

MESANET: SEQUENCE MODELING BY LOCALLY OPTIMAL TEST-TIME TRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

Sequence modeling is currently dominated by causal transformer architectures that use softmax self-attention. Although widely adopted, transformers require scaling memory and compute linearly during inference. A recent stream of work linearized the softmax operation, resulting in powerful recurrent neural network (RNN) models with constant memory and compute costs such as DeltaNet, Mamba or xLSTM. These models can be unified by noting that their recurrent layer dynamics can all be derived from an in-context regression objective, approximately optimized through an online learning rule. Here, we join this line of work and introduce a numerically stable, chunkwise parallelizable version of the recently proposed Mesa layer (von Oswald et al., 2024), which could only run sequentially in time and was therefore not scalable. This layer again stems from an in-context loss, but which is now minimized to optimality at every time point using a fast conjugate gradient solver. Through an extensive suite of experiments study up to the billion-parameter scale, we show that optimal test-time training enables reaching lower language modeling perplexity and higher downstream benchmark performance than previous RNNs, especially on tasks requiring long context understanding. This performance gain comes at the cost of additional flops spent during inference time. Our results are therefore intriguingly related to recent trends of increasing test-time compute to improve performance – here by spending compute to solve sequential optimization problems within the neural network itself.

1 INTRODUCTION

While Transformers dominate sequence modeling, their per-token computational and memory requirements scale linearly with sequence length during inference. This limitation motivates the development of efficient recurrent neural networks (RNNs) with constant complexity, particularly for autoregressive tasks like language modeling. Recent progress has focused on fast weight programming layers, which process a given sequence by representing and learning a linear model in their activations (Schmidhuber, 1992; Schlag et al., 2021a; Yang et al., 2024c; Dao & Gu, 2024). Such ‘fast weights’ undergo one learning step whenever the input sequence advances, following simple Hebbian (Hebb, 1949) or error-correcting (delta) rules (Widrow & Hoff, 1960). Both rules correspond to gradient descent on a suitable quadratic loss function, measured on the latest input.

Here, we take this concept one step further, and design an optimal fast weight programming layer. Following previous related work, we consider linear fast weight models, and measure how well a given context is modeled using a quadratic loss. However, instead of gradually learning through gradient descent, we design a layer that always responds with the optimal fast weights, which achieve minimum loss on all data seen so far. This allows retaining past information while adapting to new evidence quickly as a sequence unfolds. Our work builds off the recent recurrent Mesa layer ([von Oswald et al., 2024](#)), proposing a version of this layer that is parallelizable leveraging matrix multiplication accelerators, numerically stable, and that allows for context-dependent forgetting. Moreover, the layer dynamically adapts its computational cost at test time to the sequence at hand. This is because the layer introduced here explicitly invokes an external solver, for which the number of iterations required to reach a given stopping criterion differs across sequences. We summarize our contributions below:

- **A novel Mesa layer which is parallelizable over sequence length and flexibly allocates test-time computation:** We adapt the previously proposed Mesa layer (von Oswald et al., 2024) to allow for chunkwise parallel training. We leverage an equivalence of the conjugate gradient (CG)

Figure 1: Model Architecture of the MesaNet. (A) We adopt the widespread decoder-only transformer architecture (Touvron et al., 2023) stacking N residual blocks of a channel mixing (B) and sequence mixing (C) components. (B) Channel mixing is a vanilla SwiGLU MLP. (C) Sequence mixing is performed by the Mesa layer. From its inputs, it generates keys, queries and values as well as input and forget strengths. These are then processed according to the Mesa Rule (Equation 7). We compare the MesaNet to models which share the exact same architecture and only change the sequence mixing rule to multi-head-attention (MHA), xLSTM, Mamba2 or (Gated) DeltaNet.

method over multiple time steps with gated linear self-attention, which allows using established hardware-efficient training (Yang et al., 2024a). During inference, the layer reallocates test-time compute dynamically as different sequences lead to varying CG iterations to reach a stopping criterion, allowing to trade off test-time compute and performance.

- **The MesaNet is a strong language model:** We train 140M, 440M and 1B parameters MesaNets, see Figure 1, on the SlimPajama dataset (Soboleva et al., 2023). On all of these scales, the MesaNet reaches lower validation perplexity compared to models such as Mamba2 (Gu & Dao, 2024), xLSTM (Beck et al., 2024), DeltaNet (Yang et al., 2024c), Gated DeltaNet (Yang et al., 2024a) and Transformers (Vaswani et al., 2017) with the same base architecture.
- **In-depth analyses of modern RNNs including MesaNet:** Intriguingly, we find that while reaching the same or better perplexity on language modeling, all RNN models reduce perplexity remarkably differently, namely focus on early tokens in the sequence while transformers excel at later tokens. We further disentangle downstream language benchmarks according to their need for *global* or only *local* language modeling, through controlled Sliding-Window Attention ablations. We find that MesaNet outperforms all modern RNNs on global reasoning, in-context learning & in-context recall benchmarks, but unsurprisingly still lack behind Transformers in in-context recall.

2 A PARALLELIZABLE MESA LAYER

We consider autoregressive sequence modeling tasks where the objective is to predict element $e_{t+1} \in \mathbb{R}^{n_e}$ given a sequence of token embeddings $e = (e_t)_{t=1}^T$. At present, autoregressive sequence modeling is dominated by architectures based on the causally-masked softmax self-attention layer, whose token updates $e_t \leftarrow e_t + \Delta e_t^{\text{sa}}$ follow the rule $\Delta e_t^{\text{sa}} = \sum_{h=1}^H P_h V_{h,t} \alpha(K_{h,t}^\top q_{h,t})$, where $q_{h,t} = W_{h,q} e_t \in \mathbb{R}^{n_a}$ is referred to as a query, each column $k_{h,t'} = W_{h,k} e_{t'} \in \mathbb{R}^{n_a}$ of matrix $K_{h,t} \in \mathbb{R}^{n_a \times t}$ as a key, and each column $v_{h,t'} = W_{h,v} e_{t'} \in \mathbb{R}^{n_v}$ of matrix $V_{h,t} \in \mathbb{R}^{n_v \times t}$ as a value; **in this paper, we follow the convention that vectors are column vectors**. The parameters of this layer are the matrices $\{(P_h, W_{h,q}, W_{h,k}, W_{h,v})\}_{h=1}^H$ for all H heads; for notational simplicity, we omit positional encodings and absorb bias terms, and assume here for conciseness that all heads are equally sized. The function α applied to vector $a \in \mathbb{R}^t$ returns an attention weight vector: in the standard transformer, $\alpha(a)_i = \text{softmax}(a)_i := (\sum_{t'=1}^t \exp(a_{t'}))^{-1} \exp(a_i)$ (Vaswani et al., 2017). Since each head is processed independently and only interacts through the summation in Δe_t^{sa} , for simplicity we drop the head index h and the projection matrix P in what follows.

Linear self-attention and test-time training. We focus on the case where α is the identity function. This yields a *linear* attention layer (Schmidhuber, 1992), which as we will see next turns out to be a linear RNN (Katharopoulos et al., 2020):

$$\Delta e_t^{\text{lsa}} = \Phi_t q_t. \quad (1)$$

Unlike its softmax counterpart, linear attention can be implemented recurrently, by maintaining and updating a matrix-valued state $\Phi \in \mathbb{R}^{n_v \times n_a}$ according to the linear dynamics

$$\Phi_t = \gamma_t \Phi_{t-1} + \beta_t v_t k_t^T. \quad (2)$$

Above, we add forget gates γ_t and input gates β_t which have been shown to improve performance (Yang et al., 2024a). Both are usually a function of the current input e_t , like queries, values and keys, but bounded within $[0, 1]$. Importantly, and in contrast to softmax self-attention, linear attention only requires constant memory and compute to predict the next token. As we review below and more extensively in Appendix A, a series of recent high-performance models (e.g., Gu & Dao, 2024; Peng et al., 2023; Beck et al., 2024; Schlag et al., 2021a; Yang et al., 2024c;a) can be cast into the same basic linear self-attention model (equation 1) using variations of equation 2.

Such modern RNNs can also be seen from the unifying perspective of test-time training (Schlag et al., 2021a; Liu et al., 2025; von Oswald et al., 2024; Wang et al., 2025; Behrouz et al., 2025b). Under this view, the key-value linear map $\Phi_t : \mathbb{R}^{n_a} \rightarrow \mathbb{R}^{n_v}$ introduced in equation 1 is *learned* from the data in context $e_{1:t}$. Let us introduce a time-varying loss, from which we will derive a gradient-based dynamics for Φ :

$$L_t(\Phi) = l_t(\Phi) + \frac{1}{2} \text{Tr}(\Phi \Lambda_t \Phi^\top). \quad (3)$$

Above, l_t measures the *instantaneous* loss incurred at the current time step, and the second term acts as a regularizer with strength controlled by a symmetric $n_a \times n_a$ matrix Λ_t . Now, setting $l_t(\Phi) = l_t^{\text{Hopfield}}(\Phi) := -v_t^\top \Phi k_t$ and $\Lambda_t = \frac{1-\gamma_t}{\beta_t} I$, and letting Φ evolve through online gradient descent, $\Phi_t = \Phi_{t-1} - \beta_t \nabla_\Phi L_t(\Phi_{t-1}) = \gamma_t \Phi_{t-1} + \beta_t v_t k_t^\top$, we recover gated linear attention (equation 2). In passing, we have also connected modern linear attention to classical associative memory models (Schlag et al., 2021a): l_t^{Hopfield} is the energy function that governs continuous-state Hopfield networks, and Φ is learned through Hebb's associative rule (Hopfield, 1984; Hertz et al., 1991). If we take instead the squared error loss $l_t(\Phi) = l_t^{\text{sq-err}}(\Phi) := \frac{1}{2} \|v_t - \Phi k_t\|^2$, we recover DeltaNet (Schlag et al., 2021a; Yang et al., 2024c;a), which learns a linear model with the online delta rule (Widrow & Hoff, 1960). Recent work has extended the DeltaNet to perform mini-batch updates, and to perform gradient updates on a 1-hidden-layer MLP (Sun et al., 2025), and Titans adds momentum to the mini-batched gradient update (Behrouz et al., 2024). We return to this point in Appendices A and B, where we discuss additional related work from the viewpoint of test-time regression, and derive in more detail the update rules above.

The Mesa layer: optimal test-time regression. In this work, we revisit the recently proposed Mesa layer (von Oswald et al., 2024), also referred to as an intention layer in the context of non-autoregressive models (Garnelo & Czarnecki, 2023). This layer again updates tokens according to the linear self-attention rule (equation 1) but now defines the linear map Φ_t as the solution of a test-time optimization problem, where a symmetric positive definite matrix $\Lambda_t \in \mathbb{R}_+^{n_k \times n_k}$ controls the strength of a quadratic regularizer:

$$\hat{\Phi}_t^{\text{mesa}} = \arg \min_{\Phi} \mathcal{L}_t(\Phi), \quad \text{with} \quad \mathcal{L}_t(\Phi) = \frac{1}{2} \sum_{t'=1}^t \zeta_{tt'} \|v_{t'} - \Phi k_{t'}\|^2 + \frac{1}{2} \text{Tr}(\Phi \Lambda_t \Phi^\top). \quad (4)$$

In all our experiments, we take a static, diagonal regularizer, with $\Lambda_t = \Lambda \forall_t$ and $\Lambda_{ii} > 0$. Above, the cumulative forget factor $\zeta_{tt'} = \mathbb{1}_{t \geq t'} \prod_{s=t'+1}^t \gamma_s$ causally weighs the contribution of past losses until the present ($t' = 1, \dots, t$), taking into account the forget factors $\gamma_{t'} \in [0, 1]$ so far. The output Δe_t^{mesa} of the Mesa layer depends on the (unique) solution $\hat{\Phi}_t^{\text{mesa}}$, which can be expressed in closed form:

$$\Delta e_t^{\text{mesa}} = \hat{\Phi}_t^{\text{mesa}} q_t = \left(\sum_{t'=1}^t \zeta_{tt'} v_{t'} k_{t'}^\top \right) \left(\sum_{t'=1}^t \zeta_{tt'} k_{t'} k_{t'}^\top + \Lambda \right)^{-1} q_t \quad (5)$$

$$= G_t(H_t + \Lambda)^{-1} q_t. \quad (6)$$

We compute $\hat{\Phi}_t^{\text{mesa}}$ step by step in Appendix D.

The Mesa layer differs from the test-time training models reviewed above in two key ways. First, instead of considering an instantaneous loss measured only at the current input e_t as in equation 3, the Mesa layer optimizes the *cumulative* regularized squared-error loss taking into account all data $e_{1:t}$ so far. While at first this may seem impossible to achieve under a constant memory requirement, the Mesa layer circumvents the need to explicitly keep past tokens in memory (as in softmax self-attention) and exploits the fact that \mathcal{L}_t is a quadratic function of Φ (Gauss, 1821). Second, instead of taking a single gradient descent step, the Mesa layer learns Φ to optimality at every time point.

We note that the related Longhorn model (Liu et al., 2025) also derives a recurrent layer via the minimization of a quadratic loss, but its loss is evaluated only on the latest input as in equation 3, yielding a variant of DeltaNet. We further note that concurrent work (Atlas; Behrouz et al., 2025a) corresponds to a sliding-window variant of the Mesa layer, while also allowing the model to be optimized at test-time to be nonlinear, as in (Sun et al., 2025). We present the update rules and test-time objective functions of these two related works in Appendix B.

The Mesa layer is the optimal (in the squared-error sense) linear associative memory (Kohonen & Ruohonen, 1973), and it can store a new association instantaneously (one-shot), whereas DeltaNet requires in general multiple pattern presentations to reduce memorization error (Hertz et al., 1991). This fast learning property of the Mesa layer can be further understood by recasting it as a second-order online learner (cf. Appendix H); DeltaNet only uses first-order derivative information to learn.

Von Oswald et al. (2024) proposed to determine $\hat{\Phi}_t^{\text{mesa}}$ following classical recursive least-squares. Although computationally attractive at inference, we now stress two shortcomings of this approach. First, forgetting ($0 \leq \gamma_t < 1$) leads to numerical instabilities, and requires a regularization term Λ that decays exponentially with time. Second, this original version of the layer is not parallelizable, and it therefore heavily underutilizes current matrix-matrix multiplication accelerators such as GPUs and TPUs during training. We explain this in detail in Appendix H.

A new parallelizable Mesa layer with adaptive forgetting and regularization. To overcome these issues, we propose a novel parallelizable version of the Mesa layer which allows for dynamic forgetting. Instead of computing $\hat{\Phi}_{h,t}^{\text{mesa}}$ recurrently, we solve a linear system of equations in parallel, for each query q_t :

$$\Delta e_t^{\text{mesa}} = G_t(H_t + \Lambda)^{-1}q_t = G_t \text{linsolve}(H_t + \Lambda, q_t). \quad (7)$$

The equation above can be computed by maintaining and updating two state variables, $S_t = \{G_t, H_t\}$, through the following linear recurrence relations:

$$G_t = \gamma_t G_{t-1} + \beta_t v_t k_t^\top, \quad H_t = \gamma_t H_{t-1} + \beta_t k_t k_t^\top, \quad (8)$$

where as before $\gamma_t \in [0, 1]$ is a forget gate and $\beta_t \in [0, 1]$ is an input gate. We adopt the conjugate gradient method to obtain a solution $q_t^* = \text{linsolve}(H_t + \Lambda, q_t) = (H_t + \Lambda)^{-1}q_t$ (Lanczos, 1950; Hestenes et al., 1952). This yields a numerically stable Mesa layer as $\text{linsolve}(H_t + \Lambda, q_t)$ is stable irrespective of forgetting strength, albeit at a higher memory cost compared to single matrix state RNN models, as an additional matrix of size $n_a \times n_a$ needs to be propagated forward alongside the standard matrix of size $n_v \times n_a$. Although the RNN state size increases, this expansion amounts to less than 1% of the entire memory footprint of models trained in this paper, which includes both state and parameters.

To enable efficient training, we introduce a chunkwise parallelized (Hua et al., 2022; Yang & Zhang, 2024) algorithm to compute equation 7. Our method builds on top of established efficient implementations of GLA, that we briefly review now. First, note that the output of this layer can be written as $o_t^{\text{GLA}} = G_t q_t = \sum_{i=1}^t \zeta_{ti} v_i k_i^\top q_t$. Let us chunk a sequence of length T in T/C chunks of size C , with $c \in \{0, C, \dots, T - C\}$. The crucial insight to enable leveraging matrix-matrix multiplication and parallelization across time for GLA is that, given a chunked state variable G_c , we can compute the output at time $c < t \leq c + C$ as $o_t^{\text{GLA}} = (G_c + \sum_{i=c+1}^t \zeta_{ti} v_i k_i^\top) q_t = G_c q_t + \sum_{i=c+1}^t \zeta_{ti} v_i k_i^\top q_t$, which can be done in parallel for $t \in \{c+1, \dots, c+C\}$. In matrix notation we write

$$O_c^{\text{GLA}} = G_c Q_c + V_c (Z_c \odot (K_c^\top Q_c^*)), \quad (9)$$

where $K_c = [k_c, \dots, k_{c+C}]$ and $O_c^{\text{GLA}}, V_c, Q_c$ accordingly, and Z_c is a upper triangular matrix of size $C \times C$ containing the appropriate forgetting terms.

Now, we highlight that the Mesa layer can be decomposed into two parts:

$$o_t^{\text{mesa}} = \sum_{i=1}^t \zeta_{ti} v_i k_i^\top q_t^*, \quad \text{and } q_t^* = (H_t + \Lambda)^{-1}q_t. \quad (10)$$

The first part is equivalent to GLA, and can therefore be computed efficiently as just described. It therefore remains to be shown how to obtain $Q_{h,c}^* = [q_{h,c}^*, \dots, q_{h,c+C}^*]$ within a given chunk of size

C in parallel. As we explain in detail in Appendices C & D, the key observation is that the compute-intensive part of a CG iteration boils down to $\sum_{i=1}^t \zeta_i k_i k_i^\top p$, with p its current search direction, a computation that is once again in the GLA form. Alongside its fast convergence properties, this is the reason for picking the CG method as our solver, as it allowed us to leverage existing efficient chunkwise parallel linear attention implementations. **The new Mesa layer proposed in this paper therefore admits a parallel training mode with $O(T)$ complexity, alongside the recurrent inference mode with $O(1)$ complexity.** In Appendix D, we further show how to efficiently compute gradients through the layer in chunkwise parallel form. Finally, we discuss details on precision within our CG solver in Appendix G.5.

3 TRAIN AND INFERENCE TIME OF THE MESA LAYER

Chunkwise parallel Mesa layer leads to competitive train time. In Figure 2, we report training and inference times on a TPUv5 and H100 for both transformers (MHA), common RNN alternatives and the MesaNet. Despite having to solve $t \cdot H$ linear systems of equations per layer during training as well as compute gradients through the found solutions, the MesaNet remains competitive at train time with respect to MHA and RNN alternatives.

The Mesa layer, applied with static k , is relatively slow especially early in the sequence. We present in Appendix Table 5 an analysis of the memory and computational costs of inference, comparing the Mesa layer to MHA as well as recently developed RNNs. This overview highlights a tension that the MesaNet faces. On the one hand, if the number of conjugate gradient (CG) steps k is set to zero we obtain $q_t^* = q_t$, and so recover gated linear self-attention (GLA) and its compute and memory requirement. Thus, we require $k > 0$ for the Mesa layer to differ from GLA, which provides a lower bound for the computational cost of the Mesa layer. Note that the Mesa layer is, in terms of flops, roughly k times as costly as linearized transformer models such as GLA, Mamba2 and xLSTM and $k - 1$ times more costly as (Gated) DeltaNet. Furthermore, because the total cost of executing the CG method grows with kn_a^2 , there is a maximal value of k for which the Mesa uses fewer flops than MHA for a given sequence length.

Figure 2: Train and inference time of a Mesa layer using different number of CG steps. *Left:* Train time of a single Mesa layer on a TPUv5: output the entire sequence, compute the cross entropy loss, and gradients w.r.t. layer parameters. We use batch size of 4, key size of 128 and 8 heads. *Center:* Inference time of a single Mesa layer on a TPUv5: compute the next token given a certain context length. We use batch size of 128, key size of 128 and 8 heads. *Right:* Token throughput (in thousands) when training 1B parameter models on a H100 GPU. We compare a Flash-Attention-2 (Duo, 2023) transformer implementation with a triton-based chunkwise parallel implementation of RNN models, including the MesaNet which uses 30 or 15 CG steps across all layers. All models use a key size of 128 and share the same backbone, see Appendix G. We observe competitive token throughput on H100s of the MesaNet despite using substantially more flops.

We show this in Figure 2 (center) for a typical choice of $n_a = 128$, where we plot inference time as a function of sequence length for both MHA and the Mesa layer, when varying k . These numbers reflect the runtime of a single layer and might vary across inference use cases and accelerators.

The Mesa layer allocates test-time compute dynamically. Being a test-time optimizer, the Mesa layer offers a principled way for dynamically allocating test-time compute. The number of CG steps k required to reach a given desired error tolerance ϵ is generally head-, sequence- and token-specific due to the context-dependence of the linear systems $H_t + \Lambda$ to be solved. Via utilization of a stopping criterion, the Mesa layer thus exhibits dynamic inference (and potentially training) costs. This dynamic test-time compute feature of the Mesa layer draws both parallels and differences to softmax self-attention: whereas softmax self-attention increases compute (and memory) as a function of sequence length independently of the sequence being processed, the Mesa layer adjusts

270 271 272 273 274 275 276 277	278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300	278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
Layer	Recurrence	Memory read-out	
Mamba2	$G_t = \gamma_t G_{t-1} + v_t k_t^\top$	$o_t = G_t q_t$	
GLA	$G_t = \gamma_t G_{t-1} + \beta_t v_t k_t^\top$	$o_t = G_t q_t$	
DeltaNet	$G_t = G_{t-1}(I - \beta_t k_t k_t^\top) + \beta_t v_t k_t^\top$	$o_t = G_t q_t$	
Gated DeltaNet	$G_t = G_{t-1}(\gamma_t(I - \beta_t k_t k_t^\top)) + \beta_t v_t k_t^\top$	$o_t = G_t q_t$	
mLSTM	$G_t = \gamma_t G_{t-1} + \beta_t v_t k_t^\top, z_t = \gamma_t z_{t-1} + \beta_t k_t$	$o_t = G_t q_t / \max\{1, z_t^\top q_t \}$	
Mesa	$G_t = \gamma_t G_{t-1} + \beta_t v_t k_t^\top, H_t = \gamma_t H_{t-1} + \beta_t k_t k_t^\top$	$o_t = G_t \text{linsolve}(H_t + \Lambda, q_t)$	

Table 1: Overview of recent linear recurrent models which we compare to in this work, except for LRU layers, see [De et al. \(2024\)](#).

compute dynamically, according to the incoming data it needs to process. We provide in Section 5 an experimental analysis of this property of the Mesa layer in trained MesaNets.

4 MESANET IN A LANGUAGE WORLD

Here we present results obtained on 1B-parameter models trained on 50B tokens from the SlimPajama ([Soboleva et al., 2023](#)) dataset, and refer to Section L for an extended analysis, comparing models ranging from 140M, 440M up to 1B parameters, each on 15B and 50B tokens. Furthermore, we report strong results on synthetic environments in Section K, which we omit for brevity here.

Architecture & baselines. For the main model backbone, we follow the architecture of common transformers, and employ N stacked residual blocks with 1) a sequence modeling part such as multi-head-attention (MHA) or the Mesa layer and 2) a gated MLP block (see Figure 1). As baselines, we compare to a number of other efficient alternatives to MHA based on linear recurrent layers: Mamba2 ([Dao & Gu, 2024](#)), Gated Linear Attention (GLA) ([Yang et al., 2024b; Katharopoulos et al., 2020](#)), xLSTM ([Beck et al., 2024](#)), (Gated) DeltaNet ([Schlag et al., 2021a; Yang et al., 2024c;a](#)) and Hawk ([De et al., 2024](#)), see Table 1. The latter differs from the models reviewed in Section 2 by employing a vector-valued state, being closer in spirit to a (now linearized) traditional LSTM ([Hochreiter & Schmidhuber, 1997](#)). Furthermore we investigate a recurrent hybrid Hawk-Mesa model alternating between a linear recurrent unit (Hawk) and the Mesa layer which we motivate in the next section.

Controls. On top of related work, we train transformer models with Sliding-Window Attention (SWA) ([Beltagy et al., 2020](#)) of varying window sizes. These models have constant per-token memory and compute cost. The motivation to study SWA models is based on the assumption that transformers as well as SWA models have near perfect recall capabilities, at least within their attention window. Therefore, they provide a simple and interpretable control to study language modeling, reasoning and in-context recall capabilities of RNNs.

Setup. We tokenize the SlimPajama datasets using the byte-level BPE tokenizer introduced in GPT-2 ([Radford et al., 2018; Brown et al., 2020a](#)) following [Beck et al. \(2024\)](#) and train all modes on a sequence length of 2048 and a fixed ordering of training data. For each model configuration, we scan over a range of learning rates, and select the model that minimizes perplexity on the holdout validation dataset of SlimPajama. For exact hyperparameters and training specifications for each model, see Appendix G. For all results, unless otherwise specified, we use MesaNets with a fixed amount of 30 CG steps. See Appendix M on varying CG steps during training and Section 5 on using the CG stopping criterion to invoke dynamic test-time compute.

We stress that through sharing the exact same architecture backbone, tokenizer, data and data order across all models, while using the same number of parameters and independently tuned learning rate for all models, we aim to provide a fair 1-1 comparison¹. This controlled setup should allow to solely assess differences on the sequence mixing layer while reducing noise. Note, however, that this backbone might be a suboptimal choice for RNNs, including the MesaNet. Related work has tuned architectures to their specific sequence layers ([Beck et al., 2024; Gu & Dao, 2024](#)). However, these architectural optimizations prevent the integration of Mixture-of-Experts layers, a heavily used

¹Related work such as [Yang et al. \(2024a\)](#), [Behrouz et al. \(2024\)](#) and [Behrouz et al. \(2025a\)](#) use a single learning rate for all models which likely leads to biased and unfair comparisons. [Behrouz et al. \(2025a\)](#) further inherit baseline results from previous work which use a different tokenizer, confounding the comparison further.

		SLIM ppl \downarrow	LMB. ppl \downarrow	WIKI. ppl \downarrow	PG19. ppl \downarrow	GOV. ppl \downarrow	QASP. ppl \downarrow	AVG
324	- Hawk	11.24	26.67	12.23	10.93	10.63	14.89	14.43
325	- Mamba2	11.39	28.02	12.23	11.42	10.42	14.02	14.58
326	- GLA	10.99	29.77	11.77	10.95	9.99	13.52	14.03
327	- xLSTM	11.01	26.93	11.81	10.94	10.00	13.55	14.03
328	- DeltaNet	11.01	27.08	11.73	11.00	10.02	13.44	14.05
329	- Gated DeltaNet	10.89	26.79	11.58	10.81	9.88	13.28	13.87
330	- Mesa	10.83	26.78	11.49	10.71	9.80	13.13	13.79
331	- Hawk-Mesa	10.78	26.59	11.53	10.60	9.79	13.20	13.75
332	- SWA-4	16.46	29.93	19.42	16.42	17.86	29.15	21.54
333	- SWA-64	12.37	27.76	14.14	12.51	11.56	16.77	15.85
334	- SWA-1024	11.00	27.22	11.78	10.92	9.79	13.11	13.97
335	- Transformer	10.86	27.16	11.42	10.74	9.69	12.86	13.79

Table 2: Language Modeling Performance (PPL \downarrow) of 1B Models (50B Tokens) evaluated on sequence length of 2048. Mesa and Hawk-Mesa show strong performance on all benchmarks, matching or exceeding a Transformer baseline w.r.t. to avg. per-token PPL. Lambada (LMB.) scores are higher due to significantly shorter sequences (≤ 256) with an average of 78 tokens.

building block in current language models. Therefore, we carefully evaluate all sequence layers on the same backbone, based on the widespread decoder-only transformer architecture – [here, the Llama2 model \(Touvron et al., 2023\)](#), [including rotary position encodings \(RoPE; Su et al., 2024\)](#) when using softmax attention layers. This backbone does not fuse MLPs with sequence layers, allowing for a direct comparisons between layers. Furthermore, we did not attempt to optimize the architecture e.g., key size and number of heads for the Mesa layer.

Comparison to the original mesa layer. We considered comparing to the original sequential-in-time Mesa layer ([von Oswald et al., 2024](#)). However, because this model was already an order of magnitude slower when training at the 400M parameter scale, and suffered a large increase in SlimPajama language modeling perplexity of about 3.2 points ($\sim 23\%$ performance degradation) due to the inability to train with forget gates, we did not pursue these comparisons further. These results directly motivate the new Mesa layer introduced in this paper.

4.1 LANGUAGE MODELING (WITHIN AND BEYOND TRAIN SEQUENCE LENGTH)

We measure a model’s general language modeling capabilities first by assessing average per-token perplexity (PPL) ([Jelinek et al., 1977](#)) on a set of benchmarks. We report PPL on the hold-out validation set of SlimPajama ([Soboleva et al., 2023](#)), as well as Lambada ([Paperno et al., 2016](#)), WikiText-2 ([Merity et al., 2016](#)), PG19 ([Rae et al., 2019](#)), GovReport ([Huang et al., 2021](#)), and Qasper ([Dasigi et al., 2021](#)) on the train sequence length and beyond. Because uniformly averaging over all tokens might masquerade important differences between models, we additionally investigate average per-token PPL conditional on sequence position. As we see below, this turns out to be a crucial factor when comparing RNNs to transformers.

MesaNet is a strong language model early in sequences. When evaluating on the training sequence length of 2048, MesaNet and Hawk-MesaNet outperform all recurrent baselines on all benchmarks on the common metric of average per-token PPL (see Table 2). MesaNet matches on average the performance of the transformer baseline, while Hawk-MesaNet even surpasses it. Notably, a SWA model with a window size of 1024 outperforms the majority of recurrent baselines. However, attaining similar PPL scores does not imply equivalent language modeling abilities at different sequence lengths ([Lin et al., 2025](#)). Conditioning on the token position, and assessing the NLL difference relative to a transformer, reveals, surprisingly, that most recurrent layers exhibit superior language modeling performance early in the sequence but fall behind later in the sequence (see Figure 3). Recurrent models show especially strong performance on short sequences up to 64 tokens. While Hawk exhibits the best performance up to this depth, the model exhibits a sharp performance decline after that. [This finding motivated us to introduce and investigate the Hawk-Mesa model, which combines the best short-sequence and long-sequence modeling layers \(as measured by negative log-likelihood\).](#) Confirming this intuition, the Hawk-Mesa outperforms the remaining recurrent

Figure 3: NLL Difference relative to a Transformer (1B models, 50B tokens) on SlimPajama. Most recurrent layers show superior language modeling performance in terms of NLL up to the 64’th token. MesaNet and Hawk-Mesa extend the advantage beyond 512 tokens. The advantage early in the sequence is even more apparent in log-scale (right).

Figure 4: Avg. Mean-so-Far PPL on 3 Long-Context Benchmarks (WIKI, GOV, QASPER).

378	Model	Reasoning Global (Acc ↑)	Reasoning Local (Acc ↑)	In-Context Recall (Acc ↑)	Scramble 100-shot (Acc ↑)	Translation 50-shot (bleu-sb ↑)	Model	Reasoning Global (Acc ↑)	Reasoning Local (Acc ↑)	In-Context Recall (Acc ↑)	Scramble 100-shot (Acc ↑)	Translation 50-shot (bleu-sb ↑)
379	Hawk	37.42	50.04	21.29	4.70	3.51	Hawk	41.17	51.57	25.04	6.49	4.73
380	Mamba2	37.58	48.19	32.21	3.38	2.55	Mamba2	41.62	50.51	37.67	4.19	4.18
381	GLA	39.45	48.86	36.50	5.06	2.57	GLA	44.34	51.44	39.64	7.29	7.58
382	xLSTM	38.97	48.90	34.89	5.56	2.74	xLSTM	42.99	51.50	39.25	7.78	7.68
383	DeltaNet	39.72	48.91	35.19	5.14	2.47	DeltaNet	43.86	51.58	40.46	7.93	5.37
384	Gated DeltaNet	40.19	49.10	35.96	6.17	2.98	Gated DeltaNet	44.84	50.76	39.54	8.90	8.53
385	Mesa	40.88	49.64	39.30	6.22	3.83	Mesa	45.03	50.49	41.79	10.10	8.17
386	Hawk-Mesa	40.13	49.53	36.23	5.19	3.25	Hawk-Mesa	44.62	51.51	39.99	8.61	8.81
387	SWA-4	28.63	48.20	9.79	0.82	0.14	SWA-4	31.20	49.62	11.87	1.66	0.51
388	SWA-64	38.17	48.76	24.84	3.66	2.59	SWA-64	42.33	50.52	26.72	5.91	4.70
389	SWA-1024	41.30	48.84	38.21	5.43	5.65	SWA-1024	45.68	51.35	40.84	6.66	14.17
390	Transformer	42.15	48.80	49.95	6.01	5.89	Transformer	45.54	51.62	52.27	6.98	13.61
391	(a) 400M Params, 50B Tokens						(b) 1B Models, 50B Tokens					

Table 3: Grouped Benchmark Scores (↑) on models trained on 50B Tokens from SlimPajama with a context length of 2048. We compare the aggregated performance of models with Linearized Recurrent Unit, Gated Linearized Multi-Head Attention, DeltaNet and MESA layers on 5 different subsets of benchmarks. As a reference, we show the performance of Sliding Window-Attention models (SWA) with varying window sizes.

models, with the MesaNet being second best: MesaNet and Hawk-MesaNet not only attain the strongest early-in-the-sequence modeling ability, but also extend the advantage beyond a depth of 512 tokens.

MesaNet is competitive on length extrapolation with recurrent baselines, but SWA-1024 is a hard-to-beat baseline. Next, we evaluate the ability to extrapolate to sequences of up to 32k tokens (see Figure 4). While transformer, Mamba2, DeltaNet and HawkMesa fail to extrapolate catastrophically to longer sequences on all evaluated benchmarks, MesaNet exhibits length-extrapolation capabilities superior to Hawk, GLA, xLSTM and on-par with Gated DeltaNet on all evaluated long-sequence benchmarks with respect to PPL scores (aggregated and conditional on token positions). However, these results should be tempered by the fact that a SWA model with an attention window of 1024 attains competitive benchmark scores, even superior at a sequence length of 32k on some benchmarks. This finding is in line with recent criticism that PPL may not distinguish a model’s ability to capture local vs. long-range dependencies between tokens (Hu et al., 2024; Fang et al., 2024). We refer to Section L for detailed score breakdown and results on the Needle-in-the-haystack (NIAH) benchmark (Hsieh et al., 2024), where MesaNet shows strong performance.

4.2 LANGUAGE BENCHMARKS

We next evaluate MesaNet’s capabilities on a comprehensive set of downstream tasks, ranging across zero-shot reasoning, in-context recall and in-context learning tasks. We evaluate on various benchmarks considered in prior work (Gu & Dao, 2024; Yang et al., 2024a; Beck et al., 2024), and complement them with few-shot learning tasks involving token-manipulation and translation. We present the aggregated results of 400M and 1B models trained on 50B tokens in ??, and report detailed scores in Section L. Across most evaluated benchmarks, the MesaNet matches or exceeds the performance of the evaluated recurrent baselines.

Zero-Shot Common-Sense Reasoning Performance: Transformers & MesaNet \geq other RNNs. Prior work (Gu & Dao, 2024; Yang et al., 2024a; Behrouz et al., 2024; Beck et al., 2024) commonly reports the average performance of a set of common-sense reasoning benchmarks to compare models. However, evaluations of SWA models with different window sizes reveal that competitive, or even superior, scores on many of these frequently reported benchmarks can be attained with attention window size as short as 4 (see Table 13). This observation strongly indicates that some of these benchmarks are exploitable by short-range language heuristics, and do not require longer-range language modeling capabilities to reach competitive scores, or are simply too hard such that we end up measuring noise. To reduce the potential benchmark noise and deconfound the results, we hence report the zero-shot reasoning benchmarks in two separate splits:

- The **Global Reasoning Benchmark Set** encompasses all benchmarks where we observe a significant performance increase with a growing attention window size. This includes Lambada (Paperno et al., 2016), HellaSwag (Zellers et al., 2019) and RACE-{}{M,H} (Lai et al., 2017). Within both reported model sizes (400M and 1B), MesaNet outperforms all other recurrent models on average on these benchmarks. However, MesaNet still underperforms the transformer baseline.

432 • The **Local Reasoning Benchmark Set** includes all benchmarks where we see little to marginal
 433 improvement with a growing attention window size. This includes PIQA (Bisk et al., 2020),
 434 WinoGrande (Sakaguchi et al., 2021), ARC-{E,C} (Clark et al., 2018), SIQA (Sap et al., 2019),
 435 BoolQ (Clark et al., 2019), OpenBookQA (Mihaylov et al., 2018) and StoryCloze (Srinivasan et al.,
 436 2018). Unsurprisingly, we observe very similar average scores for all models. Notably, Hawk, the
 437 worst performing recurrent model on global reasoning and in-context recall benchmarks, shows
 438 excellent performance on this benchmark subset. This observation supports the hypothesis that these
 439 subsets of benchmarks are likely to measure different capabilities, and highlights the differences
 440 between Hawk to e.g. the MesaNet. These analyses motivate the recurrent hybrid Hawk-Mesa
 441 model, which tries to capitalize on the complimentary strengths of the two layers.

442 **In-Context Recall Performance: Transformers > MesaNet \geq other RNNs.** To gauge the ability
 443 to recall in-context information, we follow Arora et al. (2024) and Yang et al. (2024a) and evaluate
 444 models on SWDE (Lockard et al., 2019), SQuAD (Rajpurkar et al., 2016), FDA (Arora et al., 2023b),
 445 TQA (Kembhavi et al., 2017), NQ (Kwiatkowski et al., 2019) and DROP (Dua et al., 2019). We
 446 adopt the minimal-transformed versions of the benchmarks from Arora et al. (2024) that adjust for the
 447 evaluation of non-instruction-tuned models. In line with the observations on synthetic benchmarks
 448 in Section K, MesaNet outperforms all other recurrent models on these tasks. Moreover, MesaNet
 449 exceeds the performance of a SWA-1024, the only recurrent model to do so. However, there remains
 450 a gap in performance relative to the transformer baseline with an attention window size of 2048.

451 **Few-Shot Learning Performance: Transformers & MesaNet > other RNNs.** Finally, we measure
 452 the model’s ability to learn from few-shot demonstrations. We evaluate on two GPT3 word scrambling
 453 tasks (cycle letters in word, anagrams of all but first and last two characters) (Brown et al., 2020b) and
 454 three translation tasks (WMT-14 FR-EN (Bojar et al., 2014) , WMT-16 DE-EN and RO-EN (Bojar
 455 et al., 2016)). MesaNet demonstrates strong performance on all few-shot learning tasks. While it
 456 exceeds the performance of the Transformer on word scrambling tasks, it fails to do so in translations.

457 5 TEST-TIME COMPUTE ANALYSIS

467 **Figure 5: Effect of Number of Conjugate Gradient (CG) Steps on SlimPajama Perplexity within and**
 468 **beyond train context length.** We show here the effect of reducing the number of CG steps during inference on
 469 token perplexity across token position of a 1B MesaNet trained on 50B tokens. We either use a **fixed number CG**
 470 **steps uniformly across the model** or apply a **dynamic stopping criterion $\epsilon > 0$** .

471 In the previous section we showed results from models trained and evaluated with 30 CG steps. We
 472 study now the effect of using the MesaNet trained on 30 CG steps but evaluate the model when using
 473 a dynamic stopping criterion aiming to reducing the CG steps used at inference time. We refer again
 474 to Appendix C for a description of the CG method used in this work.

475 **Mesa objectives differ widely across heads and layers.** When analysing the internals of the Mesa
 476 layer on sequences of the SlimPajama validation set, we observe a bimodal distribution of condition
 477 numbers of $H_{h,t} + \Lambda_h$ across heads almost in every layer, see Figure 14. In particular, we observe
 478 that heads either have 1) large and growing condition number with sequence length, or 2) rather low
 479 and constant condition number over the sequence. In every layer, there are roughly 1-2 heads for
 480 which the condition number of $\text{linsolve}(H_{h,t} + \Lambda_h, q_{h,t})$ (and therefore the number of CG steps)
 481 grows with t . This motivates dynamic allocation of CG steps in every head.

482 **MesaNets allocate test-time compute dynamically.** We test 1) reducing the number of CG steps of
 483 all layers and heads uniformly, and 2) varying the solver’s stopping criterion ϵ to dynamically allocate
 484 test-time compute. As shown in Figure 7, when reducing CG steps uniformly, we observe an increase
 485 in negative log-likelihood when comparing to our model evaluated with 30 steps, especially on tokens
 later in the sequence. This is in line with our findings on the need for higher number of steps as t

486 grows. By contrast, with a dynamic stopping criterion ϵ , increasing ϵ yields a uniform degradation
 487 over sequence length. A model with a stopping criterion of $\epsilon = 10^{-4}$ performs on-par with the base
 488 model using a fixed number of 30 CG steps, while reducing the average CG steps used to ≈ 9 .
 489

490 6 DISCUSSION

491 We present a chunkwise parallelized, numerically stable version of the Mesa layer (von Oswald et al.,
 492 2024), and scale it up to 1B parameter language models. This layer generates a prediction by solving
 493 an optimization problem, which yields a linear model that best fits a given sequence. Our Mesa layer
 494 can allocate test-time compute dynamically according to the stopping criterion. Complex sequences
 495 are then modeled by many of such layers, while interleaving them with MLPs, into MesaNets.
 496

497 This approach has ties to multiple long-running lines of research. It relates to alternatives to end-
 498 to-end differentiation based on stacks of greedy local learners (e.g., Hinton et al., 2006; Nøkland &
 499 Eidnes, 2019; Veness et al., 2021), bringing these to the fast inference timescale, and then delegating
 500 to nonlocal backpropagation-based learning the role of determining which optimization problems
 501 must be solved at inference time. This in turn relates to mesa-optimization (Hubinger et al., 2019),
 502 since test-time optimization objectives (though not the optimizers themselves) are discovered by
 503 (base) sequence prediction loss optimization. The idea of specifying the output of a neural layer
 504 through an optimization problem is an old one (Amos & Kolter, 2017; Gould et al., 2021), with roots
 505 at least to energy-based neural models (Hopfield, 1984). Finally, the Mesa layer is perhaps most
 506 related to fast weights of Schmidhuber (1992), replacing Hebbian with locally-optimal learning.
 507

508 The Mesa layer extends state-of-the-art recurrent language models such as Mamba (Gu & Dao,
 509 2024), RWKV (Peng et al., 2023), xlSTM (Beck et al., 2024), and (Gated) DeltaNet (Schlag et al.,
 510 2021a; Yang et al., 2024c;a), which can also be motivated by an in-context regression loss, but update
 511 their fast weights with a slower GD process. In a new in-depth evaluation, we show that RNNs, in
 512 particular MesaNets, outperform transformers significantly early in sequences, while underperforming
 513 in next-token prediction and benchmark performance when longer contexts are needed. It should
 514 be stressed that it is exactly in the long-context regime, however, that RNNs show advantages over
 515 transformers in terms of inference time. In our view, these observations merit further investigation,
 516 and may serve as the starting point for novel RNN scaling law analyses.
 517

518 The biggest shortcoming of the MesaNet in its current form is the increase in test-time compute
 519 despite its dynamic nature. One possible way around this may lie on the findings of Figure 14,
 520 where we see that heads which require more CG steps often do not forget, i.e. $\gamma \approx 1$ irrespective of
 521 the input data. This motivates leveraging the similarity of solutions from neighboring time steps,
 522 to warm-start optimization of consecutive steps. Moreover, one could envision a hybrid approach
 523 where the chunkwise parallel CG method introduced in this paper is used during training, while then
 524 reverting back to using the efficient Sherman-Morrison recursion at inference time, which could work
 525 given the almost-no-forgetting $\gamma \approx 1$ condition. We point to additional discussion points in Appendix
 526 J and leave investigating these directions for future work.
 527

528 REPRODUCIBILITY STATEMENT

529 We provide pseudocode for the conjugate-gradient implementation of the Mesa layer in Section C and
 530 Section D, and provide detailed descriptions regarding numerical precision in Section G.5. All other
 531 important aspects for training (e.g. tokenizer, data, context length) are given in Section 4. We will
 532 furthermore, upon publication, provide a triton-based open source implementation of the MesaNet and
 533 Mesa layer, as well as educational colab notebooks to further ease reproduction and experimentation
 534 with our layer and models. Moreover, we focused not only on improving the numbers of our proposed
 535 method but scanned hyperparameters of the related works extensively (see Section E). Lastly, we
 536 focused on an apples-to-apples comparison between methods by using the exact same backbone
 537 while only varying the sequence layer.
 538

539 REFERENCES

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Architectures and algorithms, 2024. URL <https://arxiv.org/abs/2401.12973>.

540 Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer in neural networks.
 541 In *International Conference on Machine Learning*, 2017.
 542

543 Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
 544 and Christopher Ré. Zoology: Measuring and improving recall in efficient language models. *arXiv*
 545 preprint [arXiv:2312.04927](https://arxiv.org/abs/2312.04927), 2023a.

546 Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel, Immanuel Trummer,
 547 and Christopher Ré. Language models enable simple systems for generating structured views of
 548 heterogeneous data lakes. *arXiv preprint arXiv:2304.09433*, 2023b.

549 Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
 550 James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance the
 551 recall-throughput tradeoff. *arXiv preprint arXiv:2402.18668*, 2024.

552 Jimmy Ba, Geoffrey E. Hinton, Volodymyr Mnih, Joel Z. Leibo, and Catalin Ionescu. Using fast
 553 weights to attend to the recent past. In *Advances in Neural Information Processing Systems*,
 554 volume 29, 2016.

555 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
 556 learning to align and translate. *arXiv preprint arXiv:1409.0473*, 2014.

557 Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. *Advances in Neural*
 558 *Information Processing Systems*, 2019.

559 Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
 560 Michael K Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM:
 561 Extended long short-term memory. In *The Thirty-eighth Annual Conference on Neural Information*
 562 *Processing Systems*, 2024. URL <https://openreview.net/forum?id=ARAxPPIAhq>.

563 Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time, 2024.
 564 URL <https://arxiv.org/abs/2501.00663>.

565 Ali Behrouz, Zeman Li, Praneeth Kacham, Majid Daliri, Yuan Deng, Peilin Zhong, Meisam Razaviyayn, and Vahab Mirrokni. Atlas: Learning to optimally memorize the context at test time. *arXiv*
 566 preprint [arXiv:2505.23735](https://arxiv.org/abs/2505.23735), 2025a.

567 Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. It's all connected: A journey
 568 through test-time memorization, attentional bias, retention, and online optimization. *arXiv preprint*
 569 *arXiv:2504.13173*, 2025b.

570 Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
 571 *arXiv preprint arXiv:2004.05150*, 2020.

572 Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi,
 573 Alham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, et al. Lessons from
 574 the trenches on reproducible evaluation of language models. *arXiv preprint arXiv:2405.14782*,
 575 2024.

576 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
 577 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
 578 2020.

579 Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias
 580 Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri,
 581 Aurelie Neveol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia
 582 Specia, Marco Turchi, Karin Verspoor, and Marcos Zampieri. Findings of the 2016 conference
 583 on machine translation. In *Proceedings of the First Conference on Machine Translation*, pp.
 584 131–198, Berlin, Germany, August 2016. Association for Computational Linguistics. URL
 585 <http://www.aclweb.org/anthology/W/W16/W16-2301>.

594 Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
 595 Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soriciut, Lucia
 596 Specia, and Ale s Tamchyna. Findings of the 2014 workshop on statistical machine translation.
 597 In *Proceedings of the Ninth Workshop on Statistical Machine Translation*, pp. 12–58, Baltimore,
 598 Maryland, USA, June 2014. Association for Computational Linguistics. URL <http://www.aclweb.org/anthology/W/W14/W14-3302>.

600 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 601 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 602 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020a.

603 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
 604 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
 605 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
 606 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
 607 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
 608 Sutskever, and Dario Amodei. Language models are few-shot learners. In *Advances in Neural
 609 Information Processing Systems*, volume 33, 2020b.

610 Ryan Burnell, Wout Schellaert, John Burden, Tomer D Ullman, Fernando Martinez-Plumed, Joshua B
 611 Tenenbaum, Danaja Rutar, Lucy G Cheke, Jascha Sohl-Dickstein, Melanie Mitchell, et al. Rethink
 612 reporting of evaluation results in ai. *Science*, 380(6641):136–138, 2023.

613 Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
 614 Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder
 615 for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans
 616 (eds.), *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
 617 (EMNLP)*, pp. 1724–1734, Doha, Qatar, October 2014. Association for Computational Linguistics.
 618 doi: 10.3115/v1/D14-1179. URL <https://aclanthology.org/D14-1179/>.

619 Krzysztof Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea Gane, Tamas
 620 Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy
 621 Colwell, and Adrian Weller. Rethinking attention with performers. In *International Conference of
 622 Learning Representations*, 2021.

623 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 624 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint
 625 arXiv:1905.10044*, 2019.

626 Kevin Clark, Kelvin Guu, Ming-Wei Chang, Panupong Pasupat, Geoffrey Hinton, and Mohammad
 627 Norouzi. Meta-learning fast weight language models. In Yoav Goldberg, Zornitsa Kozareva,
 628 and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural
 629 Language Processing*, pp. 9751–9757, Abu Dhabi, United Arab Emirates, December 2022.
 630 Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.661. URL
 631 <https://aclanthology.org/2022.emnlp-main.661/>.

632 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 633 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 634 *arXiv preprint arXiv:1803.05457*, 2018.

635 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
 636 <https://arxiv.org/abs/2307.08691>.

637 Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through
 638 structured state space duality, 2024. URL <https://arxiv.org/abs/2405.21060>.

639 Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
 640 of information-seeking questions and answers anchored in research papers. *arXiv preprint
 641 arXiv:2105.03011*, 2021.

642 Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
 643 Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins,
 644

648 Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas, and Caglar
649 Gulcehre. Griffin: mixing gated linear recurrences with local attention for efficient language
650 models, February 2024. URL <http://arxiv.org/abs/2402.19427>. arXiv:2402.19427
651 [cs].

652 Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
653 transformers, 2019. URL <https://arxiv.org/abs/1807.03819>.

654 Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
655 Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. *arXiv
656 preprint arXiv:1903.00161*, 2019.

657 Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng Zhang, Stefanie Jegelka, Jinyang Gao, Bolin
658 Ding, and Yisen Wang. What is wrong with perplexity for long-context language modeling? *arXiv
659 preprint arXiv:2410.23771*, 2024.

660 Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry
661 hungry hippos: towards language modeling with state space models. In *International Conference
662 of Learning Representations*, 2023.

663 Marta Garnelo and Wojciech Marian Czarnecki. Exploring the space of key-value-query models with
664 intention. *arXiv preprint arXiv:2305.10203*, 2023.

665 Carl Friedrich Gauss. *Theoria combinationis observationum: erroribus minimis obnoxiae*. Societas
666 Regia Scientiarum Gottingensis, 1821.

667 Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit
668 models. In *Proceedings of the 35th International Conference on Neural Information Processing
669 Systems*, NIPS '21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

670 F.A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction with LSTM. In
671 *1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No.
672 470)*, volume 2, pp. 850–855 vol.2, 1999. doi: 10.1049/cp:19991218.

673 Stephen Gould, Richard Hartley, and Dylan John Campbell. Deep declarative networks. *IEEE
674 Transactions on Pattern Analysis and Machine Intelligence*, 2021.

675 Alex Graves. Adaptive computation time for recurrent neural networks, 2017. URL <https://arxiv.org/abs/1603.08983>.

676 Riccardo Grazzi, Julien Siems, Jörg K.H. Franke, Arber Zela, Frank Hutter, and Massimiliano
677 Pontil. Unlocking state-tracking in linear RNNs through negative eigenvalues. In *The Thirteenth
678 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=UvTo3tVBk2>.

679 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In *First
680 Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=tEYskw1VY2>.

681 Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
682 bining Recurrent, Convolutional, and Continuous-time Models with Linear State Space Layers.
683 In *Advances in Neural Information Processing Systems*, volume 34, pp. 572–585. Curran As-
684 sociates, Inc., 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html>.

685 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
686 state spaces. In *The International Conference on Learning Representations (ICLR)*, 2022.

687 Donald O. Hebb. *The Organization of Behavior: A Neuropsychological Theory*. Wiley, New York,
688 1949.

689 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs), 2023. URL <https://arxiv.org/abs/1606.08415>.

702 John Hertz, Richard G. Palmer, and Anders S. Krogh. *Introduction to the Theory of Neural Computation*.
 703 Perseus Publishing, 1st edition, 1991.

704

705 Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving linear systems.
 706 *Journal of Research of the National Bureau of Standards*, 49(6):409–436, 1952.

707

708 Geoffrey Hinton, Simon Osindero, and Yee Whye Teh. A Fast Learning Algorithm for Deep Belief
 709 Nets. *Neural Computation*, 18:1527–1554, 2006.

710

711 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8):
 712 1735–1780, 1997. URL <http://dblp.uni-trier.de/db/journals/neco/neco9.html#HochreiterS97>.

713

714 John J Hopfield. Neurons with graded response have collective computational properties like those of
 715 two-state neurons. *Proceedings of the National Academy of Sciences*, 81(10):3088–3092, 1984.

716

717 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
 718 Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
 719 models? *arXiv preprint arXiv:2404.06654*, 2024.

720

721 Yutong Hu, Quzhe Huang, Mingxu Tao, Chen Zhang, and Yansong Feng. Can perplexity reflect large
 722 language model’s ability in long text understanding? *arXiv preprint arXiv:2405.06105*, 2024.

723

724 Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In
 725 Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
 726 (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of
 727 *Proceedings of Machine Learning Research*, pp. 9099–9117. PMLR, 17–23 Jul 2022. URL
 728 <https://proceedings.mlr.press/v162/hua22a.html>.

729

730 Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for long
 731 document summarization. In *Proceedings of the 2021 Conference of the North American Chapter
 732 of the Association for Computational Linguistics: Human Language Technologies*, pp. 1419–1436,
 733 Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.
 734 112. URL <https://aclanthology.org/2021.naacl-main.112>.

735

736 Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott Garrabrant. Risks from
 737 learned optimization in advanced machine learning systems. *arXiv preprint 1906.01820*, 2019.

738

739 Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplexity—a measure of the
 740 difficulty of speech recognition tasks. *The Journal of the Acoustical Society of America*, 62(S1):
 741 S63–S63, 1977.

742

743 Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
 744 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL <https://kellerjordan.github.io/posts/muon/>.

745

746 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
 747 RNNs: fast autoregressive transformers with linear attention. In *International Conference on
 748 Machine Learning*, 2020.

749

750 Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, Jonghyun Choi, Ali Farhadi, and Hannaneh
 751 Hajishirzi. Are you smarter than a sixth grader? textbook question answering for multimodal
 752 machine comprehension. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
 753 recognition*, pp. 4999–5007, 2017.

754

755 Teuvo Kohonen and Matti Ruohonen. Representation of associated data by matrix operators. *IEEE
 756 Transactions on Computers*, 100(7):701–702, 1973.

757

758 Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation of neural
 759 sequence models. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International
 760 Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*,
 761 pp. 2766–2775. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/krause18a.html>.

756 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 757 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
 758 benchmark for question answering research. *Transactions of the Association for Computational
 759 Linguistics*, 7:453–466, 2019.

760 Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
 761 comprehension dataset from examinations. *arXiv preprint arXiv:1704.04683*, 2017.

763 Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differ-
 764 ential and integral operators. *Journal of Research of the National Bureau of Standards*, 45(4):
 765 255–282, 1950.

766 Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
 767 DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, maxime gazeau, Himanshu
 768 Sahni, Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm
 769 distillation. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 770 <https://openreview.net/forum?id=hy0a5MMPUv>.

771 Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
 772 solve inherently serial problems, 2024. URL <https://arxiv.org/abs/2402.12875>.

774 Zhixuan Lin, Evgenii Nikishin, Xu Owen He, and Aaron Courville. Forgetting transformer: Softmax
 775 attention with a forget gate. *arXiv preprint arXiv:2503.02130*, 2025.

777 Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, and qiang liu. Longhorn: State space
 778 models are amortized online learners. In *The Thirteenth International Conference on Learning
 779 Representations*, 2025. URL <https://openreview.net/forum?id=8j0qCcLzeO>.

780 Colin Lockard, Prashant Shiralkar, and Xin Luna Dong. Openceres: When open information extrac-
 781 tion meets the semi-structured web. In *Proceedings of the 2019 Conference of the North American
 782 Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
 783 1 (Long and Short Papers)*, pp. 3047–3056, 2019.

784 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 785 ence on Learning Representations*, 2019.

787 Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
 788 prompts and where to find them: Overcoming few-shot prompt order sensitivity. *arXiv preprint
 789 arXiv:2104.08786*, 2021.

790 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 791 models, 2016.

793 William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
 794 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=NjNGLPh8Wh>.

796 William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models,
 797 2025. URL <https://arxiv.org/abs/2404.08819>.

799 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 800 electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*,
 801 2018.

802 Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Černocký, and Sanjeev Khudanpur. Recurrent
 803 neural network based language model. In *Proceedings of Interspeech 2010*, pp. 1045–1048, 2010.
 804 doi: 10.21437/Interspeech.2010-343.

805 Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In
 806 *International Conference on Machine Learning*, 2019.

808 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
 809 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambda dataset:
 Word prediction requiring a broad discourse context. *arXiv preprint arXiv:1606.06031*, 2016.

810 Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
 811 Cao, Xin Cheng, Michael Chung, Leon Derczynski, Xingjian Du, Matteo Grella, Kranthi Gv,
 812 Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartłomiej Koptyra,
 813 Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song,
 814 Xiangru Tang, Johan Wind, Stanisław Woźniak, Zhenyuan Zhang, Qinghua Zhou, Jian Zhu, and
 815 Rui-Jie Zhu. RWKV: Reinventing RNNs for the transformer era. In Houda Bouamor, Juan
 816 Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP*
 817 2023, pp. 14048–14077, Singapore, December 2023. Association for Computational Linguistics.
 818 doi: 10.18653/v1/2023.findings-emnlp.936. URL <https://aclanthology.org/2023.findings-emnlp.936/>.

819

820 Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong.
 821 Random Feature Attention, March 2021. URL <http://arxiv.org/abs/2103.02143>.
 822 arXiv:2103.02143 [cs].

823 Michael Poli, Armin W. Thomas, Eric Nguyen, Pragaash Ponnusamy, Björn Deisereth, Kristian
 824 Kersting, Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Ré, Ce Zhang, and Stefano Massaroli.
 825 Mechanistic design and scaling of hybrid architectures. In *ICML*, 2024. URL <https://openreview.net/forum?id=GDp7Gyd9nf>.

826

827 Matt Post. A call for clarity in reporting BLEU scores. In Ondřej Bojar, Rajen Chatterjee, Christian
 828 Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes,
 829 Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia
 830 Specia, Marco Turchi, and Karin Verspoor (eds.), *Proceedings of the Third Conference on Machine*
 831 *Translation: Research Papers*, pp. 186–191, Brussels, Belgium, October 2018. Association for
 832 Computational Linguistics. doi: 10.18653/v1/W18-6319. URL <https://aclanthology.org/W18-6319/>.

833

834 Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei, Baohong
 835 Lv, Xiao Luo, Yu Qiao, and Yiran Zhong. Transnformerllm: A faster and better large language
 836 model with improved transnformer, 2024. URL <https://arxiv.org/abs/2307.14995>.

837

838 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 839 models are unsupervised multitask learners. *OpenAI blog*, 1(8), 2018.

840

841 Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
 842 transformers for long-range sequence modelling. *arXiv preprint arXiv:1911.05507*, 2019.

843

844 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
 845 machine comprehension of text. *arXiv preprint arXiv:1606.05250*, 2016.

846

847 Amal Rannen-Triki, Jorg Bornschein, Razvan Pascanu, Marcus Hutter, Andras György, Alexandre
 848 Galashov, Yee Whye Teh, and Michalis K. Titsias. Revisiting dynamic evaluation: Online adapta-
 849 tion for large language models, 2024. URL <https://arxiv.org/abs/2403.01518>.

850

851 Tanya Rodchenko, Natasha Noy, Nino Scherrer, and Jennifer Prendki. Not every ai problem is a data
 852 problem: We should be intentional about data scaling. *arXiv preprint arXiv:2501.13779*, 2025.

853

854 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 855 adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106,
 856 2021.

857

858 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialqa: Commonsense
 859 reasoning about social interactions. *arXiv preprint arXiv:1904.09728*, 2019.

860

861 Yash Sarrof, Yana Veitsman, and Michael Hahn. The expressive capacity of state space models: A
 862 formal language perspective, 2024. URL <https://arxiv.org/abs/2405.17394>.

863

864 Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
 865 programmers. In *International Conference on Machine Learning*, 2021a.

866

867 Imanol Schlag, Tsendsuren Munkhdalai, and Jürgen Schmidhuber. Learning associative inference
 868 using fast weight memory. In *International Conference on Learning Representations*, 2021b. URL
 869 <https://openreview.net/forum?id=TuK6agbdt27>.

864 Jürgen Schmidhuber. *Evolutionary principles in self-referential learning, or on learning how to learn: the meta-meta-... hook*. Diploma thesis, Institut für Informatik, Technische Universität München, 865 1987.

866

867 Jürgen Schmidhuber. Learning to control fast-weight memories: an alternative to dynamic recurrent 868 networks. *Neural Computation*, 4(1):131–139, 1992.

869

870 Mark Schöne, Babak Rahmani, Heiner Kremer, Fabian Falck, Hitesh Ballani, and Jannes Gladrow. 871 Implicit language models are RNNs: Balancing parallelization and expressivity, 2025. URL 872 <https://arxiv.org/abs/2502.07827>.

873

874 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and 875 Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017. 876 URL <https://arxiv.org/abs/1701.06538>.

877

878 Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corresponding to a change 879 in one element of a given matrix. *The Annals of Mathematical Statistics*, 21(1):124–127, 1950.

880

881 Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel 882 Hestness, and Nolan Dey. SlimPajama: A 627B token cleaned and 883 deduplicated version of RedPajama. <https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama>, 884 2023. URL <https://huggingface.co/datasets/cerebras/SlimPajama-627B>.

885

886 Siddarth Srinivasan, Richa Arora, and Mark Riedl. A simple and effective approach to the story cloze 887 test. *arXiv preprint arXiv:1803.05547*, 2018.

888

889 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced 890 transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

891

892 Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei 893 Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to 894 (learn at test time): RNNs with expressive hidden states, 2025. URL <https://arxiv.org/abs/2407.04620>.

895

896 Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and 897 Furu Wei. Retentive network: A successor to transformer for large language models, 2023. URL 898 <https://arxiv.org/abs/2307.08621>.

899

900 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay 901 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris- 902 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, 903 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, 904 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel 905 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, 906 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, 907 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, 908 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh 909 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen 910 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, 911 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 912 2023. URL <https://arxiv.org/abs/2307.09288>.

913

914 Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut- 915 dinov. Transformer dissection: a unified understanding of transformer’s attention via the lens 916 of kernel. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language 917 Processing and the 9th International Joint Conference on Natural Language Processing*, 2019.

918

919 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, 920 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information 921 Processing Systems*, volume 30, 2017.

918 Joel Veness, Tor Lattimore, David Budden, Avishkar Bhoopchand, Christopher Mattern, Agnieszka
919 Grabska-Barwinska, Eren Sezener, Jianan Wang, Peter Toth, Simon Schmitt, et al. Gated linear
920 networks. In *Proceedings of the AAAI conference on artificial intelligence*, 2021.

921

922 Max Vladymyrov, Johannes von Oswald, Nolan Andrew Miller, and Mark Sandler. Efficient
923 linear system solver with transformers. In *AI for Math Workshop @ ICML 2024*, 2024. URL
924 <https://openreview.net/forum?id=qc2adlhAWF>.

925 Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
926 Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
927 *International Conference on Machine Learning*, 2023.

928 Johannes von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind Niklas-
929 son, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Blaise Agüera y Arcas, Max
930 Vladymyrov, Razvan Pascanu, and João Sacramento. Uncovering mesa-optimization algorithms in
931 transformers, 2024. URL <https://arxiv.org/abs/2309.05858>.

932

933 Johannes von Oswald, Seijin Kobayashi, Yassir Akram, and Angelika Steger. Learning random-
934 ized algorithms with transformers. In *The Thirteenth International Conference on Learning
935 Representations*, 2025. URL <https://openreview.net/forum?id=UV5p3JZMjC>.

936 Ke Alexander Wang, Jiaxin Shi, and Emily B. Fox. Test-time regression: a unifying framework
937 for designing sequence models with associative memory, 2025. URL <https://arxiv.org/abs/2501.12352>.

938

939 Jos Westhuizen and Joan Lasenby. The unreasonable effectiveness of the forget gate. *arXiv preprint
940 arXiv:1804.04849*, 2018.

941

942 Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. In *IRE WESCON convention
943 record*, volume 4, 1960.

944

945 Songlin Yang and Yu Zhang. FLA: a triton-based library for hardware-efficient implemen-
946 tations of linear attention mechanism, 2024. URL <https://github.com/fla-org/flash-linear-attention>.

947

948 Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
949 delta rule. *arXiv preprint arXiv:2412.06464*, 2024a.

950

951 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
952 transformers with hardware-efficient training. In *Proceedings of ICML*, 2024b.

953

954 Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
955 with the delta rule over sequence length. In *The Thirty-eighth Annual Conference on Neural
956 Information Processing Systems*, 2024c. URL <https://openreview.net/forum?id=y8Rm4VNRPH>.

957

958 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
959 really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

960

961 Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization. In *Advances in Neural
962 Information Processing Systems* 32, Vancouver, Canada, 2019. URL <https://openreview.net/references/pdf?id=S1qBAf6rr>.

963

964 Yu Zhang, Songlin Yang, Ruijie Zhu, Yue Zhang, Leyang Cui, Yiqiao Wang, Bolun Wang, Freda Shi,
965 Bailin Wang, Wei Bi, Peng Zhou, and Guohong Fu. Gated slot attention for efficient linear-time
966 sequence modeling. In *Proceedings of NeurIPS*, 2024.

967

968

969

970

971

972 A RELATED WORK
973

974 **Linear Attention.** As already described above, Tsai et al. (2019) demonstrated that the softmax
975 attention mechanism can be linearized by replacing the softmax kernel $\kappa(k, q) = \exp(k^T q)$ with a
976 surrogate kernel $\kappa' = \langle \sigma(k), \sigma(q) \rangle$. The resulting linear attention mechanism iteratively accumulates
977 the outer product of key-value pairs into a recurrent state that is queried at each step, resembling
978 RNNs (Katharopoulos et al., 2020). Since then, numerous works have proposed different designs
979 of the feature map $\sigma(\cdot)$ (Katharopoulos et al., 2020; Choromanski et al., 2021; Schlag et al., 2021a;
980 Peng et al., 2021; Sun et al., 2023; Dao & Gu, 2024) and key-value normalization (Yang et al.,
981 2024c; Schlag et al., 2021a; Sun et al., 2023). Notably, a more general form of (unnormalized) linear
982 attention was introduced in the early ‘90s as *Fast Weight Programmers* (Schmidhuber, 1992; Schlag
983 et al., 2021a; Ba et al., 2016), connected to Meta-Learning (Schmidhuber, 1987).

984 **Test-time regression.** Contrary to softmax attention, linear attention variants are only capable of
985 storing a finite number of key-value associations. Given key dimension d_{key} , there exist at most d_{key}
986 orthogonal keys, and therefore, retrieval beyond d_{key} tokens cannot be error-free. Inspired by the
987 error-correcting delta rule (Widrow & Hoff, 1960), Schlag et al. (2021b;a) proposed to interpolate
988 the value with the previously stored association, yielding the DeltaNet. The DeltaNet update rule is
989 equivalent to performing a gradient descent step with respect to the recurrent state Φ on $\|\Phi k_t - v_t\|^2$.
990 Yang et al. (2024a) demonstrated that the DeltaNet is parallelizable and achieved strong language
991 modeling performance when embedded into a modern architecture. Motivated this online regression
992 loss, other works derived the same update rule as the DeltaNet. Instead of a parallel implementation,
993 Liu et al. (2025) approximate the update with a diagonal matrix, while Sun et al. (2025) perform the
994 DeltaNet update on a per-chunk basis, implicitly performing batched gradient descent. Building on
995 this, Titans (Behrouz et al., 2024) adds momentum to the batched gradient descent update. Wang
996 et al. (2025); Behrouz et al. (2025b) unify numerous efficient foundation models from the perspective
997 of test-time regression. Extending Titans, concurrent follow-up work Atlas Behrouz et al. (2025a)
998 is effectively a sliding-window variant of the Mesa layer. It is worth highlighting that this line of
999 research is an instance of Dynamic Evaluation (Mikolov et al., 2010; Krause et al., 2018; Clark et al.,
1000 2022; Rannen-Triki et al., 2024), where model weights are updated at test time via gradient descent
1001 steps on a prediction loss.

1002 **Models with recurrent depth.** The MesaNet is related to a broader class of models building on
1003 fixed point iterations. Universal Transformers (Dehghani et al., 2019) apply transformer blocks
1004 iteratively, using Adaptive Computation Time (Graves, 2017) to make the number of recurrent steps
1005 token-dependent. Deep Equilibrium Models (DEQs) (Bai et al., 2019) take this idea further by directly
1006 solving the corresponding fixed point iteration using quasi Newton methods. More recently, Schöne
1007 et al. (2025) introduced an implicit State Space Model that also relies on a fixed-point iteration, which
1008 is trainable in parallel utilizing the Phantom Gradient technique (Geng et al., 2021). In contrast to
1009 DEQ-style methods, the Mesa layer benefits from the linear structure of fast weight memory, which
1010 allows for a more efficient optimization using conjugate gradient steps.

1011 **Linear RNNs with forgetting.** Forget gates were first introduced by Gers et al. (1999) within the
1012 framework of Long Short-Term Memory networks (LSTMs) (Hochreiter & Schmidhuber, 1997),
1013 and have since become part of the standard LSTM architecture. Even more, studies on simplified
1014 LSTM variants, such as the Gated Recurrent Unit (Cho et al., 2014), have shown the forget gate to be
1015 fundamental for the effectiveness of recurrent sequence models (Westhuizen & Lasenby, 2018).

1016 Compared to LSTMs, modern linear attention variants have adopted more coarse grained forgetting
1017 mechanisms on the matrix-valued recurrent state. RetNet (Sun et al., 2023) and TransNormerLLM
1018 (Qin et al., 2024) both utilize a trainable decay factor on the recurrent matrix. More recent work
1019 found that *data-dependent* forgetting improves language modeling performance, although the data
1020 dependency is usually limited to the current input, but not the recurrent state, to allow for parallel
1021 training. Using an input-dependent decay factor as in this work is the de-facto standard in modern
1022 linear attention variants, such as Mamba-2 (Dao & Gu, 2024), xLSTM (Beck et al., 2024), and Gated
1023 DeltaNet (Yang et al., 2024a). Gated Linear Attention (Yang et al., 2024b) opts for a data-dependent
1024 decay vector, effectively using a separate forget gate for each row of the matrix-valued recurrent state.
1025 Similarly, Gated Slot Attention (Zhang et al., 2024) applies separate input-dependent forget gates to
each row of both matrices of a fixed size Key-Value cache.

1026 **State Space Models.** State Space Models (SSMs) (Gu et al., 2021; 2022; Fu et al., 2023; Gu &
 1027 Dao, 2024) build upon first-order differential equations used to describe dynamical systems, which
 1028 are then discretized for sequence modeling. In linear time-invariant (LTI) SSMs, the recurrent state
 1029 can be obtained through a fixed linear combination of previous recurrent states, which allows for
 1030 a parallel mode using convolutions. Gu et al. (2022) identified the computation of the convolution
 1031 kernel as the primary bottleneck and proposed Structured State Space Models (S4), a parametrization
 1032 for LTI SSMs that enables efficient computation. Mamba (Gu & Dao, 2024) introduces *selectivity* to
 1033 State Space Models, making the recurrent state transitions dependent on the input. Since the resulting
 1034 *time-varying* SSM cannot leverage global convolutions, the authors propose a hardware-efficient
 1035 parallel scan implementation. Mamba-2 further constrains the transition matrix to scalar times
 1036 identity, and demonstrates that the resulting State Space Model is equivalent to (gated) linear attention
 1037 (Dao & Gu, 2024).

1038 B DERIVATION OF PREVIOUS TEST-TIME TRAINING RULES

1040 For completeness, we discuss in more detail the update rules for a number of closely related previous
 1041 sequence modeling layers discussed above and in the main text section 2. Like the Mesa layer, the
 1042 update rules of these models perform some form of test-time learning by optimizing a sequence of
 1043 objective functions $(L_{t'})_{t'=1}^t$. We summarize in Table 4 the update rules and corresponding online
 1044 objective functions that we cover below.

1046 Layer	1047 Objective function	1048 Update rule
1048 GLA	$L_t = -v_t^\top \Phi k_t + \frac{1-\gamma_t}{2\beta_t} \text{Tr}(\Phi \Phi^\top)$	$\Phi_t = \Phi_{t-1} - \beta_t \nabla_\Phi L_t(\Phi_{t-1})$
1049 DeltaNet	$L_t = \frac{1}{2} \ v_t - \Phi k_t\ ^2$	$\Phi_t = \Phi_{t-1} - \beta_t \nabla_\Phi L_t(\Phi_{t-1})$
1050 LongHorn	$L_t = \frac{1}{2} (v_t - \Phi k_t)^\top \text{diag}(\beta_t) (v_t - \Phi k_t) + \frac{1}{2} \text{Tr}(\Phi - \Phi_{t-1})^\top (\Phi - \Phi_{t-1})$	$\Phi_t = \arg \min_\Phi L_t(\Phi)$
1051 Atlas	$L_t = \sum_{t'=t-c+1}^t \zeta_{tt'} \ v_{t'} - \mathcal{M}_\Phi(k_{t'})\ ^2$	$\tilde{\Phi}_t = \tilde{\theta}_t \tilde{\Phi}_{t-1} + \nabla_\Phi L_t(\Phi_{t-1})$ $\Phi_t = \gamma_t \Phi_{t-1} - \beta_t \text{NewtonSchulz}_k(\tilde{\Phi}_t)$
1052 Mesa	$L_t = \frac{1}{2} \sum_{t'=1}^t \zeta_{tt'} \ v_{t'} - \Phi k_{t'}\ ^2 + \frac{1}{2} \text{Tr}(\Phi \Lambda_t \Phi^\top)$	$\Phi_t = \arg \min_\Phi L_t(\Phi)$

1057 **Table 4:** Overview of test-time training recurrent layers, whose update rules can be derived from an online
 1058 learning objective function.

1060 **GLA and DeltaNet update rules.** For convenience, we first restate equation 3 below:

$$1062 L_t(\Phi) = l_t(\Phi) + \frac{1}{2} \text{Tr}(\Phi \Lambda_t \Phi^\top). \quad (11)$$

1064 We show in detail how to obtain the basic GLA and DeltaNet update rules by letting Φ_t follow an
 1065 online gradient-based learning dynamics,

$$1066 \Phi_t = \Phi_{t-1} - \beta_t \nabla_\Phi L_t(\Phi_{t-1}), \quad (12)$$

1067 where the input gate β_t plays the role of a time-dependent step size.

1068 For GLA, we choose l_t to be the quadratic continuous-state Hopfield energy,

$$1069 l_t(\Phi) = l_t^{\text{Hopfield}}(\Phi) := -v_t^\top \Phi k_t,$$

1071 and we set the quadratic regularizer to depend on the forget gate γ_t and input gate β_t as follows:

$$1072 \Lambda_t = \frac{1 - \gamma_t}{\beta_t} I.$$

1074 Now, plugging l_t and Λ_t into equation 12 yields

$$1075 \Phi_t = \Phi_{t-1} - \beta_t \nabla_\Phi \left[-v_t^\top \Phi k_t + \frac{1 - \gamma_t}{2\beta_t} \text{Tr}(\Phi \Phi^\top) \right] \Big|_{\Phi=\Phi_{t-1}} \quad (13)$$

$$1078 = \Phi_{t-1} - (1 - \gamma_t) \Phi_{t-1} + \beta_t v_t k_t^\top \quad (14)$$

$$1079 = \gamma_t \Phi_{t-1} + \beta_t v_t k_t^\top, \quad (15)$$

1080 which corresponds to gated linear attention as defined in the main text (equation 2).
 1081

1082 To obtain DeltaNet, we choose instead l_t to be the squared error loss,
 1083

$$l_t(\Phi) = l_t^{\text{sq-err}}(\Phi) := \frac{1}{2} \|v_t - \Phi k_t\|^2,$$

1085 and we disable the regularizer ($\Lambda_t = 0$), as it was not included in the original DeltaNet model (Schlag
 1086 et al., 2021a). Performing again the same computation as above, but now with this squared error
 1087 online loss, yields the DeltaNet update:
 1088

$$\Phi_t = \Phi_{t-1} - \beta_t \nabla_{\Phi} \left[\frac{1}{2} \|v_t - \Phi k_t\|^2 \right] \Big|_{\Phi=\Phi_{t-1}} \quad (16)$$

$$= \Phi_{t-1} + \beta_t (v_t - \Phi_{t-1} k_t) k_t^{\top}. \quad (17)$$

1093 **LongHorn update rule.** Yet another recent method called LongHorn (Liu et al., 2025) can be
 1094 derived as online learning on a sequence of loss functions (l_t). Its update rule can be derived by
 1095 minimizing an objective function:
 1096

$$\Phi_t = \arg \min_{\Phi} L_t^{\text{LongHorn}} \quad (18)$$

$$= \arg \min_{\Phi} \frac{1}{2} (v_t - \Phi k_t)^{\top} \text{diag}(\beta_t) (v_t - \Phi k_t) + \frac{1}{2} \text{Tr}(\Phi - \Phi_{t-1})^{\top} (\Phi - \Phi_{t-1}), \quad (19)$$

1100 with β_t now a vector of the same dimension as v_t , instead of a scalar, determining an elementwise
 1101 squared error precision. The solution can be obtained in closed-form, following the derivation
 1102 provided in Appendix C of (Liu et al., 2025):
 1103

$$\Phi_t = \Phi_{t-1} + \text{diag}(\epsilon_t) (v_t - \Phi_{t-1} k_t) k_t^{\top}, \quad (20)$$

1104 with $\epsilon_{ti} = \frac{\beta_{ti}}{1 + \beta_{ti} k_t^{\top} k_t}$. This is a variant of DeltaNet with a particular diagonal input-dependent step
 1105 size that is both a function of k_t and β_t (which is chosen to be a vector in this model, as opposed to
 1106 the scalar gates used in our DeltaNet and in our current MesaNet implementation). For computational
 1107 efficiency, the actual implementation of LongHorn approximates the update above with a simpler
 1108 rule that makes use of elementwise multiplications, denoted here by \odot :
 1109

$$\Phi_t = (\mathbb{1} - \epsilon_t (k_t \odot k_t)^{\top}) \odot \Phi_{t-1} + (\epsilon_t \odot v_t) k_t^{\top}, \quad (21)$$

1110 where $\mathbb{1}$ is a matrix of ones. Like the DeltaNet, the LongHorn objective still only takes into account
 1111 the instantaneous squared error for the current key-value pair, with an additional memory quadratic
 1112 potential pulling towards the previous solution to avoid forgetting it entirely through the full arg min.
 1113 By contrast, the Mesa layer explicitly optimizes the full forget-weighted sum of squared errors from
 1114 the beginning of the sequence until the present ($t' = 1$ to t).
 1115

1116 **Omega/Atlas update rule.** Concurrent work by Behrouz et al. (2025a) investigated online learning
 1117 layers that are intimately related to the Mesa layer. The paper focuses on a sliding window variant of
 1118 our objective function:
 1119

$$L_t^{\text{Omega}} = \sum_{t'=t-c+1}^t \zeta_{tt'} \|v_{t'} - \mathcal{M}_{\Phi}(k_{t'})\|^2, \quad (22)$$

1120 where c is the sliding window length, and $\zeta_{tt'}$ determines the cumulative forget at time step t for the
 1121 past loss t' , as in the Mesa layer objective. The authors further allow \mathcal{M}_{Φ} to be a 1-hidden-layer
 1122 MLP with parameters Φ , similarly to (Sun et al., 2025), and unlike the Mesa layer, which derives a
 1123 specialized update exploiting the fact that \mathcal{M} is a linear model. Behrouz et al. (2025a) optimize the
 1124 sequence of loss functions (l_t) online using a second-order Muon method (Jordan et al., 2024):
 1125

$$\tilde{\Phi}_t = \tilde{\theta}_t \tilde{\Phi}_{t-1} + \nabla_{\Phi} l_t^{\text{Omega}}(\Phi_{t-1}), \quad (23)$$

$$\Phi_t = \gamma_t \Phi_{t-1} - \beta_t \text{NewtonSchulz}_k(\tilde{\Phi}_t), \quad (24)$$

1126 where NewtonSchulz_k denotes the execution of k steps of the NewtonSchulz algorithm, $\tilde{\Phi}_t$ is an
 1127 auxiliary momentum gradient accumulation state variable, and $\tilde{\theta}_t$ is a dynamic (time-dependent)
 1128 momentum decay factor, which determines the retention of past accumulated gradients.
 1129

C RANK-ONE UPDATE CONJUGATE GRADIENT METHOD

In the next two sections, we describe how we can use the conjugate gradient method to obtain a solution for $(H_t + \Lambda_t)^{-1} q_t = q_t^*$ for many t in parallel. As we will discuss below, the aim is to show how one can do this without materializing H_t for all time steps as this would lead to unnecessary memory overhead, see [Yang et al. \(2024b\)](#) for a detailed discussion of this problem and a "chunkwise parallel" solution. We therefore aim to show here, as a starting point, how to compute q_t^* without materializing $H_t = H_{t-1}\gamma_t + k_t k_t^T$ and only relying on H_{t-1} as well as on y_t and k_t . This will eventually allow us, see the next Appendix section [D](#), to compute and materialize H_t only every T/C steps with train length T and chunkszie C times, leading to a drastic decrease in memory usage. We will do this while approximating $Q_c^* = [q_{c+1}^*, \dots, q_{c+C}^*]$ numerically in parallel by only materializing H_c where $c \in \{0, C, 2C, \dots, T - C\}$.

We opted to initialize the conjugate gradient method with $x \leftarrow q_t \cdot \text{diag}(H_t + \Lambda_t)^{-1}$ in this work.

Algorithm 1 Rank-One Update Conjugate Gradient Method

```

1: procedure RANKONECONJUGATEGRADIENT( $H_{t-1}, \gamma_t, k_t, q_t, \epsilon, k_{\max}$ )
2:   Input: Symmetric positive-definite matrix  $H_{t-1} \in \mathbb{R}^{n \times n}$ , forget strength  $\gamma_t \in (0, 1)$ , key
    $k_t \in \mathbb{R}^n$ , query  $q_t \in \mathbb{R}^n$ , tolerance  $\epsilon > 0$ , maximum iterations  $k_{\max}$ .
3:   Output: Approximate solution  $x$ .
4:    $k \leftarrow 0$ 
5:    $x \leftarrow q_t \cdot \text{diag}(H_{t-1} + \Lambda_t)^{-1}$  ▷ Initial guess  $x \in \mathbb{R}^n$ 
6:    $r \leftarrow q_t - (H_{t-1}\gamma_t + k_t k_t^\top + \Lambda_t)x$  ▷ Initial residual  $r$ 
7:    $p \leftarrow r$  ▷ Initial search direction  $p$ 
8:    $\delta_{\text{old}} \leftarrow r^T r$  ▷ Squared norm of the initial residual
9:    $\delta_0 \leftarrow \delta_{\text{old}}$  ▷ Store initial squared norm for relative tolerance
10:  while  $k < k_{\max}$  do ▷ Loop until max iterations reached
11:     $q \leftarrow (H_{t-1}\gamma_t + k_t k_t^\top + \Lambda_t)p$  ▷ Matrix-vector product  $(H_{t-1}\gamma_t + k_t k_t^\top + \Lambda_t)p$ 
12:     $\alpha \leftarrow \frac{\delta_{\text{old}}}{p^T q}$  ▷ Step length  $\alpha$ 
13:     $x \leftarrow x + \alpha p$  ▷ Update solution  $x$ 
14:     $r \leftarrow r - \alpha q$  ▷ Update residual  $r$ 
15:     $\delta_{\text{new}} \leftarrow r^T r$  ▷ Squared norm of the new residual,  $\delta_{\text{new}}$ 
16:    if  $\sqrt{\delta_{\text{new}}} \leq \epsilon \sqrt{\delta_0}$  then ▷ Check relative convergence:  $\|r_{k+1}\| \leq \epsilon \|r_0\|$ 
17:      break ▷ Converged
18:    end if
19:     $\beta \leftarrow \frac{\delta_{\text{new}}}{\delta_{\text{old}}}$  ▷ Improvement factor  $\beta$ 
20:     $p \leftarrow r + \beta p$  ▷ Update search direction  $p$ 
21:     $\delta_{\text{old}} \leftarrow \delta_{\text{new}}$  ▷ Store new norm as old for next iteration
22:     $k \leftarrow k + 1$  ▷ Increment iteration counter
23:  end while
24:  return  $x$  ▷ Return the approximate solution
25: end procedure

```

On top of $H_{t-1}p$, all other parts of the $(H_{t-1}\gamma_t + k_t k_t^T + \Lambda_t)p$ computation can be reduced to one vector inner-product $k_t^\top p$ as well as element-wise products and a final addition of the results. One can therefore approximate q_t^* numerically without materializing H_t , which we will extend in the following to chunks i.e. compute $Q_c^* = [q_{c+1}^*, \dots, q_{c+C}^*]$ in parallel without explicitly materializing H_t with $c < t \leq c + C$. This will become obvious after realizing that the computation of $(H_{t-1}\gamma_t + k_t k_t^T + \Lambda_t)p$ is equivalent to GLA, therefore allowing for the chunkwise parallel computation proposed in [Yang et al. \(2024b\)](#) of GLA.

1188 Note that the most flops during inference are spent in the matrix-vector product $H_t p$ where we apply
 1189 the CG method simply to $(H_t + \Lambda_t)^{-1} q_t$ (and not do not use the "rank-one" update formulation
 1190 above) resulting in the $\mathcal{O}(kn_a^2)$ of Table 5.

1191 We refer to Appendix G.5 for further details about numerical precisions considerations within our
 1192 CG solver.
 1193

1194

D CHUNKWISE PARALLEL FORM OF GATED LINEAR ATTENTION AND THE 1195 MESA LAYER

1196

1198 **Mesa layer forward pass.** The main Mesa recurrence (Equation 7) can be rewritten as follows,
 1199 considering only one head and assuming without loss of generality that input gates are absorbed in
 1200 keys and values:

$$\begin{aligned} H_t &= H_{t-1} \gamma_t + k_t k_t^\top \\ G_t &= G_{t-1} \gamma_t + v_t k_t^\top \\ q_t^* &= (H_t + \Lambda)^{-1} q_t \\ o_t &= G_t q_t^* \end{aligned} \tag{25}$$

1206 Note that H_t is symmetric, and Λ is symmetric positive definite, so $H_t + \Lambda$ is also symmetric. Let's
 1207 define

$$\zeta_{ts} = \begin{cases} \prod_{i=s+1}^t \gamma_i & \text{if } t \geq s \\ 0 & \text{otherwise} \end{cases}$$

1212 with which the computation of o_t (unrolling the definition of G_t) has the following form:

$$o_t = \sum_{i=1}^t \zeta_{ti} v_i k_i^\top q_t^*. \tag{26}$$

1217 To connect to Section 2 where the Mesa layer is defined through a set of optimized linear model fast
 1218 weights Φ , we note that this is equivalent to minimizing the following objective w.r.t. Φ ,

$$\hat{\Phi}_t^{\text{mesa}} = \arg \min_{\Phi} \frac{1}{2} \sum_{i=1}^t \zeta_{ti} \|v_i - \Phi k_i\|^2 + \frac{1}{2} \text{Tr}(\Phi \Lambda \Phi^\top), \tag{27}$$

1222 and then computing the output through $o_t = \hat{\Phi}_t^{\text{mesa}} q_t$.

1223 To see why this is the case, let us compute the stationarity condition

$$\nabla_{\Phi} \left[\frac{1}{2} \sum_{i=1}^t \zeta_{ti} \|v_i - \Phi k_i\|^2 + \frac{1}{2} \text{Tr}(\Phi \Lambda \Phi^\top) \right] = 0 \tag{28}$$

$$\iff \Phi \Lambda - \sum_{i=1}^t \zeta_{ti} (v_i - \Phi k_i) k_i^\top = 0 \tag{29}$$

$$\iff \Phi \Lambda - \sum_{i=1}^t (\zeta_{ti} v_i k_i^\top - \Phi \zeta_{ti} k_i k_i^\top) = 0 \tag{30}$$

$$\iff \Phi \Lambda + \Phi \tilde{K}_t \tilde{K}_t^\top = \tilde{V}_t \tilde{K}_t^\top \tag{31}$$

$$\iff \Phi = \tilde{V}_t \tilde{K}_t^\top (\tilde{K}_t \tilde{K}_t^\top + \Lambda)^{-1} \tag{32}$$

$$\iff \Phi = \left(\sum_{i=1}^t \zeta_{ti} v_i k_i^\top \right) \left(\sum_{i=1}^t \zeta_{ti} k_i k_i^\top + \Lambda \right)^{-1}. \tag{33}$$

1240 To simplify the calculation we introduced the auxiliary matrix variables \tilde{V}_t and \tilde{K}_t , which absorbed
 1241 square roots of the cumulative forget factors ζ_t . We denote the above (unique, for $\Lambda > 0$) solution by
 Φ_t^{mesa} .

1242 Now, the recurrence relation for the state variable H_t can be solved analytically, yielding
 1243

$$1244 \quad H_t = \gamma_t H_{t-1} + k_t k_t^\top = \sum_{i=1}^t \left(\prod_{j=i+1}^t \gamma_j \right) k_i k_i^\top = \sum_{i=1}^t \zeta_{ti} k_i k_i^\top, \quad (34)$$

1247 assuming $H_0 = 0$. The same holds for the other state variable, $G_t = \gamma_t G_{t-1} + v_t k_t^\top =$
 1248 $\sum_{i=1}^t \zeta_{ti} v_i k_i^\top$.
 1249

1250 Therefore, as claimed, we recover equation 25:

$$1251 \quad o_t = \hat{\Phi}_t^{\text{mesa}} q_t \quad (35)$$

$$1253 \quad = \left(\sum_{i=1}^t \zeta_{ti} v_i k_i^\top \right) \left(\sum_{i=1}^t \zeta_{ti} k_i k_i^\top + \Lambda \right)^{-1} q_t \quad (36)$$

$$1256 \quad = G_t (H_t + \Lambda)^{-1} q_t \quad (37)$$

$$1257 \quad = G_t q_t^*. \quad (38)$$

1258
 1259
 1260 **Chunkwise form.** We remark that if q_t^* is given, this computation is equivalent to a Gated Linear
 1261 Attention (GLA) layer [Yang et al. \(2024b\)](#), and thus can be efficiently computed on GPUs and TPUs
 1262 by splitting the sequence in blocks of opportune sizes C resulting in a “chunkwise parallel” form of
 1263 the layer. In short, given G_c , where $c \in \{0, C, \dots, T - C\}$ dividing the training sequence length T
 1264 in T/C chunks of size C , we can compute the output at time $c < t \leq c + C$ as

$$1265 \quad o_t = (G_c + \sum_{i=c+1}^t \zeta_{ti} v_i k_i^\top) q_t^* = G_c q_t^* + \sum_{i=c+1}^t \zeta_{ti} v_i k_i^\top q_t^* \quad (39)$$

1269 Similar to softmax self-attention, this computation can be done in parallel for $t \in \{c + 1, \dots, c + C\}$
 1270 which becomes clearer when using matrix notation
 1271

$$1272 \quad O_c = G_c Q_c^* + V_c (Z_c \odot (K_c^\top Q_c^*)) \quad (40)$$

1274 where $K_c = [k_c, \dots, k_{c+C}]$ and O_c, V_c, Q_c^* accordingly. Z_c is a upper triangular matrix of size
 1275 $C \times C$ with $Z_c[i, j] = \zeta_{c+j, c+i}$. Please see for Triton-based implementation of this chunked parallel
 1276 formulation of GLA at <https://github.com/fla-org/flash-linear-attention>.

1277 We differ from GLA as the Mesa layer replaces q_t which is the standard query $q_t = W_q e_t$ by
 1278 $q_t^* = (H_t + \Lambda)^{-1} q_t$ which, as we alluded to above, can as well be computed equivalently to
 1279 GLA in chunkwise parallel form. Indeed, as shown in the previous section, the conjugate gradient
 1280 method relies purely on simple vector additions and multiplications which can be trivially realized in
 1281 chunkwise parallel form without extensive memory overhead, with the exception of $(H_t + \Lambda)p$. This
 1282 operation suffers from the same memory problems as a naive GLA layer implementation as storing
 1283 H_t for all time steps is costly which we therefore wish to circumvent. Fortunately, this can easily be
 1284 done with the exact same chunkwise parallel trick just discussed, which we now leverage to compute

$$1285 \quad (H_t + \Lambda)p = H_t p + \Lambda \cdot p = \sum_{i=1}^t \zeta_{ti} k_i k_i^\top p + \Lambda \cdot p. \quad (41)$$

1288 which is required in the conjugate gradient algorithm.
 1289

1290 Note that the first term $\sum_{i=1}^t \zeta_{ti} k_i k_i^\top p$ is in an equivalent form of GLA (by replacing v_i with k_i) for
 1291 which we just established that a fast chunkwise parallel formulation exist, if we again store only some
 1292 intermediate states H_c . We conclude that the computation of $q_t^* = (H_t + \Lambda)^{-1} q_t$ and therefore the
 1293 whole Mesa layer can be approximated by repeatedly applying a in chunkwise parallel computation
 1294 leveraging matrix-matrix accelerators on GPUs or TPUs.

1295 **Mesa layer backward pass:** Let e_t be the error coming from future layers at time t and L be the
 1296 final loss. Then we have the following:

$$\begin{aligned}
1296 \quad e_t^* &= (H_t + \Lambda)^{-1} G_t^\top e_t \\
1297 \quad \frac{dL}{dq_t} &= \frac{do_t}{dq_t} e_t = e_t^* \\
1298 \quad \frac{dL}{d\Lambda_{t,i}} &= \frac{do_t}{d\Lambda_{t,i}} e_t = -q_{t,i}^* e_{t,i}^* \\
1299 \quad \frac{dL}{dv_s} &= \frac{do_t}{dv_s} e_t = e_t \zeta_{ts} k_s^\top (H_t + \Lambda)^{-1} q_t \\
1300 \quad \frac{dL}{dk_s} &= \sum_{t \geq s} \zeta_{ts} e_t q_t^{*\top} k_s \\
1301 \quad \frac{dL}{d\gamma_s} &= \sum_{t \geq s} \zeta_{ts} (q_t^{*\top} e_t^{*\top} v_s - e_t^{*\top} q_t^{*\top} k_s - q_t^{*\top} e_t^{*\top} k_s) \\
1302 \quad \frac{dL}{d\gamma_s} &= \sum_{t \geq s} \zeta_{ts} (q_t^{*\top} G_{s-1} e_t - e_t^{*\top} H_{s-1} q_t^*) \\
1303 \quad \dots \\
1312 \quad \dots
\end{aligned}$$

1313 This is a time-reversed version of the formulas to compute the derivatives with respect to v_s and
1314 k_s . Note that $\frac{dL}{dv_s}$ and $\frac{dL}{dk_s}$ can again be computed in chunkwise parallel manner as they are sums
1315 of expressions which are all GLA formulation equivalent. e_t^* is also chunkwise parallel compatible
1316 since, as we just established, running conjugate gradient (chunked) parallelized in time is possible.

1317 It remains to see how to quickly compute the derivatives with respect to γ_s . To that purpose, let us
1318 consider the first term in the equation defining the derivative, as the second can be handled similarly;
1319 we have that:

$$\begin{aligned}
1320 \quad \sum_{t \geq s} \zeta_{ts} q_t^{*\top} G_{s-1} e_t &= \sum_{t \geq s} \text{Tr}[\zeta_{ts} q_t^{*\top} G_{s-1} e_t] = \\
1321 \quad &= \sum_{t \geq s} \text{Tr}[G_{s-1} \zeta_{ts} e_t q_t^{*\top}] = \\
1322 \quad &= \text{Tr} \left[G_{s-1} \sum_{t \geq s} \zeta_{ts} e_t q_t^{*\top} \right]
\end{aligned}$$

1328 This already gives a way to compute the derivatives that is linear in sequence length (as it is sufficient
1329 to accumulate the t -dependent part as s decreases). However, for maximum efficiency we would
1330 like to also split the computation into blocks and make use of matrix multiplication units for this
1331 computation.

1332 Let $F_s = \sum_{t \geq s} \zeta_{ts} e_t q_t^{*\top}$. We now explain how to compute the value above simultaneously for a
1333 block of indices $s = \mathcal{L} + 1, \dots, \mathcal{U} - 1$.

$$\begin{aligned}
1336 \quad G_{s-1} &= G_{\mathcal{L}} \zeta_{s-1, \mathcal{L}} + \sum_{\mathcal{L} < p < s} \zeta_{s-1, p} v_p k_p^\top \\
1337 \quad \sum_{t \geq s} \zeta_{ts} e_t q_t^{*\top} &= \sum_{s \leq t < \mathcal{U}} \zeta_{ts} e_t q_t^{*\top} + \zeta_{\mathcal{U}, s} F_{\mathcal{U}} \\
1338 \quad \text{Tr} \left[G_{s-1} \sum_{t \geq s} \zeta_{ts} e_t q_t^{*\top} \right] &= \text{Tr} \left[\left(G_{\mathcal{L}} \zeta_{s-1, \mathcal{L}} + \sum_{\mathcal{L} < p < s} \zeta_{s-1, p} v_p k_p^\top \right) \left(\sum_{s \leq t < \mathcal{U}} \zeta_{ts} e_t q_t^{*\top} + \zeta_{\mathcal{U}, s} F_{\mathcal{U}} \right) \right] = \\
1339 \quad &= \text{Tr}[G_{\mathcal{L}} F_{\mathcal{U}} \zeta_{\mathcal{U}, s} \zeta_{s-1, \mathcal{L}}] + \text{Tr} \left[G_{\mathcal{L}} \zeta_{s-1, \mathcal{L}} \sum_{s \leq t < \mathcal{U}} \zeta_{ts} e_t q_t^{*\top} \right] + \\
1340 \quad &+ \text{Tr} \left[F_{\mathcal{U}} \zeta_{\mathcal{U}, s} \sum_{\mathcal{L} < p < s} \zeta_{s-1, p} v_p k_p^\top \right] + \text{Tr} \left[\sum_{s \leq t < \mathcal{U}} \zeta_{ts} e_t q_t^{*\top} \sum_{\mathcal{L} < p < s} \zeta_{s-1, p} v_p k_p^\top \right] =
\end{aligned}$$

$$\begin{aligned}
&= \text{Tr}[G_{\mathcal{L}} F_{\mathcal{U}}] \zeta_{\mathcal{U}s} \zeta_{s-1, \mathcal{L}} + \sum_{s \leq t < \mathcal{U}} \zeta_{ts} \zeta_{s-1, \mathcal{L}} \text{Tr}[G_{\mathcal{L}} e_t q_t^{*\top}] + \\
&+ \sum_{\mathcal{L} < p < s} \zeta_{\mathcal{U}s} \zeta_{s-1, p} \text{Tr}[F_{\mathcal{U}} v_p k_p^\top] + \sum_{\mathcal{L} < p < s} \sum_{s \leq t < \mathcal{U}} \zeta_{ts} \zeta_{s-1, p} \text{Tr}[e_t q_t^{*\top} v_p k_p^\top]
\end{aligned}$$

For computing the last term, we can make use of the fact that $\zeta_{ab} = 0$ if $a < b$ to rewrite it in the equivalent forms

$$\sum_{\mathcal{L} < p < s} \sum_{s \leq t < \mathcal{U}} \zeta_{s-1, p} (q_t^{*\top} v_p) (k_p^\top e_t) \zeta_{ts} = \sum_{\mathcal{L} < p < \mathcal{U}} \sum_{\mathcal{L} < t < \mathcal{U}} \zeta_{s-1, p} (q_t^{*\top} v_p) (k_p^\top e_t) \zeta_{ts}$$

which can be computed as the product of the three matrices Z^*, Q, Z with $Z_{ij}^* = \zeta_{i-1, j}$, $Q_{ij} = (q_j^{*\top} v_i) (k_i^\top e_j)$, $Z_{ij} = \zeta_{ij}$; the requested values appear then as the main diagonal of this matrix.

The second term can be similarly rewritten as

$$\zeta_{s-1, \mathcal{L}} \sum_{s \leq t < \mathcal{U}} (q_t^{*\top} G_{\mathcal{L}} e_t) \zeta_{ts} = \zeta_{s-1, \mathcal{L}} \sum_{\mathcal{L} < t < \mathcal{U}} (q_t^{*\top} G_{\mathcal{L}} e_t) \zeta_{ts}$$

which can be computed by multiplying the vector $p_t = q_t^{*\top} G_{\mathcal{L}} e_t$ by the Z matrix defined above, and then by doing a point-wise vector multiplication by $\zeta_{s-1, \mathcal{L}}$.

Finally, the first term can be computed simply by computing the trace once and then doing a point-wise vector multiplication, and the third term can be computed as the second.

E A FULL DESCRIPTION OF THE MESA LAYER, RELATED WORK AND THE MESANET

For completion, we repeat the Mesa layer computation which is described through the following equations

$$\Delta e_t^{\text{mesa}} = \sum_{h=1}^H P_h \hat{\Phi}_{h,t}^{\text{mesa}} q_{h,t} = \sum_{h=1}^H P_h G_{h,t} \text{linsolve}(H_{h,t} + \Lambda_h, q_{h,t}). \quad (42)$$

The equation above depends on two state variables, $S_{h,t} = \{G_{h,t}, H_{h,t}\}$, which we obtain through the linear recurrence relations:

$$G_{h,t} = G_{h,t-1} \gamma_{h,t} + v_{h,t} k_{h,t}^\top \beta_{h,t}, \quad H_{h,t} = H_{h,t-1} \gamma_{h,t} + k_{h,t} k_{h,t}^\top \beta_{h,t}, \quad (43)$$

where as before $\gamma_{h,t} \in [0, 1]$ is a forget gate and $\beta_{h,t} \in [0, 1]$ is an input gate, where we adopt the conjugate gradient method as the solver (Lanczos, 1950; Hestenes et al., 1952). Before the Mesa layer computation, we compute the keys, queries, values as well as input and forget strength in the following way.

First, we normalize the embeddings with an RMS norm $e_i \leftarrow \text{RMSNorm}(e_i)$. After projections $k_t = W_k e_t$, $q_t = W_q e_t$, $v_t = W_v v_t$ we convolve them in time with a window size of 4 e.g. $k_t \leftarrow \sum_{i=0}^3 k_{t-i} b_{i+1}$ with learnable parameters b_1, \dots, b_4 . Furthermore, after applying a SiLU(x) = $x * \sigma(x)$ non-linearity we normalize the keys and queries (but not values) to have L2-norm of 1 i.e. $k_t \leftarrow \text{SiLU}(k_t) / \|\text{SiLU}(k_t)\|$ and $q_t \leftarrow \text{SiLU}(q_t) / \|\text{SiLU}(q_t)\|$.

For the forgetting and input gate we simply squeeze the RMS normed e_t projections through a sigmoid i.e. $\beta_t = \sigma(e_t W_\beta)$ and $\gamma_t = \sigma(e_t W_\gamma)$. After computing the output of every head, we apply a RMS norm i.e. the actual output of the Mesa layer amounts to

$$\Delta e_t^{\text{mesa}} = \sum_{h=1}^H P_h \text{RMSNorm}_h(G_{h,t} \text{linsolve}(H_{h,t} + \Lambda_h, q_{h,t})). \quad (44)$$

The regularization parameters are simply sent through a softplus function to ensure positivity i.e. $\Lambda_h \leftarrow \text{softplus}(\Lambda_h)$. We did experiment with an input / time dependent regularization strength but in this work opted for a fixed lambda over time, see Section J

1404
 1405 **Comparison to related work:** To ensure a 1-1 comparison with related work, we use the exact same
 1406 parametrization of the keys, values and queries as well as forget and input strength parametrization for
 1407 the GLA, Mamba2 and (gated) DeltaNet. Here, only the state update as well as output computation
 1408 differ depending on the rule, see Table 1 for an overview. The mLSTM layers, which we also compare
 1409 to, have a different parametrization of the forgetting as well as input strength and keys and queries are
 1410 not normalized by their L2 norm, see [Beck et al. \(2024\)](#).

Layer	Output & state update	Memory	Flops output & state update
MHA	$o_t = \sum_{t'=1}^t v_{t'} \alpha(K_t^\top q_t)_{t'}$	$(v_{h,t'}, k_{t'})_{t'=1}^t - 2n_a t$	$\mathcal{O}(n_a t) - \mathcal{O}(1)$
GLMHA	$o_t = \Phi_t q_t$ with $\Phi_t = \Phi_{t-1} \gamma_t + \beta_t v_t k_t^T$	$\Phi_t - n_a^2$	$\mathcal{O}(n_a^2) - \mathcal{O}(n_a^2)$
DN	$o_t = \Phi_t q_t$ with $\Phi_t = \Phi_{t-1}(y_t(I - \beta_t k_t^\top k_t)) + \beta_t v_t^\top k_t$	$\Phi_t - n_a^2$	$\mathcal{O}(n_a^2) - \mathcal{O}(n_a^2)$
MESA	Equation 7	$S_t = \{G_t, H_t\} - 2n_a^2$	$\mathcal{O}(n_a^2) + \mathcal{O}(k n_a^2) - \mathcal{O}(n_a^2)$

1420
 1421 **Table 5: Flops as well as state size comparison between MHA, gated linearized multi-head-attention**
 1422 **(GLMHA) such as xLSTM or Mamba2, (gated) DeltaNet (DN) and the Mesa layer during inference.** All
 1423 softmax attention alternatives require $\mathcal{O}(n_a^2)$ flops, with key size n_a , to compute the output as well as update the
 1424 state(s). The Mesa layer requires an additional k steps of the CG method which costs $\mathcal{O}(k n_a^2)$. For simplicity
 we assume $n_v = n_a$.

1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458
1459

E.1 MODEL DESIGN

1460
1461
1462

We give an overview over the network architecture for all models compared in this work in bullet points. The only difference is the way how to do the "sequence" mixing of the keys, values and queries (and forget and input gates), with an exception of the LRU layer (De et al., 2024), see Table 1.

1463
1464
1465
1466

- The model consists of an embedding layer of size n_e , which is also shared at the end of the model to compute the logits. We do not apply regularization on the parameters of the embedding.
- The model is then followed by N number of blocks consisting of a sequencing layer e.g. MHA, GLMHA, DN or Mesa, described in Section 2, followed by an MLP layer. The input of both the MLP as well as sequencing layer go through a RMSNorm (Zhang & Sennrich, 2019), see Figure 1. After computing the logits, we apply a soft hyperbolic tangent clip with $c = 30$ with $\text{logits} = \tanh(\text{logits}/c)c$, again following the open source implementation of De et al. (2024), see <https://github.com/google-deepmind/recurrentgemma/blob/main/recurrentgemma/jax/griffin.py>.
- To compare all different sequencing layers as closely as possible and focus on their ability to incorporate information from the context, MHA, GLA, Mamba2, xLSTM, the (gated) DeltaNet, as well as the Mesa all use the exact same key size and therefore the exact same amount of parameters to compute the queries, keys and values. All RNN layers, for direct comparison, additionally only use per head a one dimensional gate for forgetting as well as writing which we squeeze through a sigmoid function i.e. $\beta_t = \sigma(W_\beta e_t)$ and $\gamma_t = \sigma(W_\gamma e_t)$, except the mLSTM layer. This stands in some contrast to how the models were originally designed e.g. Gated Linear Attention (Yang et al., 2024a) or RWKV (Peng et al., 2023) use higher dimensional forget gates. Furthermore, all RNN layers convolve the keys and queries with a window size of 4. This is by now a standard feature of contemporary RNN/SSM architectures, motivated by earlier analyses (Arora et al., 2023a; Fu et al., 2023). Note that for all models, except from mLSTM which uses a special parameterization and normalization, we apply a SiLU (or swish) non-linearity (Hendrycks & Gimpel, 2023) before we normalize the keys and queries by their L2-norm. The output of each head is independently before the linear projection back to the residual stream send through an additional RMSNorm.
- We define Mamba2 as forget-gated linearized multi-head attention following Yang et al. (2024c), and GLA as its forget- and input-gated counterpart; both methods with e_t -dependent gates.
- When using the LRU layer (De et al., 2024), we notice that the layer, in its default hyperparameter configuration, subsumes more parameters than MHA and the other RNN alternatives, as they use exactly the same number of parameters to each other. We therefore decrease the hidden size multiplier which determines the increase of the RNN state when compared to the embedding size, to match parameter count.
- The Hawk-Mesa model simply alternates between blocks that have either a LRU layer or a Mesa layer.
- For the MLP layers we follow again De et al. (2024). We create two branches both with dimension of $n_e \cdot 3$, apply a SiLU non-linearity to one of the branches and merge them by multiplying. We then down project with a simple linear layer into n_e dimension.
- All weights are initialized by sampling them from a normal distribution and in "fan in" mode, while scaling the variance of the weights which project back to the residual stream by $2.0/N$.

1505

F EXPERIMENTAL DETAILS: MESANET IN SYNTHETIC ENVIRONMENTS

1506
1507
1508
1509

F.1 MAD BENCHMARK SUITE

1510
1511

We follow the benchmarking procedure detailed in Poli et al. (2024) precisely: For each task in the suite, we evaluate the architectures on subtasks of varying difficulty (i.e. varying sequence length, number of training examples, vocabulary sizes and further, task-specific parameters) and

1512	Hyper Parameter	Search
1513	Embedding dimension	128
1514	Number of layers	2
1515	Number of heads	8
1516	Key size	16
1517	Epochs	200
1518	Batch size	32
1519	Optimizer	AdamW
1520	Learning rate	[3e-3, 1e-3, 5e-4, 1e-4]
1521	Weight decay	[0.01, 0.1]
1522	β_s	(0.9, 0.98)
1523	Scheduler	Cosine Scheduler with Warmup
1524	Minimum learning rate	1e-5
1525	Warm-up start learning rate	1e-7
1526	Warm-up steps	750

Table 6: MAD benchmark suite hyper-parameters, taken from [Poli et al. \(2024\)](#).

1530	Hyper Parameter	Search
1531	Embedding dimension	[64, 128, 256, 512, 1024]
1532	Number of layers	[1, 2, 4, 8, 12]
1533	Number of heads	[1, 2, 4]
1534	Epochs	50
1535	Batch size	32
1536	Optimizer	AdamW
1537	Learning rate	[1e-4, 2.5e-4, 1e-3]
1538	Weight decay	[0.01, 0.1]
1539	β_s	(0.9, 0.99)
1540	Scheduler	Cosine Scheduler with Warmup
1541	Minimum learning rate	2.5e-5
1542	Warm-up start learning rate	1e-7
1543	Warm-up steps	25000

Table 7: RegBench hyper-parameter search-space, taken from [Akyürek et al. \(2024\)](#). For all models, we keep the key size fixed to 128 across combinations of embedding dimension and number of heads.

compute the mean accuracy. We further sweep over varying learning rates and weight decay values for each model and report the maximum average task accuracy. For each architecture, we fix a set of hyper-parameters that can be found in Table 6.

F.2 REGBENCH IN-CONTEXT LANGUAGE LEARNING BENCHMARK

Following [Akyürek et al. \(2024\)](#), we report the test-accuracy of the configuration obtained from a grid-search over a pre-defined set of shared hyper-parameters for all models, which can be found in Table 7.

G EXPERIMENTAL DETAILS: MESANET IN A LANGUAGE WORLD

We follow closely the experimental setup of [Beck et al. \(2024\)](#) as well as [De et al. \(2024\)](#).

G.1 DATA

We train models on SlimPajama [Soboleva et al. \(2023\)](#) and use the GPT-2 tokenizer [Radford et al. \(2018\)](#) which uses a vocab size of 50257, as in [Beck et al. \(2024\)](#). We pre-tokenize the dataset

1566 and fill up sequences with context length shorter than the train length, which is set to 2048, with
 1567 other randomly sampled sequences until the context train length is full. We separate these separate
 1568 sequences with a BOS token. We follow the same recipe when creating the validation data. Note that
 1569 this procedure might bias the training as well as evaluation of the model towards shorter sequences.
 1570

1571 We train on two dataset sizes: 15 billion and 50 billion tokens.

1572 G.2 MODEL DESIGN

1574 We give an overview over the network in bullet points.

- 1576 • The model consists of an embedding layer of size n_e , which is also shared at the end of
 1577 the model to compute the logits. We do not apply regularization on the parameters of the
 1578 embedding. We follow again [De et al. \(2024\)](#) and initialize the parameters of the embedding
 1579 matrix in "fan in" mode but scale back the embedding during inference by $\sqrt{n_e}$ leading to a
 1580 variance of 1 in the residual stream.
- 1581 • The model is then followed by N number of blocks consisting of a sequencing layer e.g.
 1582 MHA, GLMHA, DN or Mesa, described in Section 2, followed by an MLP layer. The input
 1583 of both the MLP as well as sequencing layer go through a RMSNorm ([Zhang & Sennrich, 2019](#)), see Figure 1. After computing the logits, we apply a soft hyperbolic tangent clip with
 1584 $c = 30$ with $\text{logits} = \tanh(\text{logits}/c)c$, again following [De et al. \(2024\)](#).
- 1585 • To compare all different sequencing layers as closely as possible and focus on their ability
 1586 to incorporate information from the context, MHA, GLA, Mamba2, xLSTM, the (gated)
 1587 DeltaNet, as well as the Mesa all use the exact same key size and therefore the exact same
 1588 amount of parameters to compute the queries, keys and values. All RNN layers, for direct
 1589 comparison, additionally only use per head a one dimensional gate for forgetting as well
 1590 as writing which we squeeze through a sigmoid function i.e. $\beta_t = \sigma(W_\beta e_t + b_\beta)$, $\gamma_t =$
 1591 $\sigma(W_{\gamma_t} e_t + b_{\gamma_t})$, except the mLSTM layer which has a more elaborate parametrization.
 1592 This stands in some contrast to how the models were originally designed e.g. Gated Linear
 1593 Attention ([Yang et al., 2024a](#)) or RWKV ([Peng et al., 2023](#)) use higher dimensional forget
 1594 gates. Furthermore, all RNN layers convolve the keys and queries with a window size of
 1595 4. Note that for all models, except from mLSTM which uses a special parameterization
 1596 and normalization, we apply a SiLU (or swish) non-linearity ([Hendrycks & Gimpel, 2023](#))
 1597 before we normalize the keys and queries by their L2-norm. The output of each head is
 1598 independently before the linear projection back to the residual stream send through an
 1599 additional RMSNorm.
- 1600 • We define Mamba2 as non-gated linearized multi-head attention following [Yang et al.](#)
 1601 ([2024c](#)) and GLA as its gated counterpart with e_t -dependent forget strength γ_t .
- 1602 • When using the LRU layer ([De et al., 2024](#)), we notice that the layer, in its default hy-
 1603 perparameter configuration, subsumes more parameters than MHA and the other RNN
 1604 alternatives, as they use exactly the same number of parameters to each other. We therefore
 1605 decrease the hidden size multiplier which determines the increase of the RNN state when
 1606 compared to the embedding size, to match parameter count.
- 1607 • The Hawk-Mesa model simply alternates between blocks that have either a LRU layer or a
 1608 Mesa layer.
- 1609 • For the MLP layers we follow again [De et al. \(2024\)](#). We create two branches both with
 1610 dimension of $3n_e$, apply a SiLU non-linearity to one of the branches and merge them by
 1611 multiplying. We then down project with a simple linear layer into n_e dimension.
- 1612 • All weights are initialized by sampling them from a normal distribution and in "fan in"
 1613 mode, while scaling the variance of the weights which project back to the residual stream by
 1614 $2.0/N$.

1616 G.3 TRAINING DETAILS

1618 We train over all the models in this work with batch size of 256, the AdamW optimizer ([Loshchilov](#)
 1619 & [Hutter, 2019](#)) with weight decay strength 0.1, $\epsilon = 1 \times 10^{-8}$, $\beta_1 = 0.9$, $\beta_2 = 0.98$, and a cosine
 learning rate scheduler with initial learning rate 1×10^{-6} , warmup steps of 2000 and a peak learning

1620	Model size	Train size	Transformer	Mamba2	GLA	xLSTM	DeltaNet	Gated DeltaNet	Hawk	Hawk-Mesa	Mesa
1621	Small	15	0.0025	0.003	0.002	0.0025	0.003	0.001	0.002	0.0025	0.003
1622	Small	50	0.003	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.00095
1623	Medium	15	0.0015	0.0025	0.0025	0.003	0.003	0.0025	0.0025	0.002	0.0025
1624	Medium	50	0.001	0.001	0.00095	0.0009	0.00085	0.00095	0.0009	0.0009	0.001
1625	Large	15	0.002	0.002	0.002	0.0015	0.0015	0.002	0.002	0.002	0.002
1626	Large	50	0.0008	0.0009	0.00085	0.0008	0.0008	0.0009	0.0009	0.00085	0.00085

Table 8: Peak learning rate for all models trained for this work determined by a learning rate grid scan.

rate of l which is scanned for each experiment, see below. We cosine decay the learning rate to 10% of the peak learning rate till the end of the training determined by the train set size. We use as loss the classic cross entropy on the next token; we do not compute the loss on the BOS token. We apply gradient norm clipping to norm 1. We apply mixed precision training where the weights are `float32` but activations are `bfloat16` following Beck et al. (2024). Interestingly, we find that this actually improves next token perplexity slightly compared to using `float32` everywhere.

G.4 HYPERPARAMETER SCANS

We train 3 model sizes: 140 million, 440 million and 940 million parameters following roughly Beck et al. (2024). As already mentioned, all architectures have by construction almost exactly the same number of parameters for the same architectural dimensions. All recurrent neural network types have the same parameters as multi-head attention but additionally have two parameter vectors of size n_a which produce the two gates per head. The Mesa layer has additionally n_a (fixed in time) parameters for (meta-)learned Λ regularization. Since the parametrization of the LRU layer is different by construction, we simply adjust the hidden size scaling to 1.25 to match the parameters of the other RNN layers. The 3 different model sizes use key size $n_a = 128$ and otherwise are setup as follows:

- 140 million — Small: $N = 14$ blocks, $h = 6$ heads, embedding dimension $n_e = 768$.
- 440 million — Medium : $N = 28$ blocks, $h = 8$ heads, embedding dimension $n_e = 1024$.
- 940 million — Large : $N = 28$ blocks, $h = 12$ heads, embedding dimension $n_e = 1536$.

The exact number of parameters and peak learning rate can be found in Table 8. For all models, we scan the same range of learning rates: for models trained for 15 billion tokens we scanned $\{0.003, 0.0025, 0.002, 0.001, 0.0015\}$, and for models trained for 50 billion tokens, we observe, similar to Beck et al. (2024), that smaller learning rates were beneficial and thus scan $\{0.001, 0.00095, 0.0009, 0.00085, 0.0008\}$. We train all sliding window attention (SWA) models, as they are only reference points, with learning rate 0.001.

G.5 NOTES ON PRECISION USED IN THE CG-SOLVER, MESA LAYER DESIGN CONSIDERATIONS OR *Why you shouldn't scream at your Mesa layer*

The MesaNet, for the model sizes we consider for the language experiments, solves during training millions of linear systems of equations numerically in one forward pass. Somewhat surprisingly, we did not encounter many training instabilities when setting some crucial hyperparameters and architectural details accordingly. First, we follow related work and normalize keys and queries - this is a crucial first step to stabilize the Mesa layer. Second, the most important hyperparameter for the Mesa layer, which strongly influences the conditioning number and therefore the number of CG steps needed to solve the linear systems, is the regularization strength Λ . Due to experimentation when training small models, we initialized $\Lambda = I$ but restricted its values to be lower-bounded by 0.25. We hypothesize that this lower bound is important to, implicitly, upper bound the condition number. We determined the Λ lower bound by a grid scan when training the medium sized model on 15B tokens. See Figure O for some Λ values of a trained model. We parameterize Λ through a softplus function i.e. $\Lambda = 0.25 + \text{softplus}(\Lambda)$ and adjusted the initialization of the Λ parameter accordingly.

When training on SlimPajama and using the GPT-2 tokenizer, we noticed that the dataset, especially the sequences which contain code, contains sequences which consist of many repeated tokens such as the empty token “ ”. We call this “screaming at your language model”. These kind of inputs to the

Mesa layer lead to a matrix $H_{h,t} = K_{h,t}K_{h,t}^T$ which contains sums of the same vector outer product which we analysed leads to instabilities when $\gamma_t \approx 1$. We therefore upper-bound γ_t by $b_\gamma = 0.9975$ (which might be train length specific) and adjust its value depending the input strength β_t : when training on SlimPajama, we use $\gamma_t = \gamma_t s_{\gamma_t}$ with $s_{\gamma_t} = (1 - (1 - b_\gamma)\beta_t^2)$. Note that other tokenizers which merge repeated "" should solve this problem partially. This correction improves perplexity in scans on small models and so we adopted it throughout our experiments.

A final comment on the precision of the CG solver: We opted to use FP32 matrix multiplication precision inside the CG solver solely within our Pallas kernel. Note that we used BF16 everywhere else to compare other RNN and transformer models with our MesaNet fairly. This reduces memory loading times as we only load data with BF16 precision, compute q^* in our solver with FP32 precision, and cast it down in our solver to FB16.

Although we did not investigate in depth FP16 or BF16 precision within the CG solver for which convergence problems are well known, we found the training times when using FP32 acceptable. We leave this important investigation for future work.

We end here with a note of caution when using these lower precisions on GPUs as more work might be needed to ensure stable convergence to the approximate solution of the linear solver.

G.6 EXPERIMENTS COMPUTE RESOURCES

We provide here an estimate of the compute resources used for a single run of a 1B model. We note that transformers, MesaNets and other RNNs were of somewhat comparable speed on average and so estimate compute by averaging and not differentiating costs across models. We mostly relied on TPUs to conduct our experiment. Here we used multi-pod TPUs which fit the whole models, without model sharding, and therefore were able to rely solely on batch sharding. For the 1B models, one training run, with sparse intermediate evaluation, when training on 50B tokens lasted around 36 hours on average. When training on smaller models, the train time significantly dropped. All Mesa layer investigations were done on the 400million scale when training on 15B tokens resulting in train runs which last 3-12 hours depending on the amount of CG steps used and data parallelization applied.

Running our evaluation pipeline for all downstream benchmarks took on average 3 hours on the same hardware, although we note that we did not optimize this pipeline for run time.

G.7 TOKEN THROUGHPUT COMPARISONS OF RECURRENT MODELS FOR 1B MODELS

We report in Figure 6 the throughput (in tokens / second) of the 1B MesaNet (for different fixed CG steps), Gated DeltaNet, Gated Linear Attention, as well as standard (global softmax-attention) Transformers. The MesaNet performs competitively, especially with a fixed number of 10 CG steps. We note that 10 CG steps are sufficient to obtain the superior MesaNet results reported in the main text. Gated linear attention, due to the limited flops and matrix multiplications needed to perform a forward pass, reaches significantly higher throughput than all other models. As expected, transformer throughput degrades with increasing sequence length.

H THE ORIGINAL RECURSIVE LEAST-SQUARES MESA LAYER

We now review the original version of the Mesa layer (Von Oswald et al., 2024), where $\hat{\Phi}_t^{\text{mesa}}$ was determined through the classical recursive least-squares algorithm. The key observation is that $\hat{\Phi}_t^{\text{mesa}} = V_t K_t^\top R_t^{-1} = \sum_{t'=1}^t v_{t'} k_{t'}^\top \left(\sum_{t'=1}^t k_{t'} k_{t'}^\top + \Lambda \right)^{-1}$, and that one can calculate the inverse R_t^{-1} recursively through the Sherman-Morrison formula (Sherman & Morrison, 1950; Gauss, 1821), $R_t^{-1} = R_{t-1}^{-1} - \frac{R_{t-1}^{-1} k_t k_t^\top R_{t-1}^{-1}}{1 + k_t^\top R_{t-1}^{-1} k_t}$, with $R_0^{-1} = \Lambda^{-1}$. While efficient for sequential inference, this solution is problematic for two reasons. First, when introducing time-dependent forget gates $\gamma_t \in [0, 1]$ which scale the previous state, i.e., $(R_{t-1} \gamma_t + k_t k_t^\top)^{-1}$, the matrix inversion for small γ_t can introduce numerical instabilities as $R_{t-1}^{-1} \frac{1}{\gamma_t}$ can grow unbounded. Moreover, note that this Mesa layer version forgets the regularization term Λ exponentially fast, as it only enters through the initial

1728

1729

1730

1731

Figure 6: 1B model throughput (tokens / sec) with bfloat16 activation and float32 weight precision on a H100 GPU (top row) using the open source framework of <https://github.com/fla-org/flash-linear-attention> or our custom TPUv5 implementation (bottom row). We show the effect of scaling the batch size (left), while fixing the generation length, or scaling the generation length, while fixing the batch size on the token throughput / sec. For this experiment, we averaged over 5 iterations to reduce noise. On both hardware systems, we see that 1) MesaNet and Gated DeltaNet perform competitive despite MesaNet consuming significantly more flops, 2) Gated Linear Attention outperforming other layers significantly as well as 3) the throughput of the Transformer degrading with larger batchsize and especially sequence length. We chose sequence length for left panels and batch size for the right panels small enough, such that the (global softmax) Transformer does not run out of memory for the H100. On the TPUv5 and the left configuration, the Transformer is running out of memory for the largest batchsize.

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

Figure 7: Effect of Number of Conjugate Gradient (CG) Steps on SlimPajama Perplexity within and beyond train context length. We show here the effect of reducing the number of CG steps during inference on token perplexity across token position of a 1B MesaNet trained on 50B tokens. We either use a **fixed number CG steps uniformly across the model** or apply a **dynamic stopping criterion $\epsilon > 0$** .

1778

1779

1780

1781

1782 state R_0^{-1} . Second, we are not aware of a way of computing R_t^{-1} in a parallel-in-time fashion. This
 1783 precludes efficient parallel training at scale in current hardware.
 1784

1785 **The Mesa layer as a second-order in-context learning method.** As reviewed in Sections 2 and A,
 1786 the closely related DeltaNet model (Schlag et al., 2021a) updates a matrix-valued state variable
 1787 $\Phi \in \mathbb{R}^{n_v \times n_a}$ following online gradient descent on a squared error loss. Omitting the head index, the
 1788 dynamics of this layer reads

$$1789 \quad \Phi_t = \Phi_{t-1} - \beta_t \nabla l_t^{\text{sq-err}}(\Phi_{t-1}) = \Phi_{t-1} + \beta_t(v_t - \Phi_{t-1}k_t)k_t^\top. \quad (45)$$

1791 To make comparison with this layer easier, we now express the Mesa layer (equation 4) in a similar
 1792 recurrent form. We assume that we are in the case where the Sherman-Morrison recursion explained
 1793 above holds, so that we can write H_t^{-1} as a function of H_{t-1}^{-1} . This requires that forgetting is disabled
 1794 ($\forall_t \gamma_t = 1$), or that the regularizer Λ decays exponentially with time. For simplicity, we assume in
 1795 what follows that there is no forgetting. Then, using the convention that $H_0 = \Lambda$, we have that

$$1796 \quad \Phi_t = G_t H_t^{-1} \quad (46)$$

$$1798 \quad = (G_{t-1} + v_t k_t^\top) H_t^{-1} \quad (47)$$

$$1799 \quad = (\Phi_{t-1} H_{t-1} + v_t k_t^\top) H_t^{-1} \quad (48)$$

$$1800 \quad = \Phi_{t-1} (H_t - k_t k_t^\top) H_t^{-1} + v_t k_t^\top H_t^{-1} \quad (49)$$

$$1802 \quad = \Phi_{t-1} - \Phi_{t-1} k_t k_t^\top H_t^{-1} + v_t k_t^\top H_t^{-1} \quad (50)$$

$$1803 \quad = \Phi_{t-1} - (\Phi_{t-1} k_t - v_t) k_t^\top H_t^{-1} \quad (51)$$

$$1804 \quad = \Phi_{t-1} - \nabla_{\phi\phi}^2 \mathcal{L}_t(\Phi_{t-1})^{-1} \nabla_{\Phi} l_t^{\text{sq-err}}(\Phi_{t-1}), \quad (52)$$

1806 recalling that \mathcal{L}_t is the cumulative regularized loss (equation 4) and $l_t^{\text{sq-err}} = \|v_t^2 - \Phi k_t\|^2$. To go
 1807 from equations 47 to 48, we used the fact that $\Phi_{t-1} = G_{t-1} H_{t-1}^{-1}$. From equations 48 to 49, we used
 1808 the identity $H_{t-1} H_t^{-1} = (H_t - k_t k_t^\top) H_t^{-1}$.
 1809

1810 Thus, while the DeltaNet and related layers perform (first-order) online gradient descent on a squared
 1811 error loss, the Mesa layer implements instead an online (second-order) Newton descent algorithm.
 1812

1813 I A PRELIMINARY INVESTIGATION INTO STATE TRACKING WITH THE MESA 1814 LAYER

1826 **Figure 8: Negative γ_t and high Λ allow MesaNets to solve parity:** When using $\gamma_t \in (-1, 1)$ as well as
 1827 enforce high Λ , we enforce the MesaNet into functionality close to GLA as $q_t^* = q_t$ which allows us to use
 1828 MesaNet with $\gamma_t \in (-1, 1)$ which naive applied does not lead to a well-defined mesa-optimization problem.
 1829

1830 Recent work has investigated the (missing) state-tracking ability of transformers, modern state space
 1831 models and linearized transformer RNN models, see e.g. (Merrill et al., 2025). It remains an active
 1832 research direction to study under which circumstances these in-time parallelizable RNN models can
 1833 better track state than transformers (Merrill & Sabharwal, 2024; Li et al., 2024).

1834 One simple architecture change proposed in Sarrof et al. (2024); Grazzi et al. (2025) which allows
 1835 layers such as Mamba, GLA or gated DeltaNet to solve certain state tracking tasks is to use forget
 1836 strength $\gamma_t \in (-1, 1)$ instead of $\gamma_t \in (0, 1)$. We highlight that this change naively is not possible

1836 to incorporate into the Mesa layer. Indeed, $\gamma_t \in (-1, 1)$ could violate the positive definiteness
 1837 of $(H_{t-1}\gamma_t + k_t k_t^\top + \Lambda)$ leading to a potentially ill-defined linear system of equations problem.
 1838 The Mesa layer is equivalent to GLA if $q_t^* = q_t$ which can be enforced by setting Λ to very large
 1839 values such that $(H_t + \Lambda)^{-1} \approx \Lambda^{-1}$ and rescaling q_t by Λ . Although undesirably from an online
 1840 learning perspective, high Λ should lead to $(H_{t-1}\gamma_t + k_t k_t^\top + \Lambda)$ rendering positive definite even
 1841 if $\gamma_t \in (-1, 1)$ leading to state tracking capabilities as observed in [Grazzi et al. \(2025\)](#) for models
 1842 such as Mamba or DeltaNet with $\gamma_t \in (-1, 1)$. We show first state tracking results for MesaNets
 1843 with $\gamma_t \in (-1, 1)$ or $\gamma_t \in (0, 1)$ while initializing $\Lambda = 50 \cdot I$ and restricting its lower value to 49.
 1844 These values are chosen by hand, generally a wide range of (large) Λ actually gave us the same
 1845 results. When now learning parity, see Figure 8, MesaNets, as hypothesized, start solving parity
 1846 with perfect accuracy when endowed with $\gamma_t \in (-1, 1)$, similar to results presented for Mamba
 1847 and gated DeltaNet in [Grazzi et al. \(2025\)](#) when using $\gamma_t \in (-1, 1)$. Although this parametrization
 1848 showcases the flexibility of the Mesa layer encompassing the capacity of GLA (and similar layers
 1849 such as Mamba and mLSTM) by enforcing high regularization, we stress that this solution is in our
 1850 opinion rather a bug than a feature. This is because we actually wish to utilize the extra flops spend
 1851 to compute q_t^* . We leave investigating how the MesaNet could track state while not falling back to
 1852 GLA functionally for future work.

1853 **Experimental details.** We train a MesaNet with 2 layers, an embedding dimension of 128, and
 1854 4 heads per sequence mixing module (each head with dimension 128) amounting to roughly 1M
 1855 parameters. For training we sample bitstrings on the fly and compute the respective ground truth parity
 1856 scores at each sequence position. We then train the model to predict the parity score at each position
 1857 in the sequence. During training bitstrings are restricted to a length of 40. In a final evaluation, we
 1858 test the trained model on sequences up to length 256. We train on a batch size of 256 and train in the
 1859 infinite data regime sampling a total of 10000 batches. We use a weight decay of 0.03 and a learning
 1860 rate of 0.001. To obtain the results displayed in Figure 8 we initialize $\Lambda = 50$ and lower bound
 1861 it to 49 and train once with positive eigenvalues only ($\gamma_t \in (0, 1)$) and once allowing for negative
 1862 eigenvalues ($\gamma_t \in (-1, 1)$).

1863 J FURTHER DISCUSSION POINTS

1864 We list here some additional discussion points which we couldn't place in the main text because of
 1865 space constraints

- 1866 • **Backpropagation through the conjugate gradient method:** Currently, we are computing
 1867 the gradient through the Mesa layer assuming that we have approximated q_t^* numerically
 1868 well. We believe this current version is a shortcoming of the Mesa layer and speculate that it
 1869 is actually feasible to train the MesaNet to cope better with fewer steps (and not approximate
 1870 q_t^* as well). For this we would use a stochastic number of CG steps during training, ranging
 1871 for example from 0 to 30, and backpropagate through the unrolled process, potentially
 1872 obtaining a model which is trained to be behave "optimally" given a certain number of
 1873 CG steps. This would allow for an even better dynamic test-time compute allocation of
 1874 the MesaNet during inference as users could flexibly decide to spend more compute for
 1875 a better model. Interestingly, one could additionally condition (e.g. with a set of BOS
 1876 token indicating the number of CG steps used during the forward pass) the models forward
 1877 computation and therefore allow the model to learn to adjust its representation at every layer
 1878 dependent on the CG steps used in the Mesa layers. We speculate that we therefore would
 1879 obtain a MesaNet which behaves on par with e.g. GLA, Mamba or xLSTM with 0 CG steps
 1880 and outperforms these RNNs when allocating more CG steps.
- 1881 • **Architecture considerations:** We decided to benchmark related work while using the
 1882 common transformer backbone allowing for a direct 1-1 comparison between all models.
 1883 This architecture is extremely widespread and has the advantage to allow for a direct usage
 1884 of Mixture-of-Experts [Shazeer et al. \(2017\)](#) layers. xLSTM and Mamba, see e.g. [Beck](#)
 1885 [et al. \(2024\)](#), use a different backbone which notably merges the MLP layer and the RNN
 1886 layer in one while matching parameter count. This architecture change leads to overall
 1887 better perplexity but question if the particular RNN layer or the architecture change, or its
 1888 combination offers better results. We leave an investigation of a fair comparison of the
 1889 Mesa layer and other related work when changing the architecture backbone for future

1890 work. Generally, we acknowledge that it is unclear if these architecture changes address the
 1891 shortcomings of RNNs, which we show in the evaluation section, namely to incorporate
 1892 sequential long range information. We are excited to study the influence of the backbone
 1893 when optimizing for incorporating long-range understanding and not perplexity.

- 1894 • **Learning fast matrix inversion algorithms from data:** To obtain $(H_t + \Lambda)^{-1} q_t$ we decided
 1895 to use the well known and powerful conjugate gradient method. While this algorithm is
 1896 widespread, we hypothesis that learning a neural network to solve $(H_t + \Lambda)^{-1} q_t$ directly or
 1897 adjusting the CG method by learned parameterization, could lead to significant speed ups.
 1898 We generally find extending well-known algorithms with the help of deep learning or using
 1899 them as building blocks of deep neural networks an exciting research direction ([von Oswald
 1900 et al., 2023; 2025; Vladymyrov et al., 2024](#)).
- 1901 • **Mesa layer to model sequences outside the language domain:** We speculate that the
 1902 Mesa layer is a promising layer for sequence modeling of continuous data, where in-context
 1903 generalization and not memory is the driving factor of improving next token prediction.
 1904 Therefore the Mesa layer might excel in domains which require some form of in-context
 1905 (control or reinforcement learning) algorithm distillation ([Laskin et al., 2023](#)).
- 1906 • **The fundamental limit of RNNs with finite memory:** (Modern) RNNs do have a finite
 1907 amount of state which they can use to save information for future access. This has two
 1908 interconnected, intermediate shortcomings when comparing to softmax: The interpretation
 1909 and the relevance of certain information in a sentence can drastically change even at the last
 1910 token. Since softmax stores all information of the past (all input text and its representations
 1911 in all layers), it can recall information relevant to the current query (for example, a particular
 1912 question about the text. RNNs need to anticipate when processing information which needs
 1913 saving such that it can be accessed later on.

1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943

1944
1945

K MESANET TRAINED IN SYNTHETIC ENVIRONMENTS

1946
1947
1948
1949
1950
1951

We evaluate the token manipulation and in-context learning capabilities by training and evaluating MesaNets on two purely synthetic benchmarks: (i) Mechanistic Architecture Design (MAD) (Poli et al., 2024) and (ii) RegBench (Akyürek et al., 2024). For MAD, we train 2-layer models and sweep over a range of optimization hyperparameters for each task. For RegBench, we follow Akyürek et al. (2024) and sweep over a larger grid of hyperparameters for each task, including number of layers and heads, see Appendix F.

1952
1953
1954
1955
1956

MesaNet excels at the MAD benchmark. MAD comprises a suite of recall, memorization, compression, and copying tasks. As shown in Table 9, the MesaNet achieves the highest average performance, outperforming all linear recurrent architectures and matching the performance of transformers. These strong results demonstrate the MesaNet’s efficacy in managing its fixed-size recurrent state to store and retrieve necessary information across diverse manipulation challenges.

1957
1958
1959
1960
1961

MesaNet and Transformers perform on par on the RegBench. This benchmark requires models to infer the underlying grammar of pseudo-languages, defined by probabilistic finite automata (PFAs), solely from context sequences. At test time, this in-context learning capability is tested on token sequences generated with held-out PFAs. Again, the MesaNet surpasses other RNN models and matches transformers, demonstrating its capability to infer rules at test time (Figure 9).

	IC & Noisy Recall	Fuzzy Recall	Memorize Train Data	Selective Copy	Compress	Avg.
Mamba2	100	51.2	42.0	95.4	41.3	66.0
GLA	100	39.0	82.5	96.1	42.3	72.0
xLSTM	100	47.6	79.8	95.4	43.4	73.2
DeltaNet	100	55.5	40.8	98.8	43.3	67.7
Gated DeltaNet	100	32.7	81.7	95.7	45.0	71.0
Hawk	93.0	13.6	91.3	77.0	47.7	64.5
MesaNet	100	58.5	77.2	99.2	45.4	76.1
Hawk-MesaNet	100	30.2	85.6	99.6	52.3	73.5
Transformer	100	48.6	84.7	96.0	49.5	75.8

Table 9: Performance (% Accuracy ↑) on the MAD benchmark (Poli et al., 2024). The MesaNet performs strongly compared to other RNNs and matches the transformer.

Figure 9: Performance on RegBench (Akyürek et al., 2024). MesaNet outperforms other linear architectures and closes the gap to transformers.

1970
1971
1972

L EXTENDED RESULTS IN LANGUAGE ENVIRONMENT

1973

L.1 LANGUAGE MODELLING / PERPLEXITY ANALYSES

1974
1975
1976
1977
1978
1979
1980

The common approach to measure language modeling performance on a set of sequences $S = \{s_1, \dots, s_N\}$ is perplexity (PPL), which is defined as the exponential of the average negative log-likelihood per token (Jelinek et al., 1977; Brown et al., 2020b; Biderman et al., 2024):

$$\text{NLL} = -\frac{1}{\sum_{j=1}^{|S|} |s_j|} \sum_{j=1}^{|S|} \sum_{i=1}^{|s_j|} \log P(s_{j,i} | s_{j,1}, \dots, s_{j,i-1}) \quad (53)$$

$$\text{PPL} = \exp[\text{NLL}]$$

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

where $|S|$ is the number of sequences, s_j is the j ’th sequence in S and $s_{j,i}$ is the i ’th token in the sequence s_j . However, all tokens are weighted equally in these metrics, independent of their token position. This is especially critical, as the magnitudes of the log-likelihood scores tend to be quite different for early and late tokens in a sequence. As a consequence, interesting differences between models might be masked in these aggregated metrics, especially when comparing different model families with different inductive biases. Therefore, one needs to condition on the sequence position to pinpoint qualitative model differences in a quantitative manner.

1992
1993
1994
1995
1996
1997

Mean-so-far {NLL, PPL}. To investigate whether models exhibit different language modelling capabilities at different sequence depths k , we therefore assess mean-so-far NLL and PPL:

$$\text{Mean-so-far-NLL}_{:k} = -\frac{1}{\sum_{j=1}^{|S|} \min(|s_j|, k)} \sum_{j=1}^{|S|} \sum_{i=1}^{\min(|s_j|, k)} \log P(s_{j,i} | s_{j,1}, \dots, s_{j,i-1}) \quad (54)$$

$$\text{Mean-so-far-PPL}_{:k} = \exp[\text{Mean-so-far-NLL}_{:k}]$$

1998 Intuitively, these metrics can be interpreted as **how well are sequences modeled up to length k** .
 1999 While these metrics give a more granular picture of the loss behavior dependent on sequence length,
 2000 they still mask important transition points due to the cumulative aggregation up to position k . For
 2001 instance, the mean-so-far NLL could still be decreasing for higher k (decreasing slope), despite the
 2002 token-position-dependent NLL may have already plateaued or increased (Lin et al., 2025).

2003 **Token-Position-Dependent NLL.** Consequently, we follow (Lin et al., 2025) and assess the average
 2004 negative log-likelihood conditional on the token-position k (for which only sum over sequences with
 2005 $|s_j| \geq k$):
 2006

$$\text{NLL}_k = -\frac{1}{|S|} \sum_{j=1}^{|S|} \log P(s_{j,k} | s_{j,1}, \dots, s_{j,k-1}). \quad (55)$$

2010 **Difference in Token-Position-Dependent NLL Relative to a multi-head-attention transformer.**
 2011 As the field’s main interest is to improve upon the current state-of-the-art transformer architecture,
 2012 we investigate the difference in token-position-dependent NLL with respect to a transformer (MHA):
 2013

$$\Delta \text{NLL}_k^{\text{model}} = \text{NLL}_k^{\text{model}} - \text{NLL}_k^{\text{MHA}}, \quad (56)$$

2014 where a negative $\Delta \text{NLL}_k^{\text{model}}$ means superior language modelling ability at position k relative to a
 2015 transformer as the model’s loss is lower. The same difference can be formulated for the mean-so-far
 2016 metrics. Certainly, such a relative metric requires a well-tuned transformer baseline.
 2017
 2018

2019 L.1.1 WITHIN TRAIN CONTEXT-LENGTH 2020

2021 Here, we expand upon the results shown in Section 4.1 and present within-train-context-length
 2022 language modelling evaluations on all evaluated pairs of model sizes (i.e., 145M, 400M and 1B
 2023 parameters) and number of training tokens (15B and 50B tokens).

2024 **PPL.** We present the PPL scores on the five evaluated datasets in Table 10. Across all model sizes
 2025 and number of training tokens, Hawk-MesaNet exhibits the best PPL performance on the majority of
 2026 benchmarks among the recurrent models, closely followed by MesaNet. Notably, Hawk-Mesa and
 2027 Mesa match or exceed the transformer baseline with respect to PPL on the majority of benchmarks
 2028 on all model sizes. Furthermore, one can clearly observe the impact of the attention window size on
 2029 PPL based on our SWA baselines. PPL is decreasing with an increasing window size in all settings.
 2030 Notably, SWA-1024 reaches competitive performance with the majority of recurrent models, i.e.
 2031 Hawk, Mamba2, GLA, xLSTM and DeltaNet.
 2032

2033 **Conditioning on the Sequence Position.** As indicated in the metrics description, and shown in
 2034 Section 4.1, uniformly averaging over all tokens in the PPL computation, independent of a token’s
 2035 depth in a sequence, may masquerade important qualitative difference between models. Therefore,
 2036 we condition on the token position and investigate the difference in token-position-dependent NLL
 2037 relative to a multi-head-attention transformer $\text{NLL}_k^{\text{model}}$. As shown in Figure 10, most recurrent models
 2038 demonstrate superior language modelling abilities early in a sequence relative to the transformer
 2039 baseline. However, beyond a certain token position, transformers surpass the performance of all
 2040 recurrent models.

- 2041 • **Which model performs strongest early in the sequence?** Notably, MesaNet and Hawk-MesaNet
 2042 exhibit the strong performance early-in-the-sequence tokens except Hawk. However, while Hawk
 2043 exhibits the best performance up to a certain depth, the model exhibits a sharp performance decline
 2044 after that and falls behind most models. See Figure 11 for a clearer visualization (equivalent to
 2045 Figure 10, but token-position in log-scale).
- 2046 • **Which model offers superior performance to a transformer “for the longest”?** While Hawk
 2047 losses its advantage the earliest, Hawk-MesaNet extends the performance advantage to the largest
 2048 token depths, closely followed by MesaNet.

2049 For completeness, we also show the mean-so-far NLL difference $\Delta \text{Mean-so-far-NLL}_{:k}^{\text{model}}$ rela-
 2050 tive to a Transformer in Figure 12. However, as indicated, the cumulative aggregation in the metric
 2051 skews the important token depth transition point where a transformer surpasses the recurrent models
 in terms of language modeling.

Figure 10: NLL Difference (per token-position) $\Delta NLL_k^{\text{model}}$ relative to a Transformer on SlimPajama Validation Dataset. Most recurrent models demonstrate superior language modelling abilities early in a sequence relative to the transformer baseline, across all settings. However, beyond a certain token position, transformers surpass the performance of all recurrent models.

Figure 11: NLL Difference (per token-position) $\Delta NLL_k^{\text{model}}$ relative to a Transformer on SlimPajama Validation Dataset in log-scale. MesaNet and Hawk-MesaNet exhibit the strong language modeling performance early-in-the-sequence tokens except Hawk. While Hawk exhibits the best performance up to a certain depth, the model exhibits a sharp performance decline relatively early in the seq. depth.

Figure 12: Mean-so-far NLL Difference $\Delta \text{Mean-so-far-NLL}_k^{\text{model}}$ relative to a Transformer on SlimPajama Validation Dataset. The cumulative aggregation in the mean-so-far metric skews the important token depth transition point where a transformer surpasses the recurrent models in terms of language modeling.

2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118

| ||

2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142

	15B Tokens							50B Tokens							AVG ppl↓
	SLIM ppl↓	LMB. ppl↓	WIKI. ppl↓	PG19 ppl↓	GOV. ppl↓	QASP. ppl↓	AVG ppl↓	SLIM ppl↓	LMB. ppl↓	WIKI. ppl↓	PG19 ppl↓	GOV. ppl↓	QASP. ppl↓	AVG ppl↓	
145M	- Hawk	19.73	38.94	23.06	19.87	19.23	29.66	25.08	18.34	37.43	21.25	18.49	18.17	27.83	23.59
	- Mamba2	18.29	40.34	20.86	19.17	17.03	23.71	23.23	17.05	38.22	19.24	17.87	15.90	22.10	21.73
	- GLA	17.37	37.96	19.57	18.11	15.86	22.37	21.87	16.30	36.20	18.43	16.90	15.02	20.91	20.62
	- xLSTM	17.35	37.97	19.57	18.12	15.88	22.50	21.90	16.20	36.19	18.31	16.97	14.91	20.85	20.57
	- DeltaNet	17.26	38.18	19.29	17.93	15.67	21.75	21.68	16.17	36.55	18.08	16.78	14.81	20.53	20.49
	- Gated-DeltaNet	17.12	37.62	19.18	17.77	15.55	22.13	21.56	16.05	35.80	18.04	16.79	14.77	20.67	20.35
	- Mesa	17.02	37.64	19.10	17.72	15.44	21.87	21.47	16.05	36.17	17.96	16.60	14.72	20.57	20.34
	- Hawk-Mesa	16.81	37.20	18.87	17.14	15.29	21.62	21.15	15.82	35.51	17.70	16.19	14.55	20.38	20.02
400M	- Transformer	16.95	38.69	18.65	17.47	15.00	20.80	21.26	15.81	36.54	17.35	16.25	14.04	19.33	19.89
	- Hawk	14.40	31.54	16.12	14.23	13.67	19.85	18.30	12.87	29.44	14.30	12.71	12.24	17.54	16.52
	- Mamba2	14.45	33.38	15.99	14.80	13.27	18.36	18.37	13.07	31.05	14.28	13.28	12.10	16.37	16.69
	- GLA	13.69	31.64	15.01	13.89	12.36	17.08	17.28	12.61	29.93	13.73	12.75	11.52	15.77	16.05
	- xLSTM	13.71	31.70	14.95	13.88	12.28	17.10	17.27	12.56	29.79	13.60	12.72	11.49	15.72	15.98
	- DeltaNet	13.80	31.98	15.07	14.01	12.51	17.20	17.43	12.59	30.00	13.68	12.70	11.49	15.57	16.00
	- Gated-DeltaNet	13.48	31.40	14.71	13.59	12.16	16.64	17.00	12.44	29.57	13.45	12.52	11.31	15.42	15.79
	- Mesa	13.44	31.38	14.65	13.51	12.02	16.56	16.93	12.34	29.57	13.36	12.40	11.15	15.19	15.67
IB	- Hawk-Mesa	13.37	31.10	14.55	13.32	12.07	16.68	16.85	12.30	29.38	13.33	12.30	11.28	15.32	15.65
	- SWA-4	23.36	38.65	29.29	23.51	26.94	48.24	31.66	19.32	33.76	23.43	19.35	21.50	35.41	25.46
	- SWA-64	15.98	32.97	18.89	16.31	15.20	23.08	20.40	14.04	30.51	16.35	14.19	13.25	19.37	17.95
	- SWA-256	14.69	32.64	16.99	15.04	13.42	19.36	18.69	13.23	30.36	14.94	13.38	12.08	17.09	16.85
	- SWA-1024	13.95	32.63	15.40	14.09	12.36	17.05	17.58	12.52	30.13	13.71	12.56	11.12	15.26	15.88
	- Transformer	13.64	32.25	14.71	13.73	12.06	16.51	17.15	12.40	30.10	13.23	12.42	10.96	14.84	15.66
	- Hawk	12.71	28.72	13.95	12.44	11.90	17.30	16.17	11.24	26.67	12.23	10.93	10.63	14.89	14.43
	- Mamba2	12.78	30.30	13.97	12.92	11.68	15.97	16.27	11.39	28.02	12.23	11.42	10.42	14.02	14.58
IB	- GLA	12.28	29.13	13.29	12.35	11.08	15.20	15.55	10.99	26.98	11.77	10.95	9.99	13.52	14.03
	- xLSTM	12.38	29.21	13.43	12.40	11.16	15.33	15.65	11.01	26.93	11.81	10.94	10.00	13.55	14.04
	- DeltaNet	12.23	29.13	13.20	12.28	11.04	15.11	15.50	11.01	27.08	11.73	11.00	10.02	13.44	14.05
	- Gated-DeltaNet	12.06	28.67	13.00	12.05	10.85	14.86	15.25	10.89	26.79	11.58	10.81	9.88	13.28	13.87
	- Mesa	12.02	28.57	12.92	11.96	10.76	14.76	15.17	10.83	26.78	11.49	10.71	9.80	13.13	13.79
	- Hawk-Mesa	11.91	28.45	12.79	11.83	10.72	14.60	15.05	10.78	26.59	11.53	10.60	9.79	13.20	13.75
	- SWA-4	20.27	34.66	24.56	20.33	22.98	40.37	27.20	16.46	29.93	19.42	16.42	17.86	29.15	21.54
	- SWA-64	14.08	30.01	16.47	14.33	13.34	19.78	18.00	12.37	27.76	14.14	12.51	11.56	16.77	15.85
IB	- SWA-256	12.98	29.63	14.76	13.18	11.82	16.82	16.53	11.60	27.39	12.89	11.71	10.58	14.69	14.81
	- SWA-1024	12.33	29.65	13.47	12.35	10.92	14.93	15.61	11.00	27.22	11.78	10.92	9.79	13.11	13.97
	- Transformer	12.16	29.55	12.90	12.10	10.68	14.47	15.31	10.86	27.16	11.42	10.74	9.69	12.86	13.79

2143
 2144 **Table 10: PPL at a Maximum Sequence Length of 2048.** The score of the best recurrent model with respect
 2145 to PPL on each dataset is highlighted, and PPL scores from SWA and the transformer baseline are shown as
 2146 reference. Across all model sizes and number of training tokens, Hawk-Mesa exhibits the best PPL performance
 2147 on most benchmarks, closely followed by Mesa.

2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

L.1.2 BEYOND TRAIN CONTEXT-LENGTH

PPL. We present the PPL scores for context lengths of 4k (see Table 11) and 32k (see Table 12) respectively on all model sizes and number of training tokens.

		15B Tokens								50B Tokens							
		WIKI, ppl↓	PG19, ppl↓	GOV, ppl↓	QASP, ppl↓	Avg ppl↓	WIKI, ppl↓	PG19, ppl↓	GOV, ppl↓	QASP, ppl↓	Avg ppl↓						
145M	- Hawk	23.80	24.23	19.64	30.09	24.44	21.90	22.63	18.54	28.10	22.79						
	- Mamba2	24.28	27.31	20.07	27.51	24.79	24.13	27.85	22.56	29.17	25.93						
	- GLA	20.07	22.14	15.68	21.38	19.82	18.83	20.70	14.73	19.95	18.55						
	- xLSTM	20.04	22.13	15.56	21.43	19.79	18.68	20.67	14.61	19.89	18.46						
	- DeltaNet	19.85	22.05	15.47	20.85	19.55	18.66	20.64	14.64	19.76	18.42						
	- Gated-DeltaNet	19.64	21.75	15.23	21.03	19.41	18.46	20.47	14.45	19.63	18.25						
	- Mesa	19.52	21.60	15.10	20.78	19.25	18.38	20.25	14.42	19.52	18.14						
400M	- Hawk-Mesa	19.33	20.86	15.03	20.69	18.98	18.15	19.72	14.31	19.48	17.91						
	- Transformer	27.68	34.18	23.59	30.77	29.06	52.12	65.58	47.93	59.37	56.25						
	- Hawk	16.61	17.35	13.80	19.73	16.87	14.70	15.45	12.33	17.35	14.96						
	- Mamba2	18.31	20.59	15.33	20.59	18.70	17.94	20.75	16.07	20.48	18.81						
	- GLA	15.31	16.84	12.08	16.20	15.11	14.05	15.43	11.26	14.95	13.92						
	- xLSTM	15.31	16.82	11.98	16.18	15.07	13.90	15.39	11.22	14.87	13.85						
	- DeltaNet	15.49	17.07	12.27	16.37	15.30	14.09	15.50	11.35	14.86	13.95						
1B	- Gated-DeltaNet	14.99	16.46	11.84	15.73	14.76	13.75	15.13	11.04	14.60	13.63						
	- Mesa	15.02	16.41	11.73	15.72	14.72	13.67	14.98	10.87	14.36	13.47						
	- Hawk-Mesa	14.90	16.15	11.82	15.86	14.68	13.67	14.83	11.05	14.54	13.52						
	- SWA-4	30.09	29.68	28.80	50.69	34.82	24.31	24.55	22.88	37.16	27.23						
	- SWA-64	19.58	20.23	15.65	23.38	19.71	16.93	17.48	13.55	19.44	16.85						
	- SWA-256	17.54	18.41	13.59	19.29	17.21	15.47	16.44	12.19	16.88	15.25						
	- SWA-1024	15.90	17.28	12.32	16.58	15.52	14.22	15.41	11.27	14.92	13.95						
400M	- Transformer	33.17	46.81	34.34	41.51	38.96	74.74	130.23	122.52	142.67	117.54						
	- Hawk	14.37	15.11	12.01	17.10	14.65	12.59	13.25	10.67	14.68	12.80						
	- Mamba2	15.90	18.03	13.33	17.85	16.28	17.56	20.90	16.28	19.98	18.68						
	- GLA	13.56	14.90	10.81	14.37	13.41	12.05	13.15	9.77	12.80	11.94						
	- xLSTM	13.71	14.98	10.88	14.54	13.53	12.11	13.15	9.79	12.86	11.98						
	- DeltaNet	13.55	14.90	10.82	14.30	13.39	12.11	13.32	9.84	12.79	12.02						
	- Gated-DeltaNet	13.26	14.50	10.56	14.01	13.08	11.86	12.98	9.62	12.54	11.75						
1B	- Mesa	13.21	14.43	10.50	13.93	13.02	11.78	12.90	9.57	12.43	11.67						
	- Hawk-Mesa	13.08	14.27	10.49	13.85	12.92	11.81	12.72	9.60	12.53	11.66						
	- SWA-4	25.40	25.64	24.58	42.51	29.53	20.17	20.71	18.99	30.44	22.58						
	- SWA-64	17.05	17.70	13.74	20.02	17.13	14.66	15.34	11.81	16.84	14.66						
	- SWA-256	15.25	16.11	11.98	16.71	15.01	13.33	14.24	10.65	14.49	13.18						
	- SWA-1024	13.89	15.03	10.84	14.45	13.56	12.20	13.27	9.75	12.71	11.98						
	- Transformer	24.40	31.60	24.06	30.51	27.64	46.14	64.04	57.04	74.80	60.50						

Table 11: PPL at a Maximum Sequence Length of 4k.

		15B Tokens								50B Tokens							
		WIKI, ppl↓	PG19, ppl↓	GOV, ppl↓	QASP, ppl↓	Avg ppl↓	WIKI, ppl↓	PG19, ppl↓	GOV, ppl↓	QASP, ppl↓	Avg ppl↓						
145M	- Hawk	23.93	29.50	20.16	30.73	26.08	21.98	27.62	19.01	28.78	24.35						
	- Mamba2	37.56	96.96	44.95	38.47	54.48	49.51	174.03	106.47	50.52	95.13						
	- GLA	20.28	27.32	16.21	21.40	21.30	18.96	26.30	15.23	20.09	20.15						
	- xLSTM	20.30	28.02	15.91	21.61	21.46	18.78	26.25	15.11	20.02	20.04						
	- DeltaNet	25.11	97.94	43.10	24.93	26.81	26.79	883.32	52.20	26.31	247.16						
	- Gated-DeltaNet	19.73	27.03	15.46	21.05	20.82	18.59	27.27	14.77	19.77	20.10						
	- Mesa	19.70	26.67	15.26	20.79	20.61	18.58	25.72	14.65	19.62	19.64						
400M	- Hawk-Mesa	19.72	26.79	15.69	20.97	20.79	18.44	26.09	14.69	19.99	19.80						
	- Transformer	42.42	72.04	43.19	41.64	49.82	528.05	4436.78	2029.43	324.84	1829.77						
	- Hawk	16.65	21.10	14.04	20.10	17.97	14.72	18.82	12.53	17.64	15.93						
	- Mamba2	26.64	65.40	34.37	28.00	38.60	53.90	919.97	172.39	41.73	297.00						
	- GLA	15.43	23.08	12.76	16.33	16.90	14.25	20.36	11.74	15.08	15.36						
	- xLSTM	15.34	20.86	12.02	16.20	16.11	14.00	20.21	11.29	14.97	15.12						
	- DeltaNet	18.59	487.01	28.09	19.28	138.24	19.13	359.90	31.71	17.98	107.18						
1B	- Gated-DeltaNet	15.16	21.19	12.27	15.85	16.12	13.82	20.72	11.37	14.67	15.14						
	- Mesa	15.40	21.94	12.31	15.98	16.40	13.83	19.55	11.17	14.51	14.77						
	- Hawk-Mesa	15.43	22.70	12.98	16.40	16.88	14.04	31.61	12.27	15.04	18.24						
	- SWA-4	30.07	37.94	29.66	52.16	37.46	24.29	31.49	23.59	38.40	29.44						
	- SWA-64	19.69	25.07	16.01	23.90	21.17	16.98	21.53	13.81	19.83	18.04						
	- SWA-256	17.63	22.43	13.82	19.62	18.38	15.59	20.07	12.37	17.17	16.30						
	- SWA-1024	16.01	21.02	12.40	16.73	16.54	14.48	19.01	11.89	15.26	15.16						
400M	- Transformer	118.84	538.89	188.16	94.22	235.03	428.15	4312.79	2013.32	473.55	1806.95						
	- Hawk	14.40	18.44	12.20	17.42	15.61	12.62	16.07	10.84	14.95	13.62						
	- Mamba2	21.43	48.14	23.28	23.01	28.96	47.30	240.81	101.96	39.52	107.40						
	- GLA	13.61	18.72	10.96	14.44	14.43	12.11	16.85	9.98	12.89	12.96						
	- xLSTM	13.74	18.38	10.91	14.58	14.40	12.20	16.95	10.02	13.03	13.05						
	- DeltaNet	14.75	145.22	17.33	15.54	48.21	14.65	150.90	21.92	14.95	50.60						
	- Gated-DeltaNet	13.25	17.75	10.55	13.97	13.88	11.87	15.77	9.60	12.53	12.44						
1B	- Mesa	13.35	18.17	10.80	14.04	14.09	11.92	16.29	9.71	12.58	12.63						
	- Hawk-Mesa	13.57	139.08	19.41	14.55	46.65	12.31	17.50	17.51	13.03	15.09						
	- SWA-4	25.35	32.78	25.33	43.92	31.85	20.15	26.44	19.55	31.49	24.41						
	- SWA-64	17.10	21.83	14.05	20.49	18.37	14.68	18.83	12.03	17.21	15.69						
	- SWA-256	15.31	19.61	12.17	17.00	16.02	13.39	17.28	10.78	14.71	14.04						
	- SWA-1024	13.93	18.15	10.84	14.58	14.38	12.27	16.04	9.80	12.87	12.75						
	- Transformer	48.41	119.56	56.09	53.95	69.50	228.12	1326.59	563.97	234.95	588.41						

Table 12: PPL at a Maximum Sequence Length of 32k.

	Global Subset												Local Subset			
	LMB. acc ↑	Hella. acc ↑	RACE-M. acc ↑	RACE-H. acc ↑	Avg	PIQA. acc ↑	Wino. acc ↑	ARC-E. acc ↑	ARC-C. acc ↑	SIQA. acc ↑	BOOLQ. acc ↑	OBQA. acc ↑	SC. acc ↑	Avg		
400M Parameters / 15B Tokens																
- SWA-4	4.62	34.97	25.97	25.93	22.87	66.81	49.33	43.81	24.23	39.82	57.31	30.00	63.78	46.89		
- SWA-16	27.11	37.20	28.18	28.04	30.13	67.63	52.64	43.52	23.81	39.71	54.89	27.60	65.82	46.95		
- SWA-64	38.54	39.35	32.87	30.24	35.25	68.93	52.17	44.40	22.87	39.76	58.56	29.20	64.99	47.61		
- SWA-256	40.52	40.44	34.25	31.48	36.67	69.21	50.67	43.35	24.91	40.89	56.82	30.20	66.90	47.87		
- SWA-1024	41.43	40.90	37.57	34.26	38.54	67.90	52.80	44.49	22.61	40.58	60.37	30.20	66.58	48.19		
- Transformer	41.12	41.27	37.29	34.45	38.53	68.23	51.07	44.28	24.57	40.23	58.10	28.40	66.58	47.68		
400M Parameters / 50B Tokens																
- SWA-4	18.28	39.02	29.56	27.66	28.63	67.85	51.93	44.49	24.83	39.71	58.23	32.40	66.14	48.20		
- SWA-16	35.03	41.52	29.01	28.33	33.47	68.99	52.72	45.88	24.32	39.56	57.40	33.00	67.54	48.68		
- SWA-64	42.34	44.14	34.53	31.67	38.17	69.53	53.75	45.24	24.74	40.28	56.45	31.60	68.49	48.76		
- SWA-256	43.86	45.31	36.46	35.79	40.36	70.24	52.33	45.79	23.98	40.23	57.00	32.40	68.94	48.86		
- SWA-1024	45.08	46.43	38.95	34.74	41.30	69.64	52.25	45.71	25.00	40.07	57.92	32.20	67.92	48.84		
- Transformer	44.96	46.30	41.44	35.89	42.15	69.91	52.64	45.96	24.06	40.48	57.31	30.40	69.64	48.80		
1B Parameters / 15B Tokens																
- SWA-4	8.46	38.56	27.62	27.18	25.46	67.95	51.30	46.72	23.72	40.17	56.73	30.40	65.50	47.81		
- SWA-16	33.81	41.52	28.73	27.66	32.93	68.77	52.64	47.26	24.32	40.28	55.26	33.40	67.41	48.67		
- SWA-64	42.60	44.04	31.49	30.72	37.21	69.91	51.30	46.72	24.66	41.10	58.56	33.20	67.98	49.18		
- SWA-256	45.82	45.64	35.91	34.35	40.43	69.86	52.09	47.26	25.26	41.91	58.53	31.40	69.06	49.42		
- SWA-1024	45.06	46.23	39.50	34.74	41.38	70.29	53.99	47.39	24.15	40.94	59.54	30.60	69.00	49.49		
- Transformer	45.31	46.65	41.16	35.79	42.23	70.78	52.25	48.19	23.55	40.28	52.91	31.40	67.98	48.42		
1B Parameters / 50B Tokens																
- SWA-4	24.63	44.90	28.18	27.08	31.20	70.35	52.49	48.19	24.83	39.56	60.15	32.80	68.56	49.62		
- SWA-16	39.03	48.10	28.73	29.47	36.33	72.09	53.04	48.99	25.43	41.15	53.39	32.80	70.78	49.71		
- SWA-64	46.11	51.30	38.40	33.49	42.33	71.87	53.35	49.62	26.71	40.74	56.70	33.40	71.74	50.52		
- SWA-256	50.28	52.08	40.88	35.69	44.74	72.20	52.64	49.37	27.05	40.84	58.35	32.80	73.01	50.78		
- SWA-1024	50.38	53.69	41.44	37.22	45.68	72.47	53.35	49.41	27.13	41.61	62.20	32.60	72.06	51.35		
- Transformer	48.92	53.63	42.27	37.32	45.54	72.31	54.62	49.41	28.24	40.17	60.73	35.20	72.25	51.62		
- Random	≈ 0	25.00	25.00	25.00	-	50.00	50.00	25.00	25.00	33.33	50.00	25.00	50.00	-		

Table 13: Reference Scores of Sliding Window Attention (SWA) Models on Common-Sense Reasoning Benchmarks. On LAMBADA, HellaSwag and RACE-M and RACE-H, we observe significant performance increases with a growing attention window. On the remaining benchmarks, we only observe marginal performance differences between a Transformer with a sliding window-size of 4 (SWA-4) and a full-window attention Transformer (attention window of 2048). We highlight the scores of the first short-range SWA model (window sizes = {4,16,64}) that matches or exceeds the Transformer performance.

L.2 DOWNSTREAM BENCHMARKS

To evaluate the performance of the investigated models on downstream task, we investigate three classes of benchmarks:

- **Zero-Shot Common-Sense Reasoning Benchmarks (Section L.2.1)**
- **In-Context Recall Benchmarks (Section L.2.2)**
- **Few-Shot Learning Benchmarks (Section L.2.3)**

Within each benchmark section, we report all raw numbers on all model sizes and number of training tokens, and complement them with reference scores of Sliding-Window Attention models with varying attention-window sizes.

L.2.1 ZERO-SHOT COMMON-SENSE REASONING BENCHMARKS

When tracking the performance of “many models” on “many benchmarks”, it is common to resort to aggregated benchmark scores. However, aggregated scores tend to masquerade important sub-trends and limit our understanding (Burnell et al., 2023). For instance, prior work (Gu & Dao, 2024; Yang et al., 2024a; Beck et al., 2024) averages over a set of common-sense reasoning benchmarks. However, evaluations with 400M and 1B Sliding-Window Attention (SWA) models with different attention-window sizes reveal that competitive, or even superior, scores on a subset of these benchmarks can be attained with an attention windows as short as 4, 16 or 64 (see Table 13). This observation strongly indicates that a subset of these benchmarks are either exploitable by short-range language heuristics, and do not require longer-range language modeling capabilities to reach competitive scores, or are simply too hard such that we end up measuring noise.

2268
 2269 **Splitting Reasoning Benchmark into Two Groups.** To reduce the potential benchmark noise and
 2270 deconfound the results, we aim to split the benchmark into two subsets. Therefore, we employ the
 2271 following benchmark splitting protocol:

2272 1. **Reference Scores.** Run every selected benchmark on $\text{SWA}-\{4, 16, 64\}$ models and a trans-
 2273 former model (attention window of size 2048) on 400M and 1B parameters trained on 15B or
 2274 50B tokens each.

2275 2. **Splitting Conditions.** We then assess the following splitting conditions:

2276 • **Condition 1:** Analyze for every benchmark whether benchmark scores increase with in-
 2277 creasing attention windows (from $\text{SWA}-4$ to $\text{SWA}-64$).

2278 • **Condition 2:** Verify whether no short-range SWA model (window sizes = 4, 16 and 64)
 2279 outperforms the transformer baseline with an attention windows of 2048.

2280 3. **Benchmark Grouping.** Finally, we split the benchmark into two subsets:

2281 • **Local Reasoning Benchmark Set:** One of the above conditions is violated.

2282 • **Global Reasoning Benchmark Set:** None of the above conditions is violated.

2283 We refer to Table 13 for a detailed score breakdown, including two additional SWA reference models
 2284 ($\text{SWA}-256$ and $\text{SWA}-1024$). Additionally, we want to highlight that these findings, and the bench-
 2285 mark splitting, are based on experiments 400M and 1B models trained on SlimPajama (Soboleva
 2286 et al., 2023). The benchmark splitting is likely to change slightly when training with bigger model
 2287 sizes or on different datasets.

2288
 2289 **Results on all Model Configurations.** We report the full set of benchmark scores on all model
 2290 configuration (model sizes and number of training tokens) in Table 14. Across all settings, we observe
 2291 similar trends – MesaNet and Hawk-MesaNet show strong performance especially on the global
 2292 reasoning benchmark set. Among the remaining recurrent models, only Gated DeltaNet reaches
 2293 competitive scores with MesaNet on this benchmark subset. In contrast, we do not observe much
 2294 score variation on the local reasoning benchmark set. Hawk, the worst performing model on the
 2295 global set, reaches competitive or even close-to-best scores within this set on average. This confirms
 2296 the hypothesis that this set of benchmark are likely to measure different aspects of language modeling,
 2297 or are potentially noisy, or are not suited for our models as they might be still too challenging.

2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321

2322	2323	2324	Global Subset												Local Subset				
			Model	LMB. acc ↑	Hella. acc ↑	RACE-M acc ↑	RACE-H acc ↑	AVG	PIQA acc ↑	Wino acc ↑	ARC-E acc ↑	ARC-C acc ↑	SIQA acc ↑	BOOLQ acc ↑	OBQA acc ↑	SC. acc ↑	Avg		
			145M Models / 15B T.																
- Hawk	21.87	33.54	29.01	28.52	28.23	64.64	50.83	40.24	21.93	39.41	59.11	27.80	62.25	45.78					
- Mamba2	27.83	33.21	32.04	30.53	30.90	64.47	50.36	39.27	22.27	39.00	51.44	26.40	62.13	44.42					
- GLA	31.05	34.20	33.43	28.71	31.84	63.66	52.09	41.41	21.76	38.89	56.85	28.80	63.97	45.93					
- xLSTM	31.19	34.41	30.94	29.47	31.50	65.13	52.17	40.78	21.76	38.79	56.64	27.40	63.40	45.76					
- DeltaNet	32.02	33.89	32.04	30.43	32.10	65.45	50.91	40.82	21.42	39.15	60.89	28.00	63.97	46.33					
- Gated DeltaNet	31.65	34.53	33.98	29.09	32.31	64.53	51.07	41.62	21.59	39.05	60.03	28.40	63.21	46.19					
- Mesa	31.65	34.49	32.87	30.43	32.36	66.43	51.85	40.03	22.27	38.43	56.73	27.40	63.34	45.81					
- Hawk-Mesa	32.14	34.99	32.87	31.96	32.99	65.40	52.96	41.16	23.55	39.05	55.26	28.00	62.89	46.03					
- Transformer	33.84	33.91	35.91	30.62	33.57	65.34	52.49	39.27	22.44	39.10	59.63	28.40	63.78	46.31					
145M Models / 50B T.																			
- Hawk	22.14	35.09	28.18	30.33	28.94	65.94	51.62	41.33	22.87	39.46	59.45	28.20	63.97	46.60					
- Mamba2	29.23	34.24	33.15	29.86	31.62	65.78	51.46	41.08	21.67	39.82	59.30	28.00	61.74	46.11					
- GLA	32.16	35.57	32.04	29.86	32.41	65.56	51.07	43.18	23.81	39.82	52.23	29.40	63.72	46.10					
- xLSTM	32.74	35.89	32.87	30.14	32.91	66.59	51.54	41.67	23.12	39.15	58.65	27.00	64.23	46.49					
- DeltaNet	32.89	35.39	32.32	31.67	33.07	66.10	51.93	40.53	22.78	38.74	57.46	29.00	64.29	46.36					
- Gated DeltaNet	32.85	36.15	33.15	31.96	33.53	66.76	51.22	41.92	23.55	38.38	60.43	29.00	64.10	46.92					
- Mesa	32.33	36.24	34.53	30.24	33.33	65.40	51.70	41.62	22.61	38.89	54.65	28.80	63.53	45.90					
- Hawk-Mesa	34.31	36.40	32.04	31.20	33.49	66.21	51.93	41.54	22.53	38.54	55.57	30.00	64.74	46.38					
- Transformer	35.40	36.03	35.08	31.10	34.40	64.58	52.09	41.41	22.01	40.12	59.79	30.20	64.23	46.80					
400M Models / 15B T.																			
- Hawk	32.97	42.33	33.15	32.06	35.13	68.66	50.99	44.53	25.00	39.66	59.69	30.80	67.09	48.30					
- Mamba2	35.92	39.95	33.70	32.25	35.46	68.44	51.70	43.31	23.46	39.71	59.54	30.40	66.45	47.88					
- GLA	40.09	42.49	34.53	32.54	37.41	68.61	51.78	44.99	24.91	39.61	60.40	28.40	68.30	48.37					
- xLSTM	39.67	41.99	35.08	33.11	37.46	68.50	52.25	45.12	23.46	39.87	59.72	31.60	68.17	48.59					
- DeltaNet	39.28	41.49	36.46	32.34	37.39	69.26	51.70	46.00	23.81	39.76	52.51	31.20	67.47	47.71					
- Gated DeltaNet	39.98	42.55	32.87	33.68	37.27	69.59	52.33	45.20	25.17	40.02	59.14	29.40	67.60	48.56					
- Mesa	40.17	42.71	34.53	33.21	37.65	67.79	50.51	45.12	22.87	39.10	52.42	29.80	68.43	47.00					
- Hawk-Mesa	39.84	43.15	34.81	31.67	37.37	69.64	52.17	45.33	22.27	40.23	58.04	29.80	67.41	48.11					
- SWA-4	4.62	34.97	25.97	25.93	22.87	66.81	49.33	43.81	24.23	39.82	57.31	30.00	63.78	46.89					
- SWA-64	38.54	39.35	32.87	30.24	35.25	68.93	52.17	44.40	22.87	39.76	58.56	29.20	64.99	47.61					
- SWA-1024	41.43	40.90	37.57	34.26	38.54	67.90	52.80	44.49	22.61	40.58	60.37	30.20	66.58	48.19					
- Transformer	41.12	41.27	37.29	34.45	38.53	68.23	51.07	44.28	24.57	40.23	58.10	28.40	66.58	47.68					
400M Models / 50B T.																			
- Hawk	36.70	47.02	33.43	32.54	37.42	71.93	52.25	47.26	24.06	40.89	59.91	34.20	69.83	50.04					
- Mamba2	38.23	44.22	35.64	32.25	37.58	68.72	52.17	45.33	23.98	40.74	54.31	31.80	68.49	48.19					
- GLA	41.98	46.00	35.08	34.74	39.45	69.86	54.14	46.46	23.98	40.07	56.57	29.80	69.96	48.86					
- xLSTM	41.82	46.22	34.53	33.30	38.97	68.99	53.35	46.00	23.46	41.61	57.43	31.00	69.32	48.90					
- DeltaNet	42.25	45.92	37.02	33.68	39.72	70.18	52.72	45.24	24.23	40.48	57.37	32.20	68.87	48.91					
- Gated DeltaNet	43.99	46.57	35.36	34.83	40.19	70.18	51.85	46.38	25.77	40.58	54.89	32.60	70.53	49.10					
- Mesa	43.39	46.93	38.95	34.26	40.88	70.73	54.46	46.21	24.91	41.10	57.89	32.40	69.38	49.64					
- Hawk-Mesa	41.94	46.96	38.12	33.49	40.13	70.46	54.78	46.46	25.51	40.74	57.80	30.00	70.46	49.53					
- SWA-4	18.28	39.02	29.56	27.66	28.63	67.85	51.93	44.49	24.83	39.71	58.23	32.40	66.14	48.20					
- SWA-64	42.34	44.14	34.53	31.67	38.17	69.53	53.75	45.24	24.74	40.28	56.45	31.60	68.49	48.76					
- SWA-1024	45.08	46.43	38.95	34.74	41.30	69.64	52.25	45.71	25.00	40.07	57.92	32.20	67.92	48.84					
- Transformer	44.96	46.30	41.44	35.89	42.15	69.91	52.64	45.96	24.06	40.48	57.31	30.40	69.64	48.80					
1B Models / 15B T.																			
- Hawk	37.98	47.71	35.08	32.25	38.25	71.93	50.43	48.61	25.43	41.50	58.53	31.80	70.59	49.85					
- Mamba2	39.63	45.06	36.74	34.35	38.95	70.13	52.33	46.97	25.43	39.41	57.34	31.80	70.34	49.22					
- GLA	43.24	47.20	33.43	33.68	39.39	70.95	52.41	46.97	25.00	41.15	58.59	33.00	70.34	49.80					
- xLSTM	44.05	46.10	35.91	33.40	39.86	70.73	54.30	47.14	25.00	40.63	59.27	32.40	69.64	49.89					
- DeltaNet	43.45	47.47	36.46	33.30	40.17	70.78	52.80	48.48	25.09	39.92	60.46	31.20	69.00	49.72					
- Gated DeltaNet	45.37	48.49	35.36	34.07	40.82	71.60	53.99	48.57	24.83	40.07	53.76	32.40	70.46	49.46					
- Mesa	44.21	47.70	37.02	33.49	40.60	70.89	54.46	47.56	25.26	41.04	56.06	32.20	70.21	49.71					
- Hawk-Mesa	44.05	48.70	39.23	33.40	41.34	71.22	53.20	49.54	24.74	40.89	51.93	32.00	70.78	49.29					
- SWA-4	8.46	38.56	27.62	27.18	25.46	67.95	51.30	46.72	23.72	40.17	56.73	30.40	65.50	47.81					
- SWA-64	42.60	44.04	31.49	30.72	37.21	69.91	51.30	46.72	24.66	41.10	58.56	33.20	67.98	49.18					
- SWA-1024	45.06	46.23	39.50	34.74	41.38	70.29	53.99	47.39	24.15	40.94	59.54	30.60	69.00	49.49					
- Transformer	45.31	46.65	41.16	35.79	42.23	70.78	52.25	48.19	23.55	40.28	52.91	31.40	67.98	48.42					
1B Models / 50B T.																			
- Hawk	41.80	54.25	34.25	34.35	41.17	72.91	52.33	51.52	28.75	40.84	56.51	35.00	74.67	51.57					
- Mamba2	42.13	51.46	37.85	35.02	41.62	71.76	53.35	48.95	26.54	40.58	55.90	33.60	73.39	50.51					
- GLA	47.27	53.05	41.44</td																

2376 L.2.2 IN-CONTEXT RECALL BENCHMARKS
2377

2378 To evaluate in-context recall, we adopted the minimal-transformed version of the benchmarks from
2379 [Arora et al. \(2024\)](#) to allow evaluation of non-instruction-tuned models. We truncate inputs to 2000
2380 tokens, and sample greedily until either 48 tokens or a new-line delimiter is generated. We then
2381 parsed whether the target was contained in the generation (non-case-sensitive), as in [Arora et al.](#)
2382 ([2024](#)).

2383 **Sliding-Window Attention Controls.** As expected, we observe consistent score increases with
2384 a growing attention window size (see Table 15). However, we observe that the SWA-1024 is
2385 consistently better on SQuAD than the transformer baseline with an attention window of 2048.
2386 Closer inspection of the SQuAD benchmarks reveals that the tokens-to-recall are most frequently
2387 located in the last 1k tokens of the sequence. Similarly for FDA, most tokens-to-recall are located at
2388 the very beginning of the sequence with an average of length 2000. Hence, we observe a significant
2389 performance increase from SWA-1024 to the transformer baseline with an attention window of 2048.

2390 **Results on all Model Settings.** MesaNet consistently attains best, or in few cases second-best,
2391 performance scores on average across all evaluated model settings (see Table 16). Moreover, we
2392 observe that our insights from the PPL analysis in L.1 directly translate to the observed results in
2393 here, e.g., Hawk attaining the worst in-context recall performance.

	15B Tokens										50B Tokens									
	SWDE acc ↑	SQuAD acc ↑	FDA acc ↑	TQA acc ↑	NQ acc ↑	DROP acc ↑	Avg acc ↑	SWDE acc ↑	SQuAD acc ↑	FDA acc ↑	TQA acc ↑	NQ acc ↑	DROP acc ↑	Avg acc ↑						
400M Models:	- SWA-4	7.38	5.60	0.18	14.51	3.52	9.15	6.72	10.98	7.77	0.45	21.27	5.16	13.13	9.79					
	- SWA-16	9.63	10.82	0.27	24.88	4.88	15.33	10.97	13.05	18.30	1.09	33.35	6.59	17.35	14.95					
	- SWA-64	13.14	26.74	10.07	39.34	5.23	19.12	18.94	19.17	38.44	11.43	48.76	7.25	23.96	24.84					
	- SWA-256	21.69	40.92	12.25	50.95	6.87	23.67	26.06	30.96	42.19	14.70	56.16	10.10	24.20	29.72					
	- SWA-1024	54.91	43.06	17.79	52.67	10.86	26.45	34.29	60.04	46.82	22.60	58.06	13.84	27.89	38.21					
	- Transformer	77.50	37.13	79.13	53.08	16.57	26.59	48.33	79.66	36.93	75.86	58.95	18.94	29.37	49.95					
1B Models:	- SWA-4	9.00	6.53	0.27	17.06	4.40	11.60	8.14	13.05	10.66	0.27	26.54	7.10	13.61	11.87					
	- SWA-16	9.54	15.25	0.27	29.15	6.46	16.44	12.85	16.74	23.76	2.09	39.28	8.46	18.59	18.15					
	- SWA-64	16.74	30.56	16.61	44.55	7.19	20.46	22.69	22.32	39.85	12.70	51.90	9.63	23.91	26.72					
	- SWA-256	25.74	45.34	17.79	56.10	8.81	26.45	30.04	35.82	46.45	17.33	59.77	12.54	27.46	33.23					
	- SWA-1024	60.76	40.65	24.23	56.99	11.88	27.65	37.03	63.73	47.65	26.68	61.43	15.52	30.04	40.84					
	- Transformer	79.21	42.76	77.04	56.99	18.69	29.47	50.69	83.35	46.92	70.96	63.21	21.79	27.41	52.27					
	- Random	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0

2405 **Table 15: Reference Scores of SWA Models on In-Context Recall Benchmarks.** The pattern of best scores
2406 (highlightreded) is very consistent across the evaluated settings. As expected, we see increasing performance
2407 with increasing sizes of attention windows. Except on SQuAD, the transformer commonly attains the best
2408 scores.

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

	15B Tokens								50B Tokens							
	SWDE	SQuAD	FDA	TOA	NQ	DROP	Avg	SWDE	SQuAD	FDA	TQA	NQ	DROP	Avg	acc ↑	acc ↑
145M Models:																
- Hawk	11.43	11.09	0.27	30.39	4.09	14.18	11.91	10.08	14.08	0.36	35.25	5.38	14.85	13.33	acc ↑	
- Mamba2	29.52	24.83	14.34	40.17	7.57	20.89	22.89	37.62	26.34	14.70	44.43	7.67	20.27	25.17	acc ↑	
- GLA	37.08	38.20	14.07	44.73	8.58	23.38	27.67	39.69	30.46	15.88	48.16	10.80	23.86	28.14	acc ↑	
- xLSTM	33.39	25.00	11.34	44.79	10.45	25.44	25.07	34.65	36.03	19.96	48.76	11.43	23.53	29.06	acc ↑	
- DeltaNet	33.57	29.69	15.61	46.27	9.66	23.48	26.38	39.24	31.60	18.06	46.39	11.40	20.27	27.83	acc ↑	
- Gated DeltaNet	32.31	30.83	16.42	46.68	10.48	23.43	26.69	38.07	32.44	15.79	48.34	10.74	21.23	27.77	acc ↑	
- Mesa	36.90	34.35	14.88	47.22	10.20	25.68	28.21	40.50	29.99	15.79	47.04	11.97	23.77	28.18	acc ↑	
- Hawk-Mesa	34.65	30.33	13.61	46.33	9.79	22.86	26.26	34.38	36.03	9.89	46.86	11.31	21.80	26.71	acc ↑	
- Transformer	63.73	23.89	54.63	46.50	12.01	25.59	37.72	67.78	30.97	70.87	50.30	14.70	23.62	43.04	acc ↑	
400M Models:																
- Hawk	16.47	23.86	1.09	42.42	8.01	19.65	18.58	22.05	23.86	1.45	48.93	10.83	20.60	21.29	acc ↑	
- Mamba2	43.11	29.86	20.42	47.04	11.47	22.81	29.12	51.04	29.76	22.23	52.90	12.58	24.77	32.21	acc ↑	
- GLA	52.30	39.04	20.96	50.12	14.16	28.41	34.17	54.10	41.59	26.23	55.04	16.00	26.07	36.50	acc ↑	
- xLSTM	51.67	38.94	23.32	51.13	14.76	23.48	33.88	50.86	38.87	25.23	53.67	16.09	24.63	34.89	acc ↑	
- DeltaNet	50.23	35.62	27.40	50.00	14.38	25.16	33.80	55.90	35.59	27.40	53.50	15.11	23.67	35.19	acc ↑	
- Gated DeltaNet	53.20	35.15	27.04	51.72	15.96	24.82	34.65	56.53	37.23	29.49	53.55	15.01	23.96	35.96	acc ↑	
- Mesa	53.11	38.54	28.58	52.13	14.29	27.02	35.61	59.05	47.05	28.95	57.17	17.29	26.31	39.30	acc ↑	
- Hawk-Mesa	52.66	39.95	23.05	52.78	13.62	26.26	34.72	53.65	39.95	25.14	55.51	15.62	27.55	36.23	acc ↑	
- Transformer	77.50	37.13	79.13	53.08	16.57	26.59	48.33	79.66	36.93	75.86	58.95	18.94	29.37	49.95	acc ↑	
1B Models:																
- Hawk	20.25	15.72	2.09	48.34	10.42	21.61	19.74	26.73	29.96	3.27	52.96	14.63	22.66	25.04	acc ↑	
- Mamba2	54.10	33.68	26.41	51.66	13.97	25.11	34.15	59.68	37.84	31.13	56.64	15.39	25.35	37.67	acc ↑	
- GLA	59.68	41.29	29.67	55.04	16.25	25.97	37.98	60.58	43.67	30.40	59.24	18.69	25.25	39.64	acc ↑	
- xLSTM	57.61	39.11	24.50	54.50	15.17	26.64	36.26	63.37	38.91	31.58	58.00	18.06	25.59	39.25	acc ↑	
- DeltaNet	58.15	37.60	36.84	55.15	16.63	25.35	38.29	62.56	39.01	38.29	59.54	17.96	25.40	40.46	acc ↑	
- Gated DeltaNet	59.59	39.48	37.30	55.86	17.39	25.87	39.25	60.22	39.81	32.12	59.54	18.56	26.98	39.54	acc ↑	
- Mesa	60.40	49.06	22.50	54.38	17.55	27.46	38.56	63.10	46.25	32.67	61.37	19.64	27.74	41.79	acc ↑	
- Hawk-Mesa	61.03	41.55	27.77	54.74	15.33	25.68	37.68	60.31	45.51	28.68	60.13	17.61	27.70	39.99	acc ↑	
- Transformer	79.21	42.76	77.04	56.99	18.69	29.47	50.69	83.35	46.92	70.96	63.21	21.79	27.41	52.27	acc ↑	

Table 16: Benchmark Scores for In-Context Recall Benchmarks on all Model Settings. MesaNet consistently attains the best or second-best score on average across all evaluated model settings.

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484 L.2.3 FEW-SHOT LEARNING BENCHMARKS
24852486 To evaluate the few-shot learning ability, we tested two distinct types of few-shot tasks, (i) word
2487 scrambling tasks introduced in (Brown et al., 2020b) and (ii) a couple of language-to-language
2488 translation tasks.2489 **Word Scrambling Tasks.** We report the few-shot performances in Table 17 for 0-,1-,10- and 100-
2490 shot settings. As few-shot evaluation tend to be sensitive to the selection and ordering of few-shot
2491 examples (Lu et al., 2021), we report the mean performance over 10 randomly drawn few-shot prefixes.
2492 We observe consistent improvements with an increasing number of fewshots for all models except
2493 for SWA-4. MesaNet attains the strongest performance scores in most settings, and outperforms the
2494 transformer baseline significantly.2495 While we evaluate on all five word scrambling tasks introduce in Brown et al. (2020b), we observe
2496 only observe signal (performance above 1%) for models in the ranges 145M to 1B on two tasks:
2497 gpt3/cycle_letters_in_word and gpt3/mid_word_2_anagrams. On the three remaining tasks, we observe performance score close to 0%, in line with the results of Brown et al. (2020b),
2498 and hence omit the scores here.

		gpt3/cycle_letters_in_word				gpt3/mid_word_2_anagrams			
		0-shot	1-shot	10-shot	100-shot	0-shot	1-shot	10-shot	100-shot
145M Models	- Hawk	0.2	0.4±0.2	1.3±0.5	1.7±0.5	0.2	0.4±0.1	0.8±0.2	0.7±0.2
	- Mamba2	0.0	0.2±0.2	1.7±0.4	1.4±0.3	0.0	0.2±0.3	0.6±0.2	0.3±0.1
	- GLA	0.1	0.2±0.3	2.4±0.7	3.0±0.4	0.2	0.1±0.1	1.0±0.4	1.5±0.1
	- xLSTM	0.1	0.4±0.5	2.8±0.6	3.8±0.5	0.3	0.1±0.2	0.9±0.3	1.6±0.1
	- DeltaNet	0.1	0.5±0.4	2.6±0.9	3.2±0.6	0.1	0.2±0.1	1.2±0.3	1.1±0.2
	- Gated DeltaNet	0.1	0.8±0.6	2.5±0.7	3.4±0.6	0.0	0.4±0.4	1.4±0.2	1.7±0.2
	- Mesa	0.1	0.2±0.3	2.2±0.5	3.3±0.5	0.1	0.2±0.2	1.1±0.3	1.7±0.1
	- Hawk-Mesa	0.0	0.3±0.2	1.7±0.5	2.4±0.6	0.2	0.2±0.3	0.9±0.3	1.4±0.2
400M Models	- Transformer	0.1	0.5±0.4	2.6±0.5	3.7±0.3	0.1	0.2±0.2	1.2±0.3	1.7±0.2
	- Hawk	0.1	1.7±1.2	5.3±1.2	6.6±0.4	0.1	0.9±0.7	2.4±0.1	2.8±0.2
	- Mamba2	0.4	2.0±1.4	4.5±0.6	5.1±0.5	0.4	0.9±0.5	1.6±0.3	1.6±0.1
	- GLA	0.0	1.7±1.1	5.2±1.0	7.6±0.3	0.4	1.0±0.7	2.4±0.2	2.6±0.2
	- xLSTM	0.0	2.3±1.3	5.7±1.3	8.2±0.5	0.2	1.1±0.5	2.5±0.3	2.9±0.3
	- DeltaNet	0.1	1.5±1.0	5.7±1.3	7.6±0.6	0.0	1.1±0.5	2.4±0.3	2.6±0.3
	- Gated DeltaNet	0.1	2.1±1.7	6.5±1.0	9.0±0.8	0.1	0.9±0.5	2.6±0.3	3.4±0.2
	- Mesa	0.4	2.2±1.2	6.6±1.0	9.2±0.6	0.6	1.1±0.5	2.6±0.3	3.2±0.2
1B Models	- Hawk-Mesa	0.0	1.3±0.9	4.0±1.4	7.3±0.5	0.1	0.9±0.7	2.6±0.3	3.1±0.1
	- SWA-4	0.0	0.4±0.3	0.8±0.3	0.8±0.2	0.0	0.3±0.3	0.9±0.3	0.9±0.3
	- SWA-64	0.1	2.5±1.5	4.6±1.1	4.7±0.9	0.1	1.2±0.5	2.7±0.2	2.7±0.1
	- SWA-1024	0.3	2.5±1.6	6.1±0.9	7.7±0.5	0.8	1.2±0.8	2.9±0.4	3.1±0.3
	- Transformer	0.4	2.4±1.8	6.7±1.2	8.5±0.4	0.5	1.4±0.7	3.3±0.4	3.6±0.2
	- Hawk	0.2	1.5±1.0	6.8±1.5	9.2±0.6	0.1	0.9±0.8	3.5±0.4	3.8±0.2
	- Mamba2	0.8	3.7±1.7	6.3±0.8	6.4±0.7	1.1	1.8±0.3	2.4±0.3	2.0±0.4
	- GLA	0.3	4.1±2.1	8.4±1.2	10.3±0.5	0.5	2.3±0.7	3.9±0.5	4.2±0.2
2527	- xLSTM	0.0	2.2±1.3	7.7±1.8	11.0±0.4	0.3	1.8±0.5	3.9±0.3	4.6±0.3
	- DeltaNet	0.0	2.9±1.9	8.7±1.3	11.7±0.8	0.1	1.6±0.8	3.7±0.5	4.1±0.3
	- Gated DeltaNet	0.3	4.0±1.8	8.9±1.4	11.8±0.7	0.5	2.5±0.9	4.7±0.6	6.1±0.4
	- Mesa	0.5	3.3±2.0	9.7±1.3	14.0±0.5	1.1	2.1±1.1	4.7±0.6	6.2±0.4
	- Hawk-Mesa	0.4	2.1±1.5	7.2±1.5	11.4±0.5	0.6	2.0±0.9	4.4±0.4	5.8±0.3
	- SWA-4	0.1	1.1±0.9	1.5±0.7	2.0±0.8	0.2	0.6±0.5	1.4±0.3	1.4±0.3
	- SWA-64	1.3	3.5±1.8	6.3±1.3	7.8±0.6	1.0	2.4±0.7	3.8±0.3	4.0±0.3
	- SWA-1024	0.1	3.4±1.8	7.5±1.3	9.0±0.5	0.1	1.9±0.9	4.3±0.4	4.3±0.2
	- Transformer	0.0	3.0±2.2	6.8±1.7	9.2±0.6	0.1	2.4±0.6	4.2±0.4	4.7±0.2

2528 **Table 17: Few-Shot Performance (Accuracy ± Std.) on GPT-3 Word Scrambling Tasks (Brown et al.,
2529 2020b) of Models Trained on 50B Tokens.** Best 50-shot scores are highlighted, and standard deviation is
2530 reported over 10 random drawn few-shot selections. MesaNet attains the strongest scores in most settings, and
outperforms the transformer baseline significantly.2531
2532
2533
2534
2535
2536
2537

2538
 2539 **Language-to-Language Translation.** We evaluated a model’s capability to translate from three
 2540 different languages to English: (i) French to English (Bojar et al., 2014), (ii) German to English (Bojar
 2541 et al., 2016) and (iii) Romanian to English (Bojar et al., 2016). We follow the exact prompt setup of
 2542 Brown et al. (2020b) evaluate with $\{0,1,5,10\}$ -and 50-shots, and report the performance in Table 18
 2543 with respect to BLEU-sb (Post, 2018) for models trained on 50B tokens.

2544 We observe scores of different performance magnitudes across the three languages, which is most
 2545 likely caused by the multi-lingual distribution of the training data corpus and French being more
 2546 prevalent than German and Romanian. MesaNet attains superior scores among the recurrent models.
 2547 However, MesaNet, and more general all recurrent models, fail to match the transformer performance
 2548 by a relatively big margin, especially at the scale of 1B models. This finding is non-surprising given
 2549 the impact of the attention mechanism on the field of machine translation (Bahdanau et al., 2014),
 2550 indicating that pure model- and data-scaling based on recurrent models will not be enough to match
 2551 the performance of attention-based architecture (Rodchenko et al., 2025).

	WMT14 FR-EN					WMT16 DE-EN					WMT16 RO-EN				
	0	1	5	10	50	0	1	5	10	50	0	1	5	10	50
145M Models:															
- Hawk	0.61	0.31	0.25	0.08	0.11	0.49	0.16	0.20	0.19	0.19	0.44	0.16	0.06	0.19	0.29
- Mamba2	1.68	0.56	0.73	0.73	0.19	2.13	0.40	0.28	0.51	0.37	1.68	0.32	0.44	0.50	0.46
- GLA	1.47	0.21	0.69	0.66	0.63	1.78	0.52	0.35	0.52	0.44	1.52	0.24	0.12	0.50	0.51
- xLSTM	1.64	0.07	0.73	0.87	0.67	2.09	0.63	0.33	0.81	0.77	1.68	0.22	0.34	0.50	0.85
- DeltaNet	1.57	0.20	0.78	0.90	0.59	1.68	0.49	0.32	0.73	0.81	1.56	0.80	0.55	0.58	0.61
- Gated DeltaNet	1.31	0.25	0.28	0.35	0.89	1.64	0.42	0.35	0.68	0.64	0.80	0.67	0.49	0.51	0.35
- Mesa	1.26	0.66	0.33	1.10	1.06	1.53	0.49	0.58	0.46	0.62	1.56	0.32	0.51	0.45	0.52
- Hawk-Mesa	1.62	0.19	0.80	0.77	0.94	2.03	0.51	0.67	0.47	0.79	1.77	0.24	0.54	0.49	0.90
- Transformer	1.55	0.05	0.59	0.70	0.87	1.90	0.39	0.86	0.61	0.71	1.75	0.28	0.30	1.41	0.50
400M Models:															
- Hawk	1.54	2.28	3.95	4.25	4.97	1.34	1.36	3.24	3.87	3.67	0.91	1.29	2.03	1.52	1.89
- Mamba2	2.15	4.05	6.07	4.55	3.49	2.17	1.43	3.13	2.52	1.68	0.86	1.36	1.94	1.64	
- GLA	1.83	3.20	2.74	4.83	4.23	2.15	2.60	1.88	2.04	2.19	1.72	0.62	1.42	1.96	1.30
- xLSTM	2.14	3.08	3.48	3.66	3.28	2.29	2.06	2.68	2.79	2.77	1.63	1.10	1.37	2.20	2.15
- DeltaNet	1.72	3.09	4.43	3.89	3.49	1.84	1.53	3.52	2.83	2.47	1.79	1.67	1.63	1.29	1.45
- Gated DeltaNet	1.87	3.92	3.86	4.16	3.77	2.00	0.85	3.35	3.18	2.94	1.80	1.05	2.56	2.13	2.22
- Mesa	2.23	2.75	4.33	5.05	5.33	2.06	0.80	2.62	3.11	3.70	1.75	0.68	2.09	1.63	2.47
- Hawk-Mesa	1.90	2.83	3.89	4.54	4.27	2.00	2.55	3.66	3.26	3.20	1.74	0.68	1.71	1.71	2.28
- SWA-4	0.34	0.13	0.14	0.13	0.12	0.25	0.19	0.26	0.21	0.26	0.29	0.10	0.06	0.07	0.05
- SWA-64	1.35	3.82	4.46	4.94	4.92	1.45	2.17	1.66	2.09	1.57	1.18	1.10	1.38	0.88	1.29
- SWA-1024	4.09	4.55	8.49	7.77	9.16	3.09	3.66	4.57	5.14	5.11	1.96	0.55	1.82	2.99	2.67
- Transformer	2.61	8.27	8.77	8.92	9.63	2.04	3.13	5.73	5.34	5.49	1.94	1.02	1.29	2.23	2.56
1B Models:															
- Hawk	3.72	5.88	8.56	7.15	4.17	3.33	3.79	3.77	5.20	5.86	2.37	2.69	4.39	4.22	4.17
- Mamba2	4.20	11.81	11.90	11.28	5.83	3.07	3.62	6.79	8.18	3.35	2.04	4.27	6.83	4.75	3.38
- GLA	3.15	10.60	11.87	10.90	10.31	2.58	7.90	9.41	7.77	7.46	2.15	2.59	6.60	4.30	4.95
- xLSTM	4.96	5.11	11.71	10.32	10.56	4.13	5.52	9.17	8.99	8.59	2.60	2.33	4.74	3.81	3.90
- DeltaNet	5.24	8.34	10.79	10.08	7.88	4.02	6.91	8.72	6.01	5.66	2.29	1.01	4.32	3.39	2.58
- Gated DeltaNet	4.71	8.24	10.03	11.25	11.31	4.31	7.59	9.07	8.60	8.76	2.45	4.63	5.67	5.33	5.51
- Mesa	3.58	11.80	12.44	11.57	11.64	3.10	6.98	10.20	8.49	7.81	1.88	5.05	2.96	6.05	5.07
- Hawk-Mesa	3.68	7.99	10.58	13.16	12.01	2.92	8.03	10.50	8.67	8.43	2.36	4.73	4.91	5.81	5.99
- SWA-4	0.54	0.72	0.72	0.72	0.74	0.49	0.75	0.89	0.87	0.72	0.22	0.12	0.14	0.11	0.06
- SWA-64	5.58	6.69	2.92	8.43	7.61	4.09	5.27	4.69	4.05	3.45	2.26	1.68	1.85	3.12	3.05
- SWA-1024	8.75	16.65	18.09	18.70	19.83	5.99	10.85	14.58	14.91	14.30	3.36	4.19	10.14	10.05	8.38
- Transformer	8.30	18.49	17.81	17.70	19.14	6.10	13.06	11.99	13.99	13.85	3.54	5.92	7.11	7.35	7.82

2575
 2576 **Table 18: Performance Scores (in BLEU-sb) on three Translation Tasks on Models Trained on 50B Tokens.**
 2577 Best 50-shot scores among recurrent models are highlighted, as well as Transformer reference scores. While
 2578 MesaNet attains the best-score among the recurrent models in most settings, it under-performs transformer by
 2579 relative big margin.

2580 L.3 NEEDLE IN THE HAYSTACK (NIAH) RESULTS

2581 **Setup.** We conducted a sweep of experiments on single-needle tasks (NIAH) from the RULER
 2582 benchmark (Hsieh et al., 2024) suite for 1B models trained on 50B tokens. We ran experiments for
 2583 both haystack types (noise and essays) for all key/value combinations (both can be in the form of:
 2584 words, numbers or uuids) on context lengths 2048 and 4096.

2585 **Results.** As scores are quite sensitive to the chosen key and values types, we report mean \pm std percent
 2586 accuracy over all 9 key/value combinations, with 1000 evaluation samples for each setting. On the
 2587 “noise” haystack, MesaNet demonstrates strong scores with very low fluctuations across key/value
 2588 combinations. On the “essay” haystack, we observe relatively high score fluctuations across key/value
 2589 combinations for all models which makes it hard to form conclusions. However, we would still like
 2590 to highlight the strong performance of Hawk-Mesa on the essay haystack.

	NIAH Noise		NIAH-Essay	
	L=2048	L=4096	L=2048	L=4096
- Hawk	4.0 \pm 5.9	1.7 \pm 2.9	3.0 \pm 2.2	2.1 \pm 1.6
- Mamba2	79.7 \pm 17.9	0.7 \pm 1.0	51.3 \pm 22.3	0.0 \pm 0.0
- GLA	96.2 \pm 4.2	68.5 \pm 18.9	73.5 \pm 34.7	41.4 \pm 26.9
- xLSTM	94.8 \pm 5.0	80.4 \pm 14.9	69.1 \pm 20.5	24.3 \pm 9.9
- DeltaNet	99.3 \pm 1.0	96.5 \pm 6.3	68.9 \pm 32.3	27.9 \pm 15.3
- Gated-DeltaNet	98.3 \pm 4.1	96.3 \pm 8.1	52.1 \pm 33.7	11.0 \pm 9.4
- MesaNet	99.5 \pm 0.5	95.1 \pm 3.9	66.8 \pm 28.9	17.9 \pm 9.0
- Hawk-Mesa	97.6 \pm 3.5	65.3 \pm 21.6	90.9 \pm 10.5	55.5 \pm 28.5
- SWA-1024	51.8 \pm 0.9	24.3 \pm 1.3	47.5 \pm 11.8	21.6 \pm 7.2
- MHA	99.7 \pm 0.3	0.0 \pm 0.0	98.2 \pm 2.5	0.0 \pm 0.0

Table 19: NIAH Benchmark results for 1B models trained on 50B tokens.

M VARYING THE NUMBER OF CONJUGATE GRADIENT STEPS WHEN TRAINING MESANETS

Here we present the effect when training the MesaNet on less than 30 steps. We opted for training with 30 steps, as we were not optimizing for training flops but first investigate a fully converge Mesa layer, and because of early experiments on our 400million model which indicated little improvement after 30 steps.

As shown in Figure 13, we see a small, interestingly, uniform increase of training loss across the sequence length when comparing to a model which is trained on 30 steps. Only when dropping the number of CG steps below 10, we see a more drastic jump in loss increase. As we have show in section C, the backward pass also relies on running the CG method to solve linear systems of equations and we leave investigating for future work varying the number of steps in the forward and backward pass.

Figure 13: We compare the validation loss across the sequence of 400 million parameter MesaNets trained on 15B tokens, when varying the number of conjugate gradient steps during training. We observe a slight uniform increase of validation loss across the sequence length when comparing to a model which is trained on 30 steps. Only when dropping the CG steps drastically to 5 we see a substantial increase in loss.

N EVALUATION METHODOLOGY

Multiple Choice Tasks: For a given question x , we assess for all possible options y the loss $\text{NLL}(y|x)$ of the option conditional on the question, and then normalize by the number of tokens of y . In contrast to related work (Gu & Dao, 2024; Yang et al., 2024a; Beck et al., 2024), we do not heuristically choose between byte-normalized and non-normalized scoring schemes as we have a fixed tokenizer across all models.

Greedy Matching Tasks. For a given input x and an expected target sequence y (e.g., one or multiple tokens), we check whether t would be matched under greedy sampling. This is done by obtaining the logits for the concatenated input of $x + y$, and checking whether all tokens belonging to y are matched by taking the argmax over the logits.

2646 **In-Context Recall Tasks.** We follow closely the setup of (Arora et al., 2023b). For a given input
2647 x , we sample greedily a completion from the model until either 48 tokens or a new-line character is
2648 sampled. We then check whether the target y is contained in the output (non-case-sensitive).
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

2700 O AN INTERNAL ANALYSIS OF THE MESANET
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Figure 14: input strength β , forget strength γ , regularization strengths Λ as well as other internal statistics of a 400M parameter MesaNet trained on 50B tokens - averaged over 500 sequences from the SlimPajama validation set. We observe that high $\gamma_t \approx 1$ values usually lead to the condition number of the to be inverted matrix $K_t K_t^T + \Lambda$ increase over time, which in turn leads to more CG steps required to obtain an output for the mesa. We also observe (outer right plot) that usually these heads lead to higher cosine similarity (\cos) between o_t , the output of the layer if no CG steps are applied which corresponds to gated linear attention, compared to the Mesa output o_t^* . We compute the number of conjugate gradient steps are computed by measuring the steps of the conjugate gradient method to reach an error of 0.001. We sort the heads for plotting purposes according to their average gamma values.