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ABSTRACT

Sequence modeling is currently dominated by causal transformer architectures that
use softmax self-attention. Although widely adopted, transformers require scaling
memory and compute linearly during inference. A recent stream of work linearized
the softmax operation, resulting in powerful recurrent neural network (RNN)
models with constant memory and compute costs such as DeltaNet, Mamba or
xLSTM. These models can be unified by noting that their recurrent layer dynamics
can all be derived from an in-context regression objective, approximately optimized
through an online learning rule. Here, we join this line of work and introduce a
numerically stable, chunkwise parallelizable version of the recently proposed Mesa
layer (von Oswald et al., 2024), which could only run sequentially in time and was
therefore not scalable. This layer again stems from an in-context loss, but which is
now minimized to optimality at every time point using a fast conjugate gradient
solver. Through an extensive suite of experiments study up to the billion-parameter
scale, we show that optimal test-time training enables reaching lower language
modeling perplexity and higher downstream benchmark performance than previous
RNNs, especially on tasks requiring long context understanding. This performance
gain comes at the cost of additional flops spent during inference time. Our results
are therefore intriguingly related to recent trends of increasing test-time compute to
improve performance – here by spending compute to solve sequential optimization
problems within the neural network itself.

1 INTRODUCTION

While Transformers dominate sequence modeling, their per-token computational and memory require-
ments scale linearly with sequence length during inference. This limitation motivates the development
of efficient recurrent neural networks (RNNs) with constant complexity, particularly for autoregres-
sive tasks like language modeling. Recent progress has focused on fast weight programming layers,
which process a given sequence by representing and learning a linear model in their activations
(Schmidhuber, 1992; Schlag et al., 2021a; Yang et al., 2024c; Dao & Gu, 2024). Such ‘fast weights’
undergo one learning step whenever the input sequence advances, following simple Hebbian (Hebb,
1949) or error-correcting (delta) rules (Widrow & Hoff, 1960). Both rules correspond to gradient
descent on a suitable quadratic loss function, measured on the latest input.

Here, we take this concept one step further, and design an optimal fast weight programming layer.
Following previous related work, we consider linear fast weight models, and measure how well a given
context is modeled using a quadratic loss. However, instead of gradually learning through gradient
descent, we design a layer that always responds with the optimal fast weights, which achieve minimum
loss on all data seen so far. This allows retaining past information while adapting to new evidence
quickly as a sequence unfolds. Our work builds off the recent recurrent Mesa layer (von Oswald
et al., 2024), proposing a version of this layer that is parallelizable leveraging matrix multiplication
accelerators, numerically stable, and that allows for context-dependent forgetting. Moreover, the layer
dynamically adapts its computational cost at test time to the sequence at hand. This is because the
layer introduced here explicitly invokes an external solver, for which the number of iterations required
to reach a given stopping criterion differs across sequences. We summarize our contributions below:

• A novel Mesa layer which is parallelizable over sequence length and flexibly allocates test-
time computation: We adapt the previously proposed Mesa layer (von Oswald et al., 2024) to
allow for chunkwise parallel training. We leverage an equivalence of the conjugate gradient (CG)
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Figure 1: Model Architecture of the MesaNet. (A) We adopt the widespread decoder-only transformer
architecture (Touvron et al., 2023) stacking N residual blocks of a channel mixing (B) and sequence mixing (C)
components. (B) Channel mixing is a vanilla SwiGLU MLP. (C) Sequence mixing is performed by the Mesa
layer. From its inputs, it generates keys, queries and values as well as input and forget strengths. These are then
processed according to the Mesa Rule (Equation 7). We compare the MesaNet to models which share the exact
same architecture and only change the sequence mixing rule to multi-head-attention (MHA), xLSTM, Mamba2
or (Gated) DeltaNet.

method over multiple time steps with gated linear self-attention, which allows using established
hardware-efficient training (Yang et al., 2024a). During inference, the layer reallocates test-time
compute dynamically as different sequences lead to varying CG iterations to reach a stopping
criterion, allowing to trade off test-time compute and performance.

• The MesaNet is a strong language model: We train 140M, 440M and 1B parameters MesaNets,
see Figure 1, on the SlimPajama dataset (Soboleva et al., 2023). On all of these scales, the
MesaNet reaches lower validation perplexity compared to models such as Mamba2 (Gu & Dao,
2024), xLSTM (Beck et al., 2024), DeltaNet (Yang et al., 2024c), Gated DeltaNet (Yang et al.,
2024a) and Transformers (Vaswani et al., 2017) with the same base architecture.

• In-depth analyses of modern RNNs including MesaNet: Intriguingly, we find that while
reaching the same or better perplexity on language modeling, all RNN models reduce perplexity
remarkably differently, namely focus on early tokens in the sequence while transformers excel at
later tokens. We further disentangle downstream language benchmarks according to their need for
global or only local language modeling, through controlled Sliding-Window Attention ablations.
We find that MesaNet outperforms all modern RNNs on global reasoning, in-context learning &
in-context recall benchmarks, but unsurprisingly still lack behind Transformers in in-context recall.

2 A PARALLELIZABLE MESA LAYER

We consider autoregressive sequence modeling tasks where the objective is to predict element
et+1 ∈ Rne given a sequence of token embeddings e = (et)

T
t=1. At present, autoregressive sequence

modeling is dominated by architectures based on the causally-masked softmax self-attention layer,
whose token updates et ← et + ∆esa

t follow the rule ∆esa
t =

∑H
h=1 PhVh,t α(K

⊤
h,tqh,t), where

qh,t = Wh,qet ∈ Rna is referred to as a query, each column kh,t′ = Wh,ket′ ∈ Rna of matrix
Kh,t ∈ Rna×t as a key, and each column vh,t′ = Wh,vet′ ∈ Rnv of matrix Vh,t ∈ Rnv×t as a
value; in this paper, we follow the convention that vectors are column vectors. The parameters of
this layer are the matrices {(Ph,Wh,q,Wh,k,Wh,v)}Hh=1 for all H heads; for notational simplicity,
we omit positional encodings and absorb bias terms, and assume here for conciseness that all heads
are equally sized. The function α applied to vector a ∈ Rt returns an attention weight vector: in the
standard transformer, α(a)i = softmax(a)i := (

∑t
t′=1 exp(at′))

−1 exp(ai) (Vaswani et al., 2017).
Since each head is processed independently and only interacts through the summation in ∆esa

t , for
simplicity we drop the head index h and the projection matrix P in what follows.

Linear self-attention and test-time training. We focus on the case where α is the identity function.
This yields a linear attention layer (Schmidhuber, 1992), which as we will see next turns out to be a
linear RNN (Katharopoulos et al., 2020):

∆elsa
t = Φtqt. (1)

Unlike its softmax counterpart, linear attention can be implemented recurrently, by maintaining and
updating a matrix-valued state Φ ∈ Rnv×na according to the linear dynamics

Φt = γtΦt−1 + βtvtk
T
t . (2)
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Above, we add forget gates γt and input gates βt which have been shown to improve performance
(Yang et al., 2024a). Both are usually a function of the current input et, like queries, values and keys,
but bounded within [0, 1]. Importantly, and in contrast to softmax self-attention, linear attention only
requires constant memory and compute to predict the next token. As we review below and more
extensively in Appendix A, a series of recent high-performance models (e.g., Gu & Dao, 2024; Peng
et al., 2023; Beck et al., 2024; Schlag et al., 2021a; Yang et al., 2024c;a) can be cast into the same
basic linear self-attention model (equation 1) using variations of equation 2.

Such modern RNNs can also be seen from the unifying perspective of test-time training (Schlag et al.,
2021a; Liu et al., 2025; von Oswald et al., 2024; Wang et al., 2025; Behrouz et al., 2025b). Under
this view, the key-value linear map Φt : Rna → Rnv introduced in equation 1 is learned from the
data in context e1:t. Let us introduce a time-varying loss, from which we will derive a gradient-based
dynamics for Φ:

Lt(Φ) = lt(Φ) +
1

2
Tr(ΦΛtΦ

⊤). (3)

Above, lt measures the instantaneous loss incurred at the current time step, and the second term
acts as a regularizer with strength controlled by a symmetric na × na matrix Λt. Now, setting
lt(Φ) = lHopfield

t (Φ) := −v⊤t Φkt and Λt = 1−γt

βt
I , and letting Φ evolve through online gradient

descent, Φt = Φt−1 − βt∇ϕLt(Φt−1) = γtΦt−1 + βtvtk
T
t , we recover gated linear attention

(equation 2). In passing, we have also connected modern linear attention to classical associative
memory models (Schlag et al., 2021a): lHopfield

t is the energy function that governs continuous-state
Hopfield networks, and Φ is learned through Hebb’s associative rule (Hopfield, 1984; Hertz et al.,
1991). If we take instead the squared error loss lt(Φ) = lsq-err

t (Φ) := 1
2∥vt − Φkt∥2, we recover

DeltaNet (Schlag et al., 2021a; Yang et al., 2024c;a), which learns a linear model with the online
delta rule (Widrow & Hoff, 1960). Recent work has extended the DeltaNet to perform mini-batch
updates, and to perform gradient updates on a 1-hidden-layer MLP (Sun et al., 2025), and Titans
adds momentum to the mini-batched gradient update (Behrouz et al., 2024). We return to this point
in Appendices A and B, where we discuss additional related work from the viewpoint of test-time
regression, and derive in more detail the update rules above.

The Mesa layer: optimal test-time regression. In this work, we revisit the recently proposed
Mesa layer (von Oswald et al., 2024), also referred to as an intention layer in the context of non-
autoregressive models (Garnelo & Czarnecki, 2023). This layer again updates tokens according to the
linear self-attention rule (equation 1) but now defines the linear map Φt as the solution of a test-time
optimization problem, where a symmetric positive definite matrix Λt ∈ Rnk×nk

+ controls the strength
of a quadratic regularizer:

Φ̂mesa
t = argmin

Φ
Lt(Φ), with Lt(Φ) =

1

2

t∑
t′=1

ζtt′ ||vt′ − Φkt′ ||2 +
1

2
Tr(ΦΛtΦ

⊤).

(4)
In all our experiments, we take a static, diagonal regularizer, with Λt = Λ ∀t and Λii > 0. Above,
the cumulative forget factor ζtt′ = 1t≥t′

∏t
s=t′+1 γs causally weighs the contribution of past losses

until the present (t′ = 1, . . . , t), taking into account the forget factors γt′ ∈ [0, 1] so far. The output
∆emesa

t of the Mesa layer depends on the (unique) solution Φ̂mesa
t , which can be expressed in closed

form:

∆emesa
t = Φ̂mesa

t qt =

(
t∑

t′=1

ζtt′vt′k
⊤
t′

)(
t∑

t′=1

ζtt′kt′k
⊤
t′ + Λ

)−1

qt (5)

= Gt(Ht + Λ)−1qt. (6)

We compute Φ̂mesa
t step by step in Appendix D.

The Mesa layer differs from the test-time training models reviewed above in two key ways. First,
instead of considering an instantaneous loss measured only at the current input et as in equation 3,
the Mesa layer optimizes the cumulative regularized squared-error loss taking into account all data
e1:t so far. While at first this may seem impossible to achieve under a constant memory requirement,
the Mesa layer circumvents the need to explicitly keep past tokens in memory (as in softmax self-
attention) and exploits the fact that Lt is a quadratic function of Φ (Gauss, 1821). Second, instead
of taking a single gradient descent step, the Mesa layer learns Φ to optimality at every time point.
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We note that the related Longhorn model (Liu et al., 2025) also derives a recurrent layer via the
minimization of a quadratic loss, but its loss is evaluated only on the latest input as in equation 3,
yielding a variant of DeltaNet. We further note that concurrent work (Atlas; Behrouz et al., 2025a)
corresponds to a sliding-window variant of the Mesa layer, while also allowing the model to be
optimized at test-time to be nonlinear, as in (Sun et al., 2025). We present the update rules and
test-time objective functions of these two related works in Appendix B.

The Mesa layer is the optimal (in the squared-error sense) linear associative memory (Kohonen &
Ruohonen, 1973), and it can store a new association instantaneously (one-shot), whereas DeltaNet
requires in general multiple pattern presentations to reduce memorization error (Hertz et al., 1991).
This fast learning property of the Mesa layer can be further understood by recasting it as a second-
order online learner (cf. Appendix H); DeltaNet only uses first-order derivative information to learn.

Von Oswald et al. (2024) proposed to determine Φ̂mesa
t following classical recursive least-squares.

Although computationally attractive at inference, we now stress two shortcomings of this approach.
First, forgetting (0 ≤ γt < 1) leads to numerical instabilities, and requires a regularization term Λ
that decays exponentially with time. Second, this original version of the layer is not parallelizable,
and it therefore heavily underutilizes current matrix-matrix multiplication accelerators such as GPUs
and TPUs during training. We explain this in detail in Appendix H.

A new parallelizable Mesa layer with adaptive forgetting and regularization. To overcome
these issues, we propose a novel parallelizable version of the Mesa layer which allows for dynamic
forgetting. Instead of computing Φ̂mesa

h,t recurrently, we solve a linear system of equations in parallel,
for each query qt:

∆emesa
t = Gt(Ht + Λ)−1qt = Gtlinsolve(Ht + Λ, qt). (7)

The equation above can be computed by maintaining and updating two state variables, St = {Gt, Ht},
through the following linear recurrence relations:

Gt = γtGt−1 + βtvtk
⊤
t , Ht = γtHt−1 + βtktk

⊤
t , (8)

where as before γt ∈ [0, 1] is a forget gate and βt ∈ [0, 1] is an input gate. We adopt the conjugate
gradient method to obtain a solution q∗t = linsolve(Ht + Λ, qt) = (Ht + Λ)−1qt (Lanczos, 1950;
Hestenes et al., 1952). This yields a numerically stable Mesa layer as linsolve(Ht + Λ, qt) is stable
irrespective of forgetting strength, albeit at a higher memory cost compared to single matrix state
RNN models, as an additional matrix of size na × na needs to be propagated forward alongside the
standard matrix of size nv × na. Although the RNN state size increases, this expansion amounts to
less than 1% of the entire memory footprint of models trained in this paper, which includes both state
and parameters.

To enable efficient training, we introduce a chunkwise parallelized (Hua et al., 2022; Yang &
Zhang, 2024) algorithm to compute equation 7. Our method builds on top of established efficient
implementations of GLA, that we briefly review now. First, note that the output of this layer can
be written as oGLA

t = Gtqt =
∑t

i=1 ζtivik
⊤
i qt. Let us chunk a sequence of length T in T/C

chunks of size C, with c ∈ {0, C, . . . , T − C}. The crucial insight to enable leveraging matrix-
matrix multiplication and parallelization across time for GLA is that, given a chunked state variable
Gc, we can compute the output at time c < t ≤ c + C as oGLA

t = (Gc +
∑t

i=c+1 ζtivik
⊤
i )qt =

Gcqt+
∑t

i=c+1 ζtivik
⊤
i qt, which can be done in parallel for t ∈ {c+1, ...c+C}. In matrix notation

we write
OGLA

c = GcQc + Vc(Zc ⊙ (K⊤
c Q∗

c)), (9)

where Kc = [kc, ..., kc+C ] and OGLA
c , Vc, Qc accordingly, and Zc is a upper triangular matrix of size

C × C containing the appropriate forgetting terms.

Now, we highlight that the Mesa layer can be decomposed into two parts:

omesa
t =

t∑
i=1

ζtivik
⊤
i q

∗
t , and q∗t = (Ht + Λ)−1qt. (10)

The first part is equivalent to GLA, and can therefore be computed efficiently as just described. It
therefore remains to be shown how to obtain Q∗

h,c = [q∗h,c, . . . , q
∗
h,c+C ] within a given chunk of size

4
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C in parallel. As we explain in detail in Appendices C & D, the key observation is that the compute-
intensive part of a CG iteration boils down to

∑t
i=1 ζtikik

⊤
i p, with p its current search direction, a

computation that is once again in the GLA form. Alongside its fast convergence properties, this is
the reason for picking the CG method as our solver, as it allowed us to leverage existing efficient
chunkwise parallel linear attention implementations. The new Mesa layer proposed in this paper
therefore admits a parallel training mode with O(T ) complexity, alongside the recurrent inference
mode with O(1) complexity. In Appendix D, we further show how to efficiently compute gradients
through the layer in chunkwise parallel form. Finally, we discuss details on precision within our CG
solver in Appendix G.5.

3 TRAIN AND INFERENCE TIME OF THE MESA LAYER

Chunkwise parallel Mesa layer leads to competitive train time. In Figure 2, we report training
and inference times on a TPUv5 and H100 for both transformers (MHA), common RNN alternatives
and the MesaNet. Despite having to solve t ·H linear systems of equations per layer during training
as well as compute gradients through the found solutions, the MesaNet remains competitive at train
time with respect to MHA and RNN alternatives.

The Mesa layer, applied with static k, is relatively slow especially early in the sequence. We
present in Appendix Table 5 an analysis of the memory and computational costs of inference,
comparing the Mesa layer to MHA as well as recently developed RNNs. This overview highlights a
tension that the MesaNet faces. On the one hand, if the number of conjugate gradient (CG) steps k is
set to zero we obtain q∗t = qt, and so recover gated linear self-attention (GLA) and its compute and
memory requirement. Thus, we require k > 0 for the Mesa layer to differ from GLA, which provides
a lower bound for the computational cost of the Mesa layer. Note that the Mesa layer is, in terms of
flops, roughly k times as costly as linearized transformer models such as GLA, Mamba2 and xLSTM
and k − 1 times more costly as (Gated) DeltaNet. Furthermore, because the total cost of executing
the CG method grows with kn2

a, there is a maximal value of k for which the Mesa uses fewer flops
than MHA for a given sequence length.
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Figure 2: Train and inference time of a Mesa layer using different number of CG steps. Left: Train time
of a single Mesa later on a TPUv5: output the entire sequence, compute the cross entropy loss, and gradients
w.r.t. layer parameters. We use batch size of 4, key size of 128 and 8 heads. Center: Inference time of a single
Mesa layer on a TPUv5: compute the next token given a certain context length. We use batch size of 128, key
size of 128 and 8 heads. Right: Token throughput (in thousands) when training 1B parameter models on a H100
GPU. We compare a Flash-Attention-2 (Dao, 2023) transformer implementation with a triton-based chunkwise
parallel implementation of RNN models, including the MesaNet which uses 30 or 15 CG steps across all layers.
All models use a key size of 128 and share the same backbone, see Appendix G. We observe competitive token
throughput on H100s of the MesaNet despite using substantially more flops.

We show this in Figure 2 (center) for a typical choice of na = 128, where we plot inference time as
a function of sequence length for both MHA and the Mesa layer, when varying k. These numbers
reflect the runtime of a single layer and might vary across inference use cases and accelerators.

The Mesa layer allocates test-time compute dynamically. Being a test-time optimizer, the Mesa
layer offers a principled way for dynamically allocating test-time compute. The number of CG
steps k required to reach a given desired error tolerance ϵ is generally head-, sequence- and token-
specific due to the context-dependence of the linear systems Ht + Λ to be solved. Via utilization
of a stopping criterion, the Mesa layer thus exhibits dynamic inference (and potentially training)
costs. This dynamic test-time compute feature of the Mesa layer draws both parallels and differences
to softmax self-attention: whereas softmax self-attention increases compute (and memory) as a
function of sequence length independently of the sequence being processed, the Mesa layer adjusts
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Layer Recurrence Memory read-out

Mamba2 Gt = γtGt−1 + vtk
⊤
t ot = Gtqt

GLA Gt = γtGt−1 + βtvtk
⊤
t ot = Gtqt

DeltaNet Gt = Gt−1(I − βtktk
⊤
t ) + βtvtk

⊤
t ot = Gtqt

Gated DeltaNet Gt = Gt−1(γt(I − βtktk
⊤
t )) + βtvtk

⊤
t ot = Gtqt

mLSTM Gt = γtGt−1 + βtvtk
⊤
t , zt = γtzt−1 + βtkt ot = Gtqt/max{1, |z⊤t qt|}

Mesa Gt = γtGt−1 + βtvtk
⊤
t , Ht = γtHt−1 + βtktk

⊤
t ot = Gtlinsolve(Ht + Λ, qt)

Table 1: Overview of recent linear recurrent models which we compare to in this work, except for LRU layers,
see De et al. (2024).

compute dynamically, according to the incoming data it needs to process. We provide in Section 5 an
experimental analysis of this property of the Mesa layer in trained MesaNets.

4 MESANET IN A LANGUAGE WORLD

Here we present results obtained on 1B-parameter models trained on 50B tokens from the SlimPa-
jama (Soboleva et al., 2023) dataset, and refer to Section L for an extended analysis, comparing
models ranging from 140M, 440M up to 1B parameters, each on 15B and 50B tokens. Furthermore,
we report strong results on synthetic environments in Section K, which we omit for brevity here.

Architecture & baselines. For the main model backbone, we follow the architecture of common
transformers, and employ N stacked residual blocks with 1) a sequence modeling part such as
multi-head-attention (MHA) or the Mesa layer and 2) a gated MLP block (see Figure 1). As baselines,
we compare to a number of other efficient alternatives to MHA based on linear recurrent layers:
Mamba2 (Dao & Gu, 2024), Gated Linear Attention (GLA) (Yang et al., 2024b; Katharopoulos et al.,
2020), xLSTM (Beck et al., 2024), (Gated) DeltaNet (Schlag et al., 2021a; Yang et al., 2024c;a)
and Hawk (De et al., 2024), see Table 1. The latter differs from the models reviewed in Section 2
by employing a vector-valued state, being closer in spirit to a (now linearized) traditional LSTM
(Hochreiter & Schmidhuber, 1997). Furthermore we investigate a recurrent hybrid Hawk-Mesa model
alternating between a linear recurrent unit (Hawk) and the Mesa layer which we motivate in the next
section.

Controls. On top of related work, we train transformer models with Sliding-Window Attention
(SWA) (Beltagy et al., 2020) of varying window sizes. These models have constant per-token memory
and compute cost. The motivation to study SWA models is based on the assumption that transformers
as well as SWA models have near perfect recall capabilities, at least within their attention window.
Therefore, they provide a simple and interpretable control to study language modeling, reasoning
and in-context recall capabilities of RNNs.

Setup. We tokenize the SlimPajama datasets using the byte-level BPE tokenizer introduced in
GPT-2 (Radford et al., 2018; Brown et al., 2020a) following Beck et al. (2024) and train all modes on
a sequence length of 2048 and a fixed ordering of training data. For each model configuration, we
scan over a range of learning rates, and select the model that minimizes perplexity on the holdout
validation dataset of SlimPajama. For exact hyperparameters and training specifications for each
model, see Appendix G. For all results, unless otherwise specified, we use MesaNets with a fixed
amount of 30 CG steps. See Appendix M on varying CG steps during training and Section 5 on using
the CG stopping criterion to invoke dynamic test-time compute.

We stress that through sharing the exact same architecture backbone, tokenizer, data and data order
across all models, while using the same number of parameters and independently tuned learning
rate for all models, we aim to provide a fair 1-1 comparison1. This controlled setup should allow to
solely assess differences on the sequence mixing layer while reducing noise. Note, however, that
this backbone might be a suboptimal choice for RNNs, including the MesaNet. Related work has
tuned architectures to their specific sequence layers (Beck et al., 2024; Gu & Dao, 2024). However,
these architectural optimizations prevent the integration of Mixture-of-Experts layers, a heavily used

1Related work such as Yang et al. (2024a), Behrouz et al. (2024) and Behrouz et al. (2025a) use a single
learning rate for all models which likely leads to biased and unfair comparisons. Behrouz et al. (2025a) further
inherit baseline results from previous work which use a different tokenizer, confounding the comparison further.
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SLIM LMB. WIKI. PG19 GOV. QASP. AVG
ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓

- Hawk 11,24 26,67 12,23 10,93 10,63 14,89 14.43
- Mamba2 11,39 28,02 12,23 11,42 10,42 14,02 14.58
- GLA 10,99 29,77 11,77 10,95 9,99 13,52 14.03
- xLSTM 11,01 26,93 11,81 10,94 10,00 13,55 14.03
- DeltaNet 11,01 27,08 11,73 11,00 10,02 13,44 14.05
- Gated DeltaNet 10,89 26,79 11,58 10,81 9,88 13,28 13.87
- Mesa 10,83 26,78 11,49 10,71 9,80 13,13 13.79
- Hawk-Mesa 10,78 26,59 11,53 10,60 9,79 13,20 13.75

- SWA-4 16,46 29,93 19,42 16,42 17,86 29,15 21.54
- SWA-64 12,37 27,76 14,14 12,51 11,56 16,77 15.85
- SWA-1024 11,00 27,22 11,78 10,92 9,79 13,11 13.97

- Transformer 10,86 27,16 11,42 10,74 9,69 12,86 13.79

Table 2: Language Modeling Performance (PPL ↓)
of 1B Models (50B Tokens) evaluated on sequence
length of 2048). Mesa and Hawk-Mesa show strong
performance on all benchmarks, matching or exceeding
a Transformer baseline w.r.t. to avg. per-token PPL.
Lambada (LMB.) scores are higher due to significantly
shorter sequences (≤ 256) with an average of 78 tokens.

64 256 512 1024 2048
Token Position

0.04

0.02

0.00

0.02

0.04

NL
L 

Di
ffe

re
nc

e 
to

 M
HA

20 22 24 26 28

Token Position

HAWK
GLA
MAMBA2

XLSTM
DELTANET
GATED-DELTANET

MESA
HAWK-MESA
SWA-64

SWA-1024
MHA

Figure 3: NLL Difference relative to a Trans-
former (1B models, 50B tokens) on SlimPajama.
Most recurrent layers show superior language mod-
eling performance in terms of NLL up to the 64’th
token. MesaNet and Hawk-Mesa extend the advan-
tage beyond 512 tokens. The advantage early in the
sequence is even more apparent in log-scale (right).

building block in current language models. Therefore, we carefully evaluate all sequence layers on the
same backbone, based on the widespread decoder-only transformer architecture – here, the Llama2
model (Touvron et al., 2023), including rotary position encodings (RoPE; Su et al., 2024) when using
softmax attention layers. This backbone does not fuse MLPs with sequence layers, allowing for a
direct comparisons between layers. Furthermore, we did not attempt to optimize the architecture e.g.,
key size and number of heads for the Mesa layer.

Comparison to the original mesa layer. We considered comparing to the original sequential-in-
time Mesa layer (von Oswald et al., 2024). However, because this model was already an order
of magnitude slower when training at the 400M parameter scale, and suffered a large increase in
SlimPajama language modeling perplexity of about 3.2 points (∼23% performance degradation) due
to the inability to train with forget gates, we did not pursue these comparisons further. These results
directly motivate the new Mesa layer introduced in this paper.

4.1 LANGUAGE MODELING (WITHIN AND BEYOND TRAIN SEQUENCE LENGTH)
We measure a model’s general language modeling capabilities first by assessing average per-token
perplexity (PPL) (Jelinek et al., 1977) on a set of benchmarks. We report PPL on the hold-out
validation set of SlimPajama (Soboleva et al., 2023), as well as Lambada (Paperno et al., 2016),
Wikitext-2 (Merity et al., 2016), PG19 (Rae et al., 2019), GovReport (Huang et al., 2021), and Qasper
(Dasigi et al., 2021) on the train sequence length and beyond. Because uniformly averaging over all
tokens might masquerade important differences between models, we additionally investigate average
per-token PPL conditional on sequence position. As we see below, this turns out to be a crucial factor
when comparing RNNs to transformers.

0 2k 4k 8k 16k 32k
Seq. Length

10

12

14

PP
L

HAWK
MAMBA2
GLA
XLSTM

DELTANET
GATED-DELTANET
MESA
HAWK-MESA

MHA-SWA-64
MHA-SWA-1024
MHA

Figure 4: Avg. Mean-so-Far PPL on 3 Long-
Context Benchmarks (WIKI, GOV, QASPER).

MesaNet is a strong language model early in se-
quences. When evaluating on the training sequence
length of 2048, MesaNet and Hawk-MesaNet outper-
form all recurrent baselines on all benchmarks on the
common metric of average per-token PPL (see Ta-
ble 2). MesaNet matches on average the performance
of the transformer baseline, while Hawk-MesaNet
even surpasses it. Notably, a SWA model with a win-
dow size of 1024 outperforms the majority of recurrent
baselines. However, attaining similar PPL scores does
not imply equivalent language modeling abilities at
different sequence lengths (Lin et al., 2025). Condi-
tioning on the token position, and assessing the NLL
difference relative to a transformer, reveals, surprisingly, that most recurrent layers exhibit superior
language modeling performance early in the sequence but fall behind later in the sequence (see
Figure 3). Recurrent models show especially strong performance on short sequences up to 64 tokens.
While Hawk exhibits the best performance up to this depth, the model exhibits a sharp performance
decline after that. This finding motivated us to introduce and investigate the Hawk-Mesa model,
which combines the best short-sequence and long-sequence modeling layers (as measured by negative
log-likelihood). Confirming this intuition, the Hawk-Mesa outperforms the remaining recurrent

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Reasoning Reasoning In-Context Scramble Translation
Global Local Recall 100-shot 50-shot
(Acc ↑) (Acc ↑) (Acc ↑) (Acc ↑) (bleu-sb ↑)

Hawk 37.42 50.04 21.29 4.70 3.51
Mamba2 37.58 48.19 32.21 3.38 2.55
GLA 39.45 48.86 36.50 5.06 2.57
xLSTM 38.97 48.90 34.89 5.56 2.74
DeltaNet 39.72 48.91 35.19 5.14 2.47
Gated DeltaNet 40.19 49.10 35.96 6.17 2.98
Mesa 40.88 49.64 39.30 6.22 3.83
Hawk-Mesa 40.13 49.53 36.23 5.19 3.25

SWA-4 28.63 48.20 9.79 0.82 0.14
SWA-64 38.17 48.76 24.84 3.66 2.59
SWA-1024 41.30 48.84 38.21 5.43 5.65

Transformer 42.15 48.80 49.95 6.01 5.89

(a) 400M Params, 50B Tokens

Model Reasoning Reasoning In-Context Scramble Translation
Global Local Recall 100-shot 50-shot
(Acc ↑) (Acc ↑) (Acc ↑) (Acc ↑) (bleu-sb ↑)

Hawk 41.17 51.57 25.04 6.49 4.73
Mamba2 41.62 50.51 37.67 4.19 4.18
GLA 44.34 51.44 39.64 7.29 7.58
xLSTM 42.99 51.50 39.25 7.78 7.68
DeltaNet 43.86 51.58 40.46 7.93 5.37
Gated DeltaNet 44.84 50.76 39.54 8.90 8.53
Mesa 45.03 50.49 41.79 10.10 8.17
Hawk-Mesa 44.62 51.51 39.99 8.61 8.81

SWA-4 31.20 49.62 11.87 1.66 0.51
SWA-64 42.33 50.52 26.72 5.91 4.70
SWA-1024 45.68 51.35 40.84 6.66 14.17

Transformer 45.54 51.62 52.27 6.98 13.61

(b) 1B Models, 50B Tokens

Table 3: Grouped Benchmark Scores (↑) on models trained on 50B Tokens from SlimPajama with a
context length of 2048. We compare the aggregated performance of models with Linearized Recurrent Unit,
Gated Linearized Multi-Head Attention, DeltaNet and MESA layers on 5 different subsets of benchmarks. As a
reference, we show the performance of Sliding Window-Attention models (SWA) with varying window sizes.

models, with the MesaNet being second best: MesaNet and Hawk-MesaNet not only attain the
strongest early-in-the-sequence modeling ability, but also extend the advantage beyond a depth of
512 tokens.

MesaNet is competitive on length extrapolation with recurrent baselines, but SWA-1024 is
a hard-to-beat baseline. Next, we evaluate the ability to extrapolate to sequences of up to 32k
tokens (see Figure 4). While transformer, Mamba2, DeltaNet and HawkMesa fail to extrapolate catas-
trophically to longer sequences on all evaluated benchmarks, MesaNet exhibits length-extrapolation
capabilities superior to Hawk, GLA, xLSTM and on-par with Gated DeltaNet on all evaluated long-
sequence benchmarks with respect to PPL scores (aggregated and conditional on token positions).
However, these results should be tempered by the fact that a SWA model with an attention window
of 1024 attains competitive benchmark scores, even superior at a sequence length of 32k on some
benchmarks. This finding is in line with recent criticism that PPL may not distinguish a model’s
ability to capture local vs. long-range dependencies between tokens (Hu et al., 2024; Fang et al.,
2024). We refer to Section L for detailed score breakdown and results on the Needle-in-the-haystack
(NIAH) benchmark (Hsieh et al., 2024), where MesaNet shows strong performance.

4.2 LANGUAGE BENCHMARKS

We next evaluate MesaNet’s capabilities on a comprehensive set of downstream tasks, ranging
across zero-shot reasoning, in-context recall and in-context learning tasks. We evaluate on various
benchmarks considered in prior work (Gu & Dao, 2024; Yang et al., 2024a; Beck et al., 2024),
and complement them with few-shot learning tasks involving token-manipulation and translation.
We present the aggregated results of 400M and 1B models trained on 50B tokens in ??, and report
detailed scores in Section L. Across most evaluated benchmarks, the MesaNet matches or exceeds
the performance of the evaluated recurrent baselines.

Zero-Shot Common-Sense Reasoning Performance: Transformers & MesaNet ≥ other RNNs.
Prior work (Gu & Dao, 2024; Yang et al., 2024a; Behrouz et al., 2024; Beck et al., 2024) commonly
reports the average performance of a set of common-sense reasoning benchmarks to compare models.
However, evaluations of SWA models with different window sizes reveal that competitive, or even
superior, scores on many of these frequently reported benchmarks can be attained with attention
window size as short as 4 (see Table 13). This observation strongly indicates that some of these
benchmarks are exploitable by short-range language heuristics, and do not require longer-range
language modeling capabilities to reach competitive scores, or are simply too hard such that we end
up measuring noise. To reduce the potential benchmark noise and deconfound the results, we hence
report the zero-shot reasoning benchmarks in two separate splits:

• The Global Reasoning Benchmark Set encompasses all benchmarks where we observe a signifi-
cant performance increase with a growing attention window size. This includes Lambada (Paperno
et al., 2016), HellaSwag (Zellers et al., 2019) and RACE-{M,H} (Lai et al., 2017). Within both
reported model sizes (400M and 1B), MesaNet outperforms all other recurrent models on average
on these benchmarks. However, MesaNet still underperforms the transformer baseline.
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• The Local Reasoning Benchmark Set includes all benchmarks where we see little to marginal
improvement with a growing attention window size. This includes PIQA (Bisk et al., 2020),
WinoGrande (Sakaguchi et al., 2021), ARC-{E,C} (Clark et al., 2018), SIQA (Sap et al., 2019),
BoolQ (Clark et al., 2019), OpenBookQA (Mihaylov et al., 2018) and StoryCloze (Srinivasan et al.,
2018). Unsurprisingly, we observe very similar average scores for all models. Notably, Hawk, the
worst performing recurrent model on global reasoning and in-context recall benchmarks, shows
excellent performance on this benchmark subset. This observation supports the hypothesis that these
subsets of benchmarks are likely to measure different capabilities, and highlights the differences
between Hawk to e.g. the MesaNet. These analyses motivate the recurrent hybrid Hawk-Mesa
model, which tries to capitalize on the complimentary strengths of the two layers.

In-Context Recall Performance: Transformers > MesaNet ≥ other RNNs. To gauge the ability
to recall in-context information, we follow Arora et al. (2024) and Yang et al. (2024a) and evaluate
models on SWDE (Lockard et al., 2019), SQUAD (Rajpurkar et al., 2016), FDA (Arora et al., 2023b),
TQA (Kembhavi et al., 2017), NQ (Kwiatkowski et al., 2019) and DROP (Dua et al., 2019). We
adopt the minimal-transformed versions of the benchmarks from Arora et al. (2024) that adjust for the
evaluation of non-instruction-tuned models. In line with the observations on synthetic benchmarks
in Section K, MesaNet outperforms all other recurrent models on these tasks. Moreover, MesaNet
exceeds the performance of a SWA-1024, the only recurrent model to do so. However, there remains
a gap in performance relative to the transformer baseline with an attention window size of 2048.

Few-Shot Learning Performance: Transformers & MesaNet > other RNNs. Finally, we measure
the model’s ability to learn from few-shot demonstrations. We evaluate on two GPT3 word scrambling
tasks (cycle letters in word, anagrams of all but first and last two characters) (Brown et al., 2020b) and
three translation tasks (WMT-14 FR-EN (Bojar et al., 2014) , WMT-16 DE-EN and RO-EN (Bojar
et al., 2016) ). MesaNet demonstrates strong performance on all few-shot learning tasks. While it
exceeds the performance of the Transformer on word scrambling tasks, it fails to do so in translations.

5 TEST-TIME COMPUTE ANALYSIS
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Figure 5: Effect of Number of Conjugate Gradient (CG) Steps on SlimPajama Perplexity within and
beyond train context length. We show here the effect of reducing the number of CG steps during inference on
token perplexity across token position of a 1B MesaNet trained on 50B tokens. We either use a fixed number CG
steps uniformly across the model or apply a dynamic stopping criterion ϵ > 0.

In the previous section we showed results from models trained and evaluated with 30 CG steps. We
study now the effect of using the MesaNet trained on 30 CG steps but evaluate the model when using
a dynamic stopping criterion aiming to reducing the CG steps used at inference time. We refer again
to Appendix C for a description of the CG method used in this work.

Mesa objectives differ widely across heads and layers. When analysing the internals of the Mesa
layer on sequences of the SlimPajama validation set, we observe a bimodal distribution of condition
numbers of Hh,t +Λh across heads almost in every layer, see Figure 14. In particular, we observe
that heads either have 1) large and growing condition number with sequence length, or 2) rather low
and constant condition number over the sequence. In every layer, there are roughly 1-2 heads for
which the condition number of linsolve(Hh,t + Λh, qh,t) (and therefore the number of CG steps)
grows with t. This motivates dynamic allocation of CG steps in every head.

MesaNets allocate test-time compute dynamically. We test 1) reducing the number of CG steps of
all layers and heads uniformly, and 2) varying the solver’s stopping criterion ϵ to dynamically allocate
test-time compute. As shown in Figure 7, when reducing CG steps uniformly, we observe an increase
in negative log-likelihood when comparing to our model evaluated with 30 steps, especially on tokens
later in the sequence. This is in line with our findings on the need for higher number of steps as t
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grows. By contrast, with a dynamic stopping criterion ϵ, increasing ϵ yields a uniform degradation
over sequence length. A model with a stopping criterion of ϵ = 10−4 performs on-par with the base
model using a fixed number of 30 CG steps, while reducing the average CG steps used to ≈ 9.

6 DISCUSSION

We present a chunkwise parallelized, numerically stable version of the Mesa layer (von Oswald et al.,
2024), and scale it up to 1B parameter language models. This layer generates a prediction by solving
an optimization problem, which yields a linear model that best fits a given sequence. Our Mesa layer
can allocate test-time compute dynamically according to the stopping criterion. Complex sequences
are then modeled by many of such layers, while interleaving them with MLPs, into MesaNets.

This approach has ties to multiple long-running lines of research. It relates to alternatives to end-
to-end differentiation based on stacks of greedy local learners (e.g., Hinton et al., 2006; Nøkland &
Eidnes, 2019; Veness et al., 2021), bringing these to the fast inference timescale, and then delegating
to nonlocal backpropagation-based learning the role of determining which optimization problems
must be solved at inference time. This in turn relates to mesa-optimization (Hubinger et al., 2019),
since test-time optimization objectives (though not the optimizers themselves) are discovered by
(base) sequence prediction loss optimization. The idea of specifying the output of a neural layer
through an optimization problem is an old one (Amos & Kolter, 2017; Gould et al., 2021), with roots
at least to energy-based neural models (Hopfield, 1984). Finally, the Mesa layer is perhaps most
related to fast weights of Schmidhuber (1992), replacing Hebbian with locally-optimal learning.

The Mesa layer extends state-of-the-art recurrent language models such as Mamba (Gu & Dao,
2024), RWKV (Peng et al., 2023), xLSTM (Beck et al., 2024), and (Gated) DeltaNet (Schlag et al.,
2021a; Yang et al., 2024c;a), which can also be motivated by an in-context regression loss, but update
their fast weights with a slower GD process. In a new in-depth evaluation, we show that RNNs, in
particular MesaNets, outperform transformers significantly early in sequences, while underperforming
in next-token prediction and benchmark performance when longer contexts are needed. It should
be stressed that it is exactly in the long-context regime, however, that RNNs show advantages over
transformers in terms of inference time. In our view, these observations merit further investigation,
and may serve as the starting point for novel RNN scaling law analyses.

The biggest shortcoming of the MesaNet in its current form is the increase in test-time compute
despite its dynamic nature. One possible way around this may lie on the findings of Figure 14,
where we see that heads which require more CG steps often do not forget, i.e. γ ≈ 1 irrespective of
the input data. This motivates leveraging the similarity of solutions from neighboring time steps,
to warm-start optimization of consecutive steps. Moreover, one could envision a hybrid approach
where the chunkwise parallel CG method introduced in this paper is used during training, while then
reverting back to using the efficient Sherman-Morrison recursion at inference time, which could work
given the almost-no-forgetting γ ≈ 1 condition. We point to additional discussion points in Appendix
J and leave investigating these directions for future work.

REPRODUCIBILITY STATEMENT

We provide pseudocode for the conjugate-gradient implementation of the Mesa layer in Section C and
Section D, and provide detailed descriptions regarding numerical precision in Section G.5. All other
important aspects for training (e.g. tokenizer, data, context length) are given in Section 4. We will
furthermore, upon publication, provide a triton-based open source implementation of the MesaNet and
Mesa layer, as well as educational colab notebooks to further ease reproduction and experimentation
with our layer and models. Moreover, we focused not only on improving the numbers of our proposed
method but scanned hyperparameters of the related works extensively (see Section E). Lastly, we
focused on an apples-to-apples comparison between methods by using the exact same backbone
while only varying the sequence layer.
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James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance the
recall-throughput tradeoff. arXiv preprint arXiv:2402.18668, 2024.

Jimmy Ba, Geoffrey E. Hinton, Volodymyr Mnih, Joel Z. Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. In Advances in Neural Information Processing Systems,
volume 29, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 2019.
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hungry hippos: towards language modeling with state space models. In International Conference
of Learning Representations, 2023.

Marta Garnelo and Wojciech Marian Czarnecki. Exploring the space of key-value-query models with
intention. arXiv preprint arXiv:2305.10203, 2023.

Carl Friedrich Gauss. Theoria combinationis observationum: erroribus minimis obnoxiae. Societas
Regia Scientiarum Gottingensis, 1821.

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit
models. In Proceedings of the 35th International Conference on Neural Information Processing
Systems, NIPS ’21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

F.A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction with LSTM. In
1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No.
470), volume 2, pp. 850–855 vol.2, 1999. doi: 10.1049/cp:19991218.

Stephen Gould, Richard Hartley, and Dylan John Campbell. Deep declarative networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

Alex Graves. Adaptive computation time for recurrent neural networks, 2017. URL https:
//arxiv.org/abs/1603.08983.

Riccardo Grazzi, Julien Siems, Jörg K.H. Franke, Arber Zela, Frank Hutter, and Massimiliano
Pontil. Unlocking state-tracking in linear RNNs through negative eigenvalues. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=UvTo3tVBk2.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskw1VY2.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
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Specia, Marco Turchi, and Karin Verspoor (eds.), Proceedings of the Third Conference on Machine
Translation: Research Papers, pp. 186–191, Brussels, Belgium, October 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-6319. URL https://aclanthology.
org/W18-6319/.

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei, Baohong
Lv, Xiao Luo, Yu Qiao, and Yiran Zhong. Transnormerllm: A faster and better large language
model with improved transnormer, 2024. URL https://arxiv.org/abs/2307.14995.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8), 2018.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Amal Rannen-Triki, Jorg Bornschein, Razvan Pascanu, Marcus Hutter, Andras György, Alexandre
Galashov, Yee Whye Teh, and Michalis K. Titsias. Revisiting dynamic evaluation: Online adapta-
tion for large language models, 2024. URL https://arxiv.org/abs/2403.01518.

Tanya Rodchenko, Natasha Noy, Nino Scherrer, and Jennifer Prendki. Not every ai problem is a data
problem: We should be intentional about data scaling. arXiv preprint arXiv:2501.13779, 2025.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Yash Sarrof, Yana Veitsman, and Michael Hahn. The expressive capacity of state space models: A
formal language perspective, 2024. URL https://arxiv.org/abs/2405.17394.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, 2021a.

Imanol Schlag, Tsendsuren Munkhdalai, and Jürgen Schmidhuber. Learning associative inference
using fast weight memory. In International Conference on Learning Representations, 2021b. URL
https://openreview.net/forum?id=TuK6agbdt27.

16

https://aclanthology.org/2023.findings-emnlp.936/
https://aclanthology.org/2023.findings-emnlp.936/
http://arxiv.org/abs/2103.02143
https://openreview.net/forum?id=GDp7Gyd9nf
https://openreview.net/forum?id=GDp7Gyd9nf
https://aclanthology.org/W18-6319/
https://aclanthology.org/W18-6319/
https://arxiv.org/abs/2307.14995
https://arxiv.org/abs/2403.01518
https://arxiv.org/abs/2405.17394
https://openreview.net/forum?id=TuK6agbdt27


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. Diploma thesis, Institut für Informatik, Technische Universität München,
1987.

Jürgen Schmidhuber. Learning to control fast-weight memories: an alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.
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A RELATED WORK

Linear Attention. As already described above, Tsai et al. (2019) demonstrated that the softmax
attention mechanism can be linearized by replacing the softmax kernel κ(k, q) = exp(kT q) with a
surrogate kernel κ′ = ⟨σ(k), σ(q)⟩. The resulting linear attention mechanism iteratively accumulates
the outer product of key-value pairs into a recurrent state that is queried at each step, resembling
RNNs (Katharopoulos et al., 2020). Since then, numerous works have proposed different designs
of the feature map σ(·) (Katharopoulos et al., 2020; Choromanski et al., 2021; Schlag et al., 2021a;
Peng et al., 2021; Sun et al., 2023; Dao & Gu, 2024) and key-value normalization (Yang et al.,
2024c; Schlag et al., 2021a; Sun et al., 2023). Notably, a more general form of (unnormalized) linear
attention was introduced in the early ‘90s as Fast Weight Programmers (Schmidhuber, 1992; Schlag
et al., 2021a; Ba et al., 2016), connected to Meta-Learning (Schmidhuber, 1987).

Test-time regression. Contrary to softmax attention, linear attention variants are only capable of
storing a finite number of key-value associations. Given key dimension dkey, there exist at most dkey
orthogonal keys, and therefore, retrieval beyond dkey tokens cannot be error-free. Inspired by the
error-correcting delta rule (Widrow & Hoff, 1960), Schlag et al. (2021b;a) proposed to interpolate
the value with the previously stored association, yielding the DeltaNet. The DeltaNet update rule is
equivalent to performing a gradient descent step with respect to the recurrent state Φ on ||Φkt − vt||2.
Yang et al. (2024a) demonstrated that the DeltaNet is parallelizable and achieved strong language
modeling performance when embedded into a modern architecture. Motivated this online regression
loss, other works derived the same update rule as the DeltaNet. Instead of a parallel implementation,
Liu et al. (2025) approximate the update with a diagonal matrix, while Sun et al. (2025) perform the
DeltaNet update on a per-chunk basis, implicitly performing batched gradient descent. Building on
this, Titans (Behrouz et al., 2024) adds momentum to the batched gradient descent update. Wang
et al. (2025); Behrouz et al. (2025b) unify numerous efficient foundation models from the perspective
of test-time regression. Extending Titans, concurrent follow-up work Atlas Behrouz et al. (2025a)
is effectively a sliding-window variant of the Mesa layer. It is worth highlighting that this line of
research is an instance of Dynamic Evaluation (Mikolov et al., 2010; Krause et al., 2018; Clark et al.,
2022; Rannen-Triki et al., 2024), where model weights are updated at test time via gradient descent
steps on a prediction loss.

Models with recurrent depth. The MesaNet is related to a broader class of models building on
fixed point iterations. Universal Transformers (Dehghani et al., 2019) apply transformer blocks
iteratively, using Adaptive Computation Time (Graves, 2017) to make the number of recurrent steps
token-dependent. Deep Equilibrium Models (DEQs) (Bai et al., 2019) take this idea further by directly
solving the corresponding fixed point iteration using quasi Newton methods. More recently, Schöne
et al. (2025) introduced an implicit State Space Model that also relies on a fixed-point iteration, which
is trainable in parallel utilizing the Phantom Gradient technique (Geng et al., 2021). In contrast to
DEQ-style methods, the Mesa layer benefits from the linear structure of fast weight memory, which
allows for a more efficient optimization using conjugate gradient steps.

Linear RNNs with forgetting. Forget gates were first introduced by Gers et al. (1999) within the
framework of Long Short-Term Memory networks (LSTMs) (Hochreiter & Schmidhuber, 1997),
and have since become part of the standard LSTM architecture. Even more, studies on simplified
LSTM variants, such as the Gated Recurrent Unit (Cho et al., 2014), have shown the forget gate to be
fundamental for the effectiveness of recurrent sequence models (Westhuizen & Lasenby, 2018).

Compared to LSTMs, modern linear attention variants have adopted more coarse grained forgetting
mechanisms on the matrix-valued recurrent state. RetNet (Sun et al., 2023) and TransNormerLLM
(Qin et al., 2024) both utilize a trainable decay factor on the recurrent matrix. More recent work
found that data-dependent forgetting improves language modeling performance, although the data
dependency is usually limited to the current input, but not the recurrent state, to allow for parallel
training. Using an input-dependent decay factor as in this work is the de-facto standard in modern
linear attention variants, such as Mamba-2 (Dao & Gu, 2024), xLSTM (Beck et al., 2024), and Gated
DeltaNet (Yang et al., 2024a). Gated Linear Attention (Yang et al., 2024b) opts for a data-dependent
decay vector, effectively using a separate forget gate for each row of the matrix-valued recurrent state.
Similarly, Gated Slot Attention (Zhang et al., 2024) applies separate input-dependent forget gates to
each row of both matrices of a fixed size Key-Value cache.
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State Space Models. State Space Models (SSMs) (Gu et al., 2021; 2022; Fu et al., 2023; Gu &
Dao, 2024) build upon first-order differential equations used to describe dynamical systems, which
are then discretized for sequence modeling. In linear time-invariant (LTI) SSMs, the recurrent state
can be obtained through a fixed linear combination of previous recurrent states, which allows for
a parallel mode using convolutions. Gu et al. (2022) identified the computation of the convolution
kernel as the primary bottleneck and proposed Structured State Space Models (S4), a parametrization
for LTI SSMs that enables efficient computation. Mamba (Gu & Dao, 2024) introduces selectivity to
State Space Models, making the recurrent state transitions dependent on the input. Since the resulting
time-varying SSM cannot leverage global convolutions, the authors propose a hardware-efficient
parallel scan implementation. Mamba-2 further constrains the transition matrix to scalar times
identity, and demonstrates that the resulting State Space Model is equivalent to (gated) linear attention
(Dao & Gu, 2024).

B DERIVATION OF PREVIOUS TEST-TIME TRAINING RULES

For completeness, we discuss in more detail the update rules for a number of closely related previous
sequence modeling layers discussed above and in the main text section 2. Like the Mesa layer, the
update rules of these models perform some form of test-time learning by optimizing a sequence of
objective functions (Lt′)

t
t′=1. We summarize in Table 4 the update rules and corresponding online

objective functions that we cover below.

Layer Objective function Update rule
GLA Lt = −v⊤t Φkt +

1−γt

2βt
Tr(ΦΦ⊤) Φt = Φt−1 − βt∇ϕLt(Φt−1)

DeltaNet Lt =
1
2∥vt − Φkt∥2 Φt = Φt−1 − βt∇ϕLt(Φt−1)

LongHorn Lt =
1
2 (vt−Φkt)

⊤ diag(βt)(vt−Φkt)
+ 1

2 Tr(Φ− Φt−1)
⊤(Φ− Φt−1)

Φt = argminΦ Lt(Φ)

Atlas Lt =
∑t

t′=t−c+1 ζtt′∥vt′ −MΦ(kt′)∥2 Φ̃t = θ̃tΦ̃t−1 +∇ΦLt(Φt−1)

Φt = γtΦt−1 − βtNewtonSchulzk(Φ̃t)
Mesa Lt =

1
2

∑t
t′=1 ζtt′ ||vt′ − Φkt′ ||2

+ 1
2 Tr(ΦΛtΦ

⊤)

Φt = argminΦ Lt(Φ)

Table 4: Overview of test-time training recurrent layers, whose update rules can be derived from an online
learning objective function.

GLA and DeltaNet update rules. For convenience, we first restate equation 3 below:

Lt(Φ) = lt(Φ) +
1

2
Tr(ΦΛtΦ

⊤). (11)

We show in detail how to obtain the basic GLA and DeltaNet update rules by letting Φt follow an
online gradient-based learning dynamics,

Φt = Φt−1 − βt∇ϕLt(Φt−1), (12)
where the input gate βt plays the role of a time-dependent step size.

For GLA, we choose lt to be the quadratic continuous-state Hopfield energy,

lt(Φ) = lHopfield
t (Φ) := −v⊤t Φkt,

and we set the quadratic regularizer to depend on the forget gate γt and input gate βt as follows:

Λt =
1− γt
βt

I.

Now, plugging lt and Λt into equation 12 yields

Φt = Φt−1 − βt∇ϕ

[
−v⊤t Φkt +

1− γt
2βt

Tr(ΦΦ⊤)

]∣∣∣∣∣
Φ=Φt−1

(13)

= Φt−1 − (1− γt)Φt−1 + βtvtk
⊤
t (14)

= γtΦt−1 + βtvtk
⊤
t , (15)
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which corresponds to gated linear attention as defined in the main text (equation 2).

To obtain DeltaNet, we choose instead lt to be the squared error loss,

lt(Φ) = lsq-err
t (Φ) :=

1

2
∥vt − Φkt∥2,

and we disable the regularizer (Λt = 0), as it was not included in the original DeltaNet model (Schlag
et al., 2021a). Performing again the same computation as above, but now with this squared error
online loss, yields the DeltaNet update:

Φt = Φt−1 − βt∇ϕ

[
1

2
∥vt − Φkt∥2

]∣∣∣∣∣
Φ=Φt−1

(16)

= Φt−1 + βt(vt − Φt−1kt)k
⊤
t . (17)

LongHorn update rule. Yet another recent method called LongHorn (Liu et al., 2025) can be
derived as online learning on a sequence of loss functions (lt). Its update rule can be derived by
minimizing an objective function:

Φt = argmin
Φ

LLongHorn
t (18)

= argmin
Φ

1

2
(vt − Φkt)

⊤ diag(βt)(vt − Φkt) +
1

2
Tr(Φ− Φt−1)

⊤(Φ− Φt−1), (19)

with βt now a vector of the same dimension as vt, instead of a scalar, determining an elementwise
squared error precision. The solution can be obtained in closed-form, following the derivation
provided in Appendix C of (Liu et al., 2025):

Φt = Φt−1 + diag(ϵt)(vt − Φt−1kt)k
⊤
t , (20)

with ϵti =
βti

1+βtik⊤
t kt

. This is a variant of DeltaNet with a particular diagonal input-dependent step
size that is both a function of kt and βt (which is chosen to be a vector in this model, as opposed to
the scalar gates used in our DeltaNet and in our current MesaNet implementation). For computational
efficiency, the actual implementation of LongHorn approximates the update above with a simpler
rule that makes use of elementwise multiplications, denoted here by ⊙:

Φt = (1− ϵt(kt ⊙ kt)
⊤)⊙ Φt−1 + (ϵt ⊙ vt)k

⊤
t , (21)

where ⊮ is a matrix of ones. Like the DeltaNet, the LongHorn objective still only takes into account
the instantaneous squared error for the current key-value pair, with an additional memory quadratic
potential pulling towards the previous solution to avoid forgetting it entirely through the full argmin.
By contrast, the Mesa layer explicitly optimizes the full forget-weighted sum of squared errors from
the beginning of the sequence until the present (t′ = 1 to t).

Omega/Atlas update rule. Concurrent work by Behrouz et al. (2025a) investigated online learning
layers that are intimately related to the Mesa layer. The paper focuses on a sliding window variant of
our objective function:

LOmega
t =

t∑
t′=t−c+1

ζtt′∥vt′ −MΦ(kt′)∥2, (22)

where c is the sliding window length, and ζtt′ determines the cumulative forget at time step t for the
past loss t′, as in the Mesa layer objective. The authors further allowMΦ to be a 1-hidden-layer
MLP with parameters Φ, similarly to (Sun et al., 2025), and unlike the Mesa layer, which derives a
specialized update exploiting the fact thatM is a linear model. Behrouz et al. (2025a) optimize the
sequence of loss functions (lt) online using a second-order Muon method (Jordan et al., 2024):

Φ̃t = θ̃tΦ̃t−1 +∇Φl
Omega
t (Φt−1), (23)

Φt = γtΦt−1 − βtNewtonSchulzk(Φ̃t), (24)

where NewtonSchulzk denotes the execution of k steps of the NewtonSchulz algorithm, Φ̃t is an
auxiliary momentum gradient accumulation state variable, and θ̃t is a dynamic (time-dependent)
momentum decay factor, which determines the retention of past accumulated gradients.
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C RANK-ONE UPDATE CONJUGATE GRADIENT METHOD

In the next two sections, we describe how we can use the conjugate gradient method to obtain a
solution for (Ht +Λt)

−1qt = q∗t for many t in parallel. As we will discuss below, the aim is to show
how one can do this without materializing Ht for all time steps as this would lead to unnecessary
memory overhead, see Yang et al. (2024b) for a detailed discussion of this problem and a ”chunkwise
parallel” solution. We therefore aim to show here, as a starting point, how to compute q∗t without
materializing Ht = Ht−1γt + ktk

T
t and only relying on Ht−1 as well as on yt and kt. This will

eventually allow us, see the next Appendix section D, to compute and materialize Ht only every
T/C steps with train length T and chunksize C times, leading to a drastic decrease in memory
usage. We will do this while approximating Q∗

c = [q∗c+1, . . . , q
∗
c+C ] numerically in parallel by only

materializing Hc where c ∈ {0, C, 2C, . . . T − C}.
We opted to initialize the conjugate gradient method with x← qt · diag(Ht + Λt)

−1 in this work.

Algorithm 1 Rank-One Update Conjugate Gradient Method

1: procedure RANKONECONJUGATEGRADIENT(Ht−1, γt, kt, qt, ϵ, kmax)
2: Input: Symmetric positive-definite matrix Ht−1 ∈ Rn×n, forget strength γt ∈ (0, 1), key

kt ∈ Rn, query qt ∈ Rn, tolerance ϵ > 0, maximum iterations kmax.
3: Output: Approximate solution x.

4: k ← 0
5: x← qt · diag(Ht−1 + Λt)

−1 ▷ Initial guess x ∈ Rn

6: r ← qt − (Ht−1γt + ktk
⊤
t + Λt)x ▷ Initial residual r

7: p← r ▷ Initial search direction p
8: δold ← rT r ▷ Squared norm of the initial residual
9: δ0 ← δold ▷ Store initial squared norm for relative tolerance

10: while k < kmax do ▷ Loop until max iterations reached
11: q ← (Ht−1γt + ktk

⊤
t + Λt)p ▷ Matrix-vector product (Ht−1γt + ktk

⊤
t + Λt)p

12: α← δold
pT q

▷ Step length α

13: x← x+ αp ▷ Update solution x
14: r ← r − αq ▷ Update residual r
15: δnew ← rT r ▷ Squared norm of the new residual, δnew

16: if
√
δnew ≤ ϵ

√
δ0 then ▷ Check relative convergence: ||rk+1|| ≤ ϵ||r0||

17: break ▷ Converged
18: end if

19: β ← δnew

δold
▷ Improvement factor β

20: p← r + βp ▷ Update search direction p
21: δold ← δnew ▷ Store new norm as old for next iteration
22: k ← k + 1 ▷ Increment iteration counter
23: end while

24: return x ▷ Return the approximate solution
25: end procedure

On top of Ht−1p, all other parts of the (Ht−1γt + ktk
T
t + Λt)p computation can be reduced to

one vector inner-product k⊤t p as well as element-wise products and a final addition of the results.
One can therefore approxiamte q∗t numerically without materializing Ht, which we will extend
in the following to chunks i.e. compute Q∗

c = [q∗c+1, . . . , q
∗
c+C ] in parallel without explicitly

materializing Ht with c < t ≤ c+ C. This will become obvious after realizing that the computation
of (Ht−1γt + ktk

T
t + Λt)p is equivalent to GLA, therefore allowing for the chunkwise parrallel

computation proposed in Yang et al. (2024b) of GLA.
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Note that the most flops during inference are spend in the matrix-vector product Htp where we apply
the CG method simply to (Ht + Λt)

−1qt (and not do not use the ”rank-one” update formulation
above) resulting in the O(kn2

a) of Table 5.

We refer to Appendix G.5 for further details about numerical precisions considerations within our
CG solver.

D CHUNKWISE PARALLEL FORM OF GATED LINEAR ATTENTION AND THE
MESA LAYER

Mesa layer forward pass. The main Mesa recurrence (Equation 7) can be rewritten as follows,
considering only one head and assuming without loss of generality that input gates are absorbed in
keys and values:

Ht = Ht−1γt + ktk
⊤
t

Gt = Gt−1γt + vtk
⊤
t

q∗t = (Ht + Λ)−1qt

ot = Gtq
∗
t

(25)

Note that Ht is symmetric, and Λ is symmetric positive definite, so Ht + Λ is also symmetric. Let’s
define

ζts =

{∏t
i=s+1 γi if t ≥ s

0 otherwise

with which the computation of ot (unrolling the definition of Gt) has the following form:

ot =

t∑
i=1

ζtivik
⊤
i q

∗
t . (26)

To connect to Section 2 where the Mesa layer is defined through a set of optimized linear model fast
weights Φ, we note that this is equivalent to minimizing the following objective w.r.t. Φ,

Φ̂mesa
t = argmin

Φ

1

2

t∑
i=1

ζti||vi − Φki||2 +
1

2
Tr(ΦΛΦ⊤), (27)

and then computing the output through ot = Φ̂mesa
t qt.

To see why this is the case, let us compute the stationarity condition

∇Φ

[
1

2

t∑
i=1

ζti||vi − Φki||2 +
1

2
Tr(ΦΛΦ⊤)

]
= 0 (28)

⇐⇒ ΦΛ−
t∑

i=1

ζti(vi − Φki)k
⊤
i = 0 (29)

⇐⇒ ΦΛ−
t∑

i=1

(ζtivik
⊤
i − Φζtikik

⊤
i ) = 0 (30)

⇐⇒ ΦΛ+ ΦK̃tK̃
⊤
t = ṼtK̃

⊤
t (31)

⇐⇒ Φ = ṼtK̃
⊤
t (K̃tK̃

⊤
t + Λ)−1 (32)

⇐⇒ Φ =

(
t∑

i=1

ζtivik
⊤
i

)(
t∑

i=1

ζtikik
⊤
i + Λ

)−1

. (33)

To simplify the calculation we introduced the auxiliary matrix variables Ṽt and K̃t, which absorbed
square roots of the cumulative forget factors ζt. We denote the above (unique, for Λ > 0) solution by
Φmesa

t .
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Now, the recurrence relation for the state variable Ht can be solved analytically, yielding

Ht = γtHt−1 + ktk
⊤
t =

t∑
i=1

 t∏
j=i+1

γj

 kik
⊤
i =

t∑
i=1

ζtikik
⊤
i , (34)

assuming H0 = 0. The same holds for the other state variable, Gt = γtGt−1 + vtk
⊤
t =∑t

i=1 ζtivik
⊤
i .

Therefore, as claimed, we recover equation 25:

ot = Φ̂mesa
t qt (35)

=

(
t∑

i=1

ζtivik
⊤
i

)(
t∑

i=1

ζtikik
⊤
i + Λ

)−1

qt (36)

= Gt(Ht + Λ)−1qt (37)
= Gtq

∗
t . (38)

Chunkwise form. We remark that if q∗t is given, this computation is equivalent to a Gated Linear
Attention (GLA) layer Yang et al. (2024b), and thus can be efficiently computed on GPUs and TPUs
by splitting the sequence in blocks of opportune sizes C resulting in a “chunkwise parallel” form of
the layer. In short, given Gc, where c ∈ {0, C, . . . , T − C} dividing the training sequence length T
in T/C chunks of size C, we can compute the output at time c < t ≤ c+ C as

ot = (Gc +

t∑
i=c+1

ζtivik
⊤
i )q

∗
t = Gcq

∗
t +

t∑
i=c+1

ζtivik
⊤
i q

∗
t (39)

Similar to softmax self-attention, this computation can be done in parallel for t ∈ {c+ 1, ...c+ C}
which becomes clearer when using matrix notation

Oc = GcQ
∗
c + Vc(Zc ⊙ (K⊤

c Q∗
c)) (40)

where Kc = [kc, ..., kc+C ] and Oc, Vc, Q
∗
c accordingly. Zc is a upper triangular matrix of size

C × C with Zc[i, j] = ζc+j,c+i. Please see for Triton-based implementation of this chunked parallel
formulation of GLA at https://github.com/fla-org/flash-linear-attention.

We differ from GLA as the Mesa layer replaces qt which is the standard query qt = Wqet by
q∗t = (Ht + Λ)−1qt which, as we alluded to above, can as well be computed equivalently to
GLA in chunkwise parallel form. Indeed, as shown in the previous section, the conjugate gradient
method relies purely on simple vector additions and multiplications which can be trivially realized in
chunkwise parallel form without extensive memory overhead, with the exception of (Ht +Λ)p. This
operation suffers from the same memory problems as a naive GLA layer implementation as storing
Ht for all time steps is costly which we therefore wish to circumvent. Fortunately, this can easily be
done with the exact same chunkwise parallel trick just discussed, which we now leverage to compute

(Ht + Λ)p = Htp+ Λ · p =

t∑
i=1

ζtikik
⊤
i p+ Λ · p. (41)

which is required in the conjugate gradient algorithm.

Note that the first term
∑t

i=1 ζtikik
⊤
i p is in an equivalent form of GLA (by replacing vi with ki) for

which we just established that a fast chunkwise parallel formulation exist, if we again store only some
intermediate states Hc. We conclude that the computation of q∗t = (Ht +Λ)−1qt and therefore the
whole Mesa layer can be approximated by repeatedly applying a in chunkwise parallel computation
leveraging matrix-matrix accelerators on GPUs or TPUs.

Mesa layer backward pass: Let et be the error coming from future layers at time t and L be the
final loss. Then we have the following:
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e∗t = (Ht + Λ)−1G⊤
t et

dL

dqt
=

dot
dqt

et = e∗t

dL

dΛt,i
=

dot
dΛt,i

et = −q∗t,ie∗t,i

dot
dvs

et = etζtsk
⊤
s (Ht + Λ)−1qt

dL

dvs
=
∑
t≥s

ζtsetq
∗⊤
t ks

dL

dks
=
∑
t≥s

ζts(q
∗
t e

∗⊤
t vs − e∗t q

∗⊤
t ks − q∗t e

∗⊤
t ks)

dL

dγs
=
∑
t≥s

ζts(q
∗⊤
t Gs−1et − e∗⊤t Hs−1q

∗
t )

This is a time-reversed version of the formulas to compute the derivatives with respect to vs and
ks. Note that dL

dvs
and dL

dks
can again be computed in chunkwise parallel manner as they are sums

of expressions which are all GLA formulation equivalent. e∗t is also chunkwise parallel compatible
since, as we just established, running conjugate gradient (chunked) parallelized in time is possible.

It remains to see how to quickly compute the derivatives with respect to γs. To that purpose, let us
consider the first term in the equation defining the derivative, as the second can be handled similarly;
we have that: ∑

t≥s

ζtsq
∗⊤
t Gs−1et =

∑
t≥s

Tr[ζtsq
∗⊤
t Gs−1et] =

=
∑
t≥s

Tr[Gs−1ζtsetq
∗⊤
t ] =

= Tr

Gs−1

∑
t≥s

ζtsetq
∗⊤
t


This already gives a way to compute the derivatives that is linear in sequence length (as it is sufficient
to accumulate the t-dependent part as s decreases). However, for maximum efficiency we would
like to also split the computation into blocks and make use of matrix multiplication units for this
computation.

Let Fs =
∑

t≥s ζtsetq
∗⊤
t . We now explain how to compute the value above simultaneously for a

block of indices s = L+ 1, . . . ,U − 1.

Gs−1 = GLζs−1L +
∑

L<p<s

ζs−1pvpk
⊤
p∑

t≥s

ζtsetq
∗⊤
t =

∑
s≤t<U

ζtsetq
∗⊤
t + ζUsFU

Tr

Gs−1

∑
t≥s

ζtsetq
∗⊤
t

 = Tr

GLζs−1L +
∑

L<p<s

ζs−1pvpk
⊤
p

 ∑
s≤t<U

ζtsetq
∗⊤
t + ζUsFU

 =

= Tr [GLFUζUsζs−1L] + Tr

GLζs−1L
∑

s≤t<U

ζtsetq
∗⊤
t

+

+Tr

FUζUs

∑
L<p<s

ζs−1pvpk
⊤
p

+Tr

 ∑
s≤t<U

ζtsetq
∗⊤
t

∑
L<p<s

ζs−1pvpk
⊤
p

 =
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= Tr [GLFU ] ζUsζs−1L +
∑

s≤t<U

ζtsζs−1L Tr
[
GLetq

∗⊤
t

]
+

+
∑

L<p<s

ζUsζs−1p Tr
[
FUvpk

⊤
p

]
+
∑

L<p<s

∑
s≤t<U

ζtsζs−1p Tr
[
etq

∗⊤
t vpk

⊤
p

]
For computing the last term, we can make use of the fact that ζab = 0 if a < b to rewrite it in the
equivalent forms∑

L<p<s

∑
s≤t<U

ζs−1p(q
∗⊤
t vp)(k

⊤
p et)ζts =

∑
L<p<U

∑
L<t<U

ζs−1p(q
∗⊤
t vp)(k

⊤
p et)ζts

which can be computed as the product of the three matrices Z∗, Q, Z with Z∗
ij = ζi−1j , Qij =

(q∗⊤j vi)(k
⊤
i ej), Zij = ζij ; the requested values appear then as the main diagonal of this matrix.

The second term can be similarly rewritten as

ζs−1L
∑

s≤t<U

(q∗⊤t GLet)ζts = ζs−1L
∑

L<t<U
(q∗⊤t GLet)ζts

which can be computed by multiplying the vector pt = q∗⊤t GLet by the Z matrix defined above, and
then by doing a point-wise vector multiplication by ζs−1L.

Finally, the first term can be computed simply by computing the trace once and then doing a point-wise
vector multiplication, and the third term can be computed as the second.

E A FULL DESCRIPTION OF THE MESA LAYER, RELATED WORK AND THE
MESANET

For completion, we repeat the Mesa layer computation which is described throught the following
equations

∆emesa
t =

H∑
h=1

PhΦ̂
mesa
h,t qh,t =

H∑
h=1

PhGh,tlinsolve(Hh,t + Λh, qh,t). (42)

The equation above depends on two state variables, Sh,t = {Gh,t, Hh,t}, which we obtain through
the linear recurrence relations:

Gh,t = Gh,t−1γh,t + vh,tk
⊤
h,tβh,t, Hh,t = Hh,t−1γh,t + kh,tk

⊤
h,tβh,t, (43)

where as before γh,t ∈ [0, 1] is a forget gate and βh,t ∈ [0, 1] is a input gate, where we adopt the
conjugate gradient method as the solver (Lanczos, 1950; Hestenes et al., 1952). Before the Mesa
layer computation, we compute the keys, queries, values as well as input and forget strength in the
following way.

First, we normalize the embeddings with an RMS norm ei ← RMSNorm(ei). After projections
kt = Wket, qt = Wqet, vt = Wkvt we convolve them in time with a window size of 4 e.g.
kt ←

∑3
i=0 kt−ibi+1 with learnable parameters b1, . . . , b4. Furthermore, after applying a SiLU(x) =

x ∗ σ(x) non-linearity we normalize the keys and queries (but not values) to have L2-norm of 1 i.e.
kt ← SiLU(kt)/||SiLU(kt)|| and qt ← SiLU(qt)/||SiLU(qt)||.
For the forgetting and input gate we simply squeeze the RMS normed et projections through a
sigmoid i.e. βt = σ(etWβ) and γt = σ(etWγ). After computing the output of every head, we apply
a RMS norm i.e. the actual output of the Mesa layer amounts to

∆emesa
t =

H∑
h=1

PhRMSNormh(Gh,tlinsolve(Hh,t + Λh, qh,t)). (44)

The regularization parameters are simply send through a softplus function to ensure positivity i.e.
Λh ← softplus(Λh). We did experiment with a input / time dependent regularization strength but
in this work opted for a fixed lambda over time, see Section J
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Comparison to related work: To ensure a 1-1 comparison with related work, we use the exact same
parametrization of the keys, values and queries as well as forget and input strength parametrization for
the GLA, Mamba2 and (gated) DeltaNet. Here, only the state update as well as output computation
differ depending on the rule, see Table 1 for an overview. The mLSTM layers, which we also compare
to, have a different parametrization of the forgetting as well as input strength and keys and quries are
not normalized by their L2 norm, see Beck et al. (2024).

Layer Output & state update Memory Flops output & state update

MHA ot =
∑t

t′=1 vt′α(K
⊤
t qt)t′ (vh,t′ , kt′)

t
t′=1

— 2nat O(nat) — O(1)

GLMHA ot = Φtqt with Φt — n2
a O(n2

a) — O(n2
a)

Φt = Φt−1γt + βtvtk
T
t

DN ot = Φtqt with Φt — n2
a O(n2

a) — O(n2
a)

Φt = Φt−1(yt(I − βtk
⊤
t kt)) + βtv

⊤
t kt

MESA Equation 7 St = {Gt, Ht} — 2n2
a O(n2

a) +O(kn2
a) — O(n2

a)

Table 5: Flops as well as state size comparison between MHA, gated linearized multi-head-attention
(GLMHA) such as xLSTM or Mamba2, (gated) DeltaNet (DN) and the Mesa layer during inference. All
softmax attention alternatives require O(n2

a) flops, with key size na, to compute the output as well as update the
state(s). The Mesa layer requires an additional k steps of the CG method which costs O(kn2

a). For simplicity
we assume nv = na.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.1 MODEL DESIGN

We give an overview over the network architecture for all models compared in this work in bullet
points. The only difference is the way how to do the ”sequence” mixing of the keys, valyes and
queries (and forget and input gates), with an exception of the LRU layer (De et al., 2024), see Table 1.

• The model consists of an embedding layer of size ne, which is also shared at the end of
the model to compute the logits. We do not apply regularization on the parameters of the
embedding.

• The model is then followed by N number of blocks consisting of a sequencing layer e.g.
MHA, GLMHA, DN or Mesa, described in Section 2, followed by an MLP layer. The
input of both the MLP as well as sequencing layer go through a RMSNorm (Zhang &
Sennrich, 2019), see Figure 1. After computing the logits, we apply a soft hyperbolic
tangent clip with c = 30 with logits = tanh(logits/c)c, again following the open source im-
plementation of De et al. (2024), see https://github.com/google-deepmind/
recurrentgemma/blob/main/recurrentgemma/jax/griffin.py.

• To compare all different sequencing layers as closely as possible and focus on their ability
to incorporate information from the context, MHA, GLA, Mamba2, xLSTM, the (gated)
DeltaNet, as well as the Mesa all use the exact same key size and therefore the exact
same amount of parameters to compute the queries, keys and values. All RNN layers, for
direct comparison, additionally only use per head a one dimensional gate for forgetting
as well as writing which we squeeze through a sigmoid function i.e. βt = σ(Wβet) and
γt = σ(Wγet), except the mLSTM layer. This stands in some contrast to how the models
were originally designed e.g. Gated Linear Attention (Yang et al., 2024a) or RWKV (Peng
et al., 2023) use higher dimensional forget gates. Furthermore, all RNN layers convolve the
keys and queries with a window size of 4. This is by now a standard feature of contemporary
RNN/SSM architectures, motivated by earlier analyses (Arora et al., 2023a; Fu et al., 2023).
Note that for all models, except from mLSTM which uses a special parameterization and
normalization, we apply a SiLU (or swish) non-linearity (Hendrycks & Gimpel, 2023)
before we normalize the keys and queries by their L2-norm. The output of each head is
independently before the linear projection back to the residual stream send through an
additional RMSNorm.

• We define Mamba2 as forget-gated linearized multi-head attention following Yang et al.
(2024c), and GLA as its forget- and input-gated counterpart; both methods with et-dependent
gates.

• When using the LRU layer (De et al., 2024), we notice that the layer, in its default hy-
perparameter configuration, subsumes more parameters than MHA and the other RNN
alternatives, as they use exactly the same number of parameters to each other. We therefore
decrease the hidden size multiplier which determines the increase of the RNN state when
compared to the embedding size, to match parameter count.

• The Hawk-Mesa model simply alternates between blocks that have either a LRU layer or a
Mesa layer.

• For the MLP layers we follow again De et al. (2024). We create two branches both with
dimension of ne · 3, apply a SiLU non-linearity to one of the branches and merge them by
multiplying. We then down project with a simple linear layer into ne dimension.

• All weights are initialized by sampling them from a normal distribution and in ”fan in”
mode, while scaling the variance of the weights which project back to the residual stream by
2.0/N .

F EXPERIMENTAL DETAILS: MESANET IN SYNTHETIC ENVIRONMENTS

F.1 MAD BENCHMARK SUITE

We follow the benchmarking procedure detailed in Poli et al. (2024) precisely: For each task in
the suite, we evaluate the architectures on subtasks of varying difficulty (i.e. varying sequence
length, number of training examples, vocabulary sizes and further, task-specific parameters) and
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Hyper Parameter Search
Embedding dimension 128
Number of layers 2
Number of heads 8
Key size 16
Epochs 200
Batch size 32
Optimizer AdamW

Learning rate [3e-3, 1e-3, 5e-4, 1e-4]
Weight decay [0.01, 0.1]
βs (0.9, 0.98)

Scheduler Cosine Scheduler with Warmup
Minimum learning rate 1e-5
Warm-up start learning rate 1e-7
Warm-up steps 750

Table 6: MAD benchmark suite hyper-parameters, taken from Poli et al. (2024).

Hyper Parameter Search
Embedding dimension [64, 128, 256, 512, 1024]
Number of layers [1, 2, 4, 8, 12]
Number of heads [1, 2, 4]
Epochs 50
Batch size 32
Optimizer AdamW

Learning rate [1e-4, 2.5e-4, 1e-3]
Weight decay [0.01, 0.1]
βs (0.9, 0.99)

Scheduler Cosine Scheduler with Warmup
Minimum learning rate 2.5e-5
Warm-up start learning rate 1e-7
Warm-up steps 25000

Table 7: RegBench hyper-parameter search-space, taken from Akyürek et al. (2024). For all models, we keep
the key size fixed to 128 across combinations of embedding dimension and number of heads.

compute the mean accuracy. We further sweep over varying learning rates and weight decay values
for each model and report the maximum average task accuracy. For each architecture, we fix a set of
hyper-parameters that can be found in Table 6.

F.2 REGBENCH IN-CONTEXT LANGUAGE LEARNING BENCHMARK

Following Akyürek et al. (2024), we report the test-accuracy of the configuration obtained from a
grid-search over a pre-defined set of shared hyper-parameters for all models, which can be found in
Table 7.

G EXPERIMENTAL DETAILS: MESANET IN A LANGUAGE WORLD

We follow closely the experimental setup of Beck et al. (2024) as well as De et al. (2024).

G.1 DATA

We train models on SlimPajama Soboleva et al. (2023) and use the GPT-2 tokenizer Radford et al.
(2018) which uses a vocab size of 50257, as in Beck et al. (2024). We pre-tokenize the dataset
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and fill up sequences with context length shorter than the train length, which is set to 2048, with
other randomly sampled sequences until the context train length is full. We separate these separate
sequences with a BOS token. We follow the same recipe when creating the validation data. Note that
this procedure might bias the training as well as evaluation of the model towards shorter sequences.

We train on two dataset sizes: 15 billion and 50 billion tokens.

G.2 MODEL DESIGN

We give an overview over the network in bullet points.

• The model consists of an embedding layer of size ne, which is also shared at the end of
the model to compute the logits. We do not apply regularization on the parameters of the
embedding. We follow again De et al. (2024) and initialize the parameters of the embedding
matrix in ”fan in” mode but scale back the embedding during inference by

√
ne leading to a

variance of 1 in the residual stream.
• The model is then followed by N number of blocks consisting of a sequencing layer e.g.

MHA, GLMHA, DN or Mesa, described in Section 2, followed by an MLP layer. The input
of both the MLP as well as sequencing layer go through a RMSNorm (Zhang & Sennrich,
2019), see Figure 1. After computing the logits, we apply a soft hyperbolic tangent clip with
c = 30 with logits = tanh(logits/c)c, again following De et al. (2024).

• To compare all different sequencing layers as closely as possible and focus on their ability
to incorporate information from the context, MHA, GLA, Mamba2, xLSTM, the (gated)
DeltaNet, as well as the Mesa all use the exact same key size and therefore the exact same
amount of parameters to compute the queries, keys and values. All RNN layers, for direct
comparison, additionally only use per head a one dimensional gate for forgetting as well
as writing which we squeeze through a sigmoid function i.e. βt = σ(Wβet + bβ), γt =
σ(Wγt

et + bγt
), except the mLSTM layer which has a more elaborate parametrization.

This stands in some contrast to how the models were originally designed e.g. Gated Linear
Attention (Yang et al., 2024a) or RWKV (Peng et al., 2023) use higher dimensional forget
gates. Furthermore, all RNN layers convolve the keys and queries with a window size of
4. Note that for all models, except from mLSTM which uses a special parameterization
and normalization, we apply a SiLU (or swish) non-linearity (Hendrycks & Gimpel, 2023)
before we normalize the keys and queries by their L2-norm. The output of each head is
independently before the linear projection back to the residual stream send through an
additional RMSNorm.

• We define Mamba2 as non-gated linearized multi-head attention following Yang et al.
(2024c) and GLA as its gated counterpart with et-dependent forget strength γt.

• When using the LRU layer (De et al., 2024), we notice that the layer, in its default hy-
perparameter configuration, subsumes more parameters than MHA and the other RNN
alternatives, as they use exactly the same number of parameters to each other. We therefore
decrease the hidden size multiplier which determines the increase of the RNN state when
compared to the embedding size, to match parameter count.

• The Hawk-Mesa model simply alternates between blocks that have either a LRU layer or a
Mesa layer.

• For the MLP layers we follow again De et al. (2024). We create two branches both with
dimension of 3ne, apply a SiLU non-linearity to one of the branches and merge them by
multiplying. We then down project with a simple linear layer into ne dimension.

• All weights are initialized by sampling them from a normal distribution and in ”fan in”
mode, while scaling the variance of the weights which project back to the residual stream by
2.0/N .

G.3 TRAINING DETAILS

We train over all the models in this work with batch size of 256, the AdamW optimizer (Loshchilov
& Hutter, 2019) with weight decay strength 0.1, ϵ = 1× 10−8, β1 = 0.9, β2 = 0.98, and a cosine
learning rate scheduler with initial learning rate 1× 10−6, warmup steps of 2000 and a peak learning
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Model size Train size Transformer Mamba2 GLA xLSTM DeltaNet Gated DeltaNet Hawk Hawk-Mesa Mesa

Small 15 0.0025 0.003 0.002 0.0025 0.003 0.001 0.002 0.0025 0.003
Small 50 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.00095
Medium 15 0.0015 0.0025 0.0025 0.003 0.003 0.0025 0.0025 0.002 0.0025
Medium 50 0.001 0.001 0.00095 0.0009 0.00085 0.00095 0.0009 0.0009 0.001
Large 15 0.002 0.002 0.002 0.0015 0.0015 0.002 0.002 0.002 0.002
Large 50 0.0008 0.0009 0.00085 0.0008 0.0008 0.0009 0.0009 0.00085 0.00085

Table 8: Peak learning rate for all models trained for this work determined by a learning rate grid scan.

rate of l which is scanned for each experiment, see below. We cosine decay the learning rate to
10% of the peak learning rate till the end of the training determined by the train set size. We use as
loss the classic cross entropy on the next token; we do not compute the loss on the BOS token. We
apply gradient norm clipping to norm 1. We apply mixed precision training where the weights are
float32 but activations are bfloat16 following Beck et al. (2024). Interestingly, we find that
this actually improves next token perplexity slightly compared to using float32 everywhere.

G.4 HYPERPARAMETER SCANS

We train 3 model sizes: 140 million, 440 million and 940 million parameters following roughly
Beck et al. (2024). As already mentioned, all architectures have by construction almost exactly the
same number of parameters for the same architectrual dimensions. All recurrent neural network
types have the same parameters as multi-head attention but additionally have two parameter vectors
of size na which produce the two gates per head. The Mesa layer has additionally na (fixed in
time) parameters for (meta-)learned Λ regularization. Since the parametrization of the LRU layer is
different by construction, we simply adjust the hidden size scaling to 1.25 to match the parameters
of the other RNN layers. The 3 different model sizes use key size na = 128 and otherwise are setup
as follows:

• 140 million — Small: N = 14 blocks, h = 6 heads, embedding dimension ne = 768.
• 440 million — Medium : N = 28 blocks, h = 8 heads, embedding dimension ne = 1024.
• 940 million — Large : N = 28 blocks, h = 12 heads, embedding dimension ne = 1536.

The exact number of parameters and peak learning rate can be found in Table 8. For all models, we
scan the same range of learning rates: for models trained for 15 billion tokens we scanned {0.003,
0.0025, 0.002, 0.001, 0.0015}, and for models trained for 50 billion tokens, we observe, similar to
Beck et al. (2024), that smaller learning rates were beneficial and thus scan {0.001, 0.00095, 0.0009,
0.0085, 0.0008}. We train all sliding window attention (SWA) models, as they are only reference
points, with learning rate 0.001.

G.5 NOTES ON PRECISION USED IN THE CG-SOLVER, MESA LAYER DESIGN CONSIDERATIONS
OR Why you shouldn’t scream at your Mesa layer

The MesaNet, for the model sizes we consider for the language experiments, solves during training
millions of linear systems of equations numerically in one forward pass. Somewhat surprisingly,
we did not encounter many training instabilities when setting some crucial hyperparameters and
architectural details accordingly. First, we follow related work and normalize keys and queries - this
is a crucial first step to stabilize the Mesa layer. Second, the most important hyperparameter for the
Mesa layer, which strongly influences the conditioning number and therefore the number of CG steps
needed to solve the linear systems, is the regularization strength Λ. Due to experimentation when
training small models, we initialized Λ = I but restricted its values to be lower-bounded by 0.25. We
hypothesize that this lower bound is important to, implicitly, upper bound the condition number. We
determined the Λ lower bound by a grid scan when training the medium sized model on 15B tokens.
See Figure O for some Λ values of a trained model. We parameterize Λ through a softplus function
i.e. Λ = 0.25 + softplus(Λ) and adjusted the initialization of the Λ parameter accordingly.

When training on SlimPajama and using the GPT-2 tokenizer, we noticed that the dataset, especially
the sequences which contain code, contains sequences which consist of many repeated tokens such as
the empty token ” ”. We call this ”screaming at your language model”. These kind of inputs to the
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Mesa layer lead to a matrix Hh,t = Kh,tK
T
h,t which contains sums of the same vector outer product

which we analysed leads to instabilities when γt ≈ 1. We therefore upper-bound γt by bγ = 0.9975
(which might be train length specific) and adjust its value depending the input strength βt: when
training on SlimPajama, we use γt = γtsγt with sγt = (1− (1− bγ)β

2
t ). Note that other tokenizers

which merge repeated ” ” should solve this problem partially. This correction improves perplexity in
scans on small models and so we adopted it throughout our experiments.

A final comment on the precision of the CG solver: The opted to use FP32 matrix multiplication
precision inside the CG solver solely within our Pallas kernel. Note that we used BF16 everywhere
else to compare other RNN and transformer models with our MesaNet fairly. This reduces memory
loading times as we only load data with BF16 precision, compute q∗ in our solver with FP32 precision,
and cast it down in our solver to FB16.

Although we did not investigate in depth FP16 or BF16 precision within the CG solver for which
convergence problems are well known, we found the training times when using FP32 acceptable. We
leave this important investigation for future work.

We end here with a note of caution when using these lower precisions on GPUs as more work might
be needed to ensure stable convergence to the approximate solution of the linear solver.

G.6 EXPERIMENTS COMPUTE RESOURCES

We provide here an estimate of the compute resources used for a single run of a 1B model. We note
that transformers, MesaNets and other RNNs were of somewhat comparable speed on average and
so estimate compute by averaging and not differentiating costs across models. We mostly relied on
TPUv5 to conduct our experiment. Here we used multi-pod TPUv5s which fit the whole models,
without model sharding, and therefore were able to rely solely on batch sharding. For the 1B models,
one training run, with sparse intermediate evaluation, when training on 50B tokens lasted around 36
hours on average. When training on smaller models, the train time significantly dropped. All Mesa
layer investigations were done on the 400million scale when training on 15B tokens resulting in
train runs which last 3-12 hours depending on the amount of CG steps used and data parallelization
applied.

Running our evaluation pipeline for all downstream benchmarks took on average 3 hours on the same
hardware, although we note that we did not optimize this pipeline for run time.

G.7 TOKEN THROUGHPUT COMPARISONS OF RECURRENT MODELS FOR 1B MODELS

We report in Figure 6 the throughput (in tokens / second) of the 1B MesaNet (for different fixed
CG steps), Gated DeltaNet, Gated Linear Attention, as well as standard (global softmax-attention)
Transformers. The MesaNet performs competitively, especially with a fixed number of 10 CG steps.
We note that 10 CG steps are sufficient to obtain the superior MesaNet results reported in the main
text. Gated linear attention, due to the limited flops and matrix multiplications needed to perform a
forward pass, reaches significantly higher throughput than all other models. As expected, transformer
throughput degrades with increasing sequence length.

H THE ORIGINAL RECURSIVE LEAST-SQUARES MESA LAYER

We now review the original version of the Mesa layer (Von Oswald et al., 2024), where Φ̂mesa
t

was determined through the classical recursive least-squares algorithm. The key observation is

that Φ̂mesa
t = VtK

⊤
t R−1

t =
∑t

t′=1 vt′k
⊤
t′

(∑t
t′=1 kt′k

⊤
t′ + Λ

)−1

, and that one can calculate the

inverse R−1
t recursively through the Sherman-Morrison formula (Sherman & Morrison, 1950; Gauss,

1821), R−1
t = R−1

t−1 −
R−1

t−1ktk
⊤
t R−1

t−1

1+k⊤
t R−1

t−1kt
, with R−1

0 = Λ−1. While efficient for sequential inference,

this solution is problematic for two reasons. First, when introducing time-dependent forget gates
γt ∈ [0, 1] which scale the previous state, i.e., (Rt−1γt + ktk

⊤
t )

−1, the matrix inversion for small γt
can introduce numerical instabilities as R−1

t−1
1
γt

can grow unbounded. Moreover, note that this Mesa
layer version forgets the regularization term Λ exponentially fast, as it only enters through the initial
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Figure 6: 1B model throughput (tokens / sec) with bfloat16 activation and float32 weight precision
on a H100 GPU (top row) using the open source framework of https://github.com/fla-org/
flash-linear-attention or our custom TPUv5 implementation (bottom row). We show the effect
of scaling the batch size (left), while fixing the generation length, or scaling the generation length, while fixing
the batch size on the token throughput / sec. For this experiment, we averaged over 5 iterations to reduce noise.
On both hardware systems, we see that 1) MesaNet and Gated DeltaNet perform competitive despite MesaNet
consuming significantly more flops, 2) Gated Linear Attention outperforming other layers significantly as well
as 3) the throughput of the Transformer degrading with larger batchsize and especially sequence length. We
chose sequence length for left panels and batch size for the right panels small enough, such that the (global
softmax) Transformer does not run out of memory for the H100. On the TPUv5 and the left configuration, the
Transformer is running out of memory for the largest batchsize.
.
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Figure 7: Effect of Number of Conjugate Gradient (CG) Steps on SlimPajama Perplexity within and
beyond train context length. We show here the effect of reducing the number of CG steps during inference on
token perplexity across token position of a 1B MesaNet trained on 50B tokens. We either use a fixed number CG
steps uniformly across the model or apply a dynamic stopping criterion ϵ > 0.

33

https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention


1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

state R−1
0 . Second, we are not aware of a way of computing R−1

t in a parallel-in-time fashion. This
precludes efficient parallel training at scale in current hardware.

The Mesa layer as a second-order in-context learning method. As reviewed in Sections 2 and A,
the closely related DeltaNet model (Schlag et al., 2021a) updates a matrix-valued state variable
Φ ∈ Rnv×na following online gradient descent on a squared error loss. Omitting the head index, the
dynamics of this layer reads

Φt = Φt−1 − βt∇lsq-err
t (Φt−1) = Φt−1 + βt(vt − Φt−1kt)k

⊤
t . (45)

To make comparison with this layer easier, we now express the Mesa layer (equation 4) in a similar
recurrent form. We assume that we are in the case where the Sherman-Morrison recursion explained
above holds, so that we can write H−1

t as a function of H−1
t−1. This requires that forgetting is disabled

(∀tγt = 1), or that the regularizer Λ decays exponentially with time. For simplicity, we assume in
what follows that there is no forgetting. Then, using the convention that H0 = Λ, we have that

Φt = GtH
−1
t (46)

= (Gt−1 + vtk
⊤
t )H

−1
t (47)

= (Φt−1Ht−1 + vtk
⊤
t )H

−1
t (48)

= Φt−1

(
Ht − ktk

⊤
t

)
H−1

t + vtk
⊤
t H

−1
t (49)

= Φt−1 − Φt−1ktk
⊤
t H

−1
t + vtk

⊤
t H

−1
t (50)

= Φt−1 − (Φt−1kt − vt)k
⊤
t H

−1
t (51)

= Φt−1 −∇2
ϕϕLt(Φt−1)

−1∇Φl
sq-err
t (Φt−1), (52)

recalling that Lt is the cumulative regularized loss (equation 4) and lsq-err
t = ∥v2t − Φkt∥2. To go

from equations 47 to 48, we used the fact that Φt−1 = Gt−1H
−1
t−1. From equations 48 to 49, we used

the identity Ht−1H
−1
t = (Ht − ktk

⊤
t )H

−1
t .

Thus, while the DeltaNet and related layers perform (first-order) online gradient descent on a squared
error loss, the Mesa layer implements instead an online (second-order) Newton descent algorithm.

I A PRELIMINARY INVESTIGATION INTO STATE TRACKING WITH THE MESA
LAYER
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Figure 8: Negative γt and high Λ allow MesaNets to solve parity: When using γt ∈ (−1, 1) as well as
enforce high Λ, we enforce the MesaNet into functionality close to GLA as q∗t = qt which allows us to use
MesaNet with γt ∈ (−1, 1) which naive applied does not lead to a well-defined mesa-optimization problem.

Recent work has investigated the (missing) state-tracking ability of transformers, modern state space
models and linearized transformer RNN models, see e.g. (Merrill et al., 2025). It remains an active
research direction to study under which circumstances these in-time parallelizable RNN models can
better track state than transformers (Merrill & Sabharwal, 2024; Li et al., 2024).

One simple architecture change proposed in Sarrof et al. (2024); Grazzi et al. (2025) which allows
layers such as Mamba, GLA or gated DeltaNet to solve certain state tracking tasks is to use forget
strength γt ∈ (−1, 1) instead of γt ∈ (0, 1). We highlight that this change naively is not possible
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to incorporate into the Mesa layer. Indeed, γt ∈ (−1, 1) could violate the positive definiteness
of (Ht−1γt + ktk

⊤
t + Λ) leading to a potentially ill-defined linear system of equations problem.

The Mesa layer is equivalent to GLA if q∗t = qt which can be enforced by setting Λ to very large
values such that (Ht + Λ)−1 ≈ Λ−1 and rescaling qt by Λ. Although undesirably from an online
learning perspective, high Λ should lead to (Ht−1γt + ktk

⊤
t + Λ) rendering positive definite even

if γt ∈ (−1, 1) leading to state tracking capabilities as observed in Grazzi et al. (2025) for models
such as Mamba or DeltaNet with γt ∈ (−1, 1). We show first state tracking results for MesaNets
with γt ∈ (−1, 1) or γt ∈ (0, 1) while initializing Λ = 50 · I and restricting its lower value to 49.
These values are chosen by hand, generally a wide range of (large) Λ actually gave us the same
results. When now learning parity, see Figure 8, MesaNets, as hypothesized, start solving parity
with perfect accuracy when endowed with γt ∈ (−1, 1), similar to results presented for Mamba
and gated DeltaNet in Grazzi et al. (2025) when using γt ∈ (−1, 1). Although this parametrization
showcases the flexibility of the Mesa layer encompassing the capacity of GLA (and similar layers
such as Mamba and mLSTM) by enforcing high regularization, we stress that this solution is in our
opinion rather a bug than a feature. This is because we actually wish to utilize the extra flops spend
to compute q∗t . We leave investigating how the MesaNet could track state while not falling back to
GLA functionally for future work.

Experimental details. We train a MesaNet with 2 layers, an embedding dimension of 128, and
4 heads per sequence mixing module (each head with dimension 128) amounting to roughly 1M
parameters. For training we sample bitstrings on the fly and compute the respective ground truth parity
scores at each sequence position. We then train the model to predict the parity score at each position
in the sequence. During training bitstrings are restricted to a length of 40. In a final evaluation, we
test the trained model on sequences up to length 256. We train on a batch size of 256 and train in the
infinite data regime sampling a total of 10000 batches. We use a weight decay of 0.03 and a learning
rate of 0.001. To obtain the results displayed in Figure 8 we initialize Λ = 50 and lower bound
it to 49 and train once with positive eigenvalues only (γt ∈ (0, 1)) and once allowing for negative
eigenvalues (γt ∈ (−1, 1)).

J FURTHER DISCUSSION POINTS

We list here some additional discussion points which we couldn’t place in the main text because of
space constraints

• Backpropagation through the conjugate gradient method: Currently, we are computing
the gradient through the Mesa layer assuming that we have approximated q∗t numerically
well. We believe this current version is a shortcoming of the Mesa layer and speculate that it
is actually feasible to train the MesaNet to cope better with fewer steps (and not approximate
q∗t as well). For this we would use a stochastic number of CG steps during training, ranging
for example from 0 to 30, and backpropagate through the unrolled process, potentially
obtaining a model which is trained to be behave ”optimally” given a certain number of
CG steps. This would allow for an even better dynamic test-time compute allocation of
the MesaNet during inference as users could flexibly decide to spend more compute for
a better model. Interestingly, one could additionally condition (e.g. with a set of BOS
token indicating the number of CG steps used during the forward pass) the models forward
computation and therefore allow the model to learn to adjust its representation at every layer
dependent on the CG steps used in the Mesa layers. We speculate that we therefore would
obtain a MesaNet which behaves on par with e.g. GLA, Mamba or xLSTM with 0 CG steps
and outperforms these RNNs when allocating more CG steps.

• Architecture considerations: We decided to benchmark related work while using the
common transformer backbone allowing for a direct 1-1 comparison between all models.
This architecture is extremely widespread and has the advantage to allow for a direct usage
of Mixture-of-Experts Shazeer et al. (2017) layers. xLSTM and Mamba, see e.g. Beck
et al. (2024), use a different backbone which notably merges the MLP layer and the RNN
layer in one while matching parameter count. This architecture change leads to overall
better perplexity but question if the particular RNN layer or the architecture change, or its
combination offers better results. We leave an investigation of a fair comparison of the
Mesa layer and other related work when changing the architecture backbone for future
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work. Generally, we acknowledge that it is unclear if these architecture changes address the
shortcomings of RNNs, which we show in the evaluation section, namely to incorporate
sequential long range information. We are excited to study the influence of the backbone
when optimizing for incorporating long-range understanding and not perplexity.

• Learning fast matrix inversion algorithms from data: To obtain (Ht+Λ)−1qt we decided
to use the well known and powerful conjugate gradient method. While this algorithm is
widespread, we hypothesis that learning a neural network to solve (Ht + Λ)−1qt directly or
adjusting the CG method by learned parameterization, could lead to significant speed ups.
We generally find extending well-known algorithms with the help of deep learning or using
them as building blocks of deep neural networks an exciting research direction (von Oswald
et al., 2023; 2025; Vladymyrov et al., 2024).

• Mesa layer to model sequences outside the language domain: We speculate that the
Mesa layer is a promising layer for sequence modeling of continuous data, where in-context
generalization and not memory is the driving factor of improving next token prediction.
Therefore the Mesa layer might excel in domains which require some form of in-context
(control or reinforcement learning) algorithm distillation (Laskin et al., 2023).

• The fundamental limit of RNNs with finite memory: (Modern) RNNs do have a finite
amount of state which they can use to save information for future access. This has two
interconnected, intermediate shortcomings when comparing to softmax: The interpretation
and the relevance of certain information in a sentence can drastically change even at the last
token. Since softmax stores all information of the past (all input text and its representations
in all layers), it can recall information relevant to the current query (for example, a particular
question about the text. RNNs need to anticipate when processing information which needs
saving such that it can be accessed later on.
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K MESANET TRAINED IN SYNTHETIC ENVIRONMENTS

We evaluate the token manipulation and in-context learning capabilities by training and evaluating
MesaNets on two purely synthetic benchmarks: (i) Mechanistic Architecture Design (MAD) (Poli
et al., 2024) and (ii) RegBench (Akyürek et al., 2024). For MAD, we train 2-layer models and sweep
over a range of optimization hyperparameters for each task. For RegBench, we follow Akyürek et al.
(2024) and sweep over a larger grid of hyperparameters for each task, including number of layers and
heads, see Appendix F.

MesaNet excels at the MAD benchmark. MAD comprises a suite of recall, memorization, compres-
sion, and copying tasks. As shown in Table 9, the MesaNet achieves the highest average performance,
outperforming all linear recurrent architectures and matching the performance of transformers. These
strong results demonstrate the MesaNet’s efficacy in managing its fixed-size recurrent state to store
and retrieve necessary information across diverse manipulation challenges.

MesaNet and Transformers perform on par on the RegBench. This benchmark requires models to
infer the underlying grammar of pseudo-languages, defined by probabilistic finite automata (PFAs),
solely from context sequences. At test time, this in-context learning capability is tested on token
sequences generated with held-out PFAs. Again, the MesaNet surpasses other RNN models and
matches transformers, demonstrating its capability to infer rules at test time (Figure 9).

IC & Noisy
Recall

Fuzzy
Recall

Memorize
Train Data

Selective
Copy

Compress Avg.

Mamba2 100 51.2 42.0 95.4 41.3 66.0
GLA 100 39.0 82.5 96.1 42.3 72.0
xLSTM 100 47.6 79.8 95.4 43.4 73.2
DeltaNet 100 55.5 40.8 98.8 43.3 67.7
Gated DeltaNet 100 32.7 81.7 95.7 45.0 71.0
Hawk 93.0 13.6 91.3 77.0 47.7 64.5
MesaNet 100 58.5 77.2 99.2 45.4 76.1
Hawk-MesaNet 100 30.2 85.6 99.6 52.3 73.5
Transformer 100 48.6 84.7 96.0 49.5 75.8

Table 9: Performance (% Accuracy ↑) on the MAD bench-
mark (Poli et al., 2024). The MesaNet performs strongly
compared to other RNNs and matches the transformer.

Figure 9: Performance on RegBench (Akyürek
et al., 2024). MesaNet outperforms other linear
architectures and closes the gap to transformers.

L EXTENDED RESULTS IN LANGUAGE ENVIRONMENT

L.1 LANGUAGE MODELLING / PERPLEXITY ANALYSES

The common approach to measure language modeling performance on a set of sequences S =
{s1, . . . , sN} is perplexity (PPL), which is defined as the exponential of the average negative log-
likelihood per token (Jelinek et al., 1977; Brown et al., 2020b; Biderman et al., 2024):

NLL = − 1∑|S|
j=1 |sj |

|S|∑
j=1

|sj |∑
i=1

logP (sj,i|sj,1, . . . , sj,i−1)

PPL = exp [NLL]

(53)

where |S| is the number of sequences, sj is the j’th sequence in S and sj,i is the i’th token in the
sequence sj . However, all tokens are weighted equally in these metrics, independent of their token
position. This is especially critical, as the magnitudes of the log-likelihood scores tend to be quite
different for early and late tokens in a sequence. As a consequence, interesting differences between
models might be masked in these aggregated metrics, especially when comparing different model
families with different inductive biases. Therefore, one needs to condition on the sequence position
to pinpoint qualitative model differences in a quantitative manner.

Mean-so-far {NLL, PPL}. To investigate whether models exhibit different language modelling
capabilities at different sequence depths k, we therefore assess mean-so-far NLL and PPL:

Mean-so-far-NLL:k = − 1∑|S|
j=1 min(|sj |, k)

|S|∑
j=1

min(|sj |,k)∑
i=1

logP (sj,i|sj,1, . . . , sj,i−1)

Mean-so-far-PPL:k = exp [Mean-so-far-NLL:k]

(54)
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Intuitively, these metrics can be interpreted as how well are sequences modeled up to length k.
While these metrics give a more granular picture of the loss behavior dependent on sequence length,
they still mask important transition points due to the cumulative aggregation up to position k. For
instance, the mean-so-far NLL could still be decreasing for higher k (decreasing slope), despite the
token-position-dependent NLL may have already plateaued or increased (Lin et al., 2025).

Token-Position-Dependent NLL. Consequently, we follow (Lin et al., 2025) and assess the average
negative log-likelihood conditional on the token-position k (for which only sum over sequences with
|sj | ≥ k):

NLLk = − 1

|S|

|S|∑
j=1

logP (sj,k|sj,1, . . . , sj,k−1). (55)

Difference in Token-Position-Dependent NLL Relative to a multi-head-attention transformer.
As the field’s main interest is to improve upon the current state-of-the-art transformer architecture,
we investigate the difference in token-position-dependent NLL with respect to a transformer (MHA):

∆NLLmodel
k = NLLmodel

k − NLLMHA
k , (56)

where a negative ∆NLLmodel
k means superior language modelling ability at position k relative to a

transformer as the model’s loss is lower. The same difference can be formulated for the mean-so-far
metrics. Certainly, such a relative metric requires a well-tuned transformer baseline.

L.1.1 WITHIN TRAIN CONTEXT-LENGTH

Here, we expand upon the results shown in Section 4.1 and present within-train-context-length
language modelling evaluations on all evaluated pairs of model sizes (i.e., 145M, 400M and 1B
parameters) and number of training tokens (15B and 50B tokens).

PPL. We present the PPL scores on the five evaluated datasets in Table 10. Across all model sizes
and number of training tokens, Hawk-MesaNet exhibits the best PPL performance on the majority of
benchmarks among the recurrent models, closely followed by MesaNet. Notably, Hawk-Mesa and
Mesa match or exceed the transformer baseline with respect to PPL on the majority of benchmarks
on all model sizes. Furthermore, one can clearly observe the impact of the attention window size on
PPL based on our SWA baselines. PPL is decreasing with an increasing window size in all settings.
Notably, SWA-1024 reaches competitive performance with the majority of recurrent models, i.e.
Hawk, Mamba2, GLA, xLSTM and DeltaNet.

Conditioning on the Sequence Position. As indicated in the metrics description, and shown in
Section 4.1, uniformly averaging over all tokens in the PPL computation, independent of a token’s
depth in a sequence, may masquerade important qualitative difference between models. Therefore,
we condition on the token position and investigate the difference in token-position-dependent NLL
relative to a multi-head-attention transformer NLLmodel

k . As shown in Figure 10, most recurrent models
demonstrate superior language modelling abilities early in a sequence relative to the transformer
baseline. However, beyond a certain token position, transformers surpass the performance of all
recurrent models.

• Which model performs strongest early in the sequence? Notably, MesaNet and Hawk-MesaNet
exhibit the strong performance early-in-the-sequence tokens except Hawk. However, while Hawk
exhibits the best performance up to a certain depth, the model exhibits a sharp performance decline
after that and falls behind most models. See Figure 11 for a clearer visualization (equivalent to
Figure 10, but token-position in log-scale).

• Which model offers superior performance to a transformer “for the longest”? While Hawk
losses its advantage the earliest, Hawk-MesaNet extends the performance advantage to the largest
token depths, closely followed by MesaNet.

For completeness, we also show the mean-so-far NLL difference ∆Mean-so-far-NLLmodel
:k rela-

tive to a Transformer in Figure 12. However, as indicated, the cummulative aggregation in the metric
skews the important token depth transition point where a transformer surpasses the recurrent models
in terms of language modeling.
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Figure 10: NLL Difference (per token-position) ∆NLLmodel
k relative to a Transformer on SlimPajama

Validaton Dataset. Most recurrent models demonstrate superior language modelling abilities early in a sequence
relative to the transformer baseline, across all settings. However, beyond a certain token position, transformers
surpass the performance of all recurrent models.
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Figure 11: NLL Difference (per token-position) ∆NLLmodel
k relative to a Transformer on SlimPajama

Validaton Dataset in log-scale. MesaNet and Hawk-MesaNet exhibit the strong language modeling performance
early-in-the-sequence tokens except Hawk. While Hawk exhibits the best performance up to a certain depth, the
model exhibits a sharp performance decline relatively early in the seq. depth.
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Figure 12: Mean-so-far NLL Difference ∆Mean-so-far-NLLmodel
:k relative to a Transformer on SlimPa-

jama Validaton Dataset. The cummulative aggregation in the mean-so-far metric skews the important token
depth transition point where a transformer surpasses the recurrent models in terms of language modeling.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

15B Tokens 50B Tokens

SLIM LMB. WIKI. PG19 GOV. QASP. AVG SLIM LMB. WIKI. PG19 GOV. QASP. AVG
ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓

145M - Hawk 19.73 38.94 23.06 19.87 19.23 29.66 25.08 18.34 37.43 21.25 18.49 18.17 27.83 23.59
- Mamba2 18.29 40.34 20.86 19.17 17.03 23.71 23.23 17.05 38.22 19.24 17.87 15.90 22.10 21.73
- GLA 17.37 37.96 19.57 18.11 15.86 22.37 21.87 16.30 36.20 18.43 16.90 15.02 20.91 20.62
- xLSTM 17.35 37.97 19.57 18.12 15.88 22.50 21.90 16.20 36.19 18.31 16.97 14.91 20.85 20.57
- DeltaNet 17.26 38.18 19.29 17.93 15.67 21.75 21.68 16.17 36.55 18.08 16.78 14.81 20.53 20.49
- Gated-DeltaNet 17.12 37.62 19.18 17.77 15.55 22.13 21.56 16.05 35.80 18.04 16.79 14.77 20.67 20.35
- Mesa 17.02 37.64 19.10 17.72 15.44 21.87 21.47 16.05 36.17 17.96 16.60 14.72 20.57 20.34
- Hawk-Mesa 16.81 37.20 18.87 17.14 15.29 21.62 21.15 15.82 35.51 17.70 16.19 14.55 20.38 20.02
- Transformer 16.95 38.69 18.65 17.47 15.00 20.80 21.26 15.81 36.54 17.35 16.25 14.04 19.33 19.89

400M - Hawk 14.40 31.54 16.12 14.23 13.67 19.85 18.30 12.87 29.44 14.30 12.71 12.24 17.54 16.52
- Mamba2 14.45 33.38 15.99 14.80 13.27 18.36 18.37 13.07 31.05 14.28 13.28 12.10 16.37 16.69
- GLA 13.69 31.64 15.01 13.89 12.36 17.08 17.28 12.61 29.93 13.73 12.75 11.52 15.77 16.05
- xLSTM 13.71 31.70 14.95 13.88 12.28 17.10 17.27 12.56 29.79 13.60 12.72 11.49 15.72 15.98
- DeltaNet 13.80 31.98 15.07 14.01 12.51 17.20 17.43 12.59 30.00 13.68 12.70 11.49 15.57 16.00
- Gated-DeltaNet 13.48 31.40 14.71 13.59 12.16 16.64 17.00 12.44 29.57 13.45 12.52 11.31 15.42 15.79
- Mesa 13.44 31.38 14.65 13.51 12.02 16.56 16.93 12.34 29.57 13.36 12.40 11.15 15.19 15.67
- Hawk-Mesa 13.37 31.10 14.55 13.32 12.07 16.68 16.85 12.30 29.38 13.33 12.30 11.28 15.32 15.65
- SWA-4 23.36 38.65 29.29 23.51 26.94 48.24 31.66 19.32 33.76 23.43 19.35 21.50 35.41 25.46
- SWA-64 15.98 32.97 18.89 16.31 15.20 23.08 20.40 14.04 30.51 16.35 14.19 13.25 19.37 17.95
- SWA-256 14.69 32.64 16.99 15.04 13.42 19.36 18.69 13.23 30.36 14.94 13.38 12.08 17.09 16.85
- SWA-1024 13.95 32.63 15.40 14.09 12.36 17.05 17.58 12.52 30.13 13.71 12.56 11.12 15.26 15.88
- Transformer 13.64 32.25 14.71 13.73 12.06 16.51 17.15 12.40 30.10 13.23 12.42 10.96 14.84 15.66

1B - Hawk 12.71 28.72 13.95 12.44 11.90 17.30 16.17 11.24 26.67 12.23 10.93 10.63 14.89 14.43
- Mamba2 12.78 30.30 13.97 12.92 11.68 15.97 16.27 11.39 28.02 12.23 11.42 10.42 14.02 14.58
- GLA 12.28 29.13 13.29 12.35 11.08 15.20 15.55 10.99 26.98 11.77 10.95 9.99 13.52 14.03
- xLSTM 12.38 29.21 13.43 12.40 11.16 15.33 15.65 11.01 26.93 11.81 10.94 10.00 13.55 14.04
- DeltaNet 12.23 29.13 13.20 12.28 11.04 15.11 15.50 11.01 27.08 11.73 11.00 10.02 13.44 14.05
- Gated-DeltaNet 12.06 28.67 13.00 12.05 10.85 14.86 15.25 10.89 26.79 11.58 10.81 9.88 13.28 13.87
- Mesa 12.02 28.57 12.92 11.96 10.76 14.76 15.17 10.83 26.78 11.49 10.71 9.80 13.13 13.79
- Hawk-Mesa 11.91 28.45 12.79 11.83 10.72 14.60 15.05 10.78 26.59 11.53 10.60 9.79 13.20 13.75
- SWA-4 20.27 34.66 24.56 20.33 22.98 40.37 27.20 16.46 29.93 19.42 16.42 17.86 29.15 21.54
- SWA-64 14.08 30.01 16.47 14.33 13.34 19.78 18.00 12.37 27.76 14.14 12.51 11.56 16.77 15.85
- SWA-256 12.98 29.63 14.76 13.18 11.82 16.82 16.53 11.60 27.39 12.89 11.71 10.58 14.69 14.81
- SWA-1024 12.33 29.65 13.47 12.35 10.92 14.93 15.61 11.00 27.22 11.78 10.92 9.79 13.11 13.97
- Transformer 12.16 29.55 12.90 12.10 10.68 14.47 15.31 10.86 27.16 11.42 10.74 9.69 12.86 13.79

Table 10: PPL at a Maximum Sequence Length of 2048. The score of the best recurrent model with respect
to PPL on each dataset is highlighted, and PPL scores from SWA and the transformer baseline are shown as
reference. Across all model sizes and number of training tokens, Hawk-Mesa exhibits the best PPL performance
on most benchmarks, closely followed by Mesa.
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L.1.2 BEYOND TRAIN CONTEXT-LENGTH

PPL. We present the PPL scores for context lengths of 4k (see Table 11) and 32k (see Table 12)
respectively on all model sizes and number of training tokens.

15B Tokens 50B Tokens

WIKI. PG19 GOV. QASP. AVG WIKI. PG19 GOV. QASP. AVG
ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓

145M - Hawk 23.80 24.23 19.64 30.09 24.44 21.90 22.63 18.54 28.10 22.79
- Mamba2 24.28 27.31 20.07 27.51 24.79 24.13 27.85 22.56 29.17 25.93
- GLA 20.07 22.14 15.68 21.38 19.82 18.83 20.70 14.73 19.95 18.55
- xLSTM 20.04 22.13 15.56 21.43 19.79 18.68 20.67 14.61 19.89 18.46
- DeltaNet 19.85 22.05 15.47 20.85 19.55 18.66 20.64 14.64 19.76 18.42
- Gated-DeltaNet 19.64 21.75 15.23 21.03 19.41 18.46 20.47 14.45 19.63 18.25
- Mesa 19.52 21.60 15.10 20.78 19.25 18.38 20.25 14.42 19.52 18.14
- Hawk-Mesa 19.33 20.86 15.03 20.69 18.98 18.15 19.72 14.31 19.48 17.91
- Transformer 27.68 34.18 23.59 30.77 29.06 52.12 65.58 47.93 59.37 56.25

400M - Hawk 16.61 17.35 13.80 19.73 16.87 14.70 15.45 12.33 17.35 14.96
- Mamba2 18.31 20.59 15.33 20.59 18.70 17.94 20.75 16.07 20.48 18.81
- GLA 15.31 16.84 12.08 16.20 15.11 14.05 15.43 11.26 14.95 13.92
- xLSTM 15.31 16.82 11.98 16.18 15.07 13.90 15.39 11.22 14.87 13.85
- DeltaNet 15.49 17.07 12.27 16.37 15.30 14.09 15.50 11.35 14.86 13.95
- Gated-DeltaNet 14.99 16.46 11.84 15.73 14.76 13.75 15.13 11.04 14.60 13.63
- Mesa 15.02 16.41 11.73 15.72 14.72 13.67 14.98 10.87 14.36 13.47
- Hawk-Mesa 14.90 16.15 11.82 15.86 14.68 13.67 14.83 11.05 14.54 13.52
- SWA-4 30.09 29.68 28.80 50.69 34.82 24.31 24.55 22.88 37.16 27.23
- SWA-64 19.58 20.23 15.65 23.38 19.71 16.93 17.48 13.55 19.44 16.85
- SWA-256 17.54 18.41 13.59 19.29 17.21 15.47 16.44 12.19 16.88 15.25
- SWA-1024 15.90 17.28 12.32 16.58 15.52 14.22 15.41 11.27 14.92 13.95
- Transformer 33.17 46.81 34.34 41.51 38.96 74.74 130.23 122.52 142.67 117.54

1B - Hawk 14.37 15.11 12.01 17.10 14.65 12.59 13.25 10.67 14.68 12.80
- Mamba2 15.90 18.03 13.33 17.85 16.28 17.56 20.90 16.28 19.98 18.68
- GLA 13.56 14.90 10.81 14.37 13.41 12.05 13.15 9.77 12.80 11.94
- xLSTM 13.71 14.98 10.88 14.54 13.53 12.11 13.15 9.79 12.86 11.98
- DeltaNet 13.55 14.90 10.82 14.30 13.39 12.11 13.32 9.84 12.79 12.02
- Gated DelaNet 13.26 14.50 10.56 14.01 13.08 11.86 12.98 9.62 12.54 11.75
- Mesa 13.21 14.43 10.50 13.93 13.02 11.78 12.90 9.57 12.43 11.67
- Hawk-Mesa 13.08 14.27 10.49 13.85 12.92 11.81 12.72 9.60 12.53 11.66
- SWA-4 25.40 25.64 24.58 42.51 29.53 20.17 20.71 18.99 30.44 22.58
- SWA-64 17.05 17.70 13.74 20.02 17.13 14.66 15.34 11.81 16.84 14.66
- SWA-256 15.25 16.11 11.98 16.71 15.01 13.33 14.24 10.65 14.49 13.18
- SWA-1024 13.89 15.03 10.84 14.45 13.56 12.20 13.27 9.75 12.71 11.98
- Transformer 24.40 31.60 24.06 30.51 27.64 46.14 64.04 57.04 74.80 60.50

Table 11: PPL at a Maximum Sequence Length of 4k.

15B Tokens 50B Tokens

WIKI. PG19 GOV. QASP. AVG WIKI. PG19 GOV. QASP. AVG
ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓

145M - Hawk 23.93 29.50 20.16 30.73 26.08 21.98 27.62 19.01 28.78 24.35
- Mamba2 37.56 96.96 44.95 38.47 54.48 49.51 174.03 106.47 50.52 95.13
- GLA 20.28 27.32 16.21 21.40 21.30 18.96 26.30 15.23 20.09 20.15
- xLSTM 20.30 28.02 15.91 21.61 21.46 18.78 26.25 15.11 20.02 20.04
- DeltaNet 25.11 979.34 43.10 24.93 268.12 26.79 883.32 52.20 26.31 247.16
- Gated-DeltaNet 19.73 27.03 15.46 21.05 20.82 18.59 27.27 14.77 19.77 20.10
- Mesa 19.70 26.67 15.26 20.79 20.61 18.58 25.72 14.65 19.62 19.64
- Hawk-Mesa 19.72 26.79 15.69 20.97 20.79 18.44 26.09 14.69 19.99 19.80
- Transformer 42.42 72.04 43.19 41.64 49.82 528.05 4436.78 2029.43 324.84 1829.77

400M - Hawk 16.65 21.10 14.04 20.10 17.97 14.72 18.82 12.53 17.64 15.93
- Mamba2 26.64 65.40 34.37 28.00 38.60 53.90 919.97 172.39 41.73 297.00
- GLA 15.43 23.08 12.76 16.33 16.90 14.25 20.36 11.74 15.08 15.36
- xLSTM 15.34 20.86 12.02 16.20 16.11 14.00 20.21 11.29 14.97 15.12
- DeltaNet 18.59 487.01 28.09 19.28 138.24 19.13 359.90 31.71 17.98 107.18
- Gated-DeltaNet 15.16 21.19 12.27 15.85 16.12 13.82 20.72 11.37 14.67 15.14
- Mesa 15.40 21.94 12.31 15.98 16.40 13.83 19.55 11.17 14.51 14.77
- Hawk-Mesa 15.43 22.70 12.98 16.40 16.88 14.04 31.61 12.27 15.04 18.24
- SWA-4 30.07 37.94 29.66 52.16 37.46 24.29 31.49 23.59 38.40 29.44
- SWA-64 19.69 25.07 16.01 23.90 21.17 16.98 21.53 13.81 19.83 18.04
- SWA-256 17.63 22.43 13.82 19.62 18.38 15.59 20.07 12.37 17.17 16.30
- SWA-1024 16.01 21.02 12.40 16.73 16.54 14.48 19.01 11.89 15.26 15.16
- Transformer 118.84 538.89 188.16 94.22 235.03 428.15 4312.79 2013.32 473.55 1806.95

1B - Hawk 14.40 18.44 12.20 17.42 15.61 12.62 16.07 10.84 14.95 13.62
- Mamba2 21.43 48.14 23.28 23.01 28.96 47.30 240.81 101.96 39.52 107.40
- GLA 13.61 18.72 10.96 14.44 14.43 12.11 16.85 9.98 12.89 12.96
- xLSTM 13.74 18.38 10.91 14.58 14.40 12.20 16.95 10.02 13.03 13.05
- DeltaNet 14.75 145.22 17.33 15.54 48.21 14.65 150.90 21.92 14.95 50.60
- Gated DeltaNet 13.25 17.75 10.55 13.97 13.88 11.87 15.77 9.60 12.53 12.44
- Mesa 13.35 18.17 10.80 14.04 14.09 11.92 16.29 9.71 12.58 12.63
- Hawk-Mesa 13.57 139.08 19.41 14.55 46.65 12.31 17.50 17.51 13.03 15.09
- SWA-4 25.35 32.78 25.33 43.92 31.85 20.15 26.44 19.55 31.49 24.41
- SWA-64 17.10 21.83 14.05 20.49 18.37 14.68 18.83 12.03 17.21 15.69
- SWA-256 15.31 19.61 12.17 17.00 16.02 13.39 17.28 10.78 14.71 14.04
- SWA-1024 13.93 18.15 10.84 14.58 14.38 12.27 16.04 9.80 12.87 12.75
- Transformer 48.41 119.56 56.09 53.95 69.50 228.12 1326.59 563.97 234.95 588.41

Table 12: PPL at a Maximum Sequence Length of 32k.
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Global Subset Local Subset
LMB. Hella. RACE-M RACE-H AVG PIQA Wino ARC-E ARC-C SIQA BOOLQ OBQA SC. AVG
acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑

400M Parameters / 15B Tokens
- SWA-4 4,62 34,97 25,97 25,93 22,87 66,81 49,33 43,81 24,23 39,82 57,31 30,00 63,78 46,89
- SWA-16 27,11 37,20 28,18 28,04 30,13 67,63 52,64 43,52 23,81 39,71 54,89 27,60 65,82 46,95
- SWA-64 38,54 39,35 32,87 30,24 35,25 68,93 52,17 44,40 22,87 39,76 58,56 29,20 64,99 47,61

- SWA-256 40,52 40,44 34,25 31,48 36,67 69,21 50,67 43,35 24,91 40,89 56,82 30,20 66,90 47,87
- SWA-1024 41,43 40,90 37,57 34,26 38,54 67,90 52,80 44,49 22,61 40,58 60,37 30,20 66,58 48,19

- Transformer 41,12 41,27 37,29 34,45 38,53 68,23 51,07 44,28 24,57 40,23 58,10 28,40 66,58 47,68

400M Parameters / 50B Tokens
- SWA-4 18,28 39,02 29,56 27,66 28,63 67,85 51,93 44,49 24,83 39,71 58,23 32,40 66,14 48,20
- SWA-16 35,03 41,52 29,01 28,33 33,47 68,99 52,72 45,88 24,32 39,56 57,40 33,00 67,54 48,68
- SWA-64 42,34 44,14 34,53 31,67 38,17 69,53 53,75 45,24 24,74 40,28 56,45 31,60 68,49 48,76

- SWA-256 43,86 45,31 36,46 35,79 40,36 70,24 52,33 45,79 23,98 40,23 57,00 32,40 68,94 48,86
- SWA-1024 45,08 46,43 38,95 34,74 41,30 69,64 52,25 45,71 25,00 40,07 57,92 32,20 67,92 48,84

- Transformer 44,96 46,30 41,44 35,89 42,15 69,91 52,64 45,96 24,06 40,48 57,31 30,40 69,64 48,80

1B Parameters / 15B Tokens
- SWA-4 8,46 38,56 27,62 27,18 25,46 67,95 51,30 46,72 23,72 40,17 56,73 30,40 65,50 47,81
- SWA-16 33,81 41,52 28,73 27,66 32,93 68,77 52,64 47,26 24,32 40,28 55,26 33,40 67,41 48,67
- SWA-64 42,60 44,04 31,49 30,72 37,21 69,91 51,30 46,72 24,66 41,10 58,56 33,20 67,98 49,18

- SWA-256 45,82 45,64 35,91 34,35 40,43 69,86 52,09 47,26 25,26 41,91 58,53 31,40 69,06 49,42
- SWA-1024 45,06 46,23 39,50 34,74 41,38 70,29 53,99 47,39 24,15 40,94 59,54 30,60 69,00 49,49

- Transformer 45,31 46,65 41,16 35,79 42,23 70,78 52,25 48,19 23,55 40,28 52,91 31,40 67,98 48,42
1B Parameters / 50B Tokens
- SWA-4 24,63 44,90 28,18 27,08 31,20 70,35 52,49 48,19 24,83 39,56 60,15 32,80 68,56 49,62
- SWA-16 39,03 48,10 28,73 29,47 36,33 72,09 53,04 48,99 25,43 41,15 53,39 32,80 70,78 49,71
- SWA-64 46,11 51,30 38,40 33,49 42,33 71,87 53,35 49,62 26,71 40,74 56,70 33,40 71,74 50,52

- SWA-256 50,28 52,08 40,88 35,69 44,74 72,20 52,64 49,37 27,05 40,84 58,35 32,80 73,01 50,78
- SWA-1024 50,38 53,69 41,44 37,22 45,68 72,47 53,35 49,41 27,13 41,61 62,20 32,60 72,06 51,35

- Transformer 48,92 53,63 42,27 37,32 45,54 72,31 54,62 49,41 28,24 40,17 60,73 35,20 72,25 51,62

- Random ≈ 0 25,00 25,00 25,00 - 50.00 50.00 25.00 25.00 33.33 50.00 25.00 50.00 -

Table 13: Reference Scores of Sliding Window Attention (SWA) Models on Common-Sense Reasoning
Benchmarks. On LAMBADA, HellaSwag and RACE-M and RACE-H, we observe significant performance
increases with a growing attention window. On the remaining benchmarks, we only observe marginal perfor-
mance differences between a Transformer with a sliding window-size of 4 (SWA-4) and a full-window attention
Transformer (attention window of 2048). We highlight the scores of the first short-range SWA model (window
sizes = {4,16,64}) that matches or exceeds the Transformer performance.

L.2 DOWNSTREAM BENCHMARKS

To evaluate the performance of the investigated models on downstream task, we investigate three
classes of benchmarks:

• Zero-Shot Common-Sense Reasoning Benchmarks (Section L.2.1)

• In-Context Recall Benchmarks ( Section L.2.2)

• Few-Shot Learning Benchmarks (Section L.2.3)

Within each benchmark section, we report all raw numbers on all model sizes and number of training
tokens, and complement them with reference scores of Sliding-Window Attention models with
varying attention-window sizes.

L.2.1 ZERO-SHOT COMMON-SENSE REASONING BENCHMARKS

When tracking the performance of “many models” on “many benchmarks”, it is common to resort to
aggregated benchmark scores. However, aggregated scores tend to masquerade important sub-trends
and limit our understanding (Burnell et al., 2023). For instance, prior work (Gu & Dao, 2024; Yang
et al., 2024a; Beck et al., 2024) averages over a set of common-sense reasoning benchmarks. However,
evaluations with 400M and 1B Sliding-Window Attention (SWA) models with different attention-
window sizes reveal that competitive, or even superior, scores on a subset of these benchmarks can be
attained with an attention windows as short as 4, 16 or 64 (see Table 13). This observation strongly
indicates that a subset of these benchmarks are either exploitable by short-range language heuristics,
and do not require longer-range language modeling capabilities to reach competitive scores, or are
simply too hard such that we end up measuring noise.
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Splitting Reasoing Benchmark into Two Groups. To reduce the potential benchmark noise and
deconfound the results, we aim to split the benchmark into two subsets. Therefore, we employ the
following benchmark splitting protocol:

1. Reference Scores. Run every selected benchmark on SWA-{4,16,64} models and a trans-
former model (attention window of size 2048) on 400M and 1B parameters trained on 15B or
50B tokens each.

2. Splitting Conditions. We then assess the following splitting conditions:
• Condition 1: Analyze for every benchmark whether benchmark scores increase with in-

creasing attention windows (from SWA-4 to SWA-64).
• Condition 2: Verify whether no short-range SWA model (window sizes = 4, 16 and 64)

outperforms the transformer baseline with an attention windows of 2048.
3. Benchmark Grouping. Finally, we split the benchmark into two subsets:

• Local Reasoning Benchmark Set: One of the above conditions is violated.
• Global Reasoning Benchmark Set: None of the above conditions is violated.

We refer to Table 13 for a detailed score breakdown, including two additional SWA reference models
(SWA-256 and SWA-1024). Additionaly, we want to highlight that these findings, and the bench-
mark splitting, are based on experiments 400M and 1B models trained on SlimPajama (Soboleva
et al., 2023). The benchmark splitting is likely to change slightly when training with bigger model
sizes or on different datasets.

Results on all Model Configurations. We report the full set of benchmark scores on all model
configuration (model sizes and number of training tokens) in Table 14. Across all settings, we observe
similar trends – MesaNet and Hawk-MesaNet show strong performance especially on the global
reasoning benchmark set. Among the remaining recurrent models, only Gated DeltaNet reaches
competitive scores with MesaNet on this benchmark subset. In contrast, we do not observe much
score variation on the local reasoning benchmark set. Hawk, the worst performing model on the
global set, reaches competitive or even close-to-best scores within this set on average. This confirms
the hypothesis that this set of benchmark are likely to measure different aspects of language modeling,
or are potentially noisy, or are not suited for our models as they might be still too challenging.
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Global Subset Local Subset
Model LMB. Hella. RACE-M RACE-H AVG PIQA Wino ARC-E ARC-C SIQA BOOLQ OBQA SC. AVG

acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑

145M Models / 15B T.
- Hawk 21,87 33,54 29,01 28,52 28,23 64,64 50,83 40,24 21,93 39,41 59,11 27,80 62,25 45,78
- Mamba2 27,83 33,21 32,04 30,53 30,90 64,47 50,36 39,27 22,27 39,00 51,44 26,40 62,13 44,42
- GLA 31,05 34,20 33,43 28,71 31,84 63,66 52,09 41,41 21,76 38,89 56,85 28,80 63,97 45,93
- xLSTM 31,19 34,41 30,94 29,47 31,50 65,13 52,17 40,78 21,76 38,79 56,64 27,40 63,40 45,76
- DeltaNet 32,02 33,89 32,04 30,43 32,10 65,45 50,91 40,82 21,42 39,15 60,89 28,00 63,97 46,33
- Gated DeltaNet 31,65 34,53 33,98 29,09 32,31 64,53 51,07 41,62 21,59 39,05 60,03 28,40 63,21 46,19
- Mesa 31,65 34,49 32,87 30,43 32,36 66,43 51,85 40,03 22,27 38,43 56,73 27,40 63,34 45,81
- Hawk-Mesa 32,14 34,99 32,87 31,96 32,99 65,40 52,96 41,16 23,55 39,05 55,26 28,00 62,89 46,03

- Transformer 33,84 33,91 35,91 30,62 33,57 65,34 52,49 39,27 22,44 39,10 59,63 28,40 63,78 46,31

145M Models / 50B T.
- Hawk 22,14 35,09 28,18 30,33 28,94 65,94 51,62 41,33 22,87 39,46 59,45 28,20 63,97 46,60
- Mamba2 29,23 34,24 33,15 29,86 31,62 65,78 51,46 41,08 21,67 39,82 59,30 28,00 61,74 46,11
- GLA 32,16 35,57 32,04 29,86 32,41 65,56 51,07 43,18 23,81 39,82 52,23 29,40 63,72 46,10
- xLSTM 32,74 35,89 32,87 30,14 32,91 66,59 51,54 41,67 23,12 39,15 58,65 27,00 64,23 46,49
- DeltaNet 32,89 35,39 32,32 31,67 33,07 66,10 51,93 40,53 22,78 38,74 57,46 29,00 64,29 46,36
- Gated DeltaNet 32,85 36,15 33,15 31,96 33,53 66,76 51,22 41,92 23,55 38,38 60,43 29,00 64,10 46,92
- Mesa 32,33 36,24 34,53 30,24 33,33 65,40 51,70 41,62 22,61 38,89 54,65 28,80 63,53 45,90
- Hawk-Mesa 34,31 36,40 32,04 31,20 33,49 66,21 51,93 41,54 22,53 38,54 55,57 30,00 64,74 46,38

- Transformer 35,40 36,03 35,08 31,10 34,40 64,58 52,09 41,41 22,01 40,12 59,79 30,20 64,23 46,80

400M Models / 15B T.
- Hawk 32,97 42,33 33,15 32,06 35,13 68,66 50,99 44,53 25,00 39,66 59,69 30,80 67,09 48,30
- Mamba2 35,92 39,95 33,70 32,25 35,46 68,44 51,70 43,31 23,46 39,71 59,54 30,40 66,45 47,88
- GLA 40,09 42,49 34,53 32,54 37,41 68,61 51,78 44,99 24,91 39,61 60,40 28,40 68,30 48,37
- xLSTM 39,67 41,99 35,08 33,11 37,46 68,50 52,25 45,12 23,46 39,87 59,72 31,60 68,17 48,59
- DeltaNet 39,28 41,49 36,46 32,34 37,39 69,26 51,70 46,00 23,81 39,76 52,51 31,20 67,47 47,71
- Gated DeltaNet 39,98 42,55 32,87 33,68 37,27 69,59 52,33 45,20 25,17 40,02 59,14 29,40 67,60 48,56
- Mesa 40,17 42,71 34,53 33,21 37,65 67,79 50,51 45,12 22,87 39,10 52,42 29,80 68,43 47,00
- Hawk-Mesa 39,84 43,15 34,81 31,67 37,37 69,64 52,17 45,33 22,27 40,23 58,04 29,80 67,41 48,11

- SWA-4 4,62 34,97 25,97 25,93 22,87 66,81 49,33 43,81 24,23 39,82 57,31 30,00 63,78 46,89
- SWA-64 38,54 39,35 32,87 30,24 35,25 68,93 52,17 44,40 22,87 39,76 58,56 29,20 64,99 47,61
- SWA-1024 41,43 40,90 37,57 34,26 38,54 67,90 52,80 44,49 22,61 40,58 60,37 30,20 66,58 48,19

- Transformer 41,12 41,27 37,29 34,45 38,53 68,23 51,07 44,28 24,57 40,23 58,10 28,40 66,58 47,68
400M Models / 50B T.
- Hawk 36,70 47,02 33,43 32,54 37,42 71,93 52,25 47,26 24,06 40,89 59,91 34,20 69,83 50,04
- Mamba2 38,23 44,22 35,64 32,25 37,58 68,72 52,17 45,33 23,98 40,74 54,31 31,80 68,49 48,19
- GLA 41,98 46,00 35,08 34,74 39,45 69,86 54,14 46,46 23,98 40,07 56,57 29,80 69,96 48,86
- xLSTM 41,82 46,22 34,53 33,30 38,97 68,99 53,35 46,00 23,46 41,61 57,43 31,00 69,32 48,90
- DeltaNet 42,25 45,92 37,02 33,68 39,72 70,18 52,72 45,24 24,23 40,48 57,37 32,20 68,87 48,91
- Gated DeltaNet 43,99 46,57 35,36 34,83 40,19 70,18 51,85 46,38 25,77 40,58 54,89 32,60 70,53 49,10
- Mesa 43,39 46,93 38,95 34,26 40,88 70,73 54,46 46,21 24,91 41,10 57,89 32,40 69,38 49,64
- Hawk-Mesa 41,94 46,96 38,12 33,49 40,13 70,46 54,78 46,46 25,51 40,74 57,80 30,00 70,46 49,53

- SWA-4 18,28 39,02 29,56 27,66 28,63 67,85 51,93 44,49 24,83 39,71 58,23 32,40 66,14 48,20
- SWA-64 42,34 44,14 34,53 31,67 38,17 69,53 53,75 45,24 24,74 40,28 56,45 31,60 68,49 48,76
- SWA-1024 45,08 46,43 38,95 34,74 41,30 69,64 52,25 45,71 25,00 40,07 57,92 32,20 67,92 48,84

- Transformer 44,96 46,30 41,44 35,89 42,15 69,91 52,64 45,96 24,06 40,48 57,31 30,40 69,64 48,80

1B Models / 15B T.
- Hawk 37,98 47,71 35,08 32,25 38,25 71,93 50,43 48,61 25,43 41,50 58,53 31,80 70,59 49,85
- Mamba2 39,63 45,06 36,74 34,35 38,95 70,13 52,33 46,97 25,43 39,41 57,34 31,80 70,34 49,22
- GLA 43,24 47,20 33,43 33,68 39,39 70,95 52,41 46,97 25,00 41,15 58,59 33,00 70,34 49,80
- xLSTM 44,05 46,10 35,91 33,40 39,86 70,73 54,30 47,14 25,00 40,63 59,27 32,40 69,64 49,89
- DeltaNet 43,45 47,47 36,46 33,30 40,17 70,78 52,80 48,48 25,09 39,92 60,46 31,20 69,00 49,72
- Gated DeltaNet 45,37 48,49 35,36 34,07 40,82 71,60 53,99 48,57 24,83 40,07 53,76 32,40 70,46 49,46
- Mesa 44,21 47,70 37,02 33,49 40,60 70,89 54,46 47,56 25,26 41,04 56,06 32,20 70,21 49,71
- Hawk-Mesa 44,05 48,70 39,23 33,40 41,34 71,22 53,20 49,54 24,74 40,89 51,93 32,00 70,78 49,29

- SWA-4 8,46 38,56 27,62 27,18 25,46 67,95 51,30 46,72 23,72 40,17 56,73 30,40 65,50 47,81
- SWA-64 42,60 44,04 31,49 30,72 37,21 69,91 51,30 46,72 24,66 41,10 58,56 33,20 67,98 49,18
- SWA-1024 45,06 46,23 39,50 34,74 41,38 70,29 53,99 47,39 24,15 40,94 59,54 30,60 69,00 49,49

- Transformer 45,31 46,65 41,16 35,79 42,23 70,78 52,25 48,19 23,55 40,28 52,91 31,40 67,98 48,42

1B Models / 50B T.
- Hawk 41,80 54,25 34,25 34,35 41,17 72,91 52,33 51,52 28,75 40,84 56,51 35,00 74,67 51,57
- Mamba2 42,13 51,46 37,85 35,02 41,62 71,76 53,35 48,95 26,54 40,58 55,90 33,60 73,39 50,51
- GLA 47,27 53,05 41,44 35,60 44,34 72,25 54,14 50,46 27,56 41,25 56,85 35,00 74,03 51,44
- xLSTM 46,57 53,08 37,57 34,74 42,99 72,52 54,62 49,45 27,05 41,76 58,78 35,80 72,06 51,50
- DeltaNet 47,08 53,21 40,33 34,83 43,86 72,20 54,30 48,19 27,90 40,84 60,49 34,40 74,28 51,58
- Gated DeltaNet 49,19 54,10 39,78 36,27 44,84 71,93 54,06 51,22 26,88 41,35 53,27 34,20 73,14 50,76
- Mesa 48,83 53,58 40,88 36,84 45,03 71,71 53,59 49,37 25,68 40,58 53,30 35,60 74,09 50,49
- Hawk-Mesa 47,02 54,47 40,61 36,36 44,62 72,52 56,04 50,80 26,88 40,17 56,02 35,60 74,03 51,51

- SWA-4 24,63 44,90 28,18 27,08 31,20 70,35 52,49 48,19 24,83 39,56 60,15 32,80 68,56 49,62
- SWA-64 46,11 51,30 38,40 33,49 42,33 71,87 53,35 49,62 26,71 40,74 56,70 33,40 71,74 50,52
- SWA-1024 50,38 53,69 41,44 37,22 45,68 72,47 53,35 49,41 27,13 41,61 62,20 32,60 72,06 51,35

- Transformer 48,92 53,63 42,27 37,32 45,54 72,31 54,62 49,41 28,24 40,17 60,73 35,20 72,25 51,62

Table 14: Benchmark Scores on Common Reasoning Benchmarks on all model configurations. Best scores
among the recurrent models are highlighted for each training setting.
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L.2.2 IN-CONTEXT RECALL BENCHMARKS

To evaluate in-context recall, we adopted the minimal-transformed version of the benchmarks from
Arora et al. (2024) to allow evaluation of non-instruction-tuned models. We truncate inputs to 2000
tokens, and sample greedily until either 48 tokens or a new-line delimiter is generated. We then
parsed whether the target was contained in the generation (non-case-sensitive), as in Arora et al.
(2024) .

Sliding-Window Attention Controls. As expected, we observe consistent score increases with
a growing attention window size (see Table 15). However, we observe that the SWA-1024 is
consistently better on SQUAD than the transformer baseline with an attention window of 2048.
Closer inspection of the SQUAD benchmarks reveals that the tokens-to-recall are most frequently
located in the last 1k tokens of the sequence. Similarly for FDA, most tokens-to-recall are located at
the very beginning of the sequence with an average of length 2000. Hence, we observe a significant
performance increase from SWA-1024 to the transformer baseline with an attention window of 2048.

Results on all Model Settings. MesaNet consistently attains best, or in few cases second-best,
performance scores on average across all evaluated model settings (see Table 16). Moreover, we
observe that our insights from the PPL analysis in L.1 directly translate to the observed results in
here, e.g., Hawk attaining the worst in-context recall performance.

15B Tokens 50B Tokens
SWDE SQUAD FDA TQA NQ DROP AVG SWDE SQUAD FDA TQA NQ DROP AVG

acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑
400M Models: - SWA-4 7,38 5,60 0,18 14,51 3,52 9,15 6,72 10,98 7,77 0,45 21,27 5,16 13,13 9,79

- SWA-16 9,63 10,82 0,27 24,88 4,88 15,33 10,97 13,05 18,30 1,09 33,35 6,59 17,35 14,95
- SWA-64 13,14 26,74 10,07 39,34 5,23 19,12 18,94 19,17 38,44 11,43 48,76 7,25 23,96 24,84
- SWA-256 21,69 40,92 12,25 50,95 6,87 23,67 26,06 30,96 42,19 14,70 56,16 10,10 24,20 29,72
- SWA-1024 54,91 43,06 17,79 52,67 10,86 26,45 34,29 60,04 46,82 22,60 58,06 13,84 27,89 38,21

- Transformer 77,50 37,13 79,13 53,08 16,57 26,59 48,33 79,66 36,93 75,86 58,95 18,94 29,37 49,95

1B Models: - SWA-4 9,00 6,53 0,27 17,06 4,40 11,60 8,14 13,05 10,66 0,27 26,54 7,10 13,61 11,87
- SWA-16 9,54 15,25 0,27 29,15 6,46 16,44 12,85 16,74 23,76 2,09 39,28 8,46 18,59 18,15
- SWA-64 16,74 30,56 16,61 44,55 7,19 20,46 22,69 22,32 39,85 12,70 51,90 9,63 23,91 26,72
- SWA-256 25,74 45,34 17,79 56,10 8,81 26,45 30,04 35,82 46,45 17,33 59,77 12,54 27,46 33,23
- SWA-1024 60,76 40,65 24,23 56,99 11,88 27,65 37,03 63,73 47,65 26,68 61,43 15,52 30,04 40,84

- Transformer 79,21 42,76 77,04 56,99 18,69 29,47 50,69 83,35 46,92 70,96 63,21 21,79 27,41 52,27

- Random ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 15: Reference Scores of SWA Models on In-Context Recall Benchmarks. The pattern of best scores
(highlightreded) is very consistent across the evaluated settings. As expected, we see increasing performance
with increasing sizes of attention windows. Except on SQUAD, the transformer commonly attains the best
scores.
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15B Tokens 50B Tokens
SWDE SQUAD FDA TQA NQ DROP AVG SWDE SQUAD FDA TQA NQ DROP AVG

acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑
145M Models: - Hawk 11,43 11,09 0,27 30,39 4,09 14,18 11,91 10,08 14,08 0,36 35,25 5,38 14,85 13,33

- Mamba2 29,52 24,83 14,34 40,17 7,57 20,89 22,89 37,62 26,34 14,70 44,43 7,67 20,27 25,17
- GLA 37,08 38,20 14,07 44,73 8,58 23,38 27,67 39,69 30,46 15,88 48,16 10,80 23,86 28,14
- xLSTM 33,39 25,00 11,34 44,79 10,45 25,44 25,07 34,65 36,03 19,96 48,76 11,43 23,53 29,06
- DeltaNet 33,57 29,69 15,61 46,27 9,66 23,48 26,38 39,24 31,60 18,06 46,39 11,40 20,27 27,83
- Gated DeltaNet 32,31 30,83 16,42 46,68 10,48 23,43 26,69 38,07 32,44 15,79 48,34 10,74 21,23 27,77
- Mesa 36,90 34,35 14,88 47,22 10,20 25,68 28,21 40,50 29,99 15,79 47,04 11,97 23,77 28,18
- Hawk-Mesa 34,65 30,33 13,61 46,33 9,79 22,86 26,26 34,38 36,03 9,89 46,86 11,31 21,80 26,71

- Transformer 63,73 23,89 54,63 46,50 12,01 25,59 37,72 67,78 30,97 70,87 50,30 14,70 23,62 43,04
400M Models: - Hawk 16,47 23,86 1,09 42,42 8,01 19,65 18,58 22,05 23,86 1,45 48,93 10,83 20,60 21,29

- Mamba2 43,11 29,86 20,42 47,04 11,47 22,81 29,12 51,04 29,76 22,23 52,90 12,58 24,77 32,21
- GLA 52,30 39,04 20,96 50,12 14,16 28,41 34,17 54,10 41,59 26,23 55,04 16,00 26,07 36,50
- xLSTM 51,67 38,94 23,32 51,13 14,76 23,48 33,88 50,86 38,87 25,23 53,67 16,09 24,63 34,89
- DeltaNet 50,23 35,62 27,40 50,00 14,38 25,16 33,80 55,90 35,59 27,40 53,50 15,11 23,67 35,19
- Gated DeltaNet 53,20 35,15 27,04 51,72 15,96 24,82 34,65 56,53 37,23 29,49 53,55 15,01 23,96 35,96
- Mesa 53,11 38,54 28,58 52,13 14,29 27,02 35,61 59,05 47,05 28,95 57,17 17,29 26,31 39,30
- Hawk-Mesa 52,66 39,95 23,05 52,78 13,62 26,26 34,72 53,65 39,95 25,14 55,51 15,62 27,55 36,23

- Transformer 77,50 37,13 79,13 53,08 16,57 26,59 48,33 79,66 36,93 75,86 58,95 18,94 29,37 49,95
1B Models: - Hawk 20,25 15,72 2,09 48,34 10,42 21,61 19,74 26,73 29,96 3,27 52,96 14,63 22,66 25,04

- Mamba2 54,10 33,68 26,41 51,66 13,97 25,11 34,15 59,68 37,84 31,13 56,64 15,39 25,35 37,67
- GLA 59,68 41,29 29,67 55,04 16,25 25,97 37,98 60,58 43,67 30,40 59,24 18,69 25,25 39,64
- xLSTM 57,61 39,11 24,50 54,50 15,17 26,64 36,26 63,37 38,91 31,58 58,00 18,06 25,59 39,25
- DeltaNet 58,15 37,60 36,84 55,15 16,63 25,35 38,29 62,56 39,01 38,29 59,54 17,96 25,40 40,46
- Gated DeltaNet 59,59 39,48 37,30 55,86 17,39 25,87 39,25 60,22 39,81 32,12 59,54 18,56 26,98 39,54
- Mesa 60,40 49,06 22,50 54,38 17,55 27,46 38,56 63,10 46,25 32,67 61,37 19,64 27,74 41,79
- Hawk-Mesa 61,03 41,55 27,77 54,74 15,33 25,68 37,68 60,31 45,51 28,68 60,13 17,61 27,70 39,99

- Transformer 79,21 42,76 77,04 56,99 18,69 29,47 50,69 83,35 46,92 70,96 63,21 21,79 27,41 52,27

Table 16: Benchmark Scores for In-Context Recall Benchmarks on all Model Settings. MesaNet consistently
attains the best or second-best score on average across all evaluated model settings.
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L.2.3 FEW-SHOT LEARNING BENCHMARKS

To evaluate the few-shot learning ability, we tested two distinct types of few-shot tasks, (i) word
scrambling tasks introduced in (Brown et al., 2020b) and (ii) a couple of language-to-language
translation tasks.

Word Scrambling Tasks. We report the few-shot performances in Table 17 for 0-,1-,10- and 100-
shot settings. As few-shot evaluation tend to be sensitive to the selection and ordering of few-shot
examples (Lu et al., 2021), we report the mean performance over 10 randomly drawn few-shot prefixes.
We observe consistent improvements with an increasing number of fewshots for all models except
for SWA-4. MesaNet attains the strongest performance scores in most settings, and outperforms the
transformer baseline significantly.

While we evaluate on all five word scrambling tasks introduce in Brown et al. (2020b), we observe
only observe signal (performance above 1%) for models in the ranges 145M to 1B on two tasks:
gpt3/cycle letters in word and gpt3/mid word 2 anagrams. On the three remain-
ing tasks, we observe performance score close to 0%, in line with the results of Brown et al. (2020b),
and hence omit the scores here.

gpt3/cycle letters in word gpt3/mid word 2 anagrams
0-shot 1-shot 10-shot 100-shot 0-shot 1-shot 10-shot 100-shot

145M Models - Hawk 0.2 0.4±0.2 1.3±0.5 1.7±0.5 0.2 0.4±0.1 0.8±0.2 0.7±0.2
- Mamba2 0.0 0.2±0.2 1.7±0.4 1.4±0.3 0.0 0.2±0.3 0.6±0.2 0.3±0.1
- GLA 0.1 0.2±0.3 2.4±0.7 3.0±0.4 0.2 0.1±0.1 1.0±0.4 1.5±0.1
- xLSTM 0.1 0.4±0.5 2.8±0.6 3.8±0.5 0.3 0.1±0.2 0.9±0.3 1.6±0.1
- DeltaNet 0.1 0.5±0.4 2.6±0.9 3.2±0.6 0.1 0.2±0.1 1.2±0.3 1.1±0.2
- Gated DeltaNet 0.1 0.8±0.6 2.5±0.7 3.4±0.6 0.0 0.4±0.4 1.4±0.2 1.7±0.2
- Mesa 0.1 0.2±0.3 2.2±0.5 3.3±0.5 0.1 0.2±0.2 1.1±0.3 1.7±0.1
- Hawk-Mesa 0.0 0.3±0.2 1.7±0.5 2.4±0.6 0.2 0.2±0.3 0.9±0.3 1.4±0.2

- Transformer 0.1 0.5±0.4 2.6±0.5 3.7±0.3 0.1 0.2±0.2 1.2±0.3 1.7±0.2
400M Models - Hawk 0.1 1.7±1.2 5.3±1.2 6.6±0.4 0.1 0.9±0.7 2.4±0.1 2.8±0.2

- Mamba2 0.4 2.0±1.4 4.5±0.6 5.1±0.5 0.4 0.9±0.5 1.6±0.3 1.6±0.1
- GLA 0.0 1.7±1.1 5.2±1.0 7.6±0.3 0.4 1.0±0.7 2.4±0.2 2.6±0.2
- xLSTM 0.0 2.3±1.3 5.7±1.3 8.2±0.5 0.2 1.1±0.5 2.5±0.3 2.9±0.3
- DeltaNet 0.1 1.5±1.0 5.7±1.3 7.6±0.6 0.0 1.1±0.5 2.4±0.3 2.6±0.3
- Gated DeltaNet 0.1 2.1±1.7 6.5±1.0 9.0±0.8 0.1 0.9±0.5 2.6±0.3 3.4±0.2
- Mesa 0.4 2.2±1.2 6.6±1.0 9.2±0.6 0.6 1.1±0.5 2.6±0.3 3.2±0.2
- Hawk-Mesa 0.0 1.3±0.9 4.0±1.4 7.3±0.5 0.1 0.9±0.7 2.6±0.3 3.1±0.1

- SWA-4 0.0 0.4±0.3 0.8±0.3 0.8±0.2 0.0 0.3±0.3 0.9±0.3 0.9±0.3
- SWA-64 0.1 2.5±1.5 4.6±1.1 4.7±0.9 0.1 1.2±0.5 2.7±0.2 2.7±0.1
- SWA-1024 0.3 2.5±1.6 6.1±0.9 7.7±0.5 0.8 1.2±0.8 2.9±0.4 3.1±0.3

- Transformer 0.4 2.4±1.8 6.7±1.2 8.5±0.4 0.5 1.4±0.7 3.3±0.4 3.6±0.2
1B Models - Hawk 0.2 1.5±1.0 6.8±1.5 9.2±0.6 0.1 0.9±0.8 3.5±0.4 3.8±0.2

- Mamba2 0.8 3.7±1.7 6.3±0.8 6.4±0.7 1.1 1.8±0.3 2.4±0.3 2.0±0.4
- GLA 0.3 4.1±2.1 8.4±1.2 10.3±0.5 0.5 2.3±0.7 3.9±0.5 4.2±0.2
- xLSTM 0.0 2.2±1.3 7.7±1.8 11.0±0.4 0.3 1.8±0.5 3.9±0.3 4.6±0.3
- DeltaNet 0.0 2.9±1.9 8.7±1.3 11.7±0.8 0.1 1.6±0.8 3.7±0.5 4.1±0.3
- Gated DeltaNet 0.3 4.0±1.8 8.9±1.4 11.8±0.7 0.5 2.5±0.9 4.7±0.6 6.1±0.4
- Mesa 0.5 3.3±2.0 9.7±1.3 14.0±0.5 1.1 2.1±1.1 4.7±0.6 6.2±0.4
- Hawk-Mesa 0.4 2.1±1.5 7.2±1.5 11.4±0.5 0.6 2.0±0.9 4.4±0.4 5.8±0.3

- SWA-4 0.1 1.1±0.9 1.5±0.7 2.0±0.8 0.2 0.6±0.5 1.4±0.3 1.4±0.3
- SWA-64 1.3 3.5±1.8 6.3±1.3 7.8±0.6 1.0 2.4±0.7 3.8±0.3 4.0±0.3
- SWA-1024 0.1 3.4±1.8 7.5±1.3 9.0±0.5 0.1 1.9±0.9 4.3±0.4 4.3±0.2

- Transformer 0.0 3.0±2.2 6.8±1.7 9.2±0.6 0.1 2.4±0.6 4.2±0.4 4.7±0.2

Table 17: Few-Shot Performance (Accuracy ± Std.) on GPT-3 Word Scrambling Tasks (Brown et al.,
2020b) of Models Trained on 50B Tokens. Best 50-shot scores are highlighted, and standard deviation is
reported over 10 random drawn few-shot selections. MesaNet attains the strongest scores in most settings, and
outperforms the transformer baseline significantly.
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Language-to-Language Translation. We evaluated a model’s capability to translate from three
different languages to English: (i) French to English (Bojar et al., 2014), (ii) German to English (Bojar
et al., 2016) and (iii) Romanian to English (Bojar et al., 2016). We follow the exact prompt setup of
Brown et al. (2020b) evaluate with {0,1,5,10} -and 50-shots, and report the performance in Table 18
with respect to BLEU-sb (Post, 2018) for models trained on 50B tokens.

We observe scores of different performance magnitudes across the three languages, which is most
likely caused by the multi-lingual distribution of the training data corpus and French being more
prevalent than German and Romanian. MesaNet attains superior scores among the recurrent models.
However, MesaNet, and more general all recurrent models, fail to match the transformer performance
by a relatively big margin, especially at the scale of 1B models. This finding is non-surprising given
the impact of the attention mechanism on the field of machine translation (Bahdanau et al., 2014),
indicating that pure model- and data-scaling based on recurrent models will not be enough to match
the performance of attention-based architecture (Rodchenko et al., 2025).

WMT14 FR-EN WMT16 DE-EN WMT16 RO-EN
0 1 5 10 50 0 1 5 10 50 0 1 5 10 50

145M Models: - Hawk 0,61 0,31 0,25 0,08 0,11 0,49 0,16 0,20 0,19 0,19 0,44 0,16 0,06 0,19 0,29
- Mamba2 1,68 0,56 0,73 0,73 0,19 2,13 0,40 0,28 0,51 0,37 1,68 0,32 0,44 0,50 0,46
- GLA 1,47 0,21 0,69 0,66 0,63 1,78 0,52 0,35 0,52 0,44 1,52 0,24 0,12 0,50 0,51
- xLSTM 1,64 0,07 0,73 0,87 0,67 2,09 0,63 0,33 0,81 0,77 1,68 0,22 0,34 0,50 0,85
- DeltaNet 1,57 0,20 0,78 0,90 0,59 1,68 0,49 0,32 0,73 0,81 1,56 0,80 0,55 0,58 0,61
- Gated DeltaNet 1,31 0,25 0,28 0,35 0,89 1,64 0,42 0,35 0,68 0,64 0,80 0,67 0,49 0,51 0,35
- Mesa 1,26 0,66 0,33 1,10 1,06 1,53 0,49 0,58 0,46 0,62 1,56 0,32 0,51 0,45 0,52
- Hawk-Mesa 1,62 0,19 0,80 0,77 0,94 2,03 0,51 0,67 0,47 0,79 1,77 0,24 0,54 0,49 0,90

- Transformer 1,55 0,05 0,59 0,70 0,87 1,90 0,39 0,86 0,61 0,71 1,75 0,28 0,30 1,41 0,50

400M Models: - Hawk 1,54 2,28 3,95 4,25 4,97 1,34 1,36 3,24 3,87 3,67 0,91 1,29 2,03 1,52 1,89
- Mamba2 2,15 4,05 6,07 4,55 3,49 2,17 1,43 3,13 3,19 2,52 1,68 0,86 1,36 1,94 1,64
- GLA 1,83 3,20 2,74 4,83 4,23 2,15 2,60 1,88 2,04 2,19 1,72 0,62 1,42 1,96 1,30
- xLSTM 2,14 3,08 3,48 3,66 3,28 2,29 2,06 2,68 2,79 2,77 1,63 1,10 1,37 2,20 2,15
- DeltaNet 1,72 3,09 4,43 3,89 3,49 1,84 1,53 3,52 2,83 2,47 1,79 1,67 1,63 1,29 1,45
- Gated DeltaNet 1,87 3,92 3,86 4,16 3,77 2,00 0,85 3,35 3,18 2,94 1,80 1,05 2,56 2,13 2,22
- Mesa 2,23 2,75 4,33 5,05 5,33 2,06 0,80 2,62 3,11 3,70 1,75 0,68 2,09 1,63 2,47
- Hawk-Mesa 1,90 2,83 3,89 4,54 4,27 2,00 2,55 3,66 3,26 3,20 1,74 0,68 1,71 1,71 2,28

- SWA-4 0,34 0,13 0,14 0,13 0,12 0,25 0,19 0,26 0,21 0,26 0,29 0,10 0,06 0,07 0,05
- SWA-64 1,35 3,82 4,46 4,94 4,92 1,45 2,17 1,66 2,09 1,57 1,18 1,10 1,38 0,88 1,29
- SWA-1024 4,09 4,55 8,49 7,77 9,16 3,09 3,66 4,57 5,14 5,11 1,96 0,55 1,82 2,99 2,67

- Transformer 2,61 8,27 8,77 8,92 9,63 2,04 3,13 5,73 5,34 5,49 1,94 1,02 1,29 2,23 2,56

1B Models: - Hawk 3,72 5,88 8,56 7,15 4,17 3,33 3,79 3,77 5,20 5,86 2,37 2,69 4,39 4,22 4,17
- Mamba2 4,20 11,81 11,90 11,28 5,83 3,07 3,62 6,79 8,18 3,35 2,04 4,27 6,83 4,75 3,38
- GLA 3,15 10,60 11,87 10,90 10,31 2,58 7,90 9,41 7,77 7,46 2,15 2,59 6,60 4,30 4,95
- xLSTM 4,96 5,11 11,71 10,32 10,56 4,13 5,52 9,17 8,99 8,59 2,60 2,33 4,74 3,81 3,90
- DeltaNet 5,24 8,34 10,79 10,08 7,88 4,02 6,91 8,72 6,01 5,66 2,29 1,01 4,32 3,39 2,58
- Gated DeltaNet 4,71 8,24 10,03 11,25 11,31 4,31 7,59 9,07 8,60 8,76 2,45 4,63 5,67 5,33 5,51
- Mesa 3,58 11,80 12,44 11,57 11,64 3,10 6,98 10,20 8,49 7,81 1,88 5,05 2,96 6,05 5,07
- Hawk-Mesa 3,68 7,99 10,58 13,16 12,01 2,92 8,03 10,50 8,67 8,43 2,36 4,73 4,91 5,81 5,99

- SWA-4 0,54 0,72 0,72 0,72 0,74 0,49 0,75 0,89 0,87 0,72 0,22 0,12 0,14 0,11 0,06
- SWA-64 5,58 6,69 2,92 8,43 7,61 4,09 5,27 4,69 4,05 3,45 2,26 1,68 1,85 3,12 3,05
- SWA-1024 8,75 16,65 18,09 18,70 19,83 5,99 10,85 14,58 14,91 14,30 3,36 4,19 10,14 10,05 8,38

- Transformer 8,30 18,49 17,81 17,70 19,14 6,10 13,06 11,99 13,99 13,85 3,54 5,92 7,11 7,35 7,82

Table 18: Performance Scores (in BLEU-sb) on three Translation Tasks on Models Trained on 50B Tokens.
Best 50-shot scores among recurrent models are highlighted, as well as Transformer reference scores. While
MesaNet attains the best-score among the recurrent models in most settings, it under-performs transformer by
relative big margin.

L.3 NEEDLE IN THE HAYSTACK (NIAH) RESULTS

Setup. We conducted a sweep of experiments on single-needle tasks (NIAH) from the RULER
benchmark (Hsieh et al., 2024) suite for 1B models trained on 50B tokens. We ran experiments for
both haystack types (noise and essays) for all key/value combinations (both can be in the form of:
words, numbers or uuids) on context lengths 2048 and 4096.

Results. As scores are quite sensitive to the chosen key and values types, we report mean±std percent
accuracy over all 9 key/value combinations, with 1000 evaluation samples for each setting. On the
“noise” haystack, MesaNet demonstrates strong scores with very low fluctuations across key/value
combinations. On the “essay” haystack, we observe relatively high score fluctuations across key/value
combinations for all models which makes it hard to form conclusions. However, we would still like
to highlight the strong performance of Hawk-Mesa on the essay haystack.
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NIAH Noise NIAH-Essay
L=2048 L=4096 L=2048 L=4096

- Hawk 4.0 ± 5.9 1.7 ± 2.9 3.0 ± 2.2 2.1 ± 1.6
- Mamba2 79.7 ± 17.9 0.7 ± 1.0 51.3 ± 22.3 0.0 ± 0.0
- GLA 96.2 ± 4.2 68.5 ± 18.9 73.5 ± 34.7 41.4 ± 26.9
- xLSTM 94.8 ± 5.0 80.4 ± 14.9 69.1 ± 20.5 24.3 ± 9.9
- DeltaNet 99.3 ± 1.0 96.5 ± 6.3 68.9 ± 32.3 27.9 ± 15.3
- Gated-DeltaNet 98.3 ± 4.1 96.3 ± 8.1 52.1 ± 33.7 11.0 ± 9.4
- MesaNet 99.5 ± 0.5 95.1 ± 3.9 66.8 ± 28.9 17.9 ± 9.0
- Hawk-Mesa 97.6 ± 3.5 65.3 ± 21.6 90.9 ± 10.5 55.5 ± 28.5
- SWA-1024 51.8 ± 0.9 24.3 ± 1.3 47.5 ± 11.8 21.6 ± 7.2

- MHA 99.7 ± 0.3 0.0 ± 0.0 98.2 ± 2.5 0.0 ± 0.0

Table 19: NIAH Benchmark results for 1B models trained on 50B tokens.

M VARYING THE NUMBER OF CONJUGATE GRADIENT STEPS WHEN
TRAINING MESANETS

Here we present the effect when training the MesaNet on less than 30 steps. We opted for training
with 30 steps, as we were not optimizing for training flops but first investigate a fully converge Mesa
layer, and because of early experiments on our 400million model which indicated little improvement
after 30 steps.

As shown in Figure 13, we see a small, interestingly, uniform increase of training loss across the
sequence length when comparing to a model which is trained on 30 steps. Only when dropping
the number of CG steps below 10, we see a more drastic jump in loss increase. As we have show
in section C, the backward pass also relies on running the CG method to solve linear systems of
equations and we leave investigating for future work varying the number of steps in the forward and
backward pass.
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Figure 13: We compare the validation loss across the sequence of 400 million parameter MesaNets trained on
15B tokens, when varying the number of conjugate gradient steps during training. We observe a slight uniform
increase of validation loss across the sequence length when comparing to a model which is trained on 30 steps.
Only when dropping the CG steps drastically to 5 we see a substantial increase in loss.

N EVALUATION METHODOLOGY

Mulitple Choice Tasks: For a given question x, we assess for all possible options y the loss NLL(y|x)
of the option conditional on the question, and then normalize by the number of tokens of y. In contrast
to related work (Gu & Dao, 2024; Yang et al., 2024a; Beck et al., 2024), we do not heuristically
choose between byte-normalized and non-normalized scoring schemes as we have a fixed tokenizer
across all models.

Greedy Matching Tasks. For a given input x and an expected target sequence y (e.g., one or multiple
tokens), we check whether t would be matched under greedy sampling. This is done by obtaining
the logits for the concatenated input of x+ y, and checking whether all tokens belonging to y are
matched by taking the argmax over the logits.
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In-Context Recall Tasks. We follow closely the setup of (Arora et al., 2023b). For a given input
x, we sample greedily a completion from the model until either 48 tokens or a new-line character is
sampled. We then check whether the target y is contained in the output (non-case-sensitive).

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

O AN INTERNAL ANALYSIS OF THE MESANET

Figure 14: input strength β, forget strength γ, regularization strengths Λ as well as other internal statistics
of a 400M parameter MesaNet trained on 50B tokens - averaged over 500 sequences from the SlimPajama
validation set. We observe that high γt ≈ 1 values usually lead to the condition number of the to be inverted
matrix KtK

T
t + Λ increase over time, which in turn leads to more CG steps required to obtain an output for the

mesa. We also observe (outer right plot) that usually these heads lead to higher cosine similarity (cos) between
ot, the output of the layer if no CG steps are applied which corresponds to gated linear attention, compared to
the Mesa output o∗t . We compute the number of conjugate gradient steps are computed by measuring the steps
of the conjugate gradient method to reach an error of 0.001. We sort the heads for plotting purposes according to
their average gamma values.
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