Under review as a conference paper at ICLR 2026

MESANET: SEQUENCE MODELING BY LOCALLY
OPTIMAL TEST-TIME TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequence modeling is currently dominated by causal transformer architectures that
use softmax self-attention. Although widely adopted, transformers require scaling
memory and compute linearly during inference. A recent stream of work linearized
the softmax operation, resulting in powerful recurrent neural network (RNN)
models with constant memory and compute costs such as DeltaNet, Mamba or
xLSTM. These models can be unified by noting that their recurrent layer dynamics
can all be derived from an in-context regression objective, approximately optimized
through an online learning rule. Here, we join this line of work and introduce a
numerically stable, chunkwise parallelizable version of the recently proposed Mesa
layer (von Oswald et al., 2024), which could only run sequentially in time and was
therefore not scalable. This layer again stems from an in-context loss, but which is
now minimized to optimality at every time point using a fast conjugate gradient
solver. Through an extensive suite of experiments study up to the billion-parameter
scale, we show that optimal test-time training enables reaching lower language
modeling perplexity and higher downstream benchmark performance than previous
RNNSs, especially on tasks requiring long context understanding. This performance
gain comes at the cost of additional flops spent during inference time. Our results
are therefore intriguingly related to recent trends of increasing test-time compute to
improve performance — here by spending compute to solve sequential optimization
problems within the neural network itself.

1 INTRODUCTION

While Transformers dominate sequence modeling, their per-token computational and memory require-
ments scale linearly with sequence length during inference. This limitation motivates the development
of efficient recurrent neural networks (RNNs) with constant complexity, particularly for autoregres-
sive tasks like language modeling. Recent progress has focused on fast weight programming layers,
which process a given sequence by representing and learning a linear model in their activations
(Schmidhuber, 1992; Schlag et al., 2021a; Yang et al., 2024c; Dao & Gu, 2024). Such ‘fast weights’
undergo one learning step whenever the input sequence advances, following simple Hebbian (Hebb,
1949) or error-correcting (delta) rules (Widrow & Hoff, 1960). Both rules correspond to gradient
descent on a suitable quadratic loss function, measured on the latest input.

Here, we take this concept one step further, and design an optimal fast weight programming layer.
Following previous related work, we consider linear fast weight models, and measure how well a given
context is modeled using a quadratic loss. However, instead of gradually learning through gradient
descent, we design a layer that always responds with the optimal fast weights, which achieve minimum
loss on all data seen so far. This allows retaining past information while adapting to new evidence
quickly as a sequence unfolds. Our work builds off the recent recurrent Mesa layer (von Oswald
et al., 2024), proposing a version of this layer that is parallelizable leveraging matrix multiplication
accelerators, numerically stable, and that allows for context-dependent forgetting. Moreover, the layer
dynamically adapts its computational cost at test time to the sequence at hand. This is because the
layer introduced here explicitly invokes an external solver, for which the number of iterations required
to reach a given stopping criterion differs across sequences. We summarize our contributions below:

* A novel Mesa layer which is parallelizable over sequence length and flexibly allocates test-
time computation: We adapt the previously proposed Mesa layer (von Oswald et al., 2024) to
allow for chunkwise parallel training. We leverage an equivalence of the conjugate gradient (CG)

Under review as a conference paper at ICLR 2026

a) Y
T - 1

e ®

RMSNorm RMSNorm
- / Mesa Rule
v (B) Gated MLP block

ék éq Iv BO@OO@~
(Conv) (Conv) (Conv)

Sequence
mixing block

TN MHA, xLSTM, Mamba2, DeltaNet or Mesa (Linlearj (Linlearj (Linlear] : L:n
j ~ |
(A) Residual block (C) Recurrent block

Figure 1: Model Architecture of the MesaNet. (A) We adopt the widespread decoder-only transformer
architecture (Touvron et al., 2023) stacking N residual blocks of a channel mixing (B) and sequence mixing (C)
components. (B) Channel mixing is a vanilla SwiGLU MLP. (C) Sequence mixing is performed by the Mesa
layer. From its inputs, it generates keys, queries and values as well as input and forget strengths. These are then
processed according to the Mesa Rule (Equation 5). We compare the MesaNet to models which share the exact
same architecture and only change the sequence mixing rule to multi-head-attention (MHA), XLSTM, Mamba2
or (Gated) DeltaNet.

method over multiple time steps with gated linear self-attention, which allows using established
hardware-efficient training (Yang et al., 2024a). During inference, the layer reallocates test-time
compute dynamically as different sequences lead to varying CG iterations to reach a stopping
criterion, allowing to trade off test-time compute and performance.

* The MesaNet is a strong language model: We train 140M, 440M and 1B parameters MesaNets,
see Figure 1, on the SlimPajama dataset (Soboleva et al., 2023). On all of these scales, the
MesaNet reaches lower validation perplexity compared to models such as Mamba2 (Gu & Dao,
2024), xLSTM (Beck et al., 2024), DeltaNet (Yang et al., 2024¢), Gated DeltaNet (Yang et al.,
2024a) and Transformers (Vaswani et al., 2017) with the same base architecture.

* In-depth analyses of modern RNNs including MesaNet: Intriguingly, we find that while
reaching the same or better perplexity on language modeling, all RNN models reduce perplexity
remarkably differently, namely focus on early tokens in the sequence while transformers excel at
later tokens. We further disentangle downstream language benchmarks according to their need for
global or only local language modeling, through controlled Sliding-Window Attention ablations.
We find that MesaNet outperforms all modern RNNs on global reasoning, in-context learning &
in-context recall benchmarks, but unsurprisingly still lack behind Transformers in in-context recall.

2 A PARALLELIZABLE MESA LAYER

We consider autoregressive sequence modeling tasks where the objective is to predict element
es+1 € R™ given a sequence of token embeddings e = (e;)7_;. At present, autoregressive sequence
modeling is dominated by architectures based on the causally-masked softmax self-attention layer,
whose token updates e; < e;+Ae}?* follow the rule Aej® = Zle PV 4 a(Khthh,t), where g, ¢+ =
Wi qer € R™e is referred to as a query, each column ky, »+ = W, ey € R™e of matrix Kj, ; € R™e xt
as a key, and each column v, ¢+ = W, ,ep € R™ of matrix Vj, ; € R™ ¥ as a value. The parameters
of this layer are the matrices {(Pp,, W, 4, Wh i, W) }L | for all H heads; for notational simplicity,
we omit positional encodings and absorb bias terms, and assume here for conciseness that all heads
are equally sized. The function « applied to vector a € R? returns an attention weight vector: in the
standard transformer, a(a); = softmax(a); := (3%,_, exp(as)) ™' exp(a;) (Vaswani et al., 2017).
Since each head is processed independently and only interacts through the summation in Aej?, for
simplicity we drop the head index h and the projection matrix P in what follows.

Linear self-attention and test-time training. We focus on the case where « is the identity function.
This yields a linear attention layer (Schmidhuber, 1992), which as we will see next turns out to be a
linear RNN (Katharopoulos et al., 2020):

Ael* = B,q,. 1))

Unlike its softmax counterpart, linear attention can be implemented recurrently, by maintaining and
updating a matrix-valued state & € R™»* " according to the linear dynamics

Oy =7 Py1 + /Btvtk’tT-)

Under review as a conference paper at ICLR 2026

Above, we add forget gates 7, and input gates /3; which have been shown to improve performance
(Yang et al., 2024a). Both are usually a function of the current input e;, like queries, values and keys,
but bounded within [0, 1]. Importantly, and in contrast to softmax self-attention, linear attention only
requires constant memory and compute to predict the next token. As we review below and more
extensively in Appendix A, a series of recent high-performance models (e.g., Gu & Dao, 2024; Peng
et al., 2023; Beck et al., 2024; Schlag et al., 2021a; Yang et al., 2024c;a) can be cast into the same
basic linear self-attention model (equation 1) using variations of equation 2.

Such modern RNNSs can also be seen from the unifying perspective of test-time training (Schlag et al.,
2021a; Liu et al., 2025; von Oswald et al., 2024; Wang et al., 2025). Under this view, the key-value
linear map @, : R+ — R™ introduced in equation 1 is learned from the data in context e;.;. Let us
introduce a time-varying loss, from which we will derive a gradient-based dynamics for ®:

Ly(®) = 1,(®, ;) + Tr(®T A, D) /2. 3)
Above, [, measures the instantaneous loss incurred at the current time step, and the second term acts
as a regularizer. Now, setting l;(®, ¢;) = [} °P"(®, ¢;) := —v,] Dk and A, = 1;;“ I, and letting ®

evolve through online gradient descent, ®; = ®;_1—3; V4L (Pr—1) = %P1 + Bkl we recover
gated linear attention (equation 2). In passing, we have also connected modern linear attention to
classical associative memory models (Schlag et al., 2021a): l?()pheld is the energy function that governs
continuous-state Hopfield networks, and ® is learned through Hebb’s associative rule (Hopfield, 1984;
Hertz et al., 1991). If we take instead the squared error loss [;(®, e;) = ;Y (®, e;) 1= L[|v, — k|2,
we recover DeltaNet (Schlag et al., 2021a; Yang et al., 2024c;a), which learns a linear model with the
online delta rule (Widrow & Hoff, 1960). We return to this point in Appendix A, where we discuss

additional related work from the viewpoint of test-time regression.

The Mesa layer: optimal test-time regression. In this work, we revisit the recently proposed
Mesa layer (von Oswald et al., 2024), also referred to as an intention layer in the context of non-
autoregressive models (Garnelo & Czarnecki, 2023). This layer again updates tokens according to the
linear self-attention rule (equation 1) but now defines the linear map ®, as the solution of a test-time
optimization problem, where again A plays the role of a quadratic regularizer:

Tr(®TAD)

5)

t
. 1
(I);nesa = arg min ﬁt((ﬁ), with £t(@) = — Z ||’Utl — (I)kt/‘|2 +
® 2

t'=1

The Mesa layer differs from the test-time training models reviewed above in two key ways. First,
instead of considering an instantaneous loss measured only at the current input e; as in equation 3,
the Mesa layer optimizes the cumulative regularized squared-error loss taking into account all data
e1.¢+ so far. While at first this may seem impossible to achieve under a constant memory requirement,
the Mesa layer circumvents the need to explicitly keep past tokens in memory (as in softmax self-
attention) and exploits the fact that £, is a quadratic function of ® (Gauss, 1821). Second, instead
of taking a single gradient descent step, the Mesa layer learns ® to optimality at every time point.
We note that the related Longhorn model (Liu et al., 2025) also derives a recurrent layer via the
minimization of a quadratic loss, but its loss is evaluated only on the latest input as in equation 3,
yielding a variant of DeltaNet. We further note that concurrent work (Atlas; Behrouz et al., 2025)
corresponds exactly to a sliding-window variant of the Mesa layer.

The Mesa layer is the optimal (in the squared-error sense) linear associative memory (Kohonen &
Ruohonen, 1973), and it can store a new association instantaneously (one-shot), whereas DeltaNet
requires in general multiple pattern presentations to reduce memorization error (Hertz et al., 1991).
This fast learning property of the Mesa layer can be further understood by recasting it as a second-
order online learner (cf. Appendix G); DeltaNet only uses first-order derivative information to learn.

Von Oswald et al. (2024) proposed to determine @;““a following classical recursive least-squares.
Although computationally attractive at inference, we now stress two shortcomings of this approach.
First, introducing time-dependent forget gates ; € [0, 1] leads to numerical instabilities, and requires
a regularization term A that decays exponentially with time. Second, this original version of the
layer is not parallelizable, and it therefore heavily underutilizes current matrix-matrix multiplication
accelerators such as GPUs and TPUs during training. We explain this in detail in Appendix G.

A new parallelizable Mesa layer with adaptive forgetting and regularization. To overcome
these issues, we propose a novel parallelizable version of the Mesa layer which allows for dynamic

Under review as a conference paper at ICLR 2026

forgetting. Instead of computing i)fetsa recurrently, we solve a linear system of equations in parallel,

for each query ¢;:
Aef®® = é?mqt =Gi(H, + A)_lqt = Gilinsolve(H,; + A, q1). 5)

where &, is defined above is explicitly given as @“esa = Gy(Hy+ A)~L. The equation above depends
on two state variables, S; = {G}, H;}, which we obtain through the linear recurrence relations:

Gy = %Gi—1 + ﬂtvtk‘;, Hy =~vHi_+ ﬁtktk;, (6)

where as before 7; € [0, 1] is a forget gate and ; € [0, 1] is an input gate. We adopt the conjugate
gradient method to obtain a solution g; = linsolve(H; + A, q;) = (H; + A)~'¢; (Lanczos, 1950;
Hestenes et al., 1952). This yields a numerically stable Mesa layer as linsolve(H; + A, ¢;) is stable
irrespective of forgetting strength, albeit at a higher memory cost compared to single matrix state
RNN models, as an additional matrix of size n, X n, needs to be propagated forward alongside the
standard matrix of size n, X n,. Although the RNN state size increases, this expansion amounts to
less than 1% of the entire memory footprint of models trained in this paper, which includes both state
and parameters.

To enable efficient training, we introduce a chunkwise parallelized (Hua et al., 2022; Yang &
Zhang, 2024) algorithm to compute equation 5. Our method builds on top of established efficient

implementations of GLA, that we briefly review now. First, note that the output of this layer

can be written as oA = G,q; = 22:1 Civik, qi, with G = 14>, HZ:H_l ~s. Let us chunk

a sequence of length T in T//C chunks of size C, with ¢ € {0,C,...,T — C'}. The crucial
insight to enable leveraging matrix-matrix multiplication and parallelization across time for GLA
is that, given a chunked state variable GG, we can compute the output at time ¢ < t < ¢+ C as
oA = (G, + ZEZCH Crivik)qe = Geqe + Zf:c-rl Ctivik] g, which can be done in parallel for
t € {c+1,...c+ C}. In matrix notation we write

0% = G.Q. + Vo(Z. o (K QY)), ©)

where K. = [k, ..., kerc] and OS2 V.., Q. accordingly, and Z, is a upper triangular matrix of size
C x C containing the appropriate forgetting terms.

Now, we highlight that the Mesa layer can be decomposed into two parts:
t
oFt =" (uvik) qf, andgf = (Hy+A) g ®)
i=1

The first part is equivalent to GLA, and can therefore be computed efficiently as just described. It
therefore remains to be shown how to obtain Q;"L’c = [q;';’c, N +C] within a given chunk of
size C in parallel. As we explain in detail in Appendices B & C, the key observation is that the
compute-intensive part of a CG iteration boils down to Z§=1 Crikik, p, with p its current search
direction, a computation that is once again in the GLA form. Alongside its fast convergence properties,
this is the reason for picking the CG method as our solver, as it allowed us to leverage existing
efficient chunkwise parallel linear attention implementations. In Appendix C, we further show how
to efficiently compute gradients through the layer in chunkwise parallel form. Finally, we discuss
details on precision within our CG solver in Appendix E.5.

3 TRAIN AND INFERENCE TIME OF THE MESA LAYER

Chunkwise parallel Mesa layer leads to competitive train time. In Figure 2, we report training
and inference times on a TPUv5 and H100 for both transformers (MHA), common RNN alternatives
and the MesaNet. Despite having to solve ¢ - H linear systems of equations per layer during training
as well as compute gradients through the found solutions, the MesaNet remains competitive at train
time with respect to MHA and RNN alternatives.

The Mesa layer, applied with static k, is relatively slow especially early in the sequence. We
present in Appendix Table 3 an analysis of the memory and computational costs of inference,
comparing the Mesa layer to MHA as well as recently developed RNNs. This overview highlights a
tension that the MesaNet faces. On the one hand, if the number of conjugate gradient (CG) steps k is

Under review as a conference paper at ICLR 2026

set to zero we obtain ¢f = ¢, and so recover gated linear self-attention (GLA) and its compute and
memory requirement. Thus, we require £ > 0 for the Mesa layer to differ from GLA, which provides
a lower bound for the computational cost of the Mesa layer. Note that the Mesa layer is, in terms of
flops, roughly k times as costly as linearized transformer models such as GLA, Mamba2 and xLSTM
and k£ — 1 times more costly as (Gated) DeltaNet. Furthermore, because the total cost of executing
the CG method grows with kn2, there is a maximal value of k for which the Mesa uses fewer flops
than MHA for a given sequence length.

@
)

30 = 2
— Mesa-CG=0 2 5
E 3
£ Mesa-CG=5 = 260
2 20 Mesa-CG=15 g 2
£ = Mesa-CG=30 b= 2 40
<10 MHA gl F
.% / g £ 0 Transformer Gated DeltaNet
= Q X GLA B Mesa-CG=30
= o
ol ——— £, 2 DeltaNet Mesa-CG=15
: : . . R m— T o
256 2k 4k 8k 256 2k 4k 8k 2Kx16 4Kx8 BKx4 16kx2 32kx1
Sequence Length Sequence Length Sequence length x Batch size

Figure 2: Train and inference time of a Mesa layer using different number of CG steps. Left: Train time
of a single Mesa later on a TPUv5: output the entire sequence, compute the cross entropy loss, and gradients
w.r.t. layer parameters. We use batch size of 4, key size of 128 and 8 heads. Center: Inference time of a single
Mesa layer on a TPUVS: compute the next token given a certain context length. We use batch size of 128, key
size of 128 and 8 heads. Right: Token throughput (in thousands) when training 1B parameter models on a H100
GPU. We compare a Flash-Attention-2 (Dao, 2023) transformer implementation with a triton-based chunkwise
parallel implementation of RNN models, including the MesaNet which uses 30 or 15 CG steps across all layers.
All models use a key size of 128 and share the same backbone, see Appendix F. We observe competitive token
throughput on H100s of the MesaNet despite using substantially more flops.

We show this in Figure 2 (center) for a typical choice of n, = 128, where we plot inference time as
a function of sequence length for both MHA and the Mesa layer, when varying k. These numbers
reflect the runtime of a single layer and might vary across inference use cases and accelerators.

The Mesa layer allocates test-time compute dynamically. Being a test-time optimizer, the Mesa
layer offers a principled way for dynamically allocating test-time compute. The number of CG
steps k required to reach a given desired error tolerance € is generally head-, sequence- and token-
specific due to the context-dependence of the linear systems H; + A to be solved. Via utilization
of a stopping criterion, the Mesa layer thus exhibits dynamic inference (and potentially training)
costs. This dynamic test-time compute feature of the Mesa layer draws both parallels and differences
to softmax self-attention: whereas softmax self-attention increases compute (and memory) as a
function of sequence length independently of the sequence being processed, the Mesa layer adjusts
compute dynamically, according to the incoming data it needs to process. We provide in Section 5 an
experimental analysis of this property of the Mesa layer in trained MesaNets.

4 MESANET IN A LANGUAGE WORLD

Here we present results obtained on 1B-parameter models trained on 50B tokens from the SlimPa-
jama (Soboleva et al., 2023) dataset, and refer to Section K for an extended analysis, comparing
models ranging from 140M, 440M up to 1B parameters, each on 15B and 50B tokens. Furthermore,
we report strong results on synthetic environments in Section J, which we omit for brevity here.

Architecture & baselines. For the main model backbone, we follow the architecture of common
transformers, and employ N stacked residual blocks with 1) a sequence modeling part such as
multi-head-attention (MHA) or the Mesa layer and 2) a gated MLP block (see Figure 1). As baselines,
we compare to a number of other efficient alternatives to MHA based on linear recurrent layers:
Mamba?2 (Dao & Gu, 2024), Gated Linear Attention (GLA) (Yang et al., 2024b; Katharopoulos et al.,
2020), xLSTM (Beck et al., 2024), (Gated) DeltaNet (Schlag et al., 2021a; Yang et al., 2024c;a)
and Hawk (De et al., 2024). The latter differs from the models reviewed in Section 2 by employing
a vector-valued state, being closer in spirit to a (now linearized) traditional LSTM (Hochreiter &
Schmidhuber, 1997). Furthermore we investigate a recurrent hybrid Hawk-Mesa model alternating
between a linear recurrent unit (Hawk) and the Mesa layer which we motivate in the next section.

Controls. On top of related work, we train transformer models with Sliding-Window Attention
(SWA) (Beltagy et al., 2020) of varying window sizes. These models have constant per-token memory

Under review as a conference paper at ICLR 2026

SLIM LMB. WIKL PG19 GOV. QASP.| AVG
ppll ppll ppll ppl) ppl) ppll

- Hawk 11,24 26,67 12,23 1093 10,63 1489 | 1443
- Mamba2 11,39 28,02 12,23 11,42 1042 14,02 14.58
-GLA 10,99 29,77 11,77 10,95 9,99 13,52 | 14.03
- xLSTM 11,01 26,93 11,81 10,94 10,00 13,55 | 14.03
- DeltaNet 11,01 27,08 11,73 11,00 10,02 13,44 | 14.05
- Gated DeltaNet 10,89 26,79 11,58 10,81 9,88 13,28 13.87
- Mesa 10,83 26,78 11,49 10,71 9,80 13,13 | 13.79
- Hawk-Mesa 10,78 26,59 11,53 10,60 9,79 13,20 | 13.75
- SWA-4 16,46 29,93 1942 1642 17,86 29,15 | 21.54
- SWA-64 12,37 27,76 14,14 12,51 11,56 16,77 | 15.85
- SWA-1024 11,00 2722 11,78 10,92 9,79 13,11 13.97
- Transformer | 10,86 27,16 1142 10,74 9,69 12,86 | 13.79

Table 1: Language Modeling Performance (PPL |)
of 1B Models (50B Tokens) evaluated on sequence
length of 2048). Mesa and Hawk-Mesa show strong
performance on all benchmarks, matching or exceeding

a Transformer baseline w.r.t. to avg. per-token PPL.

Lambada (LMB.) scores are higher due to significantly
shorter sequences (< 256) with an average of 78 tokens.

== HAWK XLSTM == MESA == SWA-1024
GLA DELTANET HAWK-MESA == MHA
MAMBA2 == GATED-DELTANET == SWA-64

0.04 F

0.02 E

~0.02 E

~0.041/ E /
1

64256 512 1024 2048 20 22 24 20 28
Token Position Token Position

NLL Difference to MHA

Figure 3: NLL Difference relative to a Trans-
former (1B models, 50B tokens) on SlimPajama.
Most recurrent layers show superior language mod-
eling performance in terms of NLL up to the 64’th
token. MesaNet and Hawk-Mesa extend the advan-
tage beyond 512 tokens. The advantage early in the
sequence is even more apparent in log-scale (right).

and compute cost. The motivation to study SWA models is based on the assumption that transformers
as well as SWA models have near perfect recall capabilities, at least within their attention window.
Therefore, they provide a simple and interpretable control to study language modeling, reasoning
and in-context recall capabilities of RNNs.

Setup. We tokenize the SlimPajama datasets using the byte-level BPE tokenizer introduced in
GPT-2 (Radford et al., 2018; Brown et al., 2020a) following Beck et al. (2024) and train all modes on
a sequence length of 2048 and a fixed ordering of training data. For each model configuration, we
scan over a range of learning rates, and select the model that minimizes perplexity on the holdout
validation dataset of SlimPajama. For exact hyperparameters and training specifications for each
model, see Appendix F. For all results, unless otherwise specified, we use MesaNets with a fixed
amount of 30 CG steps. See Appendix L on varying CG steps during training and Section 5 on using
the CG stopping criterion to invoke dynamic test-time compute.

We stress that through sharing the exact same architecture backbone, tokenizer, data and data order
across all models, while using the same number of parameters and independently tuned learning
rate for all models, we aim to provide a fair 1-1 comparison'. This controlled setup should allow to
solely assess differences on the sequence mixing layer while reducing noise. Note, however, that
this backbone might be a suboptimal choice for RNNs, including the MesaNet. Related work has
tuned architectures to their specific sequence layers (Beck et al., 2024; Gu & Dao, 2024). However,
these architectural optimizations prevent the integration of Mixture-of-Experts layers, a heavily used
building block in current language models. Therefore, we carefully evaluate all sequence layers on
the same backbone (the widespread decoder-only transformer architecture (Touvron et al., 2023)),
which does not fuse MLPs with the sequence layers, allowing for a direct comparisons between
layers. Furthermore, we did not attempt to optimize the architecture e.g., key size and number of
heads for the Mesa layer.

Comparison to the original mesa layer. We considered comparing to the original sequential-in-
time Mesa layer (von Oswald et al., 2024). However, because this model was already an order
of magnitude slower when training at the 400M parameter scale, and suffered a large increase in
SlimPajama language modeling perplexity of about 3.2 points (~23% performance degradation) due
to the inability to train with forget gates, we did not pursue these comparisons further. These results
directly motivate the new Mesa layer introduced in this paper.

4.1 LANGUAGE MODELING (WITHIN AND BEYOND TRAIN SEQUENCE LENGTH)

We measure a model’s general language modeling capabilities first by assessing average per-token
perplexity (PPL) (Jelinek et al., 1977) on a set of benchmarks. We report PPL on the hold-out
validation set of SlimPajama (Soboleva et al., 2023), as well as Lambada (Paperno et al., 2016),
Wikitext-2 (Merity et al., 2016), PG19 (Rae et al., 2019), GovReport (Huang et al., 2021), and Qasper
(Dasigi et al., 2021) on the train sequence length and beyond. Because uniformly averaging over all
tokens might masquerade important differences between models, we additionally investigate average

"Related work such as Yang et al. (2024a), Behrouz et al. (2024) and Behrouz et al. (2025) use a single
learning rate for all models which likely leads to biased and unfair comparisons. Behrouz et al. (2025) further
inherit baseline results from previous work which use a different tokenizer, confounding the comparison further.

Under review as a conference paper at ICLR 2026

Reasoning Reasoning In-Context Recall Word Scramble Translation (WMT)
(50-shot)

(Global, 0-shot) (Local, 0-shot) (100-shot)

XLSTM
DeltaNet
Gated DeltaNet
Mesa
Hawk-Mesa
SWA-4

400M Params.

SWA-64
SWA-1024
Transformer

25 30 35 40 40 42 44 46 48 S0

Gated DeltaNet
Mesa
Hawk-Mesa
SWA-4

SWA-64
SWA-1024
Transformer

1B Params.

25 30 35 40 45 40 42 44 46 48 50 520 10 20 30 10
Accuracy Accuracy Accuracy Accuracy BLEU-SB

Figure 5: Grouped Benchmark Scores (1) on models trained on 50B Tokens from SlimPajama with
a context length of 2048. We compare the performance of models with Linearized Recurrent Unit,

, DeltaNet and MESA layers on 5 different subsets of benchmarks. As a
reference, we show the performance of Sliding Window-Attention models (SWA) with varying window sizes.

per-token PPL conditional on sequence position. As we see below, this turns out to be a crucial factor
when comparing RNNss to transformers.

MesaNet is a strong language model early in sequences. When evaluating on the training sequence
length of 2048, MesaNet and Hawk-MesaNet outperform all recurrent baselines on all benchmarks
on the common metric of average per-token PPL (see Table 1). MesaNet matches on average the
performance of the transformer baseline, while Hawk-MesaNet even surpasses it. Notably, a SWA
model with a window size of 1024 outperforms the majority of recurrent baselines. However, attaining
similar PPL scores does not imply equivalent language modeling abilities at different sequence lengths
(Lin et al., 2025). Conditioning on the token position, and assessing the NLL difference relative to
a transformer, reveals, surprisingly, that most recurrent layers exhibit superior language modeling
performance early in the sequence but fall behind later in the sequence (see Figure 3). Recurrent
models show especially strong performance on short sequences up to 64 tokens. While Hawk exhibits
the best performance up to this depth, the model exhibits a sharp performance decline after that.
Among the remaining recurrent models, MesaNet and Hawk-MesalNet not only attain the strongest
early-in-the-sequence modeling ability, but also extend the advantage beyond a depth of 512 tokens.

MesaNet is competitive on length extrapolation — HAWK DELTANET — MHA-SWA-64
with recurrent baselines, but SWA-1024 is a hard- MAMBA2 = GATED-DELTANET = MHA-SWA-1024
to-beat baseline. Next, we evaluate the ability to GLA = MESA = MHA
== XLSTM HAWK-MESA
extrapolate to sequences of up to 32k tokens (see
Figure 4). While transformer, Mamba2, DeltaNet 1a
and HawkMesa fail to extrapolate catastrophically |
to longer sequences on all evaluated benchmarks, = I\~
MesaNet exhibits length-extrapolation capabilities su- .
perior to Hawk, GLA, xLSTM and on-par with Gated 10— = .
DeltaNet on all evaluated long-sequence benchmarks 0 2k 8k Seq_lg,gth 32K

with respect to PPL scores (aggregated and conditional
on token positions). However, these results should be
tempered by the fact that a SWA model with an atten-
tion window of 1024 attains competitive benchmark scores, even superior at a sequence length of
32k on some benchmarks. This finding is in line with recent criticism that PPL may not distinguish a
model’s ability to capture local vs. long-range dependencies between tokens (Hu et al., 2024; Fang
et al., 2024). We refer to Section K for detailed score breakdown and results on the Needle-in-the-
haystack (NIAH) benchmark (Hsieh et al., 2024), where MesaNet shows strong performance.

Figure 4: Avg. Mean-so-Far PPL on 3 Long-
Context Benchmarks (WIKI, GOV, QASPER).

4.2 LANGUAGE BENCHMARKS

We next evaluate MesaNet’s capabilities on a comprehensive set of downstream tasks, ranging
across zero-shot reasoning, in-context recall and in-context learning tasks. We evaluate on various
benchmarks considered in prior work (Gu & Dao, 2024; Yang et al., 2024a; Beck et al., 2024), and

Under review as a conference paper at ICLR 2026

complement them with few-shot learning tasks involving token-manipulation and translation. We
present the aggregated results of 400M and 1B models trained on 50B tokens in Figure 5, and report
detailed scores in Section K. Across most evaluated benchmarks, the MesaNet matches or exceeds
the performance of the evaluated recurrent baselines.

Zero-Shot Common-Sense Reasoning Performance: Transformers & MesaNet > other RNNs.
Prior work (Gu & Dao, 2024; Yang et al., 2024a; Behrouz et al., 2024; Beck et al., 2024) commonly
reports the average performance of a set of common-sense reasoning benchmarks to compare models.
However, evaluations of SWA models with different window sizes reveal that competitive, or even
superior, scores on many of these frequently reported benchmarks can be attained with attention
window size as short as 4 (see Table 11). This observation strongly indicates that some of these
benchmarks are exploitable by short-range language heuristics, and do not require longer-range
language modeling capabilities to reach competitive scores, or are simply too hard such that we end
up measuring noise. To reduce the potential benchmark noise and deconfound the results, we hence
report the zero-shot reasoning benchmarks in two separate splits:

* The Global Reasoning Benchmark Set encompasses all benchmarks where we observe a signifi-
cant performance increase with a growing attention window size. This includes Lambada (Paperno
et al., 2016), HellaSwag (Zellers et al., 2019) and RACE-{M,H} (Lai et al., 2017). Within both
reported model sizes (400M and 1B), MesaNet outperforms all other recurrent models on average
on these benchmarks. However, MesaNet still underperforms the transformer baseline.

* The Local Reasoning Benchmark Set includes all benchmarks where we see little to marginal
improvement with a growing attention window size. This includes PIQA (Bisk et al., 2020),
WinoGrande (Sakaguchi et al., 2021), ARC-{E,C} (Clark et al., 2018), SIQA (Sap et al., 2019),
BoolQ (Clark et al., 2019), OpenBookQA (Mihaylov et al., 2018) and StoryCloze (Srinivasan et al.,
2018). Unsurprisingly, we observe very similar average scores for all models. Notably, Hawk, the
worst performing recurrent model on global reasoning and in-context recall benchmarks, shows
excellent performance on this benchmark subset. This observation supports the hypothesis that these
subsets of benchmarks are likely to measure different capabilities, and highlights the differences
between Hawk to e.g. the MesaNet. These analyses motivate the recurrent hybrid Hawk-Mesa
model, which tries to capitalize on the complimentary strengths of the two layers.

In-Context Recall Performance: Transformers > MesaNet > other RNNs. To gauge the ability
to recall in-context information, we follow Arora et al. (2024) and Yang et al. (2024a) and evaluate
models on SWDE (Lockard et al., 2019), SQUAD (Rajpurkar et al., 2016), FDA (Arora et al., 2023),
TQA (Kembhavi et al., 2017), NQ (Kwiatkowski et al., 2019) and DROP (Dua et al., 2019). We
adopt the minimal-transformed versions of the benchmarks from Arora et al. (2024) that adjust for the
evaluation of non-instruction-tuned models. In line with the observations on synthetic benchmarks
in Section J, MesaNet outperforms all other recurrent models on these tasks. Moreover, MesaNet
exceeds the performance of a SWA-1024, the only recurrent model to do so. However, there remains
a gap in performance relative to the transformer baseline with an attention window size of 2048.

Few-Shot Learning Performance: Transformers & MesaNet > other RNNs. Finally, we measure
the model’s ability to learn from few-shot demonstrations. We evaluate on two GPT3 word scrambling
tasks (cycle letters in word, anagrams of all but first and last two characters) (Brown et al., 2020b) and
three translation tasks (WMT-14 FR-EN (Bojar et al., 2014) , WMT-16 DE-EN and RO-EN (Bojar
et al., 2016)). MesaNet demonstrates strong performance on all few-shot learning tasks. While it
exceeds the performance of the Transformer on word scrambling tasks, it fails to do so in translations.

5 TEST-TIME COMPUTE ANALYSIS

In the previous section we showed results from models trained and evaluated with 30 CG steps. We
study now the effect of using the MesaNet trained on 30 CG steps but evaluate the model when using
a dynamic stopping criterion aiming to reducing the CG steps used at inference time. We refer again
to Appendix B for a description of the CG method used in this work.

Mesa objectives differ widely across heads and layers. When analysing the internals of the Mesa
layer on sequences of the SlimPajama validation set, we observe a bimodal distribution of condition
numbers of Hy, ; + Ay, across heads almost in every layer, see Figure 13. In particular, we observe
that heads either have 1) large and growing condition number with sequence length, or 2) rather low
and constant condition number over the sequence. In every layer, there are roughly 1-2 heads for

Under review as a conference paper at ICLR 2026

Reasoning Reasoning In-Context Recall €=3e-2 €=1le-3 == e=le-5 CG=5 == CG=7 == CG=20
(Global, 0-shot) (Local, 0-shot) e=le-2 == c=le-d CcG=4 CG=6 == CG=10 == CG=30

le-4

4

o |
= 006 !] o
58 ' 2 |
<004] o 8
28 | 0 ©
bt !
59002 ! 1 g 6
= ! iy
g 0.00 ﬁ | 4
} . . + -le-4 +
0 20 40 0 2k 4k 8k 0 2k 4k 8k 0 2k4k 8k
Accuracy Accuracy Accuracy Seq. Length Seq. Length Seq. Length

Figure 6: Effect of Number of Conjugate Gradient (CG) Steps on SlimPajama Perplexity within and
beyond train context length. We show here the effect of reducing the number of CG steps during inference on
token perplexity across token position of a 1B MesaNet trained on 50B tokens. We either use a fixed number CG
steps uniformly across the model or apply a dynamic stopping criterion € > 0.

which the condition number of linsolve(Hy, ¢ + Ay, gn,.) (and therefore the number of CG steps)
grows with ¢. This motivates dynamic allocation of CG steps in every head.

MesaNets allocate test-time compute dynamically. We test 1) reducing the number of CG steps of
all layers and heads uniformly, and 2) varying the solver’s stopping criterion € to dynamically allocate
test-time compute. As shown in Figure 6, when reducing CG steps uniformly, we observe an increase
in negative log-likelihood when comparing to our model evaluated with 30 steps, especially on tokens
later in the sequence. This is in line with our findings on the need for higher number of steps as ¢
grows. By contrast, with a dynamic stopping criterion ¢, increasing ¢ yields a uniform degradation
over sequence length. A model with a stopping criterion of ¢ = 10~ performs on-par with the base
model using a fixed number of 30 CG steps, while reducing the average CG steps used to ~ 9.

6 DISCUSSION

We present a chunkwise parallelized, numerically stable version of the Mesa layer (von Oswald et al.,
2024), and scale it up to 1B parameter language models. This layer generates a prediction by solving
an optimization problem, which yields a linear model that best fits a given sequence. Our Mesa layer
can allocate test-time compute dynamically according to the stopping criterion. Complex sequences
are then modeled by many of such layers, while interleaving them with MLPs, into MesaNets.

This approach has ties to multiple long-running lines of research. It relates to alternatives to end-
to-end differentiation based on stacks of greedy local learners (e.g., Hinton et al., 2006; Ngkland &
Eidnes, 2019; Veness et al., 2021), bringing these to the fast inference timescale, and then delegating
to nonlocal backpropagation-based learning the role of determining which optimization problems
must be solved at inference time. This in turn relates to mesa-optimization (Hubinger et al., 2019),
since test-time optimization objectives (though not the optimizers themselves) are discovered by
(base) sequence prediction loss optimization. The idea of specifying the output of a neural layer
through an optimization problem is an old one (Amos & Kolter, 2017; Gould et al., 2021), with roots
at least to energy-based neural models (Hopfield, 1984). Finally, the Mesa layer is perhaps most
related to fast weights of Schmidhuber (1992), replacing Hebbian with locally-optimal learning.

The Mesa layer extends state-of-the-art recurrent language models such as Mamba (Gu & Dao,
2024), RWKYV (Peng et al., 2023), xXLSTM (Beck et al., 2024), and (Gated) DeltaNet (Schlag et al.,
2021a; Yang et al., 2024c;a), which can also be motivated by an in-context regression loss, but update
their fast weights with a slower GD process. In a new in-depth evaluation, we show that RNNS, in
particular MesaNets, outperform transformers significantly early in sequences, while underperforming
in next-token prediction and benchmark performance when longer contexts are needed. It should
be stressed that it is exactly in the long-context regime, however, that RNNs show advantages over
transformers in terms of inference time. In our view, these observations merit further investigation,
and may serve as the starting point for novel RNN scaling law analyses.

The biggest shortcoming of the MesaNet in its current form is the increase in test-time compute
despite its dynamic nature. One possible way around this may lie on the findings of Figure 13,
where we see that heads which require more CG steps often do not forget, i.e. v ~ 1 irrespective of
the input data. This motivates leveraging the similarity of solutions from neighboring time steps,
to warm-start optimization of consecutive steps. Moreover, one could envision a hybrid approach
where the chunkwise parallel CG method introduced in this paper is used during training, while then
reverting back to using the efficient Sherman-Morrison recursion at inference time, which could work
given the almost-no-forgetting v ~ 1 condition. We point to additional discussion points in Appendix
I and leave investigating these directions for future work.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide pseudocode for the conjugate-gradient implementation of the Mesa layer in Section B and
Section C, and provide detailed descriptions regarding numerical precision in Section F.5. All other
important aspects for training (e.g. tokenizer, data, context length) are given in Section 4. We will
furthermore, upon publication, provide a triton-based open source implementation of the MesaNet and
Mesa layer, as well as educational colab notebooks to further ease reproduction and experimentation
with our layer and models. Moreover, we focused not only on improving the numbers of our proposed
method but scanned hyperparameters of the related works extensively (see Section D). Lastly, we
focused on an apples-to-apples comparison between methods by using the exact same backbone
while only varying the sequence layer.

REFERENCES

Ekin Akyiirek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Architec-
tures and algorithms, 2024. URL https://arxiv.org/abs/2401.12973.

Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, 2017.

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel, Immanuel Trummer,
and Christopher Ré. Language models enable simple systems for generating structured views of
heterogeneous data lakes. arXiv preprint arXiv:2304.09433, 2023.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance the
recall-throughput tradeoff. arXiv preprint arXiv:2402.18668, 2024.

Jimmy Ba, Geoffrey E. Hinton, Volodymyr Mnih, Joel Z. Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. In Advances in Neural Information Processing Systems,
volume 29, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 2019.

Maximilian Beck, Korbinian Poppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael K Kopp, Giinter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM:
Extended long short-term memory. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=ARAxPPIAKQ.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time, 2024.
URL https://arxiv.org/abs/2501.00663.

Ali Behrouz, Zeman Li, Praneeth Kacham, Majid Daliri, Yuan Deng, Peilin Zhong, Meisam Raza-
viyayn, and Vahab Mirrokni. Atlas: Learning to optimally memorize the context at test time. arXiv
preprint arXiv:2505.23735, 2025.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi,
Alham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, et al. Lessons from
the trenches on reproducible evaluation of language models. arXiv preprint arXiv:2405.14782,
2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
2020.

10

https://arxiv.org/abs/2401.12973
https://openreview.net/forum?id=ARAxPPIAhq
https://arxiv.org/abs/2501.00663

Under review as a conference paper at ICLR 2026

Ond rej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias
Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri,
Aurelie Neveol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia
Specia, Marco Turchi, Karin Verspoor, and Marcos Zampieri. Findings of the 2016 conference
on machine translation. In Proceedings of the First Conference on Machine Translation, pp.
131-198, Berlin, Germany, August 2016. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/W/W16/W16-2301.

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Ale s Tamchyna. Findings of the 2014 workshop on statistical machine translation.
In Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 12-58, Baltimore,
Maryland, USA, June 2014. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology/W/W14/W14-3302.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020a.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, 2020b.

Ryan Burnell, Wout Schellaert, John Burden, Tomer D Ullman, Fernando Martinez-Plumed, Joshua B
Tenenbaum, Danaja Rutar, Lucy G Cheke, Jascha Sohl-Dickstein, Melanie Mitchell, et al. Rethink
reporting of evaluation results in ai. Science, 380(6641):136-138, 2023.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder—decoder
for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans
(eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1724-1734, Doha, Qatar, October 2014. Association for Computational Linguistics.
doi: 10.3115/v1/D14-1179. URL https://aclanthology.org/D14-1179/.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy
Colwell, and Adrian Weller. Rethinking attention with performers. In International Conference of
Learning Representations, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Kevin Clark, Kelvin Guu, Ming-Wei Chang, Panupong Pasupat, Geoffrey Hinton, and Mohammad
Norouzi. Meta-learning fast weight language models. In Yoav Goldberg, Zornitsa Kozareva,
and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 9751-9757, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.661. URL
https://aclanthology.org/2022.emnlp-main.661/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality, 2024. URL https://arxiv.org/abs/2405.21060.

11

http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
https://aclanthology.org/D14-1179/
https://aclanthology.org/2022.emnlp-main.661/
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2405.21060

Under review as a conference paper at ICLR 2026

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins,
Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas, and Caglar
Gulcehre. Griffin: mixing gated linear recurrences with local attention for efficient language
models, February 2024. URL http://arxiv.org/abs/2402.19427. arXiv:2402.19427

[cs].

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and fL.ukasz Kaiser. Universal
transformers, 2019. URL https://arxiv.org/abs/1807.038109.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng Zhang, Stefanie Jegelka, Jinyang Gao, Bolin
Ding, and Yisen Wang. What is wrong with perplexity for long-context language modeling? arXiv
preprint arXiv:2410.23771, 2024.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry
hungry hippos: towards language modeling with state space models. In International Conference
of Learning Representations, 2023.

Marta Garnelo and Wojciech Marian Czarnecki. Exploring the space of key-value-query models with
intention. arXiv preprint arXiv:2305.10203, 2023.

Carl Friedrich Gauss. Theoria combinationis observationum: erroribus minimis obnoxiae. Societas
Regia Scientiarum Gottingensis, 1821.

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit
models. In Proceedings of the 35th International Conference on Neural Information Processing
Systems, NIPS *21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

F.A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction with LSTM. In
1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No.
470), volume 2, pp. 850-855 vol.2, 1999. doi: 10.1049/cp:19991218.

Stephen Gould, Richard Hartley, and Dylan John Campbell. Deep declarative networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

Alex Graves. Adaptive computation time for recurrent neural networks, 2017. URL https:
//arxiv.org/abs/1603.08983.

Riccardo Grazzi, Julien Siems, Jorg K.H. Franke, Arber Zela, Frank Hutter, and Massimiliano
Pontil. Unlocking state-tracking in linear RNNs through negative eigenvalues. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=UvTo3tVBk2.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskwlVY2.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining Recurrent, Convolutional, and Continuous-time Models with Linear State Space Layers.
In Advances in Neural Information Processing Systems, volume 34, pp. 572-585. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
05546b0e38ab9175cd905eebccbebb76-Abstract.html.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The International Conference on Learning Representations (ICLR), 2022.

12

http://arxiv.org/abs/2402.19427
https://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1603.08983
https://arxiv.org/abs/1603.08983
https://openreview.net/forum?id=UvTo3tVBk2
https://openreview.net/forum?id=UvTo3tVBk2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html

Under review as a conference paper at ICLR 2026

Donald O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Wiley, New York,
1949.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs), 2023. URL https:
//arxiv.org/abs/1606.08415.

John Hertz, Richard G. Palmer, and Anders S. Krogh. Introduction to the Theory of Neural Computa-
tion. Perseus Publishing, 1st edition, 1991.

Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 49(6):409—436, 1952.

Geoffrey Hinton, Simon Osindero, and Yee Whye Teh. A Fast Learning Algorithm for Deep Belief
Nets. Neural Computation, 18:1527-1554, 2006.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735-1780, 1997. URL http://dblp.uni-trier.de/db/journals/neco/neco9.
html#HochreiterS97.

John J Hopfield. Neurons with graded response have collective computational properties like those of
two-state neurons. Proceedings of the National Academy of Sciences, 81(10):3088-3092, 1984.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Yutong Hu, Quzhe Huang, Mingxu Tao, Chen Zhang, and Yansong Feng. Can perplexity reflect large
language model’s ability in long text understanding? arXiv preprint arXiv:2405.06105, 2024.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 9099-9117. PMLR, 17-23 Jul 2022. URL
https://proceedings.mlr.press/v162/hua22a.html.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for long
document summarization. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 1419-1436,
Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.
112. URL https://aclanthology.org/2021.naacl-main.112.

Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott Garrabrant. Risks from
learned optimization in advanced machine learning systems. arXiv preprint 1906.01820, 2019.

Fred Jelinek, Robert L. Mercer, Lalit R Bahl, and James K Baker. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of the Acoustical Society of America, 62(S1):
S63-S63, 1977.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers are
RNNSs: fast autoregressive transformers with linear attention. In International Conference on
Machine Learning, 2020.

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, Jonghyun Choi, Ali Farhadi, and Hannaneh
Hajishirzi. Are you smarter than a sixth grader? textbook question answering for multimodal
machine comprehension. In Proceedings of the IEEE Conference on Computer Vision and Pattern
recognition, pp. 4999-5007, 2017.

Teuvo Kohonen and Matti Ruohonen. Representation of associated data by matrix operators. I[EEE
Transactions on Computers, 100(7):701-702, 1973.

Ben Krause, Emmanuel Kahembwe, [ain Murray, and Steve Renals. Dynamic evaluation of neural
sequence models. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 2766-2775. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/v80/
krausel8a.html.

13

https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
http://dblp.uni-trier.de/db/journals/neco/neco9.html#HochreiterS97
http://dblp.uni-trier.de/db/journals/neco/neco9.html#HochreiterS97
https://proceedings.mlr.press/v162/hua22a.html
https://aclanthology.org/2021.naacl-main.112
https://proceedings.mlr.press/v80/krause18a.html
https://proceedings.mlr.press/v80/krause18a.html

Under review as a conference paper at ICLR 2026

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a

benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453-466, 2019.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators. Journal of Research of the National Bureau of Standards, 45(4):
255-282, 1950.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, maxime gazeau, Himanshu
Sahni, Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm
distillation. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=hy0a5SMMPUvV.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems, 2024. URL https://arxiv.org/abs/2402.12875.

Zhixuan Lin, Evgenii Nikishin, Xu Owen He, and Aaron Courville. Forgetting transformer: Softmax
attention with a forget gate. arXiv preprint arXiv:2503.02130, 2025.

Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, and qiang liu. Longhorn: State space
models are amortized online learners. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=830gCcLzeO.

Colin Lockard, Prashant Shiralkar, and Xin Luna Dong. Openceres: When open information extrac-
tion meets the semi-structured web. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pp. 3047-3056, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence of Learning Representations, 2019.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=NjNG1Ph8Wh.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models,
2025. URL https://arxiv.org/abs/2404.088109.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Proceedings of Interspeech 2010, pp. 1045-1048, 2010.
doi: 10.21437/Interspeech.2010-343.

Arild Ngkland and Lars Hiller Eidnes. Training neural networks with local error signals. In
International Conference on Machine Learning, 2019.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

14

https://openreview.net/forum?id=hy0a5MMPUv
https://arxiv.org/abs/2402.12875
https://openreview.net/forum?id=8jOqCcLzeO
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://arxiv.org/abs/2404.08819

Under review as a conference paper at ICLR 2026

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Leon Derczynski, Xingjian Du, Matteo Grella, Kranthi Gv,
Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra,
Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song,
Xiangru Tang, Johan Wind, Stanistaw WozZniak, Zhenyuan Zhang, Qinghua Zhou, Jian Zhu, and
Rui-Jie Zhu. RWKV: Reinventing RNNs for the transformer era. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 14048-14077, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.936. URL https://aclanthology.org/2023.
findings-emnlp.936/.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong.
Random Feature Attention, March 2021. URL http://arxiv.org/abs/2103.02143.
arXiv:2103.02143 [cs].

Michael Poli, Armin W. Thomas, Eric Nguyen, Pragaash Ponnusamy, Bjorn Deiseroth, Kristian
Kersting, Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Ré, Ce Zhang, and Stefano Massaroli.
Mechanistic design and scaling of hybrid architectures. In ICML, 2024. URL https://
openreview.net/forum?id=GDp7GydIonf.

Matt Post. A call for clarity in reporting BLEU scores. In Ondfej Bojar, Rajen Chatterjee, Christian
Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes,
Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia
Specia, Marco Turchi, and Karin Verspoor (eds.), Proceedings of the Third Conference on Machine
Translation: Research Papers, pp. 186—191, Brussels, Belgium, October 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-6319. URL https://aclanthology.
org/W18-6319/.

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei, Baohong
Lv, Xiao Luo, Yu Qiao, and Yiran Zhong. Transnormerllm: A faster and better large language
model with improved transnormer, 2024. URL https://arxiv.org/abs/2307.14995.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl blog, 1(8), 2018.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Amal Rannen-Triki, Jorg Bornschein, Razvan Pascanu, Marcus Hutter, Andras Gyorgy, Alexandre
Galashov, Yee Whye Teh, and Michalis K. Titsias. Revisiting dynamic evaluation: Online adapta-
tion for large language models, 2024. URL https://arxiv.org/abs/2403.01518.

Tanya Rodchenko, Natasha Noy, Nino Scherrer, and Jennifer Prendki. Not every ai problem is a data
problem: We should be intentional about data scaling. arXiv preprint arXiv:2501.13779, 2025.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiga: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Yash Sarrof, Yana Veitsman, and Michael Hahn. The expressive capacity of state space models: A
formal language perspective, 2024. URL https://arxiv.org/abs/2405.17394.

Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, 2021a.

Imanol Schlag, Tsendsuren Munkhdalai, and Jiirgen Schmidhuber. Learning associative inference
using fast weight memory. In International Conference on Learning Representations, 2021b. URL
https://openreview.net/forum?id=TuK6agbdt27.

15

https://aclanthology.org/2023.findings-emnlp.936/
https://aclanthology.org/2023.findings-emnlp.936/
http://arxiv.org/abs/2103.02143
https://openreview.net/forum?id=GDp7Gyd9nf
https://openreview.net/forum?id=GDp7Gyd9nf
https://aclanthology.org/W18-6319/
https://aclanthology.org/W18-6319/
https://arxiv.org/abs/2307.14995
https://arxiv.org/abs/2403.01518
https://arxiv.org/abs/2405.17394
https://openreview.net/forum?id=TuK6agbdt27

Under review as a conference paper at ICLR 2026

Jiirgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. Diploma thesis, Institut fiir Informatik, Technische Universitit Miinchen,
1987.

Jiirgen Schmidhuber. Learning to control fast-weight memories: an alternative to dynamic recurrent
networks. Neural Computation, 4(1):131-139, 1992.

Mark Schone, Babak Rahmani, Heiner Kremer, Fabian Falck, Hitesh Ballani, and Jannes Gladrow.
Implicit language models are RNNs: Balancing parallelization and expressivity, 2025. URL
https://arxiv.org/abs/2502.07827.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017.
URL https://arxiv.org/abs/1701.06538.

Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corresponding to a change
in one element of a given matrix. The Annals of Mathematical Statistics, 21(1):124-127, 1950.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel
Hestness, and Nolan Dey. SlimPajama: A 627B token cleaned and
deduplicated version of RedPajama. https://cerebras.ai/blog/
slimpajama—-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Siddarth Srinivasan, Richa Arora, and Mark Riedl. A simple and effective approach to the story cloze
test. arXiv preprint arXiv:1803.05547, 2018.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to
(learn at test time): RNNs with expressive hidden states, 2025. URL https://arxiv.org/
abs/2407.04620.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models, 2023. URL
https://arxiv.org/abs/2307.08621.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Transformer dissection: a unified understanding of transformer’s attention via the lens
of kernel. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Joel Veness, Tor Lattimore, David Budden, Avishkar Bhoopchand, Christopher Mattern, Agnieszka
Grabska-Barwinska, Eren Sezener, Jianan Wang, Peter Toth, Simon Schmitt, et al. Gated linear
networks. In Proceedings of the AAAI conference on artificial intelligence, 2021.

16

https://arxiv.org/abs/2502.07827
https://arxiv.org/abs/1701.06538
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/2307.09288

Under review as a conference paper at ICLR 2026

Max Vladymyrov, Johannes von Oswald, Nolan Andrew Miller, and Mark Sandler. Efficient
linear system solver with transformers. In Al for Math Workshop @ ICML 2024, 2024. URL
https://openreview.net/forum?id=gc2adlhAWF.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodao Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, 2023.

Johannes von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind Niklas-
son, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Blaise Agiiera y Arcas, Max
Vladymyrov, Razvan Pascanu, and Jodo Sacramento. Uncovering mesa-optimization algorithms in
transformers, 2024. URL https://arxiv.org/abs/2309.05858.

Johannes von Oswald, Seijin Kobayashi, Yassir Akram, and Angelika Steger. Learning random-
ized algorithms with transformers. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=UV5p3JZMjC.

Ke Alexander Wang, Jiaxin Shi, and Emily B. Fox. Test-time regression: a unifying framework
for designing sequence models with associative memory, 2025. URL https://arxiv.org/
abs/2501.12352.

Jos Westhuizen and Joan Lasenby. The unreasonable effectiveness of the forget gate. arXiv preprint
arXiv:1804.04849, 2018.

Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. In IRE WESCON convention
record, volume 4, 1960.

Songlin Yang and Yu Zhang. FLA: a triton-based library for hardware-efficient implemen-
tations of linear attention mechanism, 2024. URL https://github.com/fla-org/
flash—-linear—attention.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule. arXiv preprint arXiv:2412.06464, 2024a.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In Proceedings of ICML, 2024b.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024c. URL https://openreview.net/forum?id=
vy 8RmM4VNRPH.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization. In Advances in Neural
Information Processing Systems 32, Vancouver, Canada, 2019. URL https://openreview.
net/references/pdf?id=S1gBAfb6rr.

Yu Zhang, Songlin Yang, Ruijie Zhu, Yue Zhang, Leyang Cui, Yigiao Wang, Bolun Wang, Freda Shi,
Bailin Wang, Wei Bi, Peng Zhou, and Guohong Fu. Gated slot attention for efficient linear-time
sequence modeling. In Proceedings of NeurIPS, 2024.

17

https://openreview.net/forum?id=qc2adlhAWF
https://arxiv.org/abs/2309.05858
https://openreview.net/forum?id=UV5p3JZMjC
https://arxiv.org/abs/2501.12352
https://arxiv.org/abs/2501.12352
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://openreview.net/forum?id=y8Rm4VNRPH
https://openreview.net/forum?id=y8Rm4VNRPH
https://openreview.net/references/pdf?id=S1qBAf6rr
https://openreview.net/references/pdf?id=S1qBAf6rr

Under review as a conference paper at ICLR 2026

A RELATED WORK

Linear Attention. As already described above, Tsai et al. (2019) demonstrated that the softmax
attention mechanism can be linearized by replacing the softmax kernel «(k, ¢) = exp(k” q) with a
surrogate kernel k' = (o (k), o(q)). The resulting linear attention mechanism iteratively accumulates
the outer product of key-value pairs into a recurrent state that is queried at each step, resembling
RNNs (Katharopoulos et al., 2020). Since then, numerous works have proposed different designs
of the feature map o (-) (Katharopoulos et al., 2020; Choromanski et al., 2021; Schlag et al., 2021a;
Peng et al., 2021; Sun et al., 2023; Dao & Gu, 2024) and key-value normalization (Yang et al.,
2024c; Schlag et al., 2021a; Sun et al., 2023). Notably, a more general form of (unnormalized) linear
attention was introduced in the early ‘90s as Fast Weight Programmers (Schmidhuber, 1992; Schlag
et al., 2021a; Ba et al., 2016), connected to Meta-Learning (Schmidhuber, 1987).

Test-time regression. Contrary to softmax attention, linear attention variants are only capable of
storing a finite number of key-value associations. Given key dimension djcy, there exist at most diey
orthogonal keys, and therefore, retrieval beyond dy.y tokens cannot be error-free. Inspired by the
error-correcting delta rule (Widrow & Hoff, 1960), Schlag et al. (2021b;a) proposed to interpolate
the value with the previously stored association, yielding the DeltaNet. The DeltaNet update rule is
equivalent to performing a gradient descent step with respect to the recurrent state ® on ||®k; — vy ||%.
Yang et al. (2024a) demonstrated that the DeltaNet is parallelizable and achieved strong language
modeling performance when embedded into a modern architecture. Motivated this online regression
loss, other works derived the same update rule as the DeltaNet. Instead of a parallel implementation,
Liu et al. (2025) approximate the update with a diagonal matrix, while Sun et al. (2025) perform the
DeltaNet update on a per-chunk basis, implicitly performing batched gradient descent. Building on
this, Titans (Behrouz et al., 2024) adds momentum to the batched gradient descent update. Wang
et al. (2025) unify numerous efficient foundation models from the perspective of test-time regression.
Extending Titans, concurrent follow-up work Atlas Behrouz et al. (2025) is effectively a sliding-
window variant of the Mesa layer. It is worth highlighting that this line of research is an instance of
Dynamic Evaluation (Mikolov et al., 2010; Krause et al., 2018; Clark et al., 2022; Rannen-Triki et al.,
2024), where model weights are updated at test time via gradient descent steps on a prediction loss.

Models with recurrent depth. The MesaNet is related to a broader class of models building on
fixed point iterations. Universal Transformers (Dehghani et al., 2019) apply transformer blocks
iteratively, using Adaptive Computation Time (Graves, 2017) to make the number of recurrent steps
token-dependent. Deep Equilibrium Models (DEQs) (Bai et al., 2019) take this idea further by directly
solving the corresponding fixed point iteration using quasi Newton methods. More recently, Schone
et al. (2025) introduced an implicit State Space Model that also relies on a fixed-point iteration, which
is trainable in parallel utilizing the Phantom Gradient technique (Geng et al., 2021). In contrast to
DEQ-style methods, the Mesa layer benefits from the linear structure of fast weight memory, which
allows for a more efficient optimization using conjugate gradient steps.

Linear RNNs with forgetting. Forget gates were first introduced by Gers et al. (1999) within the
framework of Long Short-Term Memory networks (LSTMs) (Hochreiter & Schmidhuber, 1997),
and have since become part of the standard LSTM architecture. Even more, studies on simplified
LSTM variants, such as the Gated Recurrent Unit (Cho et al., 2014), have shown the forget gate to be
fundamental for the effectiveness of recurrent sequence models (Westhuizen & Lasenby, 2018).

Compared to LSTMs, modern linear attention variants have adopted more coarse grained forgetting
mechanisms on the matrix-valued recurrent state. RetNet (Sun et al., 2023) and TransNormerLLM
(Qin et al., 2024) both utilize a trainable decay factor on the recurrent matrix. More recent work
found that data-dependent forgetting improves language modeling performance, although the data
dependency is usually limited to the current input, but not the recurrent state, to allow for parallel
training. Using an input-dependent decay factor as in this work is the de-facto standard in modern
linear attention variants, such as Mamba-2 (Dao & Gu, 2024), xXLSTM (Beck et al., 2024), and Gated
DeltaNet (Yang et al., 2024a). Gated Linear Attention (Yang et al., 2024b) opts for a data-dependent
decay vector, effectively using a separate forget gate for each row of the matrix-valued recurrent state.
Similarly, Gated Slot Attention (Zhang et al., 2024) applies separate input-dependent forget gates to
each row of both matrices of a fixed size Key-Value cache.

18

Under review as a conference paper at ICLR 2026

State Space Models. State Space Models (SSMs) (Gu et al., 2021; 2022; Fu et al., 2023; Gu &
Dao, 2024) build upon first-order differential equations used to describe dynamical systems, which
are then discretized for sequence modeling. In linear time-invariant (LTI) SSMs, the recurrent state
can be obtained through a fixed linear combination of previous recurrent states, which allows for
a parallel mode using convolutions. Gu et al. (2022) identified the computation of the convolution
kernel as the primary bottleneck and proposed Structured State Space Models (S4), a parametrization
for LTT SSMs that enables efficient computation. Mamba (Gu & Dao, 2024) introduces selectivity to
State Space Models, making the recurrent state transitions dependent on the input. Since the resulting
time-varying SSM cannot leverage global convolutions, the authors propose a hardware-efficient
parallel scan implementation. Mamba-2 further constrains the transition matrix to scalar times
identity, and demonstrates that the resulting State Space Model is equivalent to (gated) linear attention
(Dao & Gu, 2024).

19

Under review as a conference paper at ICLR 2026

B RANK-ONE UPDATE CONJUGATE GRADIENT METHOD

In the next two sections, we describe how we can use the conjugate gradient method to obtain a
solution for (H; + A;)~'q; = ¢ for many ¢ in parallel. As we will discuss below, the aim is to show
how one can do this without materializing H; for all time steps as this would lead to unnecessary
memory overhead, see Yang et al. (2024b) for a detailed discussion of this problem and a ”chunkwise
parallel” solution. We therefore aim to show here, as a starting point, how to compute g; without
materializing H; = Hy_ 1y + ktk? and only relying on H;_; as well as on y; and k;. This will
eventually allow us, see the next Appendix section C, to compute and materialize H; only every
T/C steps with train length T and chunksize C' times, leading to a drastic decrease in memory
usage. We will do this while approximating Q% = [¢}, 1, ..., ¢}, o] numerically in parallel by only
materializing H, where ¢ € {0,C,2C,...T — C}.

We opted to initialize the conjugate gradient method with = < ¢; - diag(H; + A;)~! in this work.

Algorithm 1 Rank-One Update Conjugate Gradient Method

1: procedure RANKONECONJUGATEGRADIENT(H—1, V¢, k¢, qt, €, Kmax)
2 Input: Symmetric positive-definite matrix H;_; € R™*", forget strength v; € (0, 1), key
k: € R™, query ¢; € R, tolerance € > 0, maximum iterations krmx

3: Output: Approximate solution x.

4 k<0

5: x4 qp - diag(Hy_1 + Ay) 7t > Initial guess z € R™

6: e q — (Hi—1m + kb, + Az > Initial residual r

7: P > Initial search direction p

8 So1d < 117 > Squared norm of the initial residual

9 0o < Oo1d > Store initial squared norm for relative tolerance
10: while k& < k. do > Loop until max iterations reached
11: q 4+ (Hy_1v + ke + Ay)p &> Matrix-vector product (Hy_17; + kek] + A¢)p
12: o g"T—lj’I > Step length o
13: T—x+ap > Update solution x
14: T4 T —aq > Update residual r
15: Onew — LT > Squared norm of the new residual, ;¢
16: if \/0pew < €00 then > Check relative convergence: ||rg+1|| < €||ro]
17: break > Converged
18: end if

19: B+ % > Improvement factor 3
20: P71+ pBp > Update search direction p
21: Oold < Onew > Store new norm as old for next iteration
22: k+—k+1 > Increment iteration counter

23: end while

24: return r > Return the approximate solution
25: end procedure

On top of H;_1p, all other parts of the (H;_17vy; + ktkf -+ At)p computation can be reduced to
one vector inner-product k, p as well as element-wise products and a final addition of the results.
One can therefore approxiamte g; numerically without materializing H;, which we will extend
in the following to chunks i.e. compute Q} = [g},,...,q;,] in parallel without explicitly
materializing H; with ¢ < t < ¢+ C. This will become obvious after realizing that the computation
of (Hi—1v: + ki ktT + A4)p is equivalent to GLA, therefore allowing for the chunkwise parrallel
computation proposed in Yang et al. (2024b) of GLA.

20

Under review as a conference paper at ICLR 2026

Note that the most flops during inference are spend in the matrix-vector product H;p where we apply
the CG method simply to (H; + At)_lqt (and not do not use the “rank-one” update formulation
above) resulting in the O(kn?2) of Table 3.

We refer to Appendix F.5 for further details about numerical precisions considerations within our CG
solver.

C CHUNKWISE PARALLEL FORM OF GATED LINEAR ATTENTION AND THE
MESA LAYER

Mesa layer forward pass: The main Mesa recurrence (Equation 5) can be rewritten as follows,
considering only one head and assuming without loss of generality that input gates are absorbed in
keys and values:

Hy=H;_1v + ktktT
Gy =G + Utkt—r

q = (H+ M) '
oy = th;

Note that H; is symmetric, and A; is diagonal, so H; + A is also symmetric. Let’s define

t .
G = [[i—ey17vi ift>s
ts 0 otherwise

with which the computation of o; (unrolling the definition of G) has the following form:

t
o=y Cuvik] g} ©)
=1

To connect to Section 2 where the Mesa layer is defined through a set of optimized linear model fast
weights @, we note that this is equivalent to minimizing the following objective w.r.t. ®,

Tr(®TAD)

TR (10)

t

. 1

QP = arg(gnm 3 E 1 Ceil|vi — <I>k:i||2 +
1=

and then computing the output through o, = i)?esaqt. We remark that if g; is given, this computation
is equivalent to a Gated Linear Attention (GLA) layer Yang et al. (2024b), and thus can be efficiently
computed on GPUs and TPUs by splitting the sequence in blocks of opportune sizes C' resulting
in a “chunkwise parallel” form of the layer. In short, given G,, where ¢ € {0,C,..., T — C}
dividing the training sequence length 7" in 7'/ C chunks of size C, we can compute the output at time
c<t<c+Cas

t t
o= (Gt Y Cuvik])g; = Gegi + > Cuvik/ q (1)
i=c+1 i=c+1

Similar to softmax self-attention, this computation can be done in parallel for ¢t € {c + 1,...c + C'}
which becomes clearer when using matrix notation
Oc = GeQ; + Ve(Z: © (K] Q7)) (12)

where K. = [k, ..., kerc] and O, V., QF accordingly. Z. is a upper triangular matrix of size
C x C with Z.[i, j] = (et j,c+i- Please see for Triton-based implementation of this chunked parallel
formulation of GLA at https://github.com/fla-org/flash-linear-attention.

21

Under review as a conference paper at ICLR 2026

We differ from GLA as the Mesa layer replaces q; which is the standard query ¢ = Wge; by
q; = (H; + A;)~'g which, as we alluded to above, can as well be computed equivalently to
GLA in chunkwise parallel form. Indeed, as shown in the previous section, the conjugate gradient
method relies purely on simple vector additions and multiplications which can be trivially realized in
chunkwise parallel form without extensive memory overhead, with the exception of (H; + A;)p. This
operation suffers from the same memory problems as a naive GLA layer implementation as storing
H, for all time steps is costly which we therefore wish to circumvent. Fortunately, this can easily be
done with the exact same chunkwise parallel trick just discussed, which we now leverage to compute

t
(Hi+A)p=Hp+ A -p= Cikik/ p+ Ay - p. (13)

i=1

which is required in the conjugate gradient algorithm.

Note that the first term 22:1 Criki k:lT p is in an equivalent form of GLA (by replacing v; with k;) for
which we just established that a fast chunkwise parallel formulation exist, if we again store only some
intermediate states H.. We conclude that the computation of ¢; = (H; + At)_lqt and therefore the
whole Mesa layer can be approximated by repeatedly applying a in chunkwise parallel computation
leveraging matrix-matrix accelerators on GPUs or TPUs.

Mesa layer backward pass: Let e; be the error coming from future layers at time ¢ and L be the
final loss. Then we have the following:

er = (Ht +At)71G:€t

dL dOt *
— = —e=c¢
dq dq: ! K
dL _ dOte:—*'e*l
dAtyi dAt’i t Qt’z bt
do
dv: er = ek (He + M) "'y
dL * T
d’US = ; CtsetQt ks
dL * % * % * ok
dk, = ; Cts(qt etTUs - etthks — 4 etTks)
dL X % *
d = ZCts(thGsflet _etTHsflqt)
Vs t>s

This is a time-reversed version of the formulas to compute the derivatives with respect to vs and
ks. Note that jTLS and :ziTLS can again be computed in chunkwise parallel manner as they are sums
of expressions which are all GLA formulation equivalent. e; is also chunkwise parallel compatible
since, as we just established, running conjugate gradient (chunked) parallelized in time is possible.

It remains to see how to quickly compute the derivatives with respect to v,. To that purpose, let us
consider the first term in the equation defining the derivative, as the second can be handled similarly;

we have that: N *
Z Ctsqt TG’s—let = Z Tr[CtSQt TCTYs—let] =

t>s t>s

= Z T‘I‘[Gsflctsetq;‘—r] =

t>s

=Tr Gs—l Z (tsetq;(—r

t>s

This already gives a way to compute the derivatives that is linear in sequence length (as it is sufficient
to accumulate the ¢-dependent part as s decreases). However, for maximum efficiency we would

22

Under review as a conference paper at ICLR 2026

like to also split the computation into blocks and make use of matrix multiplication units for this
computation.

Let Fy, = Zt> s Ctsetqu. We now explain how to compute the value above simultaneously for a
block of indices s = L+ 1,...,U — 1.

Gs—1=Grls—12+ Z Csflp”pk;

L<Ip<s

thsetqr—r = Z CtsetqzcT +CZ/ISFU

t>s s<t<u

Tr |Ger Y Geerd; | =T | | GeGore+ D Comrptpky, D Gerd) " + CusFu

t>s LIp<s s<t<U

:TT[GLFUCUSCS—1£]+TT GLCS—LC Z Ctsetq:—r +
s<t<U

+Tr [Fulus Y Coorptphy | +Tr | D> et T > Camrptpk,

L<Ip<s s<t<U L<p<s
= Tr [GeFul QusCs—12 + Z CsCom12 Tr [Grewg; '] +
s<t<U
+ Z CusCs—1p Tr Fuvp Z Z CesCom1p T [ergf vpk;T]
L<p<s L<p<s s<t<U

For computing the last term, we can make use of the fact that (,;, = 0 if @ < b to rewrite it in the
equivalent forms

Z Z Cs—1p(a Up) k et)Ces = Z Z Cs—1p(a Up)(k et)Cts

L<p<ss<t<U L<p<U LLt<U
which can be computed as the product of the three matrices Z*, @), Z with Z;“j = (i—1j> Qij =
(q;Tvi)(le €;j), Z;; = Cij;; the requested values appear then as the main diagonal of this matrix.

The second term can be similarly rewritten as

Coore Y, (67T Gee)Gs =Core Y, (47 Geer)Gs

s<t<U L<t<u

which can be computed by multiplying the vector p; = ¢; ' G ce; by the Z matrix defined above, and
then by doing a point-wise vector multiplication by (51 ..

Finally, the first term can be computed simply by computing the trace once and then doing a point-wise
vector multiplication, and the third term can be computed as the second.

D A FULL DESCRIPTION OF THE MESA LAYER, RELATED WORK AND THE
MESANET

For completion, we repeat the Mesa layer computation which is described throught the following
equations

H H

Aemess — Z Ph(I)ht Qe = Z Py, Gy, linsolve(Hy ¢ + Ap, ght)- (14)
h=1 h=1

The equation above depends on two state variables, Sy, ; = {Gh,¢, Hp ¢ }, which we obtain through
the linear recurrence relations:

Ghit=Ghi—1Vnt + Uh,tk;tﬁh,t, Hypy=Hp19n,e + k’h,tk;,t/@h,tv (15)

23

Under review as a conference paper at ICLR 2026

Layer Recurrence Memory read-out

Mamba2 Gt = ")/thfl + ’Utk';r [tht

GLA Gt = 1Gi_1 + Bk o = Gqy

DeltaNet Gt = thl(-[— ﬁtktk;r) + ﬂtvtk: Ot = tht

Gated DeltaNet Gy = Gy_1(7: (I — Beksk/)) + Bevik, o = Giqy

mLSTM G = nGi_1 + Brvek) 20 = ze—1 + Bike oy = Gyqy/max{1, |z} ¢}
Mesa Gt = ’Ythfl + Btvtk;—, Ht = ’7th71 + Btktkt—r Oy = thinSOIVe(Ht + A7 qt)

Table 2: Overview of recent linear recurrent models which we compare to in this work (except from LRU layers,
see De et al. (2024).

where as before v, € [0,1] is a forget gate and 85, € [0, 1] is a input gate, where we adopt the
conjugate gradient method as the solver (Lanczos, 1950; Hestenes et al., 1952). Before the Mesa
layer computation, we compute the keys, queries, values as well as input and forget strength in the
following way.

First, we normalize the embeddings with an RMS norm e; < RMSNorm(e;). After projections
ki = Wiet,q¢ = Wyer, vy = Wiv, we convolve them in time with a window size of 4 e.g.
ki <+ Z?:o K+_;b; 1 with learnable parameters by, . . ., by. Furthermore, after applying a SiLU(z) =
2 * o(x) non-linearity we normalize the keys and queries (but not values) to have L2-norm of 1 i.e.
ki < SiLU(ky)/||S1iLU(ke)|| and g4 <— S1LU(q:)/||S1LU(gs)ll-

For the forgetting and input gate we simply squeeze the RMS normed e; projections through a
sigmoid i.e. By = o(e,Wp) and v, = o(e,W,,). After computing the output of every head, we apply
a RMS norm i.e. the actual output of the Mesa layer amounts to

"
Aefe* = " PyRMSNormy (G slinsolve(Hp i + An, qn.1)). (16)
h=1

The regularization parameters are simply send through a softplus function to ensure positivity i.e.
Ay + softplus(Ap). We did experiment with a input / time dependent regularization strength but
in this work opted for a fixed lambda over time, see Section I

Comparison to related work: To ensure a 1-1 comparison with related work, we use the exact same
parametrization of the keys, values and queries as well as forget and input strength parametrization for
the GLA, Mamba2 and (gated) DeltaNet. Here, only the state update as well as output computation
differ depending on the rule, see Table 2 for an overview. The mLSTM layers, which we also compare
to, have a different parametrization of the forgetting as well as input strength and keys and quries are
not normalized by their L2 norm, see Beck et al. (2024).

24

Under review as a conference paper at ICLR 2026

Layer | Output & state update \ Memory | Flops output & state update
MEA | or = 2y _y v a(Ky g | (onrs ke)y — 2nat | O(nq.t) —O(1)
GLMHA ot = g with o, —n? O(n2) — O(n2)
Py = D1yt + Beveki
DN ot = ®rq; with Oy —n?2 O(n2) — O(n2)
Dy =Dy q(ye(I — /BtktTkt)) + Bevy Ky
MESA | Equation 5 | Si ={Gi,H:} —2n2 | O(n3) + O(kn2) — O(n2)

Table 3: Flops as well as state size comparison between MHA, gated linearized multi-head-attention
(GLMHA) such as xXLSTM or Mamba?2, (gated) DeltaNet (DN) and the Mesa layer during inference. All
softmax attention alternatives require O(n2) flops, with key size 74, to compute the output as well as update the
state(s). The Mesa layer requires an additional k steps of the CG method which costs O(kn?). For simplicity
We assume n, = Ng.

D.1 MODEL DESIGN

We give an overview over the network architecture for all models compared in this work in bullet
points. The only difference is the way how to do the ”sequence” mixing of the keys, valyes and
queries (and forget and input gates), with an exception of the LRU layer (De et al., 2024), see Table 2.

* The model consists of an embedding layer of size n., which is also shared at the end of
the model to compute the logits. We do not apply regularization on the parameters of the
embedding.

* The model is then followed by N number of blocks consisting of a sequencing layer e.g.
MHA, GLMHA, DN or Mesa, described in Section 2, followed by an MLP layer. The
input of both the MLP as well as sequencing layer go through a RMSNorm (Zhang &
Sennrich, 2019), see Figure 1. After computing the logits, we apply a soft hyperbolic
tangent clip with ¢ = 30 with logits = tanh(logits/c)c, again following the open source im-
plementation of De et al. (2024), see https://github.com/google-deepmind/
recurrentgemma/blob/main/recurrentgemma/ jax/griffin.py.

» To compare all different sequencing layers as closely as possible and focus on their ability
to incorporate information from the context, MHA, GLA, Mamba2, xLSTM, the (gated)
DeltaNet, as well as the Mesa all use the exact same key size and therefore the exact
same amount of parameters to compute the queries, keys and values. All RNN layers, for
direct comparison, additionally only use per head a one dimensional gate for forgetting
as well as writing which we squeeze through a sigmoid function i.e. §; = o(Wse;) and
~v¢ = o(W,e), except the mLSTM layer. This stands in some contrast to how the models
were originally designed e.g. Gated Linear Attention (Yang et al., 2024a) or RWKYV (Peng
et al., 2023) use higher dimensional forget gates. Furthermore, all RNN layers convolve the
keys and queries with a window size of 4. Note that for all models, except from mLSTM
which uses a special parameterization and normalization, we apply a SiLU (or swish) non-
linearity (Hendrycks & Gimpel, 2023) before we normalize the keys and queries by their
L2-norm. The output of each head is independently before the linear projection back to the
residual stream send through an additional RMSNorm.

* We define Mamba2 as non-gated linearized multi-head attention following Yang et al.
(2024c) and GLA as its gated counterpart with e;-dependent forget strength ;.

* When using the LRU layer (De et al., 2024), we notice that the layer, in its default hy-
perparameter configuration, subsumes more parameters than MHA and the other RNN
alternatives, as they use exactly the same number of parameters to each other. We therefore
decrease the hidden size multiplier which determines the increase of the RNN state when
compared to the embedding size, to match parameter count.

* The Hawk-Mesa model simply alternates between blocks that have either a LRU layer or a
Mesa layer.

25

https://github.com/google-deepmind/recurrentgemma/blob/main/recurrentgemma/jax/griffin.py
https://github.com/google-deepmind/recurrentgemma/blob/main/recurrentgemma/jax/griffin.py

Under review as a conference paper at ICLR 2026

Hyper Parameter Search

Embedding dimension 128

Number of layers 2

Number of heads 8

Key size 16

Epochs 200

Batch size 32

Optimizer AdamW
Learning rate [3e-3, 1e-3, be-4, le-4]
Weight decay [0.01, 0.1]
Bs (0.9, 0.98)

Scheduler Cosine Scheduler with Warmup
Minimum learning rate le-5
Warm-up start learning rate le-7
Warm-up steps 750

Table 4: MAD benchmark suite hyper-parameters, taken from Poli et al. (2024).

* For the MLP layers we follow again De et al. (2024). We create two branches both with
dimension of n. - 3, apply a SiLU non-linearity to one of the branches and merge them by
multiplying. We then down project with a simple linear layer into n. dimension.

* All weights are initialized by sampling them from a normal distribution and in “fan in”
mode, while scaling the variance of the weights which project back to the residual stream by
2.0/N.

E EXPERIMENTAL DETAILS: MESANET IN SYNTHETIC ENVIRONMENTS

E.1 MAD BENCHMARK SUITE

We follow the benchmarking procedure detailed in Poli et al. (2024) precisely: For each task in
the suite, we evaluate the architectures on subtasks of varying difficulty (i.e. varying sequence
length, number of training examples, vocabulary sizes and further, task-specific parameters) and
compute the mean accuracy. We further sweep over varying learning rates and weight decay values
for each model and report the maximum average task accuracy. For each architecture, we fix a set of
hyper-parameters that can be found in Table 4.

E.2 REGBENCH IN-CONTEXT LANGUAGE LEARNING BENCHMARK

Following Akyiirek et al. (2024), we report the test-accuracy of the configuration obtained from a
grid-search over a pre-defined set of shared hyper-parameters for all models, which can be found in
Table 5.

F EXPERIMENTAL DETAILS: MESANET IN A LANGUAGE WORLD
We follow closely the experimental setup of Beck et al. (2024) as well as De et al. (2024).

F.1 DATA

We train models on SlimPajama Soboleva et al. (2023) and use the GPT-2 tokenizer Radford et al.
(2018) which uses a vocab size of 50257, as in Beck et al. (2024). We pre-tokenize the dataset
and fill up sequences with context length shorter than the train length, which is set to 2048, with
other randomly sampled sequences until the context train length is full. We separate these separate
sequences with a BOS token. We follow the same recipe when creating the validation data. Note that
this procedure might bias the training as well as evaluation of the model towards shorter sequences.

26

Under review as a conference paper at ICLR 2026

Hyper Parameter Search
Embedding dimension [64, 128, 256, 512, 1024]
Number of layers [1,2,4,8,12]
Number of heads [1,2, 4]
Epochs 50
Batch size 32
Optimizer AdamW
Learning rate [1le-4, 2.5e-4, 1e-3]
Weight decay [0.01, 0.1]
Bs (0.9, 0.99)
Scheduler Cosine Scheduler with Warmup
Minimum learning rate 2.5e-5
Warm-up start learning rate le-7
Warm-up steps 25000

Table 5: RegBench hyper-parameter search-space, taken from Akytirek et al. (2024). For all models, we keep
the key size fixed to 128 across combinations of embedding dimension and number of heads.

‘We train on two dataset sizes: 15 billion and 50 billion tokens.

F.2 MODEL DESIGN
We give an overview over the network in bullet points.

* The model consists of an embedding layer of size n., which is also shared at the end of
the model to compute the logits. We do not apply regularization on the parameters of the
embedding. We follow again De et al. (2024) and initialize the parameters of the embedding
matrix in “fan in” mode but scale back the embedding during inference by ,/n. leading to a
variance of 1 in the residual stream.

* The model is then followed by N number of blocks consisting of a sequencing layer e.g.
MHA, GLMHA, DN or Mesa, described in Section 2, followed by an MLP layer. The input
of both the MLP as well as sequencing layer go through a RMSNorm (Zhang & Sennrich,
2019), see Figure 1. After computing the logits, we apply a soft hyperbolic tangent clip with
¢ = 30 with logits = tanh(logits/c)c, again following De et al. (2024).

* To compare all different sequencing layers as closely as possible and focus on their ability
to incorporate information from the context, MHA, GLA, Mamba2, xLSTM, the (gated)
DeltaNet, as well as the Mesa all use the exact same key size and therefore the exact same
amount of parameters to compute the queries, keys and values. All RNN layers, for direct
comparison, additionally only use per head a one dimensional gate for forgetting as well
as writing which we squeeze through a sigmoid function i.e. 8, = o(Wgey + bg), v =
o(W,,e. + by,), except the mLSTM layer which has a more elaborate parametrization.
This stands in some contrast to how the models were originally designed e.g. Gated Linear
Attention (Yang et al., 2024a) or RWKYV (Peng et al., 2023) use higher dimensional forget
gates. Furthermore, all RNN layers convolve the keys and queries with a window size of
4. Note that for all models, except from mLSTM which uses a special parameterization
and normalization, we apply a SiLU (or swish) non-linearity (Hendrycks & Gimpel, 2023)
before we normalize the keys and queries by their L2-norm. The output of each head is
independently before the linear projection back to the residual stream send through an
additional RMSNorm.

* We define Mamba2 as non-gated linearized multi-head attention following Yang et al.
(2024c¢) and GLA as its gated counterpart with e,-dependent forget strength ;.

* When using the LRU layer (De et al., 2024), we notice that the layer, in its default hy-
perparameter configuration, subsumes more parameters than MHA and the other RNN
alternatives, as they use exactly the same number of parameters to each other. We therefore
decrease the hidden size multiplier which determines the increase of the RNN state when
compared to the embedding size, to match parameter count.

27

Under review as a conference paper at ICLR 2026

Model size | Trainsize | Transformer Mamba2 GLA xLSTM DeltaNet Gated DeltaNet Hawk Hawk-Mesa Mesa
Small 15 0.0025 0.003 0.002 0.0025 0.003 0.001 0.002 0.0025 0.003
Small 50 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.00095
Medium 15 0.0015 0.0025 0.0025 0.003 0.003 0.0025 0.0025 0.002 0.0025
Medium 50 0.001 0.001 0.00095 0.0009 0.00085 0.00095 0.0009 0.0009 0.001
Large 15 0.002 0.002 0.002 0.0015 0.0015 0.002 0.002 0.002 0.002
Large 50 0.0008 0.0009 0.00085 0.0008 0.0008 0.0009 0.0009 0.00085 0.00085

Table 6: Peak learning rate for all models trained for this work determined by a learning rate grid scan.

» The Hawk-Mesa model simply alternates between blocks that have either a LRU layer or a
Mesa layer.

 For the MLP layers we follow again De et al. (2024). We create two branches both with
dimension of 3n., apply a SiLU non-linearity to one of the branches and merge them by
multiplying. We then down project with a simple linear layer into n, dimension.

s

* All weights are initialized by sampling them from a normal distribution and in “fan in’
mode, while scaling the variance of the weights which project back to the residual stream by
2.0/N.

F.3 TRAINING DETAILS

We train over all the models in this work with batch size of 256, the AdamW optimizer (Loshchilov
& Hutter, 2019) with weight decay strength 0.1, ¢ = 1 x 1078, 3; = 0.9, 32 = 0.98, and a cosine
learning rate scheduler with initial learning rate 1 x 10~%, warmup steps of 2000 and a peak learning
rate of [which is scanned for each experiment, see below. We cosine decay the learning rate to
10% of the peak learning rate till the end of the training determined by the train set size. We use as
loss the classic cross entropy on the next token; we do not compute the loss on the BOS token. We
apply gradient norm clipping to norm 1. We apply mixed precision training where the weights are
float 32 but activations are bf1oat 16 following Beck et al. (2024). Interestingly, we find that
this actually improves next token perplexity slightly compared to using £1oat 32 everywhere.

F.4 HYPERPARAMETER SCANS

We train 3 model sizes: 140 million, 440 million and 940 million parameters following roughly
Beck et al. (2024). As already mentioned, all architectures have by construction almost exactly the
same number of parameters for the same architectrual dimensions. All recurrent neural network
types have the same parameters as multi-head attention but additionally have two parameter vectors
of size n, which produce the two gates per head. The Mesa layer has additionally n, (fixed in
time) parameters for (meta-)learned A regularization. Since the parametrization of the LRU layer is
different by construction, we simply adjust the hidden size scaling to 1.25 to match the parameters
of the other RNN layers. The 3 different model sizes use key size n, = 128 and otherwise are setup
as follows:

* 140 million — Small: N = 14 blocks, h = 6 heads, embedding dimension n, = 768.
* 440 million — Medium : N = 28 blocks, h = 8 heads, embedding dimension n, = 1024.

* 940 million — Large : N = 28 blocks, & = 12 heads, embedding dimension n, = 1536.

The exact number of parameters and peak learning rate can be found in Table 6. For all models, we
scan the same range of learning rates: for models trained for 15 billion tokens we scanned {0.003,
0.0025, 0.002, 0.001, 0.0015}, and for models trained for 50 billion tokens, we observe, similar to
Beck et al. (2024), that smaller learning rates were beneficial and thus scan {0.001, 0.00095, 0.0009,
0.0085, 0.0008}. We train all sliding window attention (SWA) models, as they are only reference
points, with learning rate 0.001.

28

Under review as a conference paper at ICLR 2026

F.5 NOTES ON PRECISION USED IN THE CG-SOLVER, MESA LAYER DESIGN CONSIDERATIONS
OR Why you shouldn’t scream at your Mesa layer

The MesaNet, for the model sizes we consider for the language experiments, solves during training
millions of linear systems of equations numerically in one forward pass. Somewhat surprisingly,
we did not encounter many training instabilities when setting some crucial hyperparameters and
architectural details accordingly. First, we follow related work and normalize keys and queries - this
is a crucial first step to stabilize the Mesa layer. Second, the most important hyperparameter for the
Mesa layer, which strongly influences the conditioning number and therefore the number of CG steps
needed to solve the linear systems, is the regularization strength A. Due to experimentation when
training small models, we initialized A = I but restricted its values to be lower-bounded by 0.25. We
hypothesize that this lower bound is important to, implicitly, upper bound the condition number. We
determined the A lower bound by a grid scan when training the medium sized model on 15B tokens.
See Figure N for some A values of a trained model. We parameterize A through a softplus function
i.e. A = 0.25 + softplus(A) and adjusted the initialization of the A parameter accordingly.

When training on SlimPajama and using the GPT-2 tokenizer, we noticed that the dataset, especially
the sequences which contain code, contains sequences which consist of many repeated tokens such as
the empty token ” . We call this ”’screaming at your language model”. These kind of inputs to the
Mesa layer lead to a matrix Hj, ; = K, K, {t which contains sums of the same vector outer product
which we analysed leads to instabilities when «y; ~ 1. We therefore upper-bound +y; by b, = 0.9975
(which might be train length specific) and adjust its value depending the input strength 3;: when
training on SlimPajama, we use v; = y;5,, with s, = (1 — (1 — b,)/37). Note that other tokenizers
which merge repeated ” ” should solve this problem partially. This correction improves perplexity in
scans on small models and so we adopted it throughout our experiments.

A final comment on the precision of the CG solver: The opted to use FP32 matrix multiplication
precision inside the CG solver solely within our Pallas kernel. Note that we used BF16 everywhere
else to compare other RNN and transformer models with our MesaNet fairly. This reduces memory
loading times as we only load data with BF16 precision, compute ¢* in our solver with FP32 precision,
and cast it down in our solver to FB16.

Although we did not investigate in depth FP16 or BF16 precision within the CG solver for which
convergence problems are well known, we found the training times when using FP32 acceptable. We
leave this important investigation for future work.

We end here with a note of caution when using these lower precisions on GPUs as more work might
be needed to ensure stable convergence to the approximate solution of the linear solver.

F.6 EXPERIMENTS COMPUTE RESOURCES

We provide here an estimate of the compute resources used for a single run of a 1B model. We note
that transformers, MesaNets and other RNNs were of somewhat comparable speed on average and
so estimate compute by averaging and not differentiating costs across models. We mostly relied on
TPUVS to conduct our experiment. Here we used multi-pod TPUvS5s which fit the whole models,
without model sharding, and therefore were able to rely solely on batch sharding. For the 1B models,
one training run, with sparse intermediate evaluation, when training on 50B tokens lasted around 36
hours on average. When training on smaller models, the train time significantly dropped. All Mesa
layer investigations were done on the 400million scale when training on 15B tokens resulting in
train runs which last 3-12 hours depending on the amount of CG steps used and data parallelization
applied.

Running our evaluation pipeline for all downstream benchmarks took on average 3 hours on the same
hardware, although we note that we did not optimize this pipeline for run time.

G THE ORIGINAL RECURSIVE LEAST-SQUARES MESA LAYER

We now review the original version of the Mesa layer (Von Oswald et al., 2024), where <i>‘t“es"‘
was determined through the classical recursive least-squares algorithm. The key observation is

29

Under review as a conference paper at ICLR 2026

that "% = V,K, R, ' = 0,_, ik, (Zi,zl ok, + A) 1, and that one can calculate the
inverse R, ! recursively through the Sherman-Morrison formula (Sherman & Morrison, 1950; Gauss,
_ _ R kek] R
I
this solution is problematic for two reasons. First, when introducing time-dependent forget gates
¢ € [0, 1] which scale the previous state, i.e., (Rs_17: + k¢k;') ~*, the matrix inversion for small -y,
can introduce numerical instabilities as R; ' % can grow unbounded. Moreover, note that this Mesa
layer version forgets the regularization term A exponentially fast, as it only enters through the initial
state Ry ! Second, we are not aware of a way of computing R, ! in a parallel-in-time fashion. This
precludes efficient parallel training at scale in current hardware.

, with Ry I — A—1. While efficient for sequential inference,

The Mesa layer as a second-order in-context learning method. As reviewed in Sections 2 and A,
the closely related DeltaNet model (Schlag et al., 2021a) updates a matrix-valued state variable
& € R™*"« following online gradient descent on a squared error loss. Omitting the head index, the
dynamics of this layer reads

By = Byy — BVETT(D4m1) = Byoy + Belvr — Bo ik - (17)

To make comparison with this layer easier, we now express the Mesa layer (equation 4) in a similar
recurrent form. We assume that we are in the case where the Sherman-Morrison recursion explained
above holds, so that we can write Ht_1 as a function of H,_ 11. This requires that forgetting is disabled
(V¢y: = 1), or that the regularizer A decays exponentially with time. For simplicity, we assume in
what follows that there is no forgetting. Then, using the convention that Hy = A, we have that

o, = G.H? (18)

= (Gy_1 + vk, VH (19)

= (®y_ 1 Hy_y + vk,)H (20)

= O,y (Hy — ek) H7 ' + vk H? Q1)

=y — By k] H7 '+ vk H? (22)

= @1 — (De—rhe — vk Hy (23)

=01 — V3 Ly(Pe—1) Vol (®4_1), (24)

recalling that £ is the cumulative regularized loss (equation 4) and [;*" = ||v? — ®k,||%. To go

from equations 19 to 20, we used the fact that &, _; = G, 1 H,_ 11. From equations 20 to 21, we used
the identity H, 1 H; ' = (H; — k¢k,) H; .

Thus, while the DeltaNet and related layers perform (first-order) online gradient descent on a squared
error loss, the Mesa layer implements instead an online (second-order) Newton descent algorithm.

H A PRELIMINARY INVESTIGATION INTO STATE TRACKING WITH THE MESA
LAYER

Recent work has investigated the (missing) state-tracking ability of transformers, modern state space
models and linearized transformer RNN models, see e.g. (Merrill et al., 2025). It remains an active
research direction to study under which circumstances these in-time parallelizable RNN models can
better track state than transformers (Merrill & Sabharwal, 2024; Li et al., 2024).

One simple architecture change proposed in Sarrof et al. (2024); Grazzi et al. (2025) which allows
layers such as Mamba, GLA or gated DeltaNet to solve certain state tracking tasks is to use forget
strength v, € (—1,1) instead of v, € (0,1). We highlight that this change naively is not possible
to incorporate into the Mesa layer. Indeed, v, € (—1,1) could violate the positive definiteness
of (Hy_1v; + kik, + A) leading to a potentially ill-defined linear system of equations problem.
The Mesa layer is equivalent to GLA if ¢ = ¢; which can be enforced by setting A to very large
values such that (H; + A)~! ~ A~! and rescaling ¢; by A. Although undesirably from an online
learning perspective, high A should lead to (H;_1v; + k:k, + A) rendering positive definite even

30

Under review as a conference paper at ICLR 2026

1.51 rEW1) 1.01
ve€(-1,1) 50,9—
@ C4 sl ve€(-1,1)
k] 2 0.8 Ve €(0,1)
.% g 0.71 Train length
= 0.5 2 --=- Random guessing
v 0.6
}_
0.0/ ‘ ‘ ‘ ‘ 0.5 == === - - Wil e v -
64 128 192 256 40 64 128 192 256
Train samples (x10%) Sequence length

Figure 7: Negative ; and high A allow MesaNets to solve parity: When using v; € (—1, 1) as well as
enforce high A, we enforce the MesaNet into functionality close to GLA as g; = ¢¢ which allows us to use
MesaNet with v; € (—1, 1) which naive applied does not lead to a well-defined mesa-optimization problem.

if y; € (=1, 1) leading to state tracking capabilities as observed in Grazzi et al. (2025) for models
such as Mamba or DeltaNet with v; € (—1,1). We show first state tracking results for MesaNets
with v, € (—1,1) or v € (0,1) while initializing A = 50 - I and restricting its lower value to 49.
These values are chosen by hand, generally a wide range of (large) A actually gave us the same
results. When now learning parity, see Figure 7, MesaNets, as hypothesized, start solving parity
with perfect accuracy when endowed with v, € (—1, 1), similar to results presented for Mamba
and gated DeltaNet in Grazzi et al. (2025) when using ; € (—1,1). Although this parametrization
showcases the flexibility of the Mesa layer encompassing the capacity of GLA (and similar layers
such as Mamba and mLSTM) by enforcing high regularization, we stress that this solution is in our
opinion rather a bug than a feature. This is because we actually wish to utilize the extra flops spend
to compute g; . We leave investigating how the MesaNet could track state while not falling back to
GLA functionally for future work.

Experimental details. We train a MesaNet with 2 layers, an embedding dimension of 128, and
4 heads per sequence mixing module (each head with dimension 128) amounting to roughly 1M
parameters. For training we sample bitstrings on the fly and compute the respective ground truth parity
scores at each sequence position. We then train the model to predict the parity score at each position
in the sequence. During training bitstrings are restricted to a length of 40. In a final evaluation, we
test the trained model on sequences up to length 256. We train on a batch size of 256 and train in the
infinite data regime sampling a total of 10000 batches. We use a weight decay of 0.03 and a learning
rate of 0.001. To obtain the results displayed in Figure 7 we initialize A = 50 and lower bound
it to 49 and train once with positive eigenvalues only (; € (0, 1)) and once allowing for negative
eigenvalues (v € (—1,1)).

I FURTHER DISCUSSION POINTS

We list here some additional discussion points which we couldn’t place in the main text because of
space constraints

* Backpropagation through the conjugate gradient method: Currently, we are computing
the gradient through the Mesa layer assuming that we have approximated ¢; numerically
well. We believe this current version is a shortcoming of the Mesa layer and speculate that it
is actually feasible to train the MesaNet to cope better with fewer steps (and not approximate
q; as well). For this we would use a stochastic number of CG steps during training, ranging
for example from O to 30, and backpropagate through the unrolled process, potentially
obtaining a model which is trained to be behave “optimally” given a certain number of
CG steps. This would allow for an even better dynamic test-time compute allocation of
the MesaNet during inference as users could flexibly decide to spend more compute for
a better model. Interestingly, one could additionally condition (e.g. with a set of BOS
token indicating the number of CG steps used during the forward pass) the models forward
computation and therefore allow the model to learn to adjust its representation at every layer
dependent on the CG steps used in the Mesa layers. We speculate that we therefore would

31

Under review as a conference paper at ICLR 2026

obtain a MesaNet which behaves on par with e.g. GLA, Mamba or XLSTM with 0 CG steps
and outperforms these RNNs when allocating more CG steps.

* Architecture considerations: We decided to benchmark related work while using the
common transformer backbone allowing for a direct 1-1 comparison between all models.
This architecture is extremely widespread and has the advantage to allow for a direct usage
of Mixture-of-Experts Shazeer et al. (2017) layers. XLSTM and Mamba, see e.g. Beck
et al. (2024), use a different backbone which notably merges the MLP layer and the RNN
layer in one while matching parameter count. This architecture change leads to overall
better perplexity but question if the particular RNN layer or the architecture change, or its
combination offers better results. We leave an investigation of a fair comparison of the
Mesa layer and other related work when changing the architecture backbone for future
work. Generally, we acknowledge that it is unclear if these architecture changes address the
shortcomings of RNNs, which we show in the evaluation section, namely to incorporate
sequential long range information. We are excited to study the influence of the backbone
when optimizing for incorporating long-range understanding and not perplexity.

* Learning fast matrix inversion algorithms from data: To obtain (H;+A)~!q, we decided
to use the well known and powerful conjugate gradient method. While this algorithm is
widespread, we hypothesis that learning a neural network to solve (H; + A)~!q; directly or
adjusting the CG method by learned parameterization, could lead to significant speed ups.
We generally find extending well-known algorithms with the help of deep learning or using
them as building blocks of deep neural networks an exciting research direction (von Oswald
et al., 2023; 2025; Vladymyrov et al., 2024).

* Mesa layer to model sequences outside the language domain: We speculate that the
Mesa layer is a promising layer for sequence modeling of continuous data, where in-context
generalization and not memory is the driving factor of improving next token prediction.
Therefore the Mesa layer might excel in domains which require some form of in-context
(control or reinforcement learning) algorithm distillation (Laskin et al., 2023).

¢ The fundamental limit of RNNs with finite memory: (Modern) RNNs do have a finite
amount of state which they can use to save information for future access. This has two
interconnected, intermediate shortcomings when comparing to softmax: The interpretation
and the relevance of certain information in a sentence can drastically change even at the last
token. Since softmax stores all information of the past (all input text and its representations
in all layers), it can recall information relevant to the current query (for example, a particular
question about the text. RNNs need to anticipate when processing information which needs
saving such that it can be accessed later on.

32

Under review as a conference paper at ICLR 2026

J MESANET TRAINED IN SYNTHETIC ENVIRONMENTS

We evaluate the token manipulation and in-context learning capabilities by training and evaluating
MesaNets on two purely synthetic benchmarks: (i) Mechanistic Architecture Design (MAD) (Poli
et al., 2024) and (ii) RegBench (Akyiirek et al., 2024). For MAD, we train 2-layer models and sweep
over a range of optimization hyperparameters for each task. For RegBench, we follow Akytirek et al.
(2024) and sweep over a larger grid of hyperparameters for each task, including number of layers and
heads, see Appendix E.

MesaNet excels at the MAD benchmark. MAD comprises a suite of recall, memorization, compres-
sion, and copying tasks. As shown in Table 7, the MesaNet achieves the highest average performance,
outperforming all linear recurrent architectures and matching the performance of transformers. These
strong results demonstrate the MesaNet’s efficacy in managing its fixed-size recurrent state to store
and retrieve necessary information across diverse manipulation challenges.

MesaNet and Transformers perform on par on the RegBench. This benchmark requires models to
infer the underlying grammar of pseudo-languages, defined by probabilistic finite automata (PFAs),
solely from context sequences. At test time, this in-context learning capability is tested on token
sequences generated with held-out PFAs. Again, the MesaNet surpasses other RNN models and
matches transformers, demonstrating its capability to infer rules at test time (Figure 8).

IC & Noisy Fuzzy Me!norize Selective Compress | Avg. - 95
Recall Recall Train Data “opy 9

Mamba2 100 51.2 42,0 95.4 413 66.0 <
GLA 100 39.0 82.5 96.1 423 72.0 .90
XLSTM 100 47.6 79.8 95.4 434 732 9
DeltaNet 100 55.5 40.8 98.8 433 67.7 5
Gated DeltaNet 100 327 81.7 95.7 45.0 71.0 985 Transformer GLA
Hawk 93.0 13.6 913 77.0 477 64.5 * Vesa DeltaNet
MesaNet 100 58.5 772 99.2 45.4 76.1 o i Gated Deltalet
Hawk-MesaNet 100 30.2 85.6 99.6 523 | 735 F 80 e
Transformer | 100 48.6 84.7 96.0 495 | 758 1 5 10

Number of DFAs (in 1000)

Table 7: Performance (% Accuracy 1) on the MAD bench- Figure 8: Performance on RegBench (AKyiirek
mark (Poli et al., 2024). The MesaNet performs strongly et al., 2024). MesaNet outperforms other linear
compared to other RNN's and matches the transformer. architectures and closes the gap to transformers.

K EXTENDED RESULTS IN LANGUAGE ENVIRONMENT

K.1 LANGUAGE MODELLING / PERPLEXITY ANALYSES

The common approach to measure language modeling performance on a set of sequences S =

{s1,...,sn} is perplexity (PPL), which is defined as the exponential of the average negative log-
likelihood per token (Jelinek et al., 1977; Brown et al., 2020b; Biderman et al., 2024):
IS| s
NLL = — log P(s;il8j1,---,Sji-
ST 2y i) @)

PPL = exp [NLL]

where |S| is the number of sequences, s; is the j’th sequence in S and s ; is the i’th token in the
sequence s;. However, all tokens are weighted equally in these metrics, independent of their token
position. This is especially critical, as the magnitudes of the log-likelihood scores tend to be quite
different for early and late tokens in a sequence. As a consequence, interesting differences between
models might be masked in these aggregated metrics, especially when comparing different model
families with different inductive biases. Therefore, one needs to condition on the sequence position
to pinpoint qualitative model differences in a quantitative manner.

Mean-so-far {NLL, PPL}. To investigate whether models exhibit different language modelling
capabilities at different sequence depths k, we therefore assess mean-so-far NLL and PPL:

|S] min(|s;|,k)
log P(s;,ilSj1s---»Sji—1)
z'S‘lmeSM Z Z ilsi 171 (a6)

Mean-so-far-PPL.; = exp [MeanfsoffarfNLL:k]

Mean—-so—-far-NLL., =

33

Under review as a conference paper at ICLR 2026

Intuitively, these metrics can be interpreted as how well are sequences modeled up to length k.
While these metrics give a more granular picture of the loss behavior dependent on sequence length,
they still mask important transition points due to the cumulative aggregation up to position k. For
instance, the mean-so-far NLL could still be decreasing for higher % (decreasing slope), despite the
token-position-dependent NLL may have already plateaued or increased (Lin et al., 2025).

Token-Position-Dependent NLL. Consequently, we follow (Lin et al., 2025) and assess the average
negative log-likelihood conditional on the token-position k (for which only sum over sequences with
|Sj| > k)

|S]
1
NLLy = mE ;1OgP(sj,k|sj,1w~~73j,k71)~ (27

Difference in Token-Position-Dependent NLL Relative to a multi-head-attention transformer.
As the field’s main interest is to improve upon the current state-of-the-art transformer architecture,
we investigate the difference in token-position-dependent NLL with respect to a transformer (MHA):

ANTL Lol = N ppodel g, MAA (28)

where a negative ANLL',’C“’de] means superior language modelling ability at position k relative to a
transformer as the model’s loss is lower. The same difference can be formulated for the mean-so-far
metrics. Certainly, such a relative metric requires a well-tuned transformer baseline.

K.1.1 WITHIN TRAIN CONTEXT-LENGTH

Here, we expand upon the results shown in Section 4.1 and present within-train-context-length
language modelling evaluations on all evaluated pairs of model sizes (i.e., 145M, 400M and 1B
parameters) and number of training tokens (15B and 50B tokens).

PPL. We present the PPL scores on the five evaluated datasets in Table 8. Across all model sizes
and number of training tokens, Hawk-MesaNet exhibits the best PPL performance on the majority of
benchmarks among the recurrent models, closely followed by MesaNet. Notably, Hawk-Mesa and
Mesa match or exceed the transformer baseline with respect to PPL on the majority of benchmarks
on all model sizes. Furthermore, one can clearly observe the impact of the attention window size on
PPL based on our SWA baselines. PPL is decreasing with an increasing window size in all settings.
Notably, SWA-1024 reaches competitive performance with the majority of recurrent models, i.e.
Hawk, Mamba2, GLA, xXLSTM and DeltaNet.

Conditioning on the Sequence Position. As indicated in the metrics description, and shown in
Section 4.1, uniformly averaging over all tokens in the PPL computation, independent of a token’s
depth in a sequence, may masquerade important qualitative difference between models. Therefore,
we condition on the token position and investigate the difference in token-position-dependent NLL
relative to a multi-head-attention transformer NLL‘,:"del. As shown in Figure 9, most recurrent models
demonstrate superior language modelling abilities early in a sequence relative to the transformer
baseline. However, beyond a certain token position, transformers surpass the performance of all
recurrent models.

* Which model performs strongest early in the sequence? Notably, MesaNet and Hawk-MesaNet
exhibit the strong performance early-in-the-sequence tokens except Hawk. However, while Hawk
exhibits the best performance up to a certain depth, the model exhibits a sharp performance decline
after that and falls behind most models. See Figure 10 for a clearer visualization (equivalent to
Figure 9, but token-position in log-scale).

* Which model offers superior performance to a transformer “for the longest”’? While Hawk
losses its advantage the earliest, Hawk-MesaNet extends the performance advantage to the largest
token depths, closely followed by MesaNet.

For completeness, we also show the mean-so-far NLL difference AMean—-so—f ar—NLL{',‘;’del rela-
tive to a Transformer in Figure 11. However, as indicated, the cummulative aggregation in the metric
skews the important token depth transition point where a transformer surpasses the recurrent models
in terms of language modeling.

34

Under review as a conference paper at ICLR 2026

== HAWK MAMBA?2 DELTANET == MESA == MHA-SWA-4 == MHA-SWA-256 == MHA
GLA == XLSTM == GATED-DELTANET HAWK-MESA == MHA-SWA-64 == MHA-SWA-1024
145M Models: 400M Models: 1B Models:
< 0075 0.075 0.075
I I a / /'
g = 0050 0.050 0.050
Q o
B g oo] /M 0.025 0.025
= o
o § 00004 0.000 0.000
@ 9 7
- & 0025 -0.025 ~0.0251 |
a
j—o.oso -0.050 L -0.0501 |
Z -0.075 -0.075 -0.075
64 512 1024 2048 64 512 1024 2048 64 512 1024 2048
< 0075 : 0.075 0.075
£ = 0050 I s 0.050 0.050
g 2
€ o 0025 0.025 0.025
[s}
@ 5 0000 0.000 0.000
o]
2 & -0.025 (-0.025 -0.025
© —0.050 -0.050 -0.050
2 0075 -0.075 -0.075
64 512 1024 2048 64 512 1024 2048 64 512 1024 2048

Token Position

Token Position

Token Position

Figure 9: NLL Difference (per token-position) ANLL™! relative to a Transformer on SlimPajama
Validaton Dataset. Most recurrent models demonstrate superior language modelling abilities early in a sequence
relative to the transformer baseline, across all settings. However, beyond a certain token position, transformers
surpass the performance of all recurrent models.

— HAWK MAMBA2 DELTANET — MESA — MHA-SWA-4 =— MHA-SWA-256 =— MHA
GLA = XLSTM = GATED-DELTANET HAWK-MESA = MHA-SWA-64 = MHA-SWA-1024
145M Models: 400M Models: 1B Models:
§ 0.075 / 0.075 0.075
£ = 0050 0.050 0.050
g =
g g oo 0.025 0.025
o 5 0000 —— 0.000 0.000
-
= @002 V/ -0.025 -0.025
2 -0.050 -0.050 ~0.050
2 -0.075 -0.075 ~0.075
21 23 25 37 29 ph1
§ 0.075 0.075 0.075
£ = 0050 / 0.050 0.050
a o
g =
g g oo 0.025 0.025
@ 5 0.000 0.000 0.000
a9
B @ 0025 Fae—t -0.025 -0.025
2 -0.050 -0.050 ~0.050
2 -0.075 -0.075 -0.075

23 25 27 2°

Token Position

21 211

22 25 27
Token Position

2 25 27
Token Position

21

Figure 10: NLL Difference (per token-position) ANLLT! relative to a Transformer on SlimPajama
Validaton Dataset in log-scale. MesaNet and Hawk-MesaNet exhibit the strong language modeling performance
early-in-the-sequence tokens except Hawk. While Hawk exhibits the best performance up to a certain depth, the
model exhibits a sharp performance decline relatively early in the seq. depth.

— HAWK MAMBA2 DELTANET — MESA — MHA-SWA-4 == MHA-SWA-256 == MHA
GLA == XLSTM == GATED-DELTANET HAWK-MESA == MHA-SWA-64 == MHA-SWA-1024
145M Models: 400M Models: 1B Models:
, .
. g 008 0.04 0.04
c J
] E% 0.02 0.02 0.02
8 52 — __—
@ 8§ 0001 7 0.001 0.00 >
n v
" g5 o0 K 002 / 002
£
=8 004 004 |/ -0.047 |
64 512 1024 2048 64 512 1024 2048 64 512 1024 2048
)
L 4 004 0.04 0.04
c J
g 2= / - o .
2 &2
@ §8 000 0.00) 0.001 £
o ¢
B S8 002 -0.02 -0.02
2
3 —0.04 ~0.04 I/ —00a] ¥V
64 512 1024 2048 64 512 1024 2048 64 512 1024 2048

Figure 11: Mean-so-far NLL Difference AMean-so-far-NLL""%!

Sequence Length

Sequence Length

Sequence Length

relative to a Transformer on SlimPa-

jama Validaton Dataset. The cummulative aggregation in the mean-so-far metric skews the important token
depth transition point where a transformer surpasses the recurrent models in terms of language modeling.

35

Under review as a conference paper at ICLR 2026

| 15B Tokens I 50B Tokens
SLIM LMB. WIKIL. PGl19 GOV QASP.‘ AVG‘ SLIM LMB. WIKIL. PGl19 GOV. QASP. AVG

ppll ppld ppld ppld ppll ppld | ppld || ppld ppld ppl) ppld ppl) ppld | ppll

145M - Hawk 1973 3894 2306 19.87 1923 29.66 | 25.08 || 1834 3743 2125 1849 18.17 27.83 | 23.59
- Mamba2 1829 4034 2086 19.17 17.03 2371 | 2323 || 17.05 3822 1924 17.87 1590 2210 | 21.73
-GLA 1737 3796 1957 1811 1586 2237 | 21.87 || 1630 3620 1843 1690 1502 2091 | 20.62
- xLSTM 1735 3797 1957 1812 1588 2250 | 21.90 || 1620 36.19 1831 1697 1491 2085 | 2057
- DeltaNet 1726 38.18 1929 1793 1567 2175 | 21.68 || 16.17 36.55 18.08 1678 1481 2053 | 2049
- Gated-DeltaNet | 17.12 37.62 1918 17.77 1555 22.13 | 21.56 || 1605 3580 1804 1679 1477 20.67 | 20.35
- Mesa 1702 3764 19.10 1772 1544 21.87 | 2147 || 1605 36.17 1796 1660 1472 2057 | 2034
- Hawk-Mesa 1681 3720 1887 17.14 1529 21.62 | 21.15 || 1582 3551 1770 1619 1455 2038 | 20.02
- Transformer 1695 3869 1865 1747 1500 2080 | 21.26 | 1581 3654 1735 1625 1404 1933 | 19.89
400M - Hawk 1440 3154 1612 1423 13.67 19.85 | 1830 || 12.87 2944 1430 1271 1224 1754 | 1652
- Mamba2 1445 3338 1599 1480 1327 1836 | 1837 || 13.07 31.05 1428 1328 1210 1637 | 16.69
-GLA 13.69 31.64 1501 13.89 1236 17.08 | 17.28 || 12.61 2993 1373 1275 1152 1577 | 16.05
-xLSTM 1371 3170 1495 1388 1228 17.10 | 1727 || 1256 2979 13.60 1272 1149 1572 | 1598
- DeltaNet 13.80 3198 1507 1401 1251 1720 | 17.43 || 1259 30.00 13.68 1270 1149 1557 | 16.00
- Gated-DeltaNet | 1348 3140 1471 1359 1216 16.64 | 17.00 | 1244 2957 1345 1252 1131 1542 | 1579
- Mesa 1344 3138 1465 1351 1202 1656 | 1693 || 1234 29.57 1336 1240 11.15 1519 | 15.67
- Hawk-Mesa 1337 3110 1455 1332 1207 1668 | 1685 || 1230 2938 1333 1230 1128 1532 | 1565
- SWA-4 2336 3865 2929 2351 2694 4824 | 31.66 | 1932 3376 2343 1935 21.50 3541 | 2546
- SWA-64 1598 3297 1889 1631 1520 23.08 | 2040 || 1404 30.51 1635 1419 1325 1937 | 17.95
- SWA-256 1469 3264 1699 1504 1342 1936 | 18.69 || 1323 3036 1494 1338 1208 17.09 | 16.85
- SWA-1024 13.95 3263 1540 1409 1236 17.05 | 17.58 || 1252 3013 1371 1256 1112 1526 | 15.88
- Transformer 13.64 3225 1471 1373 1206 1651 | 17.15 || 1240 30.10 1323 1242 10.96 14.84 | 15.66
1B - Hawk 1271 2872 1395 1244 1190 1730 | 1617 || 1124 2667 1223 1093 1063 14.89 | 14.43
- Mamba2 1278 3030 1397 1292 1168 1597 | 1627 || 1139 28.02 1223 1142 1042 1402 | 1458
-GLA 1228 2913 1329 1235 11.08 1520 | 1555 || 1099 2698 1177 1095 999 1352 | 14.03
-xLSTM 1238 2921 1343 1240 11.16 1533 | 1565 || 11.01 2693 11.81 1094 1000 1355 | 14.04
- DeltaNet 1223 2943 1320 1228 11.04 1511 | 1550 || 11.01 27.08 1173 1100 10.02 1344 | 14.05
- Gated-DeltaNet | 12.06 2867 13.00 1205 1085 14.86 | 1525 | 1089 2679 1158 1081 9.88 1328 | 13.87
- Mesa 1202 2857 1292 1196 1076 1476 | 1517 || 10.83 2678 1149 1071 9.80 13.13 | 13.79
- Hawk-Mesa 1191 2845 1279 11.83 1072 1460 | 1505 || 1078 2659 1153 1060 979 1320 | 1375
-SWA-4 2027 3466 2456 2033 2298 4037 | 2720 || 1646 2993 1942 1642 1786 29.15 | 21.54
- SWA-64 1408 3001 1647 1433 1334 1978 | 18.00 || 1237 2776 1414 1251 1156 1677 | 15.85
- SWA-256 1298 2963 1476 1318 1182 1682 | 1653 || 11.60 27.39 1289 1171 10.58 14.69 | 14.81
- SWA-1024 1233 2965 1347 1235 1092 1493 | 1561 || 11.00 2722 1178 1092 979 13.11 | 1397
- Transformer 1216 2955 1290 1210 1068 1447 | 1531 || 1086 27.16 1142 1074 9.69 12.86 | 13.79

Table 8: PPL at a Maximum Sequence Length of 2048. The score of the best recurrent model with respect
to PPL on each dataset is highlighted, and PPL scores from SWA and the transformer baseline are shown as
reference. Across all model sizes and number of training tokens, Hawk-Mesa exhibits the best PPL performance
on most benchmarks, closely followed by Mesa.

36

Under review as a conference paper at ICLR 2026

K.1.2 BEYOND TRAIN CONTEXT-LENGTH

PPL. We present the PPL scores for context lengths of 4k (see Table 9) and 32k (see Table 10)
respectively on all model sizes and number of training tokens.

| 15B Tokens Il 50B Tokens
WIKI. PG19 GOV. QASP. | AVG | WIKL. PG19 GOV. QASP.| AVG
pply ppld ppl) pply | ppll pply ppld pply ppl) | ppll
145M - Hawk 23.80 2423 19.64 3009 | 2444 || 2190 22.63 1854 28.10 | 22.79
- Mamba2 2428 2731 2007 2751 | 2479 || 2413 2785 2256 29.17 | 2593
-GLA 2007 2214 1568 2138 | 19.82 | 1883 2070 1473 1995 | 1855
- xLSTM 2004 2213 1556 2143 | 1979 || 18.68 20.67 1461 19.89 | 18.46
- DeltaNet 19.85 2205 1547 2085 | 1955 || 18.66 20.64 1464 1976 | 18.42
- Gated-DeltaNet | 19.64 21.75 1523 21.03 | 19.41 || 1846 2047 1445 19.63 | 1825
- Mesa 1952 21,60 1510 2078 | 1925 || 1838 2025 1442 19.52 | 18.14
- Hawk-Mesa 1933 20.86 1503 2069 | 1898 || 1815 1972 1431 1948 | 1791
- Transformer 2768 3418 2359 3077 | 29.06 || 5212 6558 4793 5937 | 56.25
400M - Hawk 1661 1735 1380 1973 | 1687 || 1470 1545 1233 1735 | 14.96
- Mamba2 1831 2059 1533 2059 | 1870 || 17.94 2075 1607 2048 | 18.81
-GLA 1531 1684 1208 1620 | 1511 | 1405 1543 1126 1495 | 13.92
- xLSTM 1531 1682 1198 1618 | 1507 | 1390 1539 1122 14.87 | 13.85
- DeltaNet 1549 1707 1227 1637 | 1530 || 1409 1550 1135 1486 | 13.95
- Gated-DeltaNet | 1499 1646 11.84 1573 | 1476 || 1375 1513 1104 1460 | 13.63
- Mesa 1502 1641 1173 1572 | 1472 || 13.67 1498 1087 1436 | 1347
- Hawk-Mesa 1490 1615 1182 1586 | 1468 || 13.67 1483 1105 1454 | 13.52
- SWA-4 3009 2968 2880 5069 | 34.82 || 2431 2455 2288 37.16 | 2723
- SWA-64 19.58 2023 1565 2338 | 19.71 1693 1748 1355 1944 | 16.85
- SWA-256 17.54 1841 1359 1929 | 1721 || 1547 1644 1219 1688 | 1525
- SWA-1024 1590 1728 1232 1658 | 1552 || 1422 1541 1127 1492 | 1395
- Transformer 3317 4681 3434 4151 | 3896 || 7474 13023 12252 142.67 | 117.54
1B - Hawk 1437 1511 1200 1710 | 14.65 || 1259 1325 1067 14.68 | 12.80
- Mamba2 1590 1803 1333 17.85 | 1628 || 17.56 2090 1628 1998 | 18.68
-GLA 13.56 1490 1081 1437 | 1341 | 1205 1315 977 1280 | 11.94
-XLSTM 1371 1498 1088 1454 | 1353 || 1211 1315 979 12.86 | 11.98
- DeltaNet 13.55 1490 1082 1430 | 1339 || 1211 1332 984 1279 | 12.02
- Gated DelaNet | 1326 1450 1056 1401 | 13.08 | 11.86 1298 9.62 1254 | 1175
- Mesa 1321 1443 1050 1393 | 13.02 || 1178 1290 957 1243 | 11.67
- Hawk-Mesa 13.08 1427 1049 1385 | 1292 || 1181 1272 960 1253 | 11.66
- SWA-4 2540 2564 2458 4251 | 2953 || 2017 2071 1899 3044 | 2258
- SWA-64 1705 1770 1374 2002 | 17.13 || 1466 1534 1181 1684 | 14.66
- SWA-256 1525 1611 1198 1671 | 1501 | 1333 1424 1065 1449 | 13.18
- SWA-1024 13.89 1503 1084 1445 | 1356 || 1220 1327 975 1271 | 1198
- Transformer 2440 3160 2406 3051 | 27.64 | 46.14 6404 57.04 7480 | 60.50

Table 9: PPL at a Maximum Sequence Length of 4k.

| 15B Tokens Il 50B Tokens

WIKL. PG19 GOV. QASP.| AVG || WIKL. PG19 GOV. QASP. AVG
pply ppld ppll ppld | ppll ppl | ppl | ppll ppll ppl |

145M - Hawk 2393 2950 20.16 3073 | 2608 | 2198 27.62 1901 2878 | 24.35
- Mamba2 3756 9696 4495 3847 | 5448 | 4951 17403 10647 50.52 | 95.13
-GLA 2028 2732 1621 2140 | 2130 | 1896 2630 1523 2009 | 20.15
- XLSTM 2030 2802 1591 2161 | 2146 | 1878 2625 1511 2002 | 20.04
- DeltaNet 2511 97934 4310 2493 | 268.12 || 2679 88332 5220 2631 | 247.16
- Gated-DeltaNet | 1973 27.03 1546 21.05 | 2082 | 1859 2727 1477 1977 | 20.10
- Mesa 1970 2667 1526 2079 | 20.61 | 1858 2572 1465 19.62 | 19.64
- Hawk-Mesa 1972 2679 1569 2097 | 2079 || 1844 2609 1469 1999 | 19.80
- Transformer 4242 7204 4319 4164 | 49.82 || 528.05 443678 202943 324.84 | 1829.77

400M - Hawk 1665 21.10 1404 2010 | 1797 || 1472 1882 1253 17.64 | 1593
- Mamba2 2664 6540 3437 2800 | 3860 | 5390 91997 17239 4173 | 297.00
-GLA 1543 2308 1276 1633 | 1690 || 1425 2036 1174 1508 | 1536
-XLSTM 1534 2086 1202 1620 | 1611 | 1400 2021 1129 1497 | 1512
- DeltaNet 1859 48701 2809 1928 | 13824 || 19.13 35990 3171 17.98 | 107.18
- Gated-DeltaNet | 15.16 2119 1227 1585 | 1612 || 1382 2072 1137 1467 | 1514
- Mesa 1540 2194 1231 1598 | 1640 | 1383 1955 1117 1451 | 1477
- Hawk-Mesa 1543 2270 1298 1640 | 16.88 | 1404 316l 1227 1504 | 1824
- SWA-4 3007 3794 2966 5216 | 3746 | 2429 3149 2359 3840 | 29.44
- SWA-64 19.69 2507 1601 2390 | 21.17 || 1698 2153 1381 1983 | 18.04
- SWA-256 17.63 2243 1382 19.62 | 1838 1559 2007 1237 1717 | 1630
- SWA-1024 1601 2102 1240 1673 | 16.54 | 1448 1901 1189 1526 | 15.16
- Transformer 11884 538.89 188.16 94.22 | 235.03 || 428.15 431279 2013.32 47355 | 1806.95

1B - Hawk 1440 1844 1220 1742 | 1561 | 1262 1607 1084 1495 | 13.62
- Mamba2 2143 4814 2328 2301 | 2896 | 47.30 24081 10196 39.52 | 107.40
-GLA 1361 1872 1096 1444 | 1443 | 1211 1685 998 1289 | 1296
- xLSTM 1374 1838 1091 1458 | 1440 | 1220 1695 1002 13.03 | 13.05
- DeltaNet 1475 14522 17.33 1554 | 4821 | 1465 15090 2192 1495 | 50.60
- Gated DeltaNet | 1325 17.75 1055 1397 | 13.88 || 11.87 1577 9.60 1253 | 1244
- Mesa 1335 1817 10.80 1404 | 1409 || 1192 16.29 971 1258 | 1263
- Hawk-Mesa 1357 139.08 1941 1455 4665 | 1231 1750 1751 13.03 | 1509
- SWA-4 2535 3278 2533 4392 | 31.85| 20.15 2644 1955 3149 | 24.41
- SWA-64 1710 21.83 1405 2049 | 1837 | 1468 1883 1203 1721 15.69
- SWA-256 1531 1961 1217 1700 | 1602 | 1339 1728 1078 1471 14.04
- SWA-1024 1393 1815 1084 1458 | 1438 | 1227 1604 980 1287 | 1275
- Transformer 4841 11956 56.09 5395 | 69.50 || 228.12 132659 563.97 23495 | 588.41

Table 10: PPL at a Maximum Sequence Length of 32k.

37

Under review as a conference paper at ICLR 2026

| Global Subset Il Local Subset
LMB. Hella. RACE-M RACE-H | AVG || PIQA Wino ARC-E ARC-C SIQA BOOLQ OBQA SC. | AVG
acct acct acc T acc T acct acct acc T acctT acct acc T accT acct

400M Parameters / 15B Tokens
- SWA-4 4,62 3497 25,97 25,93 | 22,87 66,81 49,33 4381 2423 3982 57,31 30,00 63,78 | 46,89
- SWA-16 27,11 37,20 28,18 28,04 | 30,13 67,63 52,64 43,52 2381 39,71 54,89 27,60 65,82 | 46,95
- SWA-64 3854 3935 32,87 30,24 | 3525 || 68,93 52,17 44,40 22,87 39,76 58,56 2920 64,99 | 47,61
- SWA-256 40,52 40,44 34,25 31,48 | 36,67 69,21 50,67 43,35 2491 40,89 56,82 30,20 66,90 | 47,87
- SWA-1024 41,43 40,90 37,57 34,26 | 38,54 67,90 52,80 44,49 22,61 40,58 60,37 30,20 66,58 | 48,19
- Transformer | 41,12 4127 37,29 3445 | 38,53 || 6823 51,07 44,28 24,57 40,23 58,10 2840 66,58 | 47,68
400M Parameters / 50B Tokens
- SWA-4 18,28 39,02 29,56 27,66 | 28,63 || 67,85 51,93 44,49 2483 3971 58,23 3240 66,14 | 48,20
- SWA-16 35,03 41,52 29,01 28,33 | 3347 68,99 52,72 45,88 2432 39,56 57,40 33,00 67,54 | 48,68
- SWA-64 4234 44,14 34,53 31,67 | 38,17 69,53 53,75 45,24 24,74 40,28 56,45 31,60 6849 | 48,76
- SWA-256 4386 4531 36,46 3579 | 40,36 || 70,24 52,33 45,79 2398 4023 57,00 32,40 68,94 | 48,86
- SWA-1024 45,08 46,43 38,95 34,74 | 4130 || 69,64 52,25 45,71 25,00 40,07 5792 3220 67,92 | 48,84
- Transformer ‘ 44,96 46,30 41,44 35,89 ‘ 42,15 H 69,91 52,64 45,96 24,06 4048 57,31 30,40 69,64 ‘ 48,80
1B Parameters / 15B Tokens
- SWA-4 8,46 38,56 27,62 27,18 | 25,46 67,95 51,30 46,72 23,72 40,17 56,73 30,40 65,50 | 47.81
- SWA-16 3381 41,52 28,73 27,66 | 32,93 || 68,77 52,64 47,26 2432 40,28 5526 3340 6741 | 48,67
- SWA-64 42,60 44,04 31,49 30,72 | 37,21 || 6991 51,30 46,72 24,66 41,10 58,56 3320 67,98 | 49,18
- SWA-256 4582 4564 3591 34,35 | 40,43 || 69.86 52,09 47,26 2526 4191 58,53 31,40 69,06 | 49,42
- SWA-1024 45,06 46,23 39,50 34,74 | 41,38 || 70,29 53,99 47,39 24,15 4094 59,54 30,60 69,00 | 49,49
- Transformer ‘ 45,31 46,65 41,16 35,79 ‘ 42,23 H 70,78 52,25 48,19 23,55 40,28 52,91 31,40 67,98 ‘ 48,42
1B Parameters / 50B Tokens
- SWA-4 24,63 44,90 28,18 27,08 | 31,20 70,35 5249 48,19 24,83 39,56 60,15 32,80 68,56 | 49,62
- SWA-16 39,03 48,10 28,73 2947 | 36,33 || 72,09 53,04 48,99 2543 41,15 5339 32,80 70,78 | 49,71
- SWA-64 46,11 51,30 38,40 33,49 | 42,33 71,87 53,35 49,62 26,71 40,74 56,70 33,40 71,74 | 50,52
- SWA-256 50,28 52,08 40,88 35,69 | 44,74 72,20 52,64 49,37 27,05 40,84 58,35 32,80 73,01 | 50,78
- SWA-1024 50,38 53,69 41,44 37,22 | 45,68 7247 5335 49,41 27,13 41,61 62,20 32,60 72,06 | 51,35
- Transformer ‘ 48,92 53,63 42,27 37,32 ‘ 45,54 H 72,31 54,62 49,41 28,24 40,17 60,73 3520 72,25 ‘ 51,62
- Random | = 25,00 25,00 25,00 | - || 50.00 50.00 25.00 25.00 33.33 50.00 25.00 50.00 | -

Table 11: Reference Scores of Sliding Window Attention (SWA) Models on Common-Sense Reasoning
Benchmarks. On LAMBADA, HellaSwag and RACE-M and RACE-H, we observe significant performance
increases with a growing attention window. On the remaining benchmarks, we only observe marginal perfor-
mance differences between a Transformer with a sliding window-size of 4 (SWA-4) and a full-window attention
Transformer (attention window of 2048). We highlight the scores of the first short-range SWA model (window
sizes = {4,16,64}) that matches or exceeds the Transformer performance.

K.2 DOWNSTREAM BENCHMARKS

To evaluate the performance of the investigated models on downstream task, we investigate three
classes of benchmarks:

o Zero-Shot Common-Sense Reasoning Benchmarks (Section K.2.1)
e In-Context Recall Benchmarks (Section K.2.2)
* Few-Shot Learning Benchmarks (Section K.2.3)

Within each benchmark section, we report all raw numbers on all model sizes and number of training
tokens, and complement them with reference scores of Sliding-Window Attention models with
varying attention-window sizes.

K.2.1 ZERO-SHOT COMMON-SENSE REASONING BENCHMARKS

When tracking the performance of “many models” on “many benchmarks”, it is common to resort to
aggregated benchmark scores. However, aggregated scores tend to masquerade important sub-trends
and limit our understanding (Burnell et al., 2023). For instance, prior work (Gu & Dao, 2024; Yang
et al., 2024a; Beck et al., 2024) averages over a set of common-sense reasoning benchmarks. However,
evaluations with 400M and 1B Sliding-Window Attention (SWA) models with different attention-
window sizes reveal that competitive, or even superior, scores on a subset of these benchmarks can be
attained with an attention windows as short as 4, 16 or 64 (see Table 11). This observation strongly
indicates that a subset of these benchmarks are either exploitable by short-range language heuristics,
and do not require longer-range language modeling capabilities to reach competitive scores, or are
simply too hard such that we end up measuring noise.

38

Under review as a conference paper at ICLR 2026

Splitting Reasoing Benchmark into Two Groups. To reduce the potential benchmark noise and
deconfound the results, we aim to split the benchmark into two subsets. Therefore, we employ the
following benchmark splitting protocol:

1. Reference Scores. Run every selected benchmark on SWA-{4, 16, 64} models and a trans-
former model (attention window of size 2048) on 400M and 1B parameters trained on 15B or
50B tokens each.

2. Splitting Conditions. We then assess the following splitting conditions:

* Condition 1: Analyze for every benchmark whether benchmark scores increase with in-
creasing attention windows (from SWA-4 to SWA—-64).

e Condition 2: Verify whether no short-range SWA model (window sizes = 4, 16 and 64)
outperforms the transformer baseline with an attention windows of 2048.

3. Benchmark Grouping. Finally, we split the benchmark into two subsets:
* Local Reasoning Benchmark Set: One of the above conditions is violated.
* Global Reasoning Benchmark Set: None of the above conditions is violated.

We refer to Table 11 for a detailed score breakdown, including two additional SWA reference models
(SWA-256 and SWA-1024). Additionaly, we want to highlight that these findings, and the bench-
mark splitting, are based on experiments 400M and 1B models trained on SlimPajama (Soboleva
et al., 2023). The benchmark splitting is likely to change slightly when training with bigger model
sizes or on different datasets.

Results on all Model Configurations. We report the full set of benchmark scores on all model
configuration (model sizes and number of training tokens) in Table 12. Across all settings, we observe
similar trends — MesaNet and Hawk-MesaNet show strong performance especially on the global
reasoning benchmark set. Among the remaining recurrent models, only Gated DeltaNet reaches
competitive scores with MesaNet on this benchmark subset. In contrast, we do not observe much
score variation on the local reasoning benchmark set. Hawk, the worst performing model on the
global set, reaches competitive or even close-to-best scores within this set on average. This confirms
the hypothesis that this set of benchmark are likely to measure different aspects of language modeling,
or are potentially noisy, or are not suited for our models as they might be still too challenging.

39

Under review as a conference paper at ICLR 2026

| Global Subset Il Local Subset
Model LMB. Hella. RACE-M RACE-H ‘ AVG H PIQA Wino ARC-E ARC-C SIQA BOOLQ OBQA SC. AVG
acct acct acc T acc T accT acc? acc 1 acct acct acc T accT acct

145M Models / 15B T.

- Hawk 2187 33,54 29,01 2852 | 2823 || 64,64 5083 4024 2193 3941 59,11 27.80 6225 | 4578
- Mamba2 27,83 3321 32,04 30,53 | 30,90 64,47 50,36 39,27 22,27 39,00 51,44 26,40 62,13 | 4442
-GLA 31,05 34,20 3343 28,71 | 31,84 || 63,66 5209 4141 21,76 38,89 56,85 28,80 63,97 | 4593
- xLSTM 31,19 3441 30,94 2947 | 31,50 || 65,13 52,17 40,78 21,76 38,79 56,64 2740 63,40 | 45776
- DeltaNet 32,02 33,89 32,04 30,43 | 32,10 65,45 50091 40,82 21,42 39,15 60,89 28,00 63,97 | 46,33
- Gated DeltaNet 31,65 34,53 33,98 29,09 | 32,31 || 64,53 51,07 41,62 21,59 39,05 60,03 2840 6321 | 46,19
- Mesa 31,65 34,49 32,87 30,43 | 32,36 | 6643 51,85 40,03 2227 3843 56,73 2740 63,34 | 4581
- Hawk-Mesa 32,14 3499 32,87 31,96 | 32,99 || 6540 5296 41,16 23,55 39,05 5526 28,00 62,89 | 46,03
- Transformer | 33.84 3391 3591 30,62 | 33,57 || 6534 5249 39,27 22,44 39,10 59,63 28,40 63,78 | 4631
145M Models / 50B T.

- Hawk 22,14 35,09 28,18 3033 | 28,94 || 6594 51,62 41,33 22,87 39,46 5945 28,20 63,97 | 46,60
- Mamba2 2923 3424 33,15 29,86 | 31,62 || 6578 51,46 41,08 21,67 39,82 59,30 28,00 61,74 | 46,11
-GLA 32,16 35,57 32,04 29,86 | 3241 || 6556 51,07 43,18 2381 39,82 5223 2940 63,72 | 46,10
- xLSTM 32,74 35,89 32,87 30,14 | 3291 66,59 51,54 41,67 23,12 39,15 58,65 27,00 64,23 | 46,49
- DeltaNet 32,89 3539 32,32 31,67 | 33,07 | 66,10 51,93 40,53 22,78 38,74 5746 29,00 64,29 | 46,36
- Gated DeltaNet 32,85 36,15 33,15 31,96 | 33,53 66,76 51,22 41,92 23,55 3838 60,43 29,00 64,10 | 46,92
- Mesa 32,33 36,24 34,53 30,24 | 33,33 65,40 51,70 41,62 22,61 38,89 54,65 28,80 63,53 | 4590
- Hawk-Mesa 3431 36,40 32,04 31,20 | 33,49 66,21 51,93 41,54 22,53 38,54 55,57 30,00 64,74 | 46,38
- Transformer | 3540 36,03 35,08 31,10 | 3440 || 64,58 52,09 41,41 22,01 40,12 59,79 3020 64,23 | 46,80
400M Models / 15B T.

- Hawk 32,97 4233 33,15 32,06 | 35,13 68,66 50,99 44,53 25,00 39,66 59,69 30,80 67,09 | 48,30
- Mamba2 3592 3995 33,70 32,25 | 3546 68,44 51,70 4331 2346 39,71 59,54 30,40 66,45 | 47,88
-GLA 40,09 42,49 34,53 32,54 | 3741 | 68,61 51,78 44,99 2491 3961 60,40 28,40 68,30 | 48,37
- xLSTM 39,67 41,99 35,08 33,11 37,46 68,50 52,25 45,12 2346 39,87 59,72 31,60 68,17 | 48,59
- DeltaNet 39,28 41,49 36,46 32,34 | 37,39 69,26 51,70 46,00 23,81 39,76 52,51 31,20 6747 | 47,71
- Gated DeltaNet 39,98 42,55 32,87 33,68 | 37,27 | 69,59 52,33 45,20 25,17 40,02 59,14 2940 67,60 | 48,56
- Mesa 40,17 42,71 34,53 3321 | 37,65 | 67,79 50,51 45,12 22,87 39,10 52,42 29,80 6843 | 47,00
- Hawk-Mesa 39,84 43,15 34,81 31,67 | 37,37 69,64 52,17 45,33 2227 40,23 58,04 29,80 6741 48,11
- SWA-4 4,62 3497 25,97 2593 | 22,87 66,81 49,33 43,81 2423 39,82 57,31 30,00 63,78 | 46,89
- SWA-64 38,54 3935 32,87 30,24 | 3525 6893 52,17 44,40 22,87 39,76 58,56 2920 64,99 | 47,61
- SWA-1024 41,43 4090 37.57 3426 | 38,54 || 6790 52,80 44,49 22,61 40,58 60,37 30,20 66,58 | 48,19
- Transformer | 41,12 4127 37,29 3445 | 3853 || 6823 51,07 44,28 24,57 40,23 58,10 2840 66,58 | 47,68
400M Models / 50B T.

- Hawk 36,70 47,02 33,43 32,54 | 3742 7193 5225 47,26 24,06 40,89 5991 3420 69,83 | 50,04
- Mamba2 38,23 4422 35,64 32,25 | 37,58 68,72 52,17 45,33 2398 40,74 54,31 31,80 68,49 | 48,19
- GLA 41,98 46,00 35,08 34,74 | 3945 69,86 54,14 46,46 23,98 40,07 56,57 29.80 69,96 | 48,86
- xLSTM 41,82 46,22 34,53 3330 | 3897 | 6899 53,35 46,00 2346 41,61 57.43 31,00 69,32 | 48,90
- DeltaNet 42,25 4592 37,02 33,68 | 39,72 70,18 52,72 45,24 2423 4048 57,37 3220 68,87 | 48091
- Gated DeltaNet 43,99 46,57 35,36 34,83 | 40,19 || 70,18 51,85 46,38 2577 40,58 5489 32,60 70,53 | 49,10
- Mesa 4339 46,93 38,95 34,26 | 40,88 70,73 54,46 46,21 2491 41,10 57.89 3240 69,38 | 49,64
- Hawk-Mesa 41,94 46,96 38,12 33,49 | 40,13 70,46 54,78 46,46 25,51 40,74 57,80 30,00 70,46 | 49,53
- SWA-4 18,28 39,02 29,56 27,66 | 28,63 || 67,85 51,93 44,49 24,83 39,71 5823 3240 66,14 | 4820
- SWA-64 42,34 44,14 34,53 31,67 | 38,17 69,53 5375 45,24 24,74 40,28 56,45 31,60 6849 | 48,76
- SWA-1024 45,08 46,43 38,95 34,74 | 41,30 69,64 52,25 45,71 25,00 40,07 57,92 3220 67,92 | 48,84
- Transformer | 4496 4630 41,44 3580 | 42,15 || 6991 52,64 4596 24,06 4048 5731 30,40 69,64 | 48,80
1B Models / 15B T.

- Hawk 3798 47,71 35,08 3225 | 3825 | 71,93 5043 48,61 2543 41,50 58,53 31,80 70,59 | 4985
- Mamba2 39,63 45,06 36,74 3435 | 3895 | 70,13 52,33 46,97 2543 3941 5734 31,80 70,34 | 4922
- GLA 4324 47,20 33,43 33,68 | 39,39 70,95 5241 46,97 25,00 41,15 58,59 33,00 70,34 | 49,80
- xXLSTM 44,05 46,10 3591 33,40 | 39,86 70,73 54,30 47,14 25,00 40,63 59,27 32,40 69,64 | 49,89
- DeltaNet 4345 4747 36,46 33,30 | 40,17 || 70,78 52,80 48,48 25,09 39,92 60,46 31,20 69,00 | 49,72
- Gated DeltaNet 4537 4849 35,36 34,07 | 40,82 || 71,60 53,99 48,57 24,83 40,07 53,76 3240 70,46 | 49,46
- Mesa 4421 47,70 37,02 33,49 | 40,60 70,89 54,46 47,56 2526 41,04 56,06 32,20 70,21 49,71
- Hawk-Mesa 44,05 48,70 39,23 33,40 | 41,34 71,22 53,20 49,54 24,74 40,89 51,93 32,00 70,78 | 49,29
- SWA-4 8,46 38,56 27,62 27,18 | 2546 67,95 51,30 46,72 23,72 40,17 56,73 30,40 65,50 | 47,81
- SWA-64 42,60 44,04 31,49 30,72 | 37,21 6991 51,30 46,72 24,66 41,10 58,56 3320 6798 | 49,18
- SWA-1024 45,06 46,23 39,50 34,74 | 4138 70,29 53,99 47,39 24,15 4094 59,54 30,60 69,00 | 49,49
- Transformer | 4531 46,65 41,16 3579 | 4223 || 70,78 5225 48,19 2355 4028 5291 3140 67,98 | 4842
1B Models / 50B T.

- Hawk 41,80 54,25 34,25 3435 | 41,17 || 7291 5233 51,52 28,75 40,84 56,51 35,00 74,67 | 51,57
- Mamba2 42,13 5146 37.85 3502 | 41,62 || 71,76 53,35 48,95 26,54 40,58 5590 33,60 73,39 | 50,51
-GLA 4727 53,05 41,44 3560 | 4434 || 72,25 54,14 50,46 27,56 41,25 56,85 3500 74,03 | 5144
- xLSTM 46,57 53,08 37,57 34,74 | 4299 || 72,52 54,62 49,45 27,05 41,76 58,78 3580 72,06 | 51,50
- DeltaNet 47,08 5321 40,33 34,83 | 43,86 72,20 54,30 48,19 27,90 40,84 60,49 3440 7428 | 51,58
- Gated DeltaNet 49,19 54,10 39,78 36,27 | 44.84 71,93 54,06 51,22 26,88 41,35 53,27 3420 73,14 | 50,76
- Mesa 48,83 53,58 40,88 36,84 | 45,03 71,71 53,59 49,37 25,68 40,58 53,30 35,60 74,09 | 50,49
- Hawk-Mesa 47,02 54,47 40,61 36,36 | 44,62 || 72,52 56,04 50,80 26,88 40,17 56,02 3560 74,03 | 51,51
- SWA-4 24,63 44,90 28,18 27,08 | 31,20 || 7035 52,49 48,19 24,83 39,56 60,15 32,80 68,56 | 49,62
- SWA-64 46,11 51,30 38,40 3349 | 4233 || 71,87 5335 49,62 26,71 40,74 56,70 3340 71,74 | 50,52
- SWA-1024 50,38 53,69 41,44 3722 | 4568 || 7247 5335 49,41 27,13 41,61 6220 32,60 72,06 | 51,35
- Transformer | 4892 53,63 42,27 3732 | 4554 || 7231 54,62 49,41 28,24 40,17 60,73 3520 7225 | 51,62

Table 12: Benchmark Scores on Common Reasoning Benchmarks on all model configurations. Best scores
among the recurrent models are highlighted for each training setting.

40

Under review as a conference paper at ICLR 2026

K.2.2 IN-CONTEXT RECALL BENCHMARKS

To evaluate in-context recall, we adopted the minimal-transformed version of the benchmarks from
Arora et al. (2024) to allow evaluation of non-instruction-tuned models. We truncate inputs to 2000
tokens, and sample greedily until either 48 tokens or a new-line delimiter is generated. We then
parsed whether the target was contained in the generation (non-case-sensitive), as in Arora et al.
(2024) .

Sliding-Window Attention Controls. As expected, we observe consistent score increases with
a growing attention window size (see Table 13). However, we observe that the SWA-1024 is
consistently better on SQUAD than the transformer baseline with an attention window of 2048.
Closer inspection of the SQUAD benchmarks reveals that the tokens-to-recall are most frequently
located in the last 1k tokens of the sequence. Similarly for FDA, most tokens-to-recall are located at
the very beginning of the sequence with an average of length 2000. Hence, we observe a significant
performance increase from SWA-1024 to the transformer baseline with an attention window of 2048.

Results on all Model Settings. MesaNet consistently attains best, or in few cases second-best,
performance scores on average across all evaluated model settings (see Table 14). Moreover, we
observe that our insights from the PPL analysis in K.1 directly translate to the observed results in
here, e.g., Hawk attaining the worst in-context recall performance.

| 15B Tokens Il 50B Tokens
SWDE SQUAD FDA TQA NQ DROP | AVG | SWDE SQUAD FDA TQA NQ DROP | AVG
acc T acct accT acctT acct acctT | acct acc T acct acct acctT acct

400M Models: - SWA-4 7.38 5,60 0,18 14,51 3,52 9,15 6,72 10,98 7,77 045 21,27 516 13,13 9,79
- SWA-16 9,63 10,82 027 24,88 488 1533 | 1097 13,05 18,30 1,09 3335 6,59 17,35 | 14,95

- SWA-64 13,14 26,74 10,07 39,34 523 19,12 | 18,94 19,17 38,44 1143 48776 725 2396 | 24,84

- SWA-256 21,69 4092 1225 5095 6,87 23,67 | 26,06 30,96 42,19 14,70 56,16 10,10 2420 | 29,72

- SWA-1024 5491 4306 17,79 52,67 10,86 2645 | 34,29 60,04 46,82 22,60 58,06 13,84 27,89 | 3821

- Transformer 77,50 37,13 79,13 53,08 16,57 26,59 ‘ 48,33 H 79,66 36,93 7586 5895 1894 29,37 | 49,95

1B Models: - SWA-4 9,00 6,53 027 17,06 440 11,60 8,14 13,05 10,66 027 26,54 7,10 13,61 | 11,87
- SWA-16 9,54 15,25 027 29,15 6,46 16,44 | 12,85 16,74 23,76 2,09 39,28 8,46 18,59 18,15

- SWA-64 16,74 30,56 16,61 44,55 7,19 20,46 | 22,69 22,32 39,85 12,70 51,90 9,63 2391 26,72

- SWA-256 25,74 4534 17,79 56,10 8,81 2645 | 30,04 35,82 4645 17,33 59,77 12,54 2746 | 3323

- SWA-1024 60,76 40,65 2423 5699 11,88 27,65 | 37,03 63,73 47,65 2668 6143 1552 30,04 | 40,84

- Transformer ‘ 79,21 4276 77,04 56,99 18,69 2947 ‘ 50,69 H 83,35 4692 70,96 6321 21,79 2741 ‘ 52,27

- Random | ~0 = ~0 ~0 ~0 ~0| =0 ~0 =] ~0 ~0 ~0 ~0| =0

Table 13: Reference Scores of SWA Models on In-Context Recall Benchmarks. The pattern of best scores
(highlightreded) is very consistent across the evaluated settings. As expected, we see increasing performance
with increasing sizes of attention windows. Except on SQUAD, the transformer commonly attains the best
scores.

41

Under review as a conference paper at ICLR 2026

| 15B Tokens Il 50B Tokens
SWDE SQUAD FDA TQA NQ DROP ‘ AVG || SWDE SQUAD FDA TQA NQ DROP | AVG
acc T acc T accT acct acct acc T acc T acc T accT accT acc? acc T

145M Models: - Hawk 11,43 11,09 027 3039 409 14,18 | 1191 10,08 14,08 036 3525 5.38 14,85 | 1333
- Mamba2 29,52 2483 1434 40,17 7,57 20,89 | 22,89 37,62 2634 1470 4443 7,67 2027 | 2517

-GLA 37,08 3820 14,07 44,73 8,58 2338 | 27,67 39,69 3046 1588 48,16 10,80 2386 | 28,14

- XxLSTM 33.39 2500 11,34 44779 1045 2544 | 2507 34,65 36,03 1996 48,76 1143 23,53 | 29,06

- DeltaNet 33,57 29,69 1561 46,27 9,66 2348 | 26,38 39,24 31,60 18,06 4639 1140 2027 | 27.83

- Gated DeltaNet 32,31 30.83 1642 46,68 1048 2343 | 26,69 38,07 3244 1579 4834 10,74 2123 | 27.77

- Mesa 36,90 3435 1488 4722 1020 25,68 | 28,21 40.50 2999 1579 47,04 1197 2377 | 28.18

- Hawk-Mesa 34,65 3033 13,61 46,33 9,79 22,86 | 26,26 34,38 36,03 9.89 46,86 1131 21,80 | 26,71

- Transformer | 63,73 23,89 54,63 4650 12,01 2559 | 37,72 || 6778 30,97 70,87 50,30 14,70 23,62 | 43,04

400M Models: - Hawk 16,47 23,86 1,09 4242 8,01 19,65 | 18,58 22,05 23.86 145 4893 1083 20,60 | 21,29
- Mamba2 43,11 2986 2042 47,04 1147 2281 | 29,12 51,04 29,76 22,23 52,90 12,58 24,77 | 3221

-GLA 52,30 39,04 2096 50,12 14,16 2841 | 34,17 54,10 41,59 26,23 5504 16,00 26,07 | 36,50

-xLSTM 51,67 3894 2332 51,13 14,76 2348 | 33,88 50,86 3887 2523 53,67 16,09 24,63 | 3489

- DeltaNet 50,23 3562 2740 50,00 1438 25,16 | 33,80 5590 3559 2740 53,50 1511 23,67 | 3519

- Gated DeltaNet | 53,20 3515 27,04 51,72 1596 2482 | 34,65 56,53 3723 2949 53,55 1501 2396 | 3596

- Mesa 53,11 3854 2858 52,13 1429 27,02 | 3561 59.05 4705 2895 5717 1729 2631 | 39.30

- Hawk-Mesa 52,66 3995 23,05 52,78 13,62 2626 | 3472 53,65 3995 25,14 5551 1562 27,55 | 3623

- Transformer | 77.50 37.13 79,13 53,08 16,57 26,59 | 48.33 || 79.66 3693 7586 5895 18,94 2937 | 49.95

1B Models: - Hawk 20,25 15,72 2,09 4834 1042 21,61 | 19.74 26,73 29.96 327 5296 14,63 22,66 | 2504
- Mamba2 54,10 33,68 2641 51,66 13,97 2511 | 34,15 59,68 3784 31,13 56,64 1539 2535 | 37,67

-GLA 59,68 41,29 29,67 5504 1625 2597 | 3798 60,58 43,67 3040 5924 18,69 2525 | 39,64

- xLSTM 57,61 39.11 2450 54,50 1517 26,64 | 3626 63,37 3891 31,58 58,00 18,06 2559 | 39.25

- DeltaNet 58,15 37.60 36,84 5515 16,63 2535 | 3829 62,56 39.01 3829 59,54 1796 2540 | 40.46

- Gated DeltaNet 59,59 3948 3730 5586 17,39 2587 | 39,25 60,22 3981 32,12 59,54 18,56 26,98 | 3954

- Mesa 60,40 49,06 22,50 5438 1755 2746 | 38,56 63.10 46,25 32,67 6137 19.64 27,74 | 41,79

- Hawk-Mesa 61,03 41,55 27,77 5474 1533 25,68 | 37,68 60,31 45,51 28,68 60,13 17,61 27,70 | 39,99

- Transformer | 79,21 4276 77,04 5699 18,69 2947 | 50.69 | 83.35 4692 7096 6321 21,79 2741 | 5227

Table 14: Benchmark Scores for In-Context Recall Benchmarks on all Model Settings. MesaNet consistently
attains the best or second-best score on average across all evaluated model settings.

42

Under review as a conference paper at ICLR 2026

K.2.3 FEW-SHOT LEARNING BENCHMARKS

To evaluate the few-shot learning ability, we tested two distinct types of few-shot tasks, (i) word
scrambling tasks introduced in (Brown et al., 2020b) and (ii) a couple of language-to-language
translation tasks.

Word Scrambling Tasks. We report the few-shot performances in Table 15 for 0-,1-,10- and 100-
shot settings. As few-shot evaluation tend to be sensitive to the selection and ordering of few-shot
examples (Lu et al., 2021), we report the mean performance over 10 randomly drawn few-shot prefixes.
We observe consistent improvements with an increasing number of fewshots for all models except
for SWA-4. MesaNet attains the strongest performance scores in most settings, and outperforms the
transformer baseline significantly.

While we evaluate on all five word scrambling tasks introduce in Brown et al. (2020b), we observe
only observe signal (performance above 1%) for models in the ranges 145M to 1B on two tasks:
gpt3/cycle_letters_in_word and gpt3/mid_word_2_anagrams. On the three remain-
ing tasks, we observe performance score close to 0%, in line with the results of Brown et al. (2020b),
and hence omit the scores here.

gpt3/cycle_letters_in word gpt3/mid-word_2_anagrams

0-shot 1-shot 10-shot 100-shot | 0-shot 1-shot 10-shot 100-shot

145M Models - Hawk 0.2 04+02 13405 1.7+0.5 0.2 04+£0.1 0.84+0.2 0.7+0.2
- Mamba2 0.0 0.2+0.2 1.7+04 1.44+0.3 0.0 0.2+£03 0.64+0.2 0.3£0.1
-GLA 0.1 0.2+03 24407 3.0+0.4 0.2 0.1£0.1 1.0+£04 1.5+0.1
- xLSTM 0.1 04+£05 2.8+0.6 3.84+0.5 03 0.1£0.2 09403 1.6+0.1
- DeltaNet 0.1 0.5+04 2.6+0.9 3.2+0.6 0.1 0.2£0.1 12403 1.1+£0.2
- Gated DeltaNet 0.1 0.8+0.6 25+0.7 3.44+0.6 0.0 04404 14£02 1.7£0.2
- Mesa 0.1 0.2+03 22405 3.3+0.5 0.1 02+02 1.1+£03 1.7+0.1
- Hawk-Mesa 0.0 03+0.2 1.7+0.5 2.44+0.6 0.2 02+03 09403 1.4+0.2
- Transformer | 0.1 0.5+04 2.6+0.5 3.740.3 | 0.1 02+02 12403 1.740.2
400M Models - Hawk 0.1 1.7£1.2 53%1.2 6.6+0.4 0.1 09+0.7 2440.1 2.840.2
- Mamba2 04 20+£14 45406 5.1+0.5 04 09+05 1.64+03 1.6+0.1
- GLA 0.0 1.7£1.1 52+1.0 7.6+0.3 04 1.0£0.7 24402 2.6+0.2
-xLSTM 0.0 23+£13 57+13 8.24+0.5 0.2 1.1£0.5 25403 29403
- DeltaNet 0.1 1.5£1.0 5.7+£13 7.6£0.6 0.0 1.1£0.5 24+£03 2.6+03
- Gated DeltaNet 0.1 21+£1.7 65%1.0 9.0+0.8 0.1 09+0.5 26403 3.4+02
- Mesa 04 22+12 6.6%1.0 9.2+0.6 0.6 1.1£05 26403 3.2+0.2
- Hawk-Mesa 0.0 1.3+£09 4.0+14 7.3£0.5 0.1 09+0.7 2.6+03 3.1+0.1
- SWA-4 0.0 04+03 0.84+0.3 0.84+0.2 0.0 03£03 09403 0.9+0.3
- SWA-64 0.1 25+£15 4.6+1.1 4.7+£0.9 0.1 12+05 27402 2.7+0.1
- SWA-1024 0.3 25+1.6 6.1+09 7.7+0.5 0.8 12+0.8 29404 3.1+£03
-Transformer | 04 24418 6.7+1.2 85404 | 05 14407 33404 3.6+0.2
1B Models - Hawk 02 1.5£1.0 6.8+l5 9.24+0.6 0.1 09+0.8 35404 3.840.2
- Mamba2 0.8 3.7£1.7 63408 6.41+0.7 1.1 1.8+£0.3 24+03 2.0+04
-GLA 0.3 4.1+2.1 84412 10.3£0.5 0.5 23+0.7 3.9+05 4.2+02
- xLSTM 0.0 22+13 7.7+1.8 11.0£04 0.3 1.8+£0.5 3.9+03 4.6+03
- DeltaNet 0.0 29+19 87+13 11.7+£0.8 0.1 1.6+£08 37405 4.1+£0.3
- Gated DeltaNet 03 4.0+1.8 89414 11.8+0.7 0.5 25+09 47406 6.1+04
- Mesa 0.5 33+£2.0 9.7+13 14.0+0.5 1.1 21+1.1 47406 62404
- Hawk-Mesa 04 21+£15 72415 114405 0.6 2.0+£09 44404 5.8+03
- SWA-4 0.1 1.1£09 1.540.7 2.0+0.8 0.2 0.6£0.5 1.4+£03 1.4+03
- SWA-64 1.3 3.5+1.8 63+£1.3 7.84+0.6 1.0 24+0.7 3.8+03 4.0+03
- SWA-1024 0.1 34+£18 75+1.3 9.0+0.5 0.1 1.9+09 43404 4.3+0.2
- Transformer ‘ 0.0 3.0£22 6.8+1.7 9.24+0.6 ‘ 0.1 24+0.6 42404 4.7+0.2

Table 15: Few-Shot Performance (Accuracy + Std.) on GPT-3 Word Scrambling Tasks (Brown et al.,
2020b) of Models Trained on 50B Tokens. Best 50-shot scores are highlighted, and standard deviation is
reported over 10 random drawn few-shot selections. MesaNet attains the strongest scores in most settings, and
outperforms the transformer baseline significantly.

43

Under review as a conference paper at ICLR 2026

Language-to-Language Translation. We evaluated a model’s capability to translate from three
different languages to English: (i) French to English (Bojar et al., 2014), (ii) German to English (Bojar
et al., 2016) and (iii) Romanian to English (Bojar et al., 2016). We follow the exact prompt setup of
Brown et al. (2020b) evaluate with {0,1,5,10} -and 50-shots, and report the performance in Table 16
with respect to BLEU-sb (Post, 2018) for models trained on 50B tokens.

We observe scores of different performance magnitudes across the three languages, which is most
likely caused by the multi-lingual distribution of the training data corpus and French being more
prevalent than German and Romanian. MesaNet attains superior scores among the recurrent models.
However, MesaNet, and more general all recurrent models, fail to match the transformer performance
by a relatively big margin, especially at the scale of 1B models. This finding is non-surprising given
the impact of the attention mechanism on the field of machine translation (Bahdanau et al., 2014),
indicating that pure model- and data-scaling based on recurrent models will not be enough to match
the performance of attention-based architecture (Rodchenko et al., 2025).

WMT14 FR-EN WMT16 DE-EN WMT16 RO-EN
0 1 5 10 50 0 1 5 10 50 0 1 5 10 50

145M Models: - Hawk 0,61 0,31 0,25 0,08 0,11 | 0,49 0,16 020 0,19 0,19 | 044 0,16 0,06 0,19 029
- Mamba2 1,68 056 0,73 073 0,19 | 2,13 040 028 0,51 037 | 1,68 032 044 050 046
-GLA 1,47 0,21 0,69 0,66 0,63 | 1,78 0,52 0,35 0,52 044 | 1,52 024 0,12 0,50 0,51
- xLSTM 1,64 007 073 087 0,67 | 209 063 033 081 0,77 | 1,68 022 034 050 085
- DeltaNet 1,57 020 078 0,90 059 | 1,68 049 032 0,73 081 | 1,56 080 055 058 0,61
- Gated DeltaNet | 1,31 0,25 0,28 0,35 0,89 | 1,64 0,42 0,35 0,68 0,64 | 0,80 0,67 0,49 0,51 035
- Mesa 1,26 0,66 033 1,10 1,06 | 1,53 049 058 046 062|156 032 051 045 0,52
- Hawk-Mesa 1,62 0,19 0,80 0,77 0,94 | 2,03 0,51 0,67 0,47 0,79 | 1,77 024 0,54 049 0,90
- Transformer 1,55 0,05 0,59 0,70 0,87 | 1,90 0,39 0,86 0,61 0,71 | 1,75 0,28 0,30 1,41 0,50

400M Models: - Hawk 1,54 2,28 3,95 4,25 497 | 1,34 1,36 3,24 3,87 3,67 | 091 1,29 2,03 1,52 1,89
- Mamba?2 2,15 405 6,07 455 349 | 2,17 143 3,13 3,19 252 (1,68 08 136 194 1,64
-GLA 1,83 3,20 2,74 4,83 4,23 | 2,15 2,60 1,88 2,04 2,19 | 1,72 0,62 1,42 1,96 1,30
- xLSTM 2,14 3,08 348 3,66 3,28 | 2,29 2,06 2,68 2,79 2,77 | 1,63 1,10 1,37 220 2,15
- DeltaNet 1,72 3,09 4,43 3,89 3,49 | 1,84 1,53 3,52 2,83 247 | 1,79 1,67 1,63 1,29 145
- Gated DeltaNet | 1,87 3,92 3,86 4,16 3,77 | 2,00 0,85 3,35 3,18 2,94 | 1,80 1,05 2,56 2,13 222
- Mesa 223 275 433 505 533 1206 080 262 311 370 | 1,75 0,68 2,09 1,63 247
- Hawk-Mesa 1,90 2,83 3,89 4,54 4,27 | 2,00 2,55 3,66 3,26 3,20 | 1,74 0,68 1,71 1,71 228
- SWA-4 034 0,13 014 013 0,12 1025 019 026 021 026|029 0,10 006 007 0,05
- SWA-64 1,35 3,82 4,46 4,94 4,92 | 1,45 2,17 1,66 2,09 1,57 | 1,18 1,10 1,38 0,88 1,29
- SWA-1024 409 455 849 71,77 9,16 | 3,09 3,66 457 514 511 (19 055 182 299 267
- Transformer 2,61 8,27 8,77 8,92 9,63 | 2,04 3,13 5,73 5,34 549 | 1,94 1,02 1,29 2,23 2,56

1B Models: - Hawk 3,72 5,88 8,56 7,15 4,17 | 3,33 3,79 3,77 5,20 586 | 2,37 2,69 439 422 4,17
- Mamba2 420 11,81 11,90 11,28 5,83 | 3,07 3,62 6,79 8,18 3,35 | 2,04 427 6,83 475 3,38
-GLA 3,15 10,60 11,87 10,90 10,31 | 2,58 7,90 9,41 7,77 746 | 2,15 259 6,60 430 495
- xLSTM 4,96 511 11,71 10,32 10,56 | 4,13 552 9,17 8,99 8,59 | 2,60 2,33 4,74 381 3,90
- DeltaNet 5,24 8,34 10,79 10,08 7,88 | 4,02 6,91 8,72 6,01 5,66 | 229 1,01 4,32 3,39 258
_Gated DeltaNet | 4,71 824 1003 1125 1131 | 431 759 907 8,60 876 | 245 4,63 567 533 551
- Mesa 358 11,80 1244 11,57 11,64 | 3,10 6,98 10,20 8,49 7,81 | 1,88 5,05 2,96 6,05 5,07
- Hawk-Mesa 368 799 1058 1316 12,01 | 292 803 1050 8,67 843 | 236 473 491 581 599
- SWA-4 0,54 0,72 0,72 0,72 0,74 | 0,49 0,75 0,89 0,87 0,72 | 0,22 0,12 0,14 0,11 0,06
- SWA-64 5,58 6,69 2,92 8,43 7,61 | 4,09 5,27 4,69 4,05 345|226 1,68 1,85 3,12 3,05
- SWA-1024 8,75 16,65 18,09 18,70 19,83 | 599 10,85 14,58 1491 14,30 | 3,36 4,19 10,14 10,05 8,38

- Transformer ‘8,30 18,49 17,81 17,70 19,14‘6.10 13,06 11,99 13,99 13,85‘3,54 592 7,11 735 7.82

Table 16: Performance Scores (in BLEU-sb) on three Translation Tasks on Models Trained on 50B Tokens.
Best 50-shot scores among recurrent models are highlighted, as well as Transformer reference scores. While
MesaNet attains the best-score among the recurrent models in most settings, it under-performs transformer by
relative big margin.

K.3 NEEDLE IN THE HAYSTACK (NIAH) RESULTS

Setup. We conducted a sweep of experiments on single-needle tasks (NIAH) from the RULER
benchmark (Hsieh et al., 2024) suite for 1B models trained on 50B tokens. We ran experiments for
both haystack types (noise and essays) for all key/value combinations (both can be in the form of:
words, numbers or uuids) on context lengths 2048 and 4096.

Results. As scores are quite sensitive to the chosen key and values types, we report mean=std percent
accuracy over all 9 key/value combinations, with 1000 evaluation samples for each setting. On the
“noise” haystack, MesaNet demonstrates strong scores with very low fluctuations across key/value
combinations. On the “essay” haystack, we observe relatively high score fluctuations across key/value
combinations for all models which makes it hard to form conclusions. However, we would still like
to highlight the strong performance of Hawk-Mesa on the essay haystack.

44

Under review as a conference paper at ICLR 2026

NIAH Noise NIAH-Essay

L=2048 L=4096 L=2048 L=4096
- Hawk 40£59 1.7+£29 30+£22 21+1.6
- Mamba2 79.7+£17.9 0.7+1.0 | 51.3+223 0.0+ 0.0
-GLA 962+42 685+189 | 73.5+347 41.4+269
- xLSTM 948+50 804+149 | 69.1 £205 243+99
- DeltaNet 993+£10 965+£63 | 689+323 2794153
- Gated-DeltaNet 983 +4.1 963 £8.1 | 52.1 £33.7 11.0 £ 9.4
- MesaNet 99.54+05 95.1+£3.9 | 66.8+289 179 £9.0
- Hawk-Mesa 97.6 £35 653£21.6 | 909 +£10.5 5554285
- SWA-1024 518+£09 243+13|475+11.8 21.6+72
- MHA 99.7 £ 0.3 00+£00 | 982+25 0.0+ 0.0

Table 17: NIAH Benchmark results for 1B models trained on 50B tokens.

L VARYING THE NUMBER OF CONJUGATE GRADIENT STEPS WHEN
TRAINING MESANETS

Here we present the effect when training the MesaNet on less than 30 steps. We opted for training
with 30 steps, as we were not optimizing for training flops but first investigate a fully converge Mesa
layer, and because of early experiments on our 400million model which indicated little improvement
after 30 steps.

As shown in Figure 12, we see a small, interestingly, uniform increase of training loss across the
sequence length when comparing to a model which is trained on 30 steps. Only when dropping
the number of CG steps below 10, we see a more drastic jump in loss increase. As we have show
in section B, the backward pass also relies on running the CG method to solve linear systems of
equations and we leave investigating for future work varying the number of steps in the forward and
backward pass.

Mesa (Train CG=5) == Mesa (Train CG=20)
Mesa (Train CG=5, Inference=30) === Mesa (Train CG=25)
Mesa (Train CG=10) == Mesa (Train CG=50)

Mesa (Train CG=15)

=30)

0.02

0.01

Difference in NLL to Mesa (CG

0 1024 2048
Token Position

Figure 12: We compare the validation loss across the sequence of 400 million parameter MesaNets trained on
15B tokens, when varying the number of conjugate gradient steps during training. We observe a slight uniform
increase of validation loss across the sequence length when comparing to a model which is trained on 30 steps.
Only when dropping the CG steps drastically to 5 we see a substantial increase in loss.

M EVALUATION METHODOLOGY

Mulitple Choice Tasks: For a given question x, we assess for all possible options y the loss NLL(y|x)
of the option conditional on the question, and then normalize by the number of tokens of y. In contrast
to related work (Gu & Dao, 2024; Yang et al., 2024a; Beck et al., 2024), we do not heuristically
choose between byte-normalized and non-normalized scoring schemes as we have a fixed tokenizer
across all models.

Greedy Matching Tasks. For a given input « and an expected target sequence y (e.g., one or multiple
tokens), we check whether ¢ would be matched under greedy sampling. This is done by obtaining
the logits for the concatenated input of x + y, and checking whether all tokens belonging to y are
matched by taking the argmax over the logits.

45

Under review as a conference paper at ICLR 2026

In-Context Recall Tasks. We follow closely the setup of (Arora et al., 2023). For a given input z,
we sample greedily a completion from the model until either 48 tokens or a new-line character is
sampled. We then check whether the target ¥ is contained in the output (non-case-sensitive).

46

Under review as a conference paper at ICLR 2026

N AN INTERNAL ANALYSIS OF THE MESANET

Layer 1
Be Ye Cond(KKK{ + A) Number CG steps sorted A values cos(o, 0;)
20 0

6 3.0
5 il Wl 2.5 A 15
e |
4 M 2.0 10
3] s 15
(et 0.5

0.2
0.0 - 2 104, !
0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000
t t t t
— Head0 —— Headl —— Head2 —— Head3 —— Head4 —— Head5 Head 6 Head 7
Layer 2
Cond(KKK] +) Number CG steps 30 sorted A values

6 2.5

2.0
4 15

0.4
1.0 ’_-—J
[OE—— e .
—— m os{ ['

0. 0 0.0
1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 50 100 0 1000 2000
t t t t
— Head0 —— Headl —— Head2 —— Head3 —— Head4 —— Head5 Head 6 Head 7
Layer 16
Cond(KKK] + A Number CG steps sorted A values cos(oy, 0,
10 B 1.0 KE+N P 10 1.0 (0. 0)
0.6 Iy - 0.6 6 6 0.6
N gerocbrrstdes
0.4 0.4 /’_—‘ 4l 4 ‘ 0.4
—_—
0.0 00 0 0 00!
0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 50 100 0 1000 2000
t t t t
—— Head0 —— Headl —— Head 2 —— Head 3 —— Head4 —— Head5 Head 6 Head 7
Layer 17
Ye Cond(KKK] + A) Number CG steps s sorted A values 10 cos(oy, 0;")
T g 10 - m
150 o 4 0.8 'wwﬂw‘w\w VR A
D vl 100 6 3 0.6

0.4 0.4 0.4
[50
0.2 0.2 0.2
|
0.0 0.0 0 0.0
0 1000 2000 0 1000 2000 0 1000 2000 [1000 2000 0 50 100 0 1000 2000
t t t t
—— Head0 —— Headl —— Head2 —— Head3 —— Head4 —— Head5 Head 6 Head 7
Layer 28
B Ye Cond (KKK + A) Number CG steps sorted A values cos(oy, 0;")
19| e—— el
| 200 5
0.8 { [SRETYIMSOANS g | 3 0.8
150 4
0.6 0.6 5 0.6
04 L»,Wm 04 100 3 04
0.2 0.2 50 2 ! 0.2
———
0.0 0.0 0 ! 0.0}
0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 50 100 0 1000 2000
t t t
—— Head0 —— Headl —— Head2 —— Head3 —— Head4 —— Head5 Head 6 Head 7

Figure 13: input strength (3, forget strength -, regularization strengths A as well as other internal statistics
of a 400M parameter MesaNet trained on 50B tokens - averaged over 500 sequences from the SlimPajama
validation set. We observe that high v; ~ 1 values usually lead to the condition number of the to be inverted
matrix K; K7 + A increase over time, which in turn leads to more CG steps required to obtain an output for the
mesa. We also observe (outer right plot) that usually these heads lead to higher cosine similarity (cos) between
oy, the output of the layer if no CG steps are applied which corresponds to gated linear attention, compared to
the Mesa output o; . We compute the number of conjugate gradient steps are computed by measuring the steps
of the conjugate gradient method to reach an error of 0.001. We sort the heads for plotting purposes according to
their average gamma values.

47

	Introduction
	A Parallelizable Mesa Layer
	Train and Inference Time of the Mesa Layer
	MesaNet in a Language World
	Language Modeling (Within and Beyond Train Sequence Length)
	Language Benchmarks

	Test-Time Compute Analysis
	Discussion
	Related Work
	Rank-One Update Conjugate Gradient Method
	Chunkwise Parallel Form of Gated Linear Attention and the Mesa Layer
	A Full Description of the Mesa Layer, Related Work and the MesaNet
	Model design

	Experimental Details: MesaNet in Synthetic Environments
	MAD Benchmark Suite
	RegBench In-Context Language Learning Benchmark

	Experimental details: MesaNet in a Language World
	Data
	Model design
	Training details
	Hyperparameter scans
	Notes on precision used in the CG-solver, Mesa layer design considerations or Why you shouldn't scream at your Mesa layer
	Experiments compute resources

	The Original Recursive Least-Squares Mesa Layer
	A Preliminary Investigation into State Tracking with the Mesa Layer
	Further Discussion Points
	MesaNet Trained in Synthetic Environments
	Extended Results in Language Environment
	Language Modelling / Perplexity Analyses
	Within Train Context-Length
	Beyond Train Context-Length

	Downstream Benchmarks
	Zero-Shot Common-Sense Reasoning Benchmarks
	In-Context Recall Benchmarks
	Few-Shot Learning Benchmarks

	Needle In the Haystack (NIAH) Results

	Varying the Number of Conjugate Gradient Steps when Training MesaNets
	Evaluation Methodology
	An Internal Analysis of the MesaNet

