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Abstract
Adapting pre-trained language models (PLMs)001
for cross-task generalization is a crucial re-002
search area within the field of NLP. While003
fine-tuning and in-context learning are effec-004
tive approaches for adapting LMs to emerg-005
ing tasks, they can be costly and inefficient.006
Recently, some researchers have focused on007
achieving efficient task adaptation via hypernet-008
work, which is a meta network that generates009
task-specific weights based on task-oriented010
information without any optimization. How-011
ever, the training of hypernetworks often lacks012
stability since the optimization signal is not013
straightforward, and the task information is not014
adequately representative. Moreover, previous015
works train hypenetworks with the general cor-016
pus, which is struggling with few-shot adap-017
tation. To address these issues, we introduce018
HyperLoRA, a hypernetwork for LoRA param-019
eters generation involving hypernetwork pre-020
training on instruction-following data and gen-021
eralization fine-tuning on sparse task data. Fur-022
thermore, we utilize a constrained training loss023
and a gradient-based demonstration selection024
strategy to enhance the training stability and025
performance. Experimental results and analy-026
sis across four benchmark datasets (P3, S-NI,027
BBH, and SuperGLUE) demonstrate the pro-028
posed approach has flexible generalization abil-029
ity and superior performance.030

1 Introduction031

Pre-trained language models (PLMs) have shown032

remarkable capabilities across a diverse spectrum033

of NLP tasks, encompassing understanding (Devlin034

et al., 2019; Liu et al., 2019), reasoning (Liu et al.,035

2023; Wang et al., 2023b), and generation (Raffel036

et al., 2020a; Brown et al., 2020). The ability of lan-037

guage models to effectively adapt their knowledge038

to unseen tasks (referred to cross-task generaliza-039

tion) is crucial for the broader applicability of NLP040

systems, which garnered significant attention from041

many researchers.042

There are several approaches towards achieving 043

cross-task generalization. The most straightfor- 044

ward way is fine-tuning LMs with a certain amount 045

of task-specific data, which demands substantial 046

computational costs and may cause catastrophic for- 047

getting, degenerating the performance of LMs on 048

the previous tasks (Chen et al., 2020). In contrast, 049

in-context learning (ICL) provides a few demon- 050

stration examples to generalize LMs to unseen 051

tasks without explicit optimization (Brown et al., 052

2020; Min et al., 2022). However, ICL requires 053

extremely long and expensive-to-process inputs for 054

each test example, making it both costly and ineffi- 055

cient (Zhou et al., 2023; Li et al., 2023). Another 056

line of researchers explores the cheaper and more 057

effective approach that composes the weights of 058

new tasks by selecting and combining fine-tuned 059

or parameter-efficient weights from a pre-existing 060

weights pool (Vu et al., 2022; Ponti et al., 2023; 061

Poth et al., 2023; Huang et al., 2023). While this 062

approach is simple and effective, it necessitates 063

a pre-existing pool of various task weights, and 064

the effectiveness of the composed weights may be 065

restricted by the pool of available tasks. Addition- 066

ally, although the parameter-efficient weights are 067

lightweight, there are still resource consumption is- 068

sues for storage and training while the pre-existing 069

pool is substantial in various task scenarios. 070

To address the above issues in the cross-task 071

generalization scenario, (Ha et al., 2017; Phang 072

et al., 2023; Ivison et al., 2023) proposes a meta 073

network named hypernetwork, which performs a 074

“text-to-weight” task converting task information 075

(e.g. task instructions and task demonstrations) 076

into task-specific parameters (e.g. prefixes (Li 077

and Liang, 2021), adapters (Houlsby et al., 2019), 078

LoRA (Hu et al., 2022)) for underlying pre-trained 079

language models. Compared with fine-tuning and 080

ICL, hypernetwork is a more efficient method that 081

generates task-specific parameters in a single for- 082

ward without any optimization. Furthermore, hy- 083
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pernetwork can generate parameters when required,084

avoiding additional storage expenditures.085

Despite the obvious strength of previous works086

on hypernetwork, several issues remain that have087

not been appropriately solved. Firstly, the training088

instability problem is one of the most challenging089

problems in hypernetwork training (Chang et al.,090

2020). Existing strategies primarily rely on back-091

propagating gradients from the underlying model,092

while lacking effective and specific measures to093

circumvent this instability. Secondly, most cur-094

rent works construct task demonstrations through095

manual crafting or random sampling from datasets,096

potentially affecting parameter generation and re-097

sulting in suboptimal performance. Thirdly, pre-098

vious works typically pre-train hypernetworks on099

general language corpus (e.g. C4 (Raffel et al.,100

2020b)) directly, which may not be adept at han-101

dling diverse task instructions and could perform102

suboptimally on low-resource task data.103

Considering all the above considerations, we in-104

troduce HyperLoRA, a novel method that aims to105

enable language models for efficient cross-task gen-106

eralization. Specifically, HyperLoRA consists of a107

text encoder and a P-generator, designed to convert108

task information into parameter-efficient modules,109

specifically LoRA (Hu et al., 2022). To improve110

training stability, we propose an explicit training111

loss to constraint the training of HyperLoRA and112

utilize a gradient-based automatic demonstration113

selection strategy to select the most representative114

task examples. Furthermore, our HyperLoRA in-115

volves hypernetwork pre-training on instruction-116

following data to enable it to generate task-related117

parameters based on task information and then gen-118

eralization fine-tuning on sparse task data to adapt119

LMs with unseen tasks. In a nutshell, the contribu-120

tions of our work are as follows:121

• We introduce an efficient cross-task general-122

ization method HyperLoRA, which contains a123

text encoder and a P(arameters)-generator to124

convert task information into LoRA modules.125

• To enhance the generalization ability of hyper-126

network, we propose a paradigm that incorpo-127

rates hypernetwork pre-training on multi-task128

instruction-following data and generalization129

fine-tuning with sparse task data.130

• We develop a constrained training loss and an131

automatic demonstration selection strategy to132

improve training stability and performance.133

• The experimental and analysis results across 134

cross-task generalization and few-shot adap- 135

tation scenarios demonstrate the effectiveness 136

of our proposed method. 137

2 Related Work 138

2.1 Efficient Cross-Task Generalization 139

Efficient adaptation of pre-trained LLMs to unseen 140

tasks is an important and challenging research di- 141

rection. One primary area of research focuses on 142

prompt tuning. In this line, the T5 model (Raf- 143

fel et al., 2020a) unified all NLP tasks as a Text- 144

to-Text problem, providing a solid foundation for 145

follow-up works. Afterwards, instruction tuning 146

that fine-tuning LMs with various multi-task in- 147

structions is proposed (Wei et al., 2022; Sanh et al., 148

2022; Ouyang et al., 2022), which improves zero- 149

shot and few-shot generalizations greatly since the 150

fine-tuned model learned to utilize instructions to 151

perform novel tasks. In-context learning further em- 152

ploys task examples as demonstrations in addition 153

to instructions, adapting models without optimiza- 154

tion. Nevertheless, this increases computation costs 155

due to longer inputs from demonstrations and in- 156

structions, and the performance depends largely 157

on the inherent ability of LLMs. Another effi- 158

cient stream of research focuses on task-specific 159

weight composition with parameter-efficient fine- 160

tuning (PEFT). Among this, Vu et al. (2022); Su 161

et al. (2022) explore transferring PEFT modules 162

from source tasks and find it benefits novel down- 163

stream tasks. Chronopoulou et al. (2023); Poth 164

et al. (2023); Pfeiffer et al. (2020); Chen et al. 165

(2023); Huang et al. (2023) compose the weights 166

for new tasks by selecting relevant tasks and com- 167

bining their task-specific weights. While this ap- 168

proach is efficient, it necessitates a pre-existing 169

pool of task-specific weights based on task infor- 170

mation, and the task pool may limit the expressive- 171

ness of the composed weights. Meanwhile, Ma- 172

habadi et al. (2021b); He et al. (2022); Wang et al. 173

(2023c); Phang et al. (2023) introduce employing 174

a meta network named hypernetwork to generate 175

task-specific weights and achieve superior cross- 176

task performance. Our work also aligns with this 177

direction and aims to enhance the generalization 178

capability and training stability of hypernetworks. 179

2.2 Hypernetwork 180

Hypernetworks are meta neural networks that gen- 181

erate parameters for another primary network, 182
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which gains popularity in multi-task learning sce-183

narios. Mahabadi et al. (2021a) leverages hypernet-184

work with shared weights across adapters for LMs185

adapting. Mahabadi et al. (2021b) and He et al.186

(2022) further propose task-conditioned hypernet-187

works and enable information sharing across tasks.188

Moreover, Ivison et al. (2023); Phang et al. (2023);189

Liang et al. (2023) utilize LMs to initialize hyper-190

networks and propose hypernetworks pre-training191

on large-scale general corpus data. However, the192

above hypernet-based methods have limitations and193

struggle in few-shot adaptation scenarios. Differ-194

ent from those approaches, our work stands out195

from those approaches in several ways. We train196

hypernetwork with instruction-following data to197

improve its robustness for diverse task instructions.198

Furthermore, we introduce a constrained training199

objective to enhance training stability and develop200

an automatic demonstration selection strategy to201

further improve its performance.202

3 Methodology203

3.1 Revisiting the Low-Rank Adapter (LoRA)204

Finetuning Method205

Hu et al. (2022) demonstrates that weight updates206

in the pre-trained models (PTMs) exhibit a low207

“intrinsic dimension” while adapting PTMs to spe-208

cific tasks, and further proposes the Low-Rank209

Adapter (LoRA) finetuning method. Through up-210

dating a small set of trainable adapters and fixing211

full model parameters, the LoRA method substan-212

tially reduces memory requirements and achieves213

comparable results with full-parameter finetun-214

ing. Specifically, given a pre-trained weight ma-215

trix W0 ∈ Rd×k, LoRA constrains its update216

by representing it with a low-rank decomposition217

W0 + ∆W = W0 + BA, where B ∈ Rd×r, A ∈218

Rr×d, and the rank r ≪ min(d, k). W0 is frozen219

during training, while A and B contain trainable220

parameters. Considering the input as x and the221

operation h = W0x, the forward pass will be mod-222

ified with LoRA:223

h = W0x+∆Wx = W0x+ABx (1)224

In general, ∆W is scaled by α
r , where α is a con-225

stant in r.226

3.2 HyperLoRA227

As illustrated in Figure 1, our HyperLoRA is a hy-228

pernetwork to convert task instructions to LoRA229

modules, which consists of three essential elements:230

a text encoder to transform task information into 231

continuous representations, P-generator facilitates 232

interaction between the encoded instructions and 233

a collection of trainable embeddings, serving the 234

role of synthesizing LoRA parameters. 235

Text Encoder To encode the task information 236

effectively, we initialize the text encoder with an 237

encoder of a pre-trained language model. Given 238

the task information x = [xi;xe] as inputs, where 239

xi is task instruction and xe refers to task demon- 240

strations. We encode x as follows: 241

He = Enc(x) (2) 242

where He ∈ Rn×d is the encoded task features, n 243

is the length of x and d is hidden dimension. 244

P(arameters)-generator The P-generator as- 245

sumes a pivotal role in bridging text representa- 246

tion space and parameter space. It extracts a fixed 247

number of the output features from the text en- 248

coder to generate parameters. As shown in Fig- 249

ure 1 (a), the P-generator consists of two submod- 250

ules: (1) a transformer decoder that extracts the 251

task features. (2) a generator module to generate 252

task parameters for the underlying model. For the 253

inputs of the decoder, we create a set number of 254

learnable task query embeddings, which denotes to 255

E = (e1, ..., el) ∈ Rl×d, where l is the number of 256

layers of the underlying model. The task queries 257

interact with each other through self-attention lay- 258

ers and interact with the task features He through 259

cross-attention layers: 260

Hd = Dec(He;E) (3) 261

where Hd ∈ Rl×d is the output feature of the 262

transformer decoder, prepared to generate parame- 263

ters. The generator module of the P-generator aims 264

to conditionally generate LoRA parameters of un- 265

derlying models based on the output features He 266

through some two-layer MLP modules. We employ 267

separate networks for distinct LoRA weights while 268

sharing between the layers. Given the query weight 269

Wq in the attention module as an example, we gen- 270

erate the low-rank parameters A and B via MLPq,A 271

and MLPq,B for Wq of all layers, respectively: 272

ϕ
(i)
q,A = MLPq,A(h

(i)
d ) ∀i ∈ {1, ..., l} (4) 273

ϕ
(i)
q,B = MLPq,B(h

(i)
d ) ∀i ∈ {1, ..., l} (5) 274

where h
(i)
d ∈ R(1×d) is the i-th vector of Hd, and 275

ϕ
(i)
q,A is the parameter of A that is utilized to adapt 276

the query weight Wq of the i-th attention layer. 277
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Figure 1: Overview of the proposed methods. (a) The architecture of HyperLoRA. (b) The truth-guided pre-training
stage. (c) The continuous fine-tuning stage to generalize our HyperLoRA into few-shot scenario.

3.3 HyperNet Pretraining278

Previous hypernet-based methods pre-train hyper-279

networks with general corpus, which potentially280

limits its generalization capacity to novel tasks. To281

relieve this, we design a pre-training stage with282

multi-task instruction data to equip HyperLoRA283

with the ability to convert various task information284

to LoRA modules. As shown in Figure 1 (b), we de-285

note parameterized HyperLoRA by θ as H(·; θ). At286

each training iteration, HyperLoRA receives task in-287

struction and k-shot task demonstrations of the task288

τ as input xτ and generate the LoRA parameters:289

ϕτ = H(xτ ; θ) (6)290

The underlying model M(·; ξ) takes in the query291

q of the task τ and generates the response with292

the generated LoRA parameters ϕ fusion. Then293

HyperLoRA is optimized based on the underlying294

model’s predictions:295

min
θ

Eτ∈T ,(q,a)∈Dτ
L(M(q; ξ, ϕτ ), a) (7)296

where a is the golden response of the query q, T297

is a collection of pre-training tasks. Note that only298

HyperLoRA is trained and the underlying model is299

frozen during the pre-training stage. As a conse-300

quence, the generated parameters ϕ can be com-301

puted once for a specific task information, subse-302

quently reused for downstream predictions during303

inference or further tuning scenarios, which saves304

memory and computation. To train HyperLoRA ro-305

bustly and effectively, we introduce the method of306

gradient-based demonstration selection and em-307

ploy a truth-guided training objective.308

Gradient-based Demonstration Selection309

Method The task instruction and task demon-310

strations are essential for hypernetworks to cap-311

ture the task features and generate task-specific312

parameters. However, prior studies (Ivison et al., 313

2023; Mahabadi et al., 2021b; Phang et al., 2023) 314

construct the task demonstrations through man- 315

ual crafting or random sampling from datasets, 316

potentially affecting parameter generation and re- 317

sulting in suboptimal performance. We introduce 318

an automatic demonstration selection method via 319

gradient-based influence estimation. Firstly, we 320

pre-filter demonstrations via embedding and clus- 321

tering. Specifically, we convert each instance of 322

the task τ ∈ T into vector representations using 323

Sentence-BERT (Reimers and Gurevych, 2019), 324

and then we cluster the contextualized vectors uti- 325

lizing the k-means clustering algorithm to produce 326

k clusters. The instances closest to the center of 327

the cluster are sampled as the filtered task demon- 328

strations. Secondly, we follow Xia et al. (2024) 329

and warmup training the hypernetwork using the 330

preliminarily selected demonstrations. Finally, we 331

compute the gradient-based influence score of each 332

demonstration based on the trained hypernetwork 333

as follows: 334

Inf(dτ , tτ ) ≜
N∑
i=1

η̄i
⟨L(dτ ; θi),L(tτ , θi)⟩
∥L(dτ ; θi)∥∥L(tτ , θi)∥

(8) 335

where dτ and tτ refers to the demonstration and 336

test example of the task τ , respectively, ηi is the 337

learning rate during the i-th epoch and L is the loss 338

function. The influence score calculated above 339

reflects the importance of the demonstration to 340

the test examples, thus we select the demonstra- 341

tions with higher scores as the final representative 342

demonstrations. 343

Truth-Guided Training Objective The most 344

challenging in hypernetwork training is its insta- 345

bility, which can be attributed to multiple aspects: 346

(1) Weight initialization. The choice of how the 347
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weights are initialized significantly impacts the348

convergence and stability of hypernetwork train-349

ing. (2) Disparities Between Input and Output.350

There are substantial distinctions between the rep-351

resentation space of the input text and the output352

parameters, which can harm the stability of hyper-353

network training. (3) Indirect Objective in an End-354

to-End Differentiable Manner. During the train-355

ing stage, the optimization of the hypernetwork re-356

lies on back-propagated gradients from underlying357

models. However, the constraint objective is tai-358

lored for underlying models rather than the hyper-359

network. To resolve the above issues, we conduct360

experiments with various hypernet initialization361

configurations (including scale, type, and initialize362

ways), and discover that reusing the weights from363

the underlying model yields the most favorable re-364

sults, in terms of performance and training conver-365

gence, which is consistent with (Ivison et al., 2023).366

Significantly, we propose a truth-guided training367

objective to incorporate more direct weight-space368

constraint loss for hypernetworks. In this approach,369

we pre-optimize a set of LoRA parameters ϕ̂τ with370

the underlying model for task τ , and then utilize371

ϕ̂τ to constrain the generation process:372

L(M(q; ξ, ϕτ ), a) =373 ∑
(q,a)∈Dτ

log(p(a; q, ξ))

︸ ︷︷ ︸
language modeling loss

+ β||ϕ̂τ − ϕτ ||︸ ︷︷ ︸
weight-space loss

374

where β is hyperparameters that control for the375

relative weight of the constrained loss.376

4 Experiments377

4.1 Experimental Settings378

Dataset We conduct experiments in cross-task379

generalization and few-shot adaptation settings.380

For the former, we do evaluations on the Pub-381

lic Pool of Prompts (P3) (Bach et al., 2022) and382

the instruction-based dataset Super-Natural In-383

structions (S-NI) (Wang et al., 2022). For the384

latter, we evaluate the multi-task benchmarks Su-385

perGLUE (Wang et al., 2019a) and the diverse386

and challenging benchmark BIG-Bench Hard387

(BBH) (Suzgun et al., 2023). In addition, we uti-388

lize a subset of FLAN (Wei et al., 2022) follow-389

ing (Huang et al., 2023) in the pre-training stage to390

enable HyperLoRA to generate task-specific param-391

eters. More details about the datasets can be seen392

in the Appendix B.393

Baselines To evaluate the effectiveness of the 394

proposed method, we compare it with several base- 395

lines, including: (1) Full Fine-tuning methods. 396

We multi-task fine-tune the pre-trained language 397

models T5 (Raffel et al., 2020a) on the provided 398

training set and evaluate it on the held-out test 399

set. (2) Parameter-Efficient Fine-Tuning (PEFT) 400

methods. We primary focus centers on LoRA (Hu 401

et al., 2022) and a weight composition method Lo- 402

raHub (Huang et al., 2023). (3) Hypernetwork- 403

based methods. This methods including HyperTun- 404

ing (Phang et al., 2023), HINT (Ivison et al., 2023), 405

and HART (Liang et al., 2023). (4) Our methods. 406

HyperLoRA indicates we pre-train the hypernet on 407

instruction data and further tune the hypernet on 408

downstream tasks, while HyperLoRA† represents 409

we continuously fine-tune the efficient parameters 410

generated by the instruction pre-trained hyerpnet. 411

Experimental Details To conduct fair com- 412

parisons with various baselines, we utilize Flan- 413

T5 (Chung et al., 2022) as underlying models in 414

the BBH dataset and LM-adapted T5 (Lester et al., 415

2021) in other datasets. We initialize HyperLoRA 416

with the parameters of the corresponding underly- 417

ing model to achieve stable training and better per- 418

formance. More details can be seen in Appendix C. 419

4.2 Cross-Task Generalization 420

We conduct cross-task generalization experiments 421

mainly on the Public Pool of Prompts (P3) and 422

Super-Natural Instructions (S-NI) datasets. In 423

this scenario, we first pre-train HyperLoRA on the 424

instruction-following data FLAN (Wei et al., 2022) 425

with the truth-guided pre-training strategy, and then 426

multi-task fine-tune it on the training sets of P3 427

and S-NI, similar to previous studies (Phang et al., 428

2023; Ivison et al., 2023; Liang et al., 2023). 429

Multi-learning on P3 benchmark. The eval- 430

uation is performed on a fixed set of P3 held-out 431

tasks based on the multiple-choice scoring with ac- 432

curacy, and the evaluation results are presented at 433

Table 1. HyperLoRA achieves the best performance 434

with a 1.5% Avg. score improvement than the 435

previous SOTA hypernetwork-based method Hy- 436

perTuning+. Notably, HyperTuning+ jointly trains 437

both the hypernet and the underlying T5 model, 438

which increases the storage and compute cost and 439

may cause catastrophic forgetting. In contrast, our 440

HyperLoRA adopts a more efficient way that freezes 441

the underlying model and only trains the hypernet, 442

obtaining superior results compared to all hypernet- 443

based methods and the full fine-tuning methods 444
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Method ANLI HSwag CB COPA RTE WiC WSC WGD Avg.↑

Full Fine-tuning Methods
T5 33.4 28.0 63.0 77.9 71.1 50.8 61.0 53.4 54.8
T5 (ICL) 35.3 27.5 68.6 70.5 75.2 51.7 62.1 52.2 55.4

Parameter-Efficient Fine-tuning Methods
LoRA 31.8 26.3 48.6 61.4 71.3 51.5 63.0 51.1 50.6
LoraHub 33.9 26.7 56.4 59.4 53.4 51.3 59.8 50.7 49.0

Hypernetwork-based Methods
HyperTuning 33.6 33.0 49.5 74.2 67.4 52.0 64.0 52.9 53.3
HyperTuning+ 33.9 30.7 62.1 75.8 72.3 50.8 64.6 54.5 55.6
HART 33.6 28.4 70.2 70.1 72.2 50.3 62.3 53.0 55.0
HyperLoRA 34.8 28.3 71.6 82.1 70.2 52.8 65.5 53.3 57.3

Table 1: Performance on the P3 held-out validation set. We use T5-Large as the underlying model for all methods
and report the average multiple-choice accuracy. T5 is multi-task fine-tuned without few-shot inputs while T5 (ICL)
utilizes in-context learning that concatenates few-shot inputs and target examples. Bold and underline fonts indicate
the best results and the second results in each block, respectively.

Method Avg. ROUGE-L

Large XL

Full Fine-Tuning Methods
T5 40.6 46.6
T5 (ICL) 47.6 54.0

Parameter-Efficient Fine-Tuning Methods
LoRA 42.9 42.9
LoraHub 13.4 -

Hypernetwork-based Methods
HyperTuning 42.0 45.0
HINT - 53.2
HART 46.8 50.4
HyperLoRA 47.3 52.8

Table 2: Evaluation results on the Super-Natural In-
structions (S-NI) held-out test set. Compared with T5,
Tk-Instruct incorporates expert-written explanations for
the positive demonstrations.

T5 and T5 (ICL). Additionally, our method pro-445

duces robust parameter-efficient modules for un-446

seen tasks, outperforming the PEFT methods sig-447

nificantly.448

Generalization results on Super-Natural In-449

structions. We use Def+2Pos (task definition and450

two fixed positive examples) as input for all base-451

lines except T5 which only receives the Def (task452

definition). More details about the input format can453

be seen in Appendix C. Table 2 shows the evalua-454

tion results of the T5-Large (∼770M) and T5-XL455

(∼3B) main models on the S-NI held-out test set.456

HyperLoRA obtains superior results than hypernet-457

Method Needed Avg. Avg. EMTraining Tokens

Random No 111.6 25.7
Full Fine-Tuning Methods
FLAN-T5 No 111.6 27.0
FLAN-T5 (ICL) No 597.8 37.5
Llama2-7B (ICL) No 597.8 41.2

Parameter-Efficient Fine-Tuning Methods
LoRA Yes 111.6 37.7
LoraHub Yes 111.6 34.7

Hypernetwork-based Methods
HyperLoRA No 111.6 35.8
HyperLoRA† Yes 111.6 43.0
HyperLoRA (Llama2) No 111.6 41.4

Table 3: Experimental results on the BBH benchmark.
All methods employ FLAN-T5-Large as the base lan-
guage model. HyperLoRA† denotes generalization fine-
tuning the generated parameters on the few-shot data.
We follow the same settings as Huang et al. (2023) that
leverages 5-shot examples per task for all few-shot meth-
ods and reports average exact match (EM) metric.

based methods and compared with full fine-tuning 458

methods (HINT can be regarded as a full-parameter 459

fine-tuning method since it jointly trains the hyper- 460

net and the underlying model). Due to the limited 461

overlap between the training set and test set in the 462

S-NI dataset, there is a constraint on the pool of 463

available tasks. Consequently, the weight composi- 464

tion methods LoraHub yield unsatisfactory results. 465

4.3 Few-shot Adaptation 466

Since the available data is limited in the few-shot 467

adaptation scenario, we directly utilize the model 468
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Figure 2: 4-shot learning results on the subset of Su-
perGLUE (BoolQ, CB, and SciTail). We report the
normalized results including the average results. Our
HyperLoRA obtains the best performance across all
datasets.

pre-trained on instruction-following examples to469

generate task-specific parameters based on few-470

shot data without any optimization. Particularly,471

we also conduct continuous fine-tuning to tune the472

generated efficient parameters, and the result is473

denoted as HyperLoRA†.474

Few-shot Adaptation on BBH. As shown in475

Table 3, our HyperLoRA demonstrates superior per-476

formance over the LoraHub method even without477

any training. Notably, while LoraHub employs478

a reduced number of tokens per example during479

inference compared to in-context learning, it re-480

quires the composition of multiple LoRA modules481

based on a gradient-free method optimization. In482

contrast, our HyperLoRA efficiently generates the483

LoRA parameters without any optimization or ad-484

ditional information. Although the performance of485

HyperLoRA does not surpass the in-context learn-486

ing method, the resource consumption is signif-487

icantly smaller than it (111.6 vs. 597.8 average488

consumed tokens per example). Moreover, after489

a slight fine-tuning process, HyperLoRA† outper-490

forms FLAN-T5 (ICL) and LoRA tuning method491

(LoRA) significantly, which underscores the poten-492

tial of our method. We present the full results of493

each task in BBH at Table 10 in Appendix E.3.494

Few-shot Learning on SuperGLUE. Since pre-495

vious hypernetwork-based methods are hard to ad-496

dress few-shot issues, we compare our methods497

with a multitask prompt tuning method MPT (Wang498

et al., 2023c) and a lightweight hypernet-based499

method HyperFormer (Mahabadi et al., 2021b).500

As shown in Figure 2, our method HyperLoRA501

exhibits superior performance and surpasses all502

compared methods. It is worth noting that our503

HyperLoRA is an efficient method that neither intro-504

duces an increase in consumed tokens (ICL brings 505

doubled token consumption) nor undergoes any 506

additional training (in contrast to other methods 507

that are fine-tuned on few-shot examples). These 508

findings demonstrate that our HyperLoRA is inher- 509

ently suitable for few-shot adaptation since it effec- 510

tively leverages the provided few-shot examples as 511

task information to generate task-specific parame- 512

ters. Moreover, when compared to the in-context 513

learning method, HyperLoRA significantly reduces 514

tokens consumption, and eliminates the need for 515

fine-tuning in contrast to other fine-tuned methods. 516

4.4 Analysis 517

Ablation Study. To comprehensively understand 518

and validate the effectiveness of our HyperLoRA, 519

we conduct studies including the pre-training stage 520

(w/o pre-train) and automatic demonstration selec- 521

tion strategy (w/o AutoDemo) ablations, as well as 522

model configurations exploration. Based on the 523

results in Figure 3 (a), we can condense the fol- 524

lowing conclusions: (1) The pre-training stage is 525

instrumental in enabling task-specific parameter 526

generation ability. Without the pre-training stage, 527

the performance decreases significantly, especially 528

on SuperGLUE. (2) The automatic demonstration 529

selection strategy can improve the performance 530

consistently. (3) While HyperLoRA is initialized 531

with the BART model (Lewis et al., 2020) or ran- 532

dom initialize, a decline appeared, which indicates 533

that it is more effective to initialize the hypernets 534

with the underlying model. The full numerical re- 535

sults can be seen in Appedix E.1 536

Scaling trends of model and pre-training 537

tasks. We explore the performance of our model 538

on the BBH benchmark spanning different scales 539

of hypernet and varying numbers of pre-training 540

tasks. The experimental results are outlined in Fig- 541

ure 3 (b). Our investigation spans our HyperLoRA 542

ranging from T5-Base to T5-XL, consistently utiliz- 543

ing T5-Large as the underlying model. The results 544

elucidate a positive correlation between the scale 545

of hypernet and its overall performance. In ad- 546

dition, we observe that increasing the number of 547

pre-training tasks generally improves performance, 548

a trend more conspicuous than the improvement 549

brought by scaling model size. This underscores 550

the significance of pre-train hypernets with more 551

diverse data. 552

Effect of the relative loss weight λ. Training 553

instability is one major challenge for training hyper- 554

networks. To alleviate this, we introduce the truth- 555
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-140 -70 0 70 140

-140

-70

0

70

140

Word AnalogyQuestion Rewriting

Q: Who are hathor’s kids?
A: Who were hathors kid?

Title Generation
Q: I purchased this drive…
A: Nice Plug N Play Drive.

Textual Entailment
Hyp: It is wrong to ignore family.
Update: They are toxic.
A: weakener

Q: listen : hear. drop : ?
A: fall

Figure 4: t-SNE visualizations of the generated
parameter-efficient modules of 119 S-NI test tasks. Dif-
ferent colors and shapes indicate different tasks.

guided training objective in Section 3.3, which in-556

corporates a weight-space loss controlled by the557

weight λ. To verify its effectiveness, we conduct ex-558

periments with varying values of the relative weight559

λ, ranging from 0.0 to 1.2, and observe the impact560

on training loss during the pre-training stage. As561

shown in Figure 3 (c), the model struggles to fit562

the training data without the weight-space loss con-563

straint (λ = 0.0). Fortunately, after introducing564

the weight-space loss (λ = 0.2 and λ = 0.8), the565

training of the model becomes stable and efficient.566

However, when the weight λ is excessively large567

(λ = 1.2), the model experiences loss spikes, lead-568

ing to training failures. One possible explanation569

is that imposing excessive constraints on the rep-570

resentation space of the generated parameters may571

steer the optimization in incorrect directions.572

Visualization Analysis. To understand the effec-573

tiveness of our HyperLoRA, we visualize the gen-574

erated LoRA parameters of 119 S-NI held-out test575

tasks. To be specific, we first obtain the pooled576

generated parameter weights for each task and then577

normalize the weights with L2-Norm. Afterward,578

we use t-SNE (Van der Maaten and Hinton, 2008) 579

to map the weights into two-dimensional space, as 580

shown in Figure 4. The visualization results reveal 581

that our HyperLoRA can generate meaningful pa- 582

rameters that similar tasks are closed and distinct 583

tasks are separate. We also demarcate some obvi- 584

ous task clusters and visualize some example cases. 585

However, the boundaries of some tasks are not very 586

clear such as “summarization” and “keyword tag- 587

ging”, resulting in outliers in the figure. 588

Generalize to Large Language Models. To 589

explore the generalization and robustness of our 590

approach, we utilize LLaMA2-7B (Touvron et al., 591

2023) as the underlying model, leaving the rest 592

unchanged. We evaluate the BBH benchmark and 593

the results can be seen in Table 3. The surprising 594

results indicate that our method utilized Llama ob- 595

tains better performance than ICL with lower token 596

costs, which demonstrates the powerful generaliza- 597

tion ability of HyperLoRA for different architec- 598

tures and sizes of the underlying models 599

5 Conclusion 600

In this paper, we propose HyperLoRA, a hypernet- 601

work that generates efficient parameters for cross- 602

task generalization. Compared with in-context 603

learning and PEFT, our method is more efficient 604

which decreases the training and storage costs. Fur- 605

thermore, we propose a paradigm involving multi- 606

task instruction pre-training and generalization fine- 607

tuning for hypernetworks. Through comprehen- 608

sive experiments and analysis on four benchmark 609

datasets, we have shown HyperLoRA achieves bet- 610

ter results than a series of multi-task learning and 611

hypernetwork-based methods. In future, we plan to 612

extend the proposed approach to cross-lingual and 613

cross-modal generalization scenarios and explore 614

the underlying models with larger scales. 615
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Limitations616

The research presented in this paper focuses on617

cross-task generalization in the field of Machine618

Learning. This work proposes a new paradigm619

involving pre-train hypernetworks on multi-task620

instruction-following data and generalization fine-621

tuning on sparse task data, which enhances the622

few-shot adaptation performance. However, there623

are still some limitations to our work. In terms624

of future societal consequences, this work could625

contribute to low-resource adaptation and cross-626

task generalization.627
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A Example Appendix1034

B Dataset Details1035

B.1 Dataset in Pre-training Stage1036

FLAN (Wei et al., 2022) is an instruction-following1037

dataset that incorporates nearly 200 distinct tasks1038

to instruct FLAN-T5 (Chung et al., 2022). We1039

filter the tasks that may conflict with the evalua-1040

tion datasets and select some representative tasks,1041

resulting in 83 tasks that denote as FLAN* to pre-1042

train our HyperLoRA. Moreover, following (Huang1043

et al., 2023), we control the maximum number of1044

instances per task to be 10,000. The details about1045

the total number of FLAN* are shown in Table 4.1046

B.2 Evaluation Datasets1047

There are four datasets in our evaluation experi-1048

ments: Public Pool of Prompts (P3), Super-Natural1049

Instructions (S-NI), BIG-Bench Hard (BBH), and1050

SuperLGUE. The statistics details of the above1051

datasets are presented in Table 4 and we introduce1052

the details as follows.1053

Public Pool of Prompts (P3) (Bach et al., 2022)1054

is a collection of prompted English datasets con-1055

taining 62 NLP tasks. The instances of each task1056

are formatted in manually-written prompt tem-1057

plates which are collected using PromptSource1.1058

Since there are no demonstrations in P3, previous1059

hypernetwork-based methods HyperTuning (Phang1060

et al., 2023), HINT (Ivison et al., 2023), and1061

HART (Liang et al., 2023) random sample prompts1062

from the training set and concatenate them to form1063

the hypernetwork input. In contrast, we select 51064

prompts for each training task automatically via1065

the methods described in Section 3.3. Moreover,1066

we follow HyperTuning and remove a number of1067

task formulations with longer inputs. We exclude1068

StoryCloze from evaluation as the task is not dis-1069

tributed with training data.1070

Super-Natural Instructions (S-NI) (Wang1071

et al., 2022) consists of 1,616 tasks spanning 761072

diverse categories, including translation, question1073

answering, sentiment analysis, etc. We use v2.6 of1074

S-NI and employ the task definition and two few-1075

shot task examples (denoted as “Def + 2Pos”) as the1076

input of HyperLoRA which is aligned with (Phang1077

et al., 2023; Ivison et al., 2023; Liang et al., 2023).1078

Following (Phang et al., 2023), we select the En-1079

glish tasks for training and evaluation. Specifically,1080

1https://github.com/bigscience-workshop/
promptsource

we limit the maximum number of training sam- 1081

ples per task to 64 and use the first 100 samples 1082

in its test set for evaluation following (Wang et al., 1083

2022). 1084

BIG-Bench Hard (BBH) (Suzgun et al., 2023) 1085

is a subset of the BIG-Bench and focuses on a 1086

suite of 23 challenging tasks that require multi-step 1087

reasoning. We follow (Huang et al., 2023) that 1088

leverage different 5-shot examples per task as the 1089

demonstrations of hypernetwork and employ the 1090

exact match (EM) as the evaluation metric. 1091

SuperGLUE (Wang et al., 2019a) is a collection 1092

of text classification tasks to test the general lan- 1093

guage understanding ability. In particular, we con- 1094

sider the natural language inference (NLI) datasets 1095

SciTail and CB, and the question answering (QA) 1096

dataset BoolQ from SuperGLUE. 1097

C Implementation Details 1098

C.1 HyperLoRA Architecture. 1099

As described in Section 3.2, our HyperLoRA con- 1100

sists of a text encoder and P-generator. The P- 1101

generator contains a transformer decoder and a 1102

parameter generator. The overall architecture of 1103

HyperLoRA is an encoder-decoder and initialized 1104

with the underlying model T5 or BART. To enhance 1105

stability in the early stages of training, we initialize 1106

the parameter generator using a normal distribution 1107

with a mean of 0 and a standard deviation of 1e-7. 1108

C.2 Experimental Details 1109

We report the hyper-parameters in the pre-training 1110

and fine-tuning stage at Table 5. We conduct all ex- 1111

periments in the same environment (8× 80G A800 1112

GPUs) with Transformers (Wolf et al., 2020) and 1113

ZeRO (Rajbhandari et al., 2020). During the pre- 1114

training stage, we freeze the underlying model as 1115

well as the encoder of HyperLoRA and only tune 1116

the P-generator. We use Adam as the optimizer 1117

with a learning rate of 5e − 5 and a global batch 1118

size of 128. We set the maximum input sequence 1119

length of HyperLoRA and the underlying model as 1120

2,048 and 768, respectively. During the general- 1121

ization fine-tuning stage, we utilize the grid search 1122

method to find the best learning rate from 1e-4 1123

to 5e-4 and opt for the largest feasible batch size 1124

to maximize resource utilization. For all exper- 1125

iments, we set the rank r = 16, α = 0.8, and 1126

the loss weight β = 0.2. Due to the multitude of 1127

training tasks in the cross-task generalization study, 1128

we apply the same strategy as pre-training which 1129
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Dataset # Train # Test # Train (Task) # Test (Task) Metric

FLAN* 307,771 - 83 - -
P3 17,519,237 15,684 221 8 Multiple-Choice Accuracy
Super-Natural Instructions 48,387 11,810 757 119 ROUGEL
BBH - 27 - 3,811 Exact Match
SuperGLUE - 3 - 4,630 Multiple

Table 4: Details about the number of instances and tasks of the pre-train and evaluation datasets.

Hyper-parameters Pre-training P3 S-NI

global batch size 128 128 96
training steps 38,000 130,000 32,256
learning rate 5e-5 5e-5 5e-5

learning scheduler cosine cosine cosine
sequence length 768 384 2048

hypernet sequence length 2048 1024 2048
output sequence length 512 128 512

LoRA rank 16 16 16
LoRA alpha 8 8 8

Table 5: Hyper-parameter settings in pre-training and
fine-tuning stages.

only tunes the P-generator, the resulting model1130

is denoted as HyperLoRA. In the few-shot adap-1131

tation scenario, we utilize the few-shot examples as1132

the input demonstrations of HyperLoRA to generate1133

parameter-efficient modules without any weights1134

updating. In addition, we can also conduct fast1135

task generalization fine-tuning which only tunes1136

the generated parameters to further improve the1137

performance and result in HyperLoRA†.1138

C.3 Examples of Inputs1139

Few-shot Inputs without Task Description
<x> Inputs 1
Target 1 <y>

<x> Inputs 2
Target 2 <y>

1140

Few-shot Inputs with Task Description
<x> Task Description

<x> Inputs 1
Target 1 <y>

<x> Inputs 2
Target 2 <y>

1141

D Additional Analysis of HyperLoRA 1142

D.1 Comparison of the Hypernetwork-based 1143

methods 1144

Table 6 summarizes the differences between our 1145

HyperLoRA and three hypernet-based methods Hy- 1146

perTuning, HINT, and HART. Compared with these 1147

methods, we pre-train the hypernetwork with in- 1148

struction data instead of the general corpus, which 1149

endows it with the few-shot adaptation ability. 1150

While weight-freezing prevents catastrophic for- 1151

getting and saves the storage cost, we freeze the 1152

text encoder and the underlying model during the 1153

pre-train and fine-tune stages. Additionally, we de- 1154

sign an automatic demonstration selection strategy 1155

and a weight-space constraint objective to enhance 1156

the effectiveness and training stability. 1157

D.2 Analysis of the Computation Costs. 1158

The large computation amount of our HyperLoRA 1159

mainly occurs during the pre-training stage, but it 1160

remains more efficient than full fine-tuning meth- 1161

ods because only part of hypernetwork (decoder 1162

and parameter generator) is optimized. During 1163

the inference stage, both the compute cost and 1164

memory cost of hypernetwork is less than full fine- 1165

tuning methods, as the instruction is no longer pro- 1166

cessed with every sample for hypernetwork . To 1167

provide a quantitative comparison, as illustrated 1168

in HINT (Ivison et al., 2023), the full fine-tuning 1169

method requires roughly Nn(i + t + o) FLOPs, 1170

while the hypernetwork-based method uses roughly 1171

tN + nN(i + o) FLOPs, where t is the task in- 1172

struction length, o is the output length, n is the 1173

number of same-task samples and N is the number 1174

of model parameters. These formulations highlight 1175

the compute cost of hypernetwork is ∝ t + n as 1176

opposed to ∝ tn. 1177

E Additional Experimental Results 1178

E.1 Detailed Ablation Results 1179

During the ablation study, we run with five different 1180

seeds (6, 42, 99, 1234, 2023, 6617) and report the 1181
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Method Hypernet
Architecture

Freeze
Underlying

Instruction-
Training

Demonstration
Selection

Stability
Training

Few-shot
Adapatation

HyperTuning Encoder-Decoder Yes No Manual& Random No No
HyperTuning+ Encoder-Decoder No No Manual& Random No No
HINT Encoder-Decoder No No Manual& Random No No
HART Encoder-Decoder Yes No Manual& Random No No
HyperLoRA Encoder-Decoder Yes Yes Automatic Yes Yes

Table 6: Comparison of the Hypernetwork-based methods.

BBH SuperGLUE

HyperLoRA 35.8(0.2) 78.5(0.6)

w/o AutoDemo 34.2(0.2) 76.8(0.6)

w/o Pre-train 27.2(0.8) 5.2(2.3)

BART Init. 29.0(0.2) 73.4(0.77)

Random Init. 33.3(0.2) 73.8(0.9)

Table 7: The numerical results of ablation study. For
each item, we run with five random seeds (6, 42, 99,
1234, 2023, 6617) and report the mean (and standard
deviation) results.

average results in Table 7. To demonstrate our1182

gradient-based demonstration selection method, we1183

report the full results whether we apply this method1184

in each task at Table 8. The results reveal that our1185

method provides a performance gain on each task1186

consistently.1187

Task w/ AutoDemo w/o AutoDemo Diff

P3 57.3 56.3 1.0
S-NI 47.3 46.0 1.3
BBH 35.8 34.2 1.6

SuperGLUE 78.5 76.8 1.7

Table 8: The full comparisons .

E.2 Generalization on GLUE Benchmark1188

To explore the effectiveness of the fast task gen-1189

eralization fine-tuning method, we conduct a1190

cross-task experiment on the GLUE (Wang et al.,1191

2019b) dataset. GLUE is a collection of text1192

classification tasks to test the general language1193

understanding ability. We compare our meth-1194

ods with full fine-tuned T5 model (Raffel et al.,1195

2020a), PEFT methods LoRA (Hu et al., 2022),1196

READ (Wang et al., 2023a) and MPT (Wang et al.,1197

2023c), and hypernetwork-based methods includ-1198

ing Compacter++ (Mahabadi et al., 2021a), Hy-1199

perFormer (Mahabadi et al., 2021b) and Hyper-1200

Prompt (He et al., 2022). The results can be seen in1201

Table 9. Our method HyperLoRA achieves compara-1202

ble performance with the full fine-tuning methods1203

and is superior to all of the hypernetwork-based1204

methods. However, direct parameter-efficient fine- 1205

tuning on downstream tasks leads to suboptimal 1206

performance, 4.2% behind HyperLoRA, which re- 1207

veals that utilizing the parameters generated by 1208

HyperLoRA as initialization for downstream tasks 1209

with adequate data improves performance signif- 1210

icantly. Additionally, we can see that the fast 1211

generalization fine-tuning method HyperLoRA† per- 1212

forms better than HyperLoRA and all other meth- 1213

ods, which demonstrates the effectiveness of the 1214

approach. 1215

E.3 Full BBH Results 1216

We report the full evaluation results on the BIG- 1217

Bench Hard (BBH) benchmark at Table 10. 1218
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Model CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg.↑

Full Fine-Tuning Methods
T5Base 49.8 94.6 89.8/92.5 90.7/90.5 91.9/89.2 88.5 93.3 85.0 85.5
T5Large 59.4 96.6 90.7/93.3 90.6/90.4 92.3/89.8 90.8 95.2 90.8 88.3

Parameter-Efficient Fine-Tuning Methods
LoRALarge 60.0 93.9 92.1/94.3 76.8/73.3 91.8/91.5 89.5 94.3 84.8 85.7
READLarge 54.1 93.9 87.7/- 89.3/- 88.6/- 87.3 93.7 - 85.7
MPTBase 63.5 93.3 89.2/- 90.0/- 90.4/- 84.3 93.0 82.7 85.8

Hypernetwork-based Methods
Compacter++Base 61.3 93.8 90.7/93.3 90.2/86.9 90.5/90.9 85.7 93.1 74.8 86.5
HyperFormerBase 61.3 93.8 90.6/93.3 90.1/87.2 89.6/89.0 86.3 92.8 78.3 86.6
HyperFormer++Base 63.7 94.0 89.7/92.6 90.3/87.2 90.0/89.7 85.7 93.0 75.4 86.5
HyperPromptLarge 57.5 96.7 91.2/93.6 90.1/87.0 91.9/92.0 90.3 95.0 87.7 87.5
HyperFormer++Large 58.9 95.7 90.0/92.7 90.7/87.7 91.6/91.5 89.8 94.5 87.8 87.3

HyperLoRALarge 60.6 95.6 88.9/92.0 90.4/87.8 91.3/91.0 89.0 94.0 87.0 88.0
HyperLoRA†Large 68.8 96.4 92.6/94.5 90.9/87.9 92.9/92.8 89.5 94.2 89.1 90.0

Table 9: Performance of the models on the GLUE tasks. For MNLI, we report accuracy on the matched validation
set. For MRPC and QQP, we report accuracy and F1. For STS-B, we report Pearson and Spearman correlation
coefficients. For CoLA, we report Matthews correlation. For all other tasks, we report accuracy. We use T5-large as
the initial model to train our HyperLoRA. Bold and underline fonts indicate the best results and the second results in
each block, respectively.

Task Random T5 T5 (ICL) LoRA LoraHub HyperLoRA HyperLoRA†

Boolean Expressions 50.0 54.0 58.7 56.0 56.0 56.0 61.3
Causal Judgement 50.0 57.5 56.3 55.6 58.9 54.0 52.9
Date Understanding 17.2 15.3 22.7 35.8 29.6 28.0 76.0
Disambiguation 33.2 0.0 69.3 68.0 46.0 33.3 56.0
Dyck Languages 1.2 1.3 7.3 22.2 0.3 2.7 23.3
Formal Fallacies 25.0 51.3 58.0 53.6 52.1 52.0 57.3
Geometric Shapes 11.6 6.7 18.7 24 7.5 7.3 31.3
Hyperbaton 50.0 6.7 74.0 55.3 57.5 65.3 68.7
Logical Deductionavg 22.5 11.3 44.4 43.6 42.7 44.9 43.6
Movie Recommendation 25.0 62.7 52.7 51.5 61.1 53.3 51.3
Multistep Arithmetic 0 0.7 0.7 0.2 0.7 0.7 0.7
Navigate 50.0 47.3 44.0 48.0 46.1 49.3 51.3
Object Counting 0.0 34.7 32.0 38.7 35.0 34.7 36.7
Penguins in a Table 0.0 43.5 39.1 36.2 43.9 50.0 34.8
Reasoning about Colored Objects 11.9 32.0 38.7 39.6 36.5 43.3 33.3
Ruin Names 25.0 23.3 18.7 37.8 21.0 24.7 65.3
Salient Translation Error Detection 16.7 37.3 46.0 16.0 37.3 46.0 18.7
Snarks 50.0 50.0 55.1 55.6 51.8 55.1 57.7
Sports Understanding 50.0 56.0 56.0 56.5 48.3 57.3 44.7
Temporal Sequences 25.0 16.7 26.7 25.1 18.7 12.7 86.0
Tracking Shuffled Objectsavg 22.5 14.5 16.5 18.2 16.0 16.5 21.8
Web of Lies 50.0 54.0 54.0 52.7 53.0 56.0 52.7
Word Sorting 0.0 1.3 0.7 4.9 1.1 1.3 4.0

Average Performance per Task 25.7 27.0 37.5 37.7 34.7 35.8 43.0

Table 10: Full experimental results on the BBH benchmark.
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