We follow closely the setup of (Arora et al., 2023b). For a given input
x, we sample greedily a completion from the model until either 48 tokens or a new-line character is
sampled. We then check whether the target y is contained in the output (non-case-sensitive).

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

O AN INTERNAL ANALYSIS OF THE MESANET

Figure 14: input strength β, forget strength γ, regularization strengths Λ as well as other internal statistics
of a 400M parameter MesaNet trained on 50B tokens - averaged over 500 sequences from the SlimPajama
validation set. We observe that high γt ≈ 1 values usually lead to the condition number of the to be inverted
matrix KtK

T
t + Λ increase over time, which in turn leads to more CG steps required to obtain an output for the

mesa. We also observe (outer right plot) that usually these heads lead to higher cosine similarity (cos) between
ot, the output of the layer if no CG steps are applied which corresponds to gated linear attention, compared to
the Mesa output o∗t . We compute the number of conjugate gradient steps are computed by measuring the steps
of the conjugate gradient method to reach an error of 0.001. We sort the heads for plotting purposes according to
their average gamma values.

51

	Introduction
	A Parallelizable Mesa Layer
	Train and Inference Time of the Mesa Layer
	MesaNet in a Language World
	Language Modeling (Within and Beyond Train Sequence Length)
	Language Benchmarks

	Test-Time Compute Analysis
	Discussion
	Related Work
	Derivation of previous test-time training rules
	Rank-One Update Conjugate Gradient Method
	Chunkwise Parallel Form of Gated Linear Attention and the Mesa Layer
	A Full Description of the Mesa Layer, Related Work and the MesaNet
	Model design

	Experimental Details: MesaNet in Synthetic Environments
	MAD Benchmark Suite
	RegBench In-Context Language Learning Benchmark

	Experimental details: MesaNet in a Language World
	Data
	Model design
	Training details
	Hyperparameter scans
	Notes on precision used in the CG-solver, Mesa layer design considerations or Why you shouldn't scream at your Mesa layer
	Experiments compute resources
	Token throughput comparisons of recurrent models for 1B models

	The Original Recursive Least-Squares Mesa Layer
	A Preliminary Investigation into State Tracking with the Mesa Layer
	Further Discussion Points
	MesaNet Trained in Synthetic Environments
	Extended Results in Language Environment
	Language Modelling / Perplexity Analyses
	Within Train Context-Length
	Beyond Train Context-Length

	Downstream Benchmarks
	Zero-Shot Common-Sense Reasoning Benchmarks
	In-Context Recall Benchmarks
	Few-Shot Learning Benchmarks

	Needle In the Haystack (NIAH) Results

	Varying the Number of Conjugate Gradient Steps when Training MesaNets
	Evaluation Methodology
	An Internal Analysis of the MesaNet

