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Abstract

Many real–world datasets are both sequential and relational: each node carries an1

event sequence while edges encode interactions. Existing methods in sequence2

modeling and graph modeling often neglect one modality or the other. We argue3

that sequences and graphs are not separate problems but complementary facets4

of the same dataset, and should be learned jointly. We introduce BRIDGE, a uni-5

fied end-to-end architecture that couples a sequence encoder with a GNN under6

a single objective, allowing gradients to flow across both modules and learning7

task-aligned representations. To enable fine-grained token-level message passing8

among neighbors, we add TOKENXATTN, a token-level cross-attention layer that9

passes messages between events in neighboring sequences. Across two settings,10

friendship prediction (Brightkite) and fraud detection (Amazon), BRIDGE con-11

sistently outperforms static GNNs, temporal graph methods, and sequence-only12

baselines on ranking and classification metrics.13

1 Introduction14

Modern machine learning increasingly faces settings where data are both sequential and relational.15

We study the general case in which an entity may have multiple relation with other entities, where16

each entity generates a time-stamped event sequence. We adopt user-event modeling as our running17

example to motivate design choices and evaluation, since social platforms epitomize this sequence-on-18

graph regime; the approach, however, applies broadly beyond this domain. On social platforms, each19

user generates a sequence of personal events (e.g., logins, posts) while simultaneously maintaining20

friendships with others. In e-commerce, a user may purchase items or write reviews as event21

sequences, while being connected to others through co-purchasing or co-review relations. In Figure 1,22

we illustrate the e-commerce setting: each user generates a personal sequence of events (e.g., logins,23

page visits, purchases, reviews), while also engaging in relational events that connect them to other24

users (e.g., sending or receiving gifts, commenting on reviews). Such data are inherently multimodal,25

combining temporal dynamics at the sequence level with structural dependencies across the network,26

making it essential to model both modalities jointly for accurate prediction.27

There have been efforts to incorporate temporal and sequential information into relational models,28

i.e., graphs. For example, the temporal heterogeneous graph formulations, such as CTDG [19] and29

its derived models [23, 28, 37], encode relational events between multiple entities with a timestamp30

assigned to each relation. However, this formulation only works for events describing interactions with31

other entities, such as transitive actions. User events, on the other hand, describe intransitive actions32

(e.g., ‘sign in’, ‘login’, and ‘subscribe’) or status changes (e.g., ‘payment successful’, ‘payment33

declined’, ‘subscription status update’) that involve only a single user. Forcing such events into34

a graph requires self-loops or introducing event nodes, resulting in a misleading graph where, for35

instance, everyone who ‘logs in’ looks related through a shared login node.36

When dealing with datasets that have both sequential and relational components, existing approaches37

fall short of fully capturing this interplay. On one hand, sequence models such as recurrent networks38
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Figure 1: Illustration of data combining sequential and relational structure. Each entity is associated
with a sequence of events, while edges capture interactions between entities. For example, in e-
commerce, a user generates a sequence of purchases or reviews while also forming relations with
other users through co-reviews or social interactions.

and Transformers excel at extracting temporal patterns within a sequence but ignore how sequences39

are connected. On the other hand, graph neural networks (GNNs) and temporal graph models focus40

on relational structure and evolving interactions, but typically compress each sequence into a single41

feature vector, discarding fine-grained temporal information. Spatial-temporal methods attempt to42

combine both, but often rely on the unrealistic assumption of synchronized time steps. As a result,43

current methods either capture sequential detail without relational context or relational structure44

without event-level granularity.45

To bridge this gap, we propose a new perspective: treating each sequence not as a static node46

embedding but as a dynamic set of event-level representations that can communicate across the graph.47

Our approach introduces two complementary components.48

• At the model level, we design BRIDGE, an end-to-end architecture that integrates a sequential49

encoder with a GNN, to learn temporal and relational signals jointly.50

• At the layer level, we develop TOKENXATTN, a token-wise cross-attention mechanism that51

allows individual events in one sequence to attend to events in neighboring sequences.52

The two components together enable richer information exchange and preserve the temporal informa-53

tion of sequences while respecting the graph topology.54

Across link prediction and fraud detection experiments, our approach consistently surpasses strong55

GNN and temporal-graph baselines by treating sequences and graphs as a single system. This joint56

view unlocks richer temporal–relational reasoning and points toward a new class of hybrid models57

for complex, multi-modal data.58

2 Related Works59

This section reviews approaches that combine sequences and graphs. We leave additional related60

works in Appendix A. A growing body of work seeks to leverage sequence and graph information,61

motivated by applications where entities are connected but also evolve through temporal event62

sequences. This line of research spans two major directions: (i) spatial-temporal graph methods,63

which integrate time-series with graph structure, and (ii) temporal graph methods, which model the64

sequence as edges with timestamps.65

Spatial-Temporal Graph Methods Spatial-temporal graph networks were originally designed for66

time-series prediction problems such as traffic forecasting. Models like STGCN [41], STGformer [32],67

MTGCN [36], and MST-GAT [7] encode spatial relations (e.g., road networks) and temporal patterns.68

In recommendation systems, hybrid approaches have also emerged. Shui et al. [25] models the69

relational graph among items while simultaneously capturing user consumption sequences. Similarly,70

Zhang et al. [42] treats users and items as different node types within a heterogeneous graph, enabling71

message passing between items (sequential) and users (relational). A common limitation of these72

methods is the assumption that all time series are synchronized and share identical time steps. By73
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contrast, our setting imposes no such constraint: sequences may be asynchronous, vary in length, and74

even be non-overlapping.75

Temporal Graph Methods Temporal graph models such as TGN [23], TGAT [37], and DyRep [28],76

attach timestamps to edges to model interactions without aligned time steps. However, a temporal77

graph requires all events to be described as a relation between two entities/users. Personal events78

that involve only a single entity cannot be easily represented by a temporal graph. A common79

workaround is to introduce event nodes (e.g., representing “login” or “payment declined” as nodes)80

and connect them to the corresponding users, but this can create high-degree hubs (e.g., a single81

“login” node connected to many users) and is often unnatural in a graph formulation. As argued by82

Bechler-Speicher et al. [1], forcing an unsuitable data modality into a graph form can fail to encode83

important information and may not be meaningful.84

3 Problem Setup85

We consider graph-structured data in which each node is associated with a sequence; equivalently, this86

can be viewed as a collection of sequences that are not independent but connected through a graph.87

Formally, let G = (V, E) denote the graph with nodes V and edges E . V = {v1, . . . , vN} denote88

the set of N nodes. Each node vi is associated with a sequence of elements, Si = [e1, . . . , eMi
], of89

length Mi. Each element et may carry a timestamp, but since our method does not rely on absolute90

time, we omit timestamps for notational simplicity.91

This dual structure presents a modeling challenge: the sequences are inherently temporal and suited92

for sequential models, while the graph edges capture dependencies among nodes. Neither sequential93

modeling nor graph-based modeling alone is sufficient, motivating the need for a joint approach that94

integrates both. In the remainder of this paper, we adopt terminology from user–event data (nodes95

representing users, sequence elements representing events) to illustrate the setting more concretely,96

although the formulation itself is general.97

4 Methodology98

To capture both sequential and relational structure in the general setting described above, our approach99

consists of two main components:100

1. Model level (BRIDGE): an end-to-end architecture that integrates a sequential model with a101

graph neural network (GNN).102

2. Layer level (TOKENXATTN): a token-wise cross-attention message-passing layer that103

enables tokens in a sequence to attend to tokens in neighboring sequences.104

4.1 BRIDGE: End-to-End Model Architecture105

Our architecture integrates sequential and graph components in an end-to-end framework. The106

sequential module first encodes each user’s event sequence Si into an embedding Xi ∈ RMi×d,107

which is then treated as the node feature input to the graph model. In standard message passing, the108

node feature is a d-dimensional vector; in such a case we compress Xi along the first dimension via109

e.g., mean or max pooling to obtain a node feature Zi ∈ R. The graph model performs message110

passing over the relational user graph, and its output is added back to the original sequence embedding111

via a residual connection, yielding updated node representations for downstream tasks.112

Variants. Algorithm 1 specifies a family of sequence–graph models that we denote BRIDGE. The113

graph step can be instantiated with standard GNN layers (GCN, GAT, TransformerConv) or with114

the token-wise cross-attention layer introduced next. We refer to these variants as BRIDGE-GCN,115

BRIDGE-GAT, BRIDGE-TransformerConv, and BRIDGE-TOKENXATTN.116

4.2 TOKENXATTN: Token-Level Cross-Attention117

In the previous subsection, we mentioned that conventional GNN layers [15, 24, 31] assume each118

node is represented by a single feature vector. However, in our setting, each user corresponds to a119

sequence of events with inherent temporal structure. Compressing an entire sequence into one vector120

Zi := Compress(Xi) ∈ Rd, whether by pooling or taking the final event’s embedding, inevitably121

discards the temporal information. We propose keeping the full sequence embedding for message122

passing, i.e., Zi = Xi ∈ RMi×d, as different events in a neighbor’s history have different effects on123

the target user (e.g., the most recent action is often most influential). To preserve this granularity,124
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Figure 2: Illustration of our proposed model. (Left) BRIDGE, the end-to-end sequence–graph
architecture, where the sequential module encodes node sequences and the resulting embeddings
serve as node features for the graph module. (Right) TOKENXATTN, a zoomed-in view of the token-
wise cross-attention layer that enables event-level message passing between neighboring sequences.

Algorithm 1 BRIDGE

Require: Graph G = (V, E); sequences {Si}Ni=1; Number of message passing layers L
Ensure: Final node representations {hi}Ni=1

1: for vi ∈ V do
2: Xi ← SeqEncoder(Si)
3: end for
4: for ℓ = 1, . . . , L do
5: for vi ∈ V do
6: H

(ℓ)
i ← MessagePassing

(
i, Xi, {Xj}j∈N (i)

)
▷ GCN, GAT, TOKENXATTN, etc.

7: Xi ← Xi +H
(ℓ)
i ▷ residual

8: end for
9: end for

10: for vi ∈ V do
11: hi ← vec(Compress(Xi))
12: end for

we retain event-level embeddings: each user i is represented by a matrix Xi ∈ RMi×d, where Mi125

is the sequence length. Building on this representation, we introduce a token-wise cross-attention126

mechanism (Algorithm 2) that enables token-level message passing.127

General neighbor aggregation. After computing the per-neighbor messages Hi←j , the final step128

is to aggregate them into an updated representation for user i. We denote this step by a flexible129

aggregation function fagg, which combines neighbor messages using edge weights wij and an operator130

AGG ∈ {sum,mean}:131

Hi = fagg
(
{Hi←j}j∈N (i)

)
= AGG j∈N (i)

(
wij Hi←j

)
, Hi ∈ RMi×dh .

132

Different GNN variants define wij differently. For example, mean aggregation sets wij = 1
|N (i)| ,133

GCN uses wij =
1√

deg(i) deg(j)
, and GAT learns wij through edge attention mechanisms.134

Finally, to capture multi-hop dependencies, we stack standard GNN layers on top of TOKENXATTN,135

enabling information to propagate beyond immediate neighbors and reach higher-order neighbors.136

5 Experiments137

We validate our methods on two tasks, friendship prediction and fraud detection. For both experiments,138

we report the average over three runs.139
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Algorithm 2 Token-Level Cross-Attention (TOKENXATTN)

Require: Node i; token matrix Xi ∈ RMi×d; neighbor tokens {Xj}j∈N (i); weights
WQ,WK ,WV ∈ Rd×dh ; edge weights {wij}j∈N (i); fagg ∈ {sum,mean}

Ensure: Hi ∈ RMi×dh

1: Qi ← XiWQ

2: for all j ∈ N (i) do
3: Kj ← XjWK ; Vj ← XjWV

4: Ai←j ← softmax
(
QiK

⊤
j /
√
dh

)
▷ ∈ RMi×Mj

5: Hi←j ← Ai←jVj ▷ ∈ RMi×dh

6: end for
7: if fagg = sum then
8: Hi ←

∑
j∈N (i) wij Hi←j

9: else ▷ fagg = mean

10: Hi ←
1

|N (i)|
∑

j∈N (i) wij Hi←j

11: end if
12: return Hi

5.1 Friendship Prediction140

Experimental Setup. We perform friendship prediction on the Brightkite dataset [4, 16] and141

Amazon reviews [18]. Brightkite is a location-based social networking platform, and the dataset142

contains location check-ins and friendship relationships among Brightkite users. Each check-in is143

originally recorded in latitude and longitude, which we converted into Geohash-8 representation [20].144

Example geohashes include 9v6kpmr1, gcpwkeq6, and u0yhxgm1, where nearby locations share145

similar prefixes. Each user has a sequence of geohash checkins, where we further split each geohash8146

into 4 tokens, where the tokens represent increasingly higher resolution (smaller areas) of the location.147

For Amazon, we use the Musical, Clothing, and Electronics categories. Each user’s sequence consists148

of product IDs and ratings; the “friendship” graph is constructed via co-review ties—two users are149

connected if they have co-reviewed at least three products.150

Compared Methods. We compare three categories of baselines with BRIDGE:151

1. Graph Only models. GCN [15], GAT [31], and TransformerConv [24] operate on a static152

user friendship graph using single-vector node representations, ignoring the user sequences.153

2. Temporal Graph models. TGN [23], DyRep [28], and TNCN [44] are dynamic graph154

learning methods that model event sequences as timestamped edges. Here, we convert each155

Geohash8 into a node (we do not perform a tokenized split of the geohash) and connect156

a user to the geohash node every time they check in. The friendship info does not have a157

timestamp, so we randomly add a time to it within each user’s check-in timeline.158

3. Two-Stage Training. GCN + S, GAT + S, and TransformerConv + S extend the static graphs159

by incorporating sequence embeddings as node features. These embeddings are obtained160

from a BERT model pretrained with masked language modeling on the user sequences.161

4. BRIDGE. We stack a BERT sequence encoder with different GNN backbones, trained162

jointly in an end-to-end manner. In particular, the proposed TOKENXATTN layer achieves163

the best performance across all metrics. Unlike the Two-Stage Training, BRIDGE does not164

use frozen embeddings but learns the BERT and GNN components jointly on the target task.165

Evaluation Metrics. For the friendship prediction task, we follow prior works [9, 13, 39] and use166

ranking-based metrics: mean reciprocal rank (MRR) and Hits-at-k, for k in {1,3,5,10}. At evaluation167

time, we rank the ground-truth friendship of each user against 100 negative samples, generated by168

uniformly sampling users not already connected to the target user in the training set.169

Results. From Table 1, we observe a clear hierarchy of performance. Augmenting static graph170

methods with sequence embeddings as node features (Two-Stage) consistently improves their results.171

Our proposed variants of BRIDGE achieve the best scores across all metrics, substantially outper-172

forming methods in the other three categories. By contrast, temporal graph models do not perform173

well, likely because encoding geohash as a node and user checkin sequences as time-stamped edges174

fails to capture fine-grained sequential patterns and can introduce spurious neighbor relations (e.g.,175
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treating any two users who check in at the same location as second-degree neighbors). In addition,176

by converting a Geohash into a node, we lose all the hierarchical information in the Geohash (i.e.177

first digit of a Geohash conveys larger area information than the second, third, etc.), whereas in our178

sequence model, we still retain this information by tokenizing a Geohash8 into 4 tokens. Finally, as179

the friendship does not have time information, we need to incorporate randomized timestamps into180

the temporal graph model, which may also cause performance degradation.181

5.2 Fraud Detection182

Experimental Setup. We evaluate fraud detection on Amazon review data [18]. Each user’s183

sequence comprises product IDs and ratings; for this task, we also encode the associated review text.184

Each review may receive “helpful” or “unhelpful” votes from other users. Following Dou et al. [8],185

we use this helpfulness information as a proxy for fraud review incidents. Specifically, we label a186

user with at least 5 reviews as fraudulent if more than 70% of their reviews are marked unhelpful.187

Relational edges are defined by co-review patterns: two users are connected if they have co-reviewed188

at least three products.189

Compared Methods. Similar to the friendship prediction task, we evaluate static graph and190

temporal graph methods on the relational graph, using the resulting node embeddings for classification.191

We further compare against a text-based baseline that uses pretrained review embeddings.192

1. Graph Only models. GCN [15], GAT [31], and TransformerConv [24] operate on a static193

user co-review graph with single-vector node representations, ignoring user sequences.194

2. Temporal Graph models. We run TGN [23] and DyRep [28]. TNCN [44] is not directly195

applicable here, as it is designed for link prediction tasks. In this setup, the combination of196

product and rating is converted to a node. If a user rates the product with a particular rating,197

we connect the user node to the product rating node with a timestamped edge.198

3. SBert Seq. We encode each review with Sentence-BERT1 to obtain a sequence of em-199

beddings per user. For classification, we average the embeddings to form a single user200

representation, which is passed to a classifier.201

4. BRIDGE. Our approach combines Sentence-BERT embedding of review texts with a202

learnable rating embedding. The rating embedding and GNN backbone are trained jointly203

for fraud detection, allowing the model to integrate both textual and relational signals.204

Evaluation Metrics. For fraud detection, we report two classification metrics: Max F1 (best F1205

across thresholds) and PR-AUC (area under the precision–recall curve).206

Results. From Table 2, a consistent ordering emerges: graph-only < temporal graph < sequence-207

only (SBERT) < BRIDGE. Temporal structure helps over static graphs but still trails a simple SBERT208

average, highlighting the importance of textual information for this task. All BRIDGE variants209

outperform the baselines, showing clear gains from coupling event sequences with graph context.210

6 Conclusion211

We presented BRIDGE, a unified end-to-end architecture that learns from sequences and graphs212

jointly, eliminating the common handoff where sequence encoders are frozen and passed to a213

separate GNN. In BRIDGE, the sequential and relational components are trained together under214

a single objective, allowing gradients to flow across both parts of the model and yielding task-215

aligned representations. This simple design choice, treating sequence and graph modeling as one216

training problem, consistently outperforms static GNNs, temporal graph models, and sequence-only217

baselines across friendship prediction and fraud detection, demonstrating its effectiveness. We further218

proposed TOKENXATTN, a token-level cross-attention layer that enables interaction between events219

across neighboring sequences. Rather than viewing sequences and graphs as separate problems,220

we argue they are complementary components of the same dataset—BRIDGE unifies them under221

a single architecture, with TOKENXATTN enabling event-level interactions across them. Looking222

forward, we believe this perspective opens the door to new models that can seamlessly integrate223

multimodal sequential and relational signals across a wide range of domains, from social networks to224

recommendation systems and beyond.225

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Table 1: Link ranking performance across four datasets (higher is better). H@k denotes the fraction
of test queries for which at least one ground-truth link appears among the top-k predictions.

Brightkite Amazon–Clothing

Method MRR H@1 H@3 H@5 H@10 H@50 MRR H@1 H@3 H@5 H@10 H@50

Graph Only (Static)
GCN 0.6962 0.5832 0.7759 0.8388 0.9006 0.9672 0.1909 0.1103 0.1953 0.2535 0.3496 0.6423
GAT 0.6683 0.5538 0.7427 0.8098 0.8833 0.9687 0.1451 0.0884 0.1180 0.1577 0.2574 0.6444
TransformerConv 0.6876 0.5706 0.7702 0.8364 0.9009 0.9699 0.1951 0.1159 0.1943 0.2503 0.3512 0.6456
Two-Stage (Static + Sequence)
GCN + S 0.6917 0.5754 0.7739 0.8400 0.9027 0.9697 0.1632 0.0827 0.1571 0.2094 0.3233 0.6452
GAT + S 0.6850 0.5700 0.7643 0.8292 0.8963 0.9724 0.1829 0.1193 0.1757 0.2189 0.2970 0.6407
TransformerConv + S 0.7298 0.6239 0.8073 0.8640 0.9170 0.9719 0.1896 0.1040 0.1890 0.2518 0.3695 0.7231
Temporal Graphs
TGN 0.4056 0.2684 0.4579 0.5548 0.6929 0.9721 0.1616 0.0576 0.1536 0.2330 0.3916 0.8200
DyRep 0.2994 0.1720 0.3267 0.4216 0.5717 0.9519 0.1309 0.0345 0.1155 0.1823 0.3251 0.9171
TNCN 0.5347 0.4251 0.5799 0.6559 0.7564 0.9655 0.3108 0.2230 0.3267 0.3846 0.4683 0.8407
BRIDGE
BRIDGE-GCN 0.9353 0.9163 0.9470 0.9567 0.9689 0.9920 0.4554 0.2983 0.5175 0.6993 0.8357 0.8958
BRIDGE-GAT 0.7935 0.7107 0.8568 0.8970 0.9336 0.9799 0.6992 0.6351 0.7441 0.7778 0.8051 0.8684
BRIDGE-TransformerConv 0.7902 0.7043 0.8539 0.8964 0.9365 0.9912 0.4370 0.3133 0.4419 0.5537 0.8207 0.9020
BRIDGE-TokenXAttn 0.9458 0.9304 0.9545 0.9633 0.9735 0.9947 0.4037 0.3466 0.4301 0.4569 0.4807 0.5627

Amazon–Electronics Amazon–Musical

Method MRR H@1 H@3 H@5 H@10 H@50 MRR H@1 H@3 H@5 H@10 H@50

Graph Only (Static)
GCN 0.5312 0.3968 0.6135 0.7007 0.7876 0.9033 0.1463 0.0727 0.1399 0.1988 0.2965 0.6657
GAT 0.4411 0.2961 0.5120 0.6223 0.7453 0.9009 0.1256 0.0622 0.1005 0.1438 0.2410 0.7018
TransformerConv 0.5665 0.4419 0.6446 0.7194 0.7967 0.9173 0.2489 0.1516 0.2571 0.3320 0.4625 0.7463
Two-Stage (Static + Sequence)
GCN + S 0.5156 0.3778 0.5997 0.6907 0.7782 0.8996 0.1861 0.1133 0.1738 0.2177 0.3237 0.7429
GAT + S 0.5061 0.3692 0.5878 0.6738 0.7636 0.9101 0.1294 0.0689 0.1088 0.1516 0.2382 0.6680
TransformerConv + S 0.5865 0.4652 0.6630 0.7358 0.8084 0.9276 0.2550 0.1594 0.2604 0.3159 0.4742 0.8279
Temporal Graphs
TGN 0.3549 0.2259 0.3971 0.4889 0.6196 0.9264 0.1358 0.0562 0.1314 0.1935 0.2712 0.6989
DyRep 0.1731 0.0687 0.1733 0.2463 0.3878 0.8990 0.1237 0.0585 0.0980 0.1446 0.2521 0.6726
TNCN 0.4424 0.3446 0.4863 0.5475 0.6185 0.8547 0.1691 0.0848 0.1720 0.2234 0.3262 0.7085
BRIDGE
BRIDGE-GCN 0.7466 0.6864 0.7851 0.8174 0.8517 0.9112 0.4453 0.2959 0.5514 0.6419 0.7085 0.8479
BRIDGE-GAT 0.6910 0.6062 0.7520 0.7926 0.8260 0.9273 0.5045 0.3853 0.5775 0.6757 0.7229 0.8306
BRIDGE-TransformerConv 0.6984 0.6081 0.7608 0.8074 0.8492 0.9619 0.4819 0.3787 0.5180 0.5786 0.7168 0.8823
BRIDGE-TokenXAttn 0.7318 0.6724 0.7685 0.8069 0.8353 0.8996 0.5870 0.5075 0.6341 0.6702 0.7157 0.8368

A Additional Related Works383

A.1 Sequence Modeling384

Transformer-based sequence models have delivered state-of-the-art performance across a wide range385

of language and vision tasks by learning contextual representations over token sequences [2, 5, 6, 29].386

Given an input sequence, these models map each token to a continuous embedding and use self-387

attention to capture local and long-range dependencies within the sequence. While highly effective388

for modeling the internal structure of a single sequence, this paradigm typically treats each sequence389

in isolation and does not leverage information from related sequences.390
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Table 2: Fraud detection performance across three Amazon categories.

Amazon-Movies Amazon-Electronics Amazon-Clothing

Method Max F1 PR AUC Max F1 PR AUC Max F1 PR AUC

Graph Only (Static)
GCN 0.3374 0.2037 0.1197 0.0640 0.0485 0.0236
GAT 0.3390 0.2146 0.1192 0.0638 0.0497 0.0240
TransformerConv 0.3356 0.2129 0.1190 0.0639 0.0462 0.0216
Temporal Graphs
TGN 0.4438 0.3548 0.1449 0.0897 0.0799 0.0369
DyRep 0.4412 0.3117 0.1247 0.0676 0.0545 0.0270
Sequence Only (Review Text Embedding)
SBert Seq 0.7809 0.8559 0.4218 0.3867 0.3423 0.3195
BRIDGE
BRIDGE-GCN 0.7956 0.8565 0.4524 0.4343 0.3598 0.3481
BRIDGE-GAT 0.8039 0.8704 0.4617 0.4518 0.3840 0.3629
BRIDGE-TransformerConv 0.7984 0.8694 0.4789 0.4656 0.3702 0.3539
BRIDGE-TokenXAT 0.7969 0.8771 0.5016 0.5228 0.3606 0.3442

A.2 Graph Modeling391

Graph models capture relational structures among entities (nodes). In particular, graph neural392

networks (GNNs) propagate and aggregate information over local neighborhoods to learn node, edge,393

or graph level embeddings [15, 24, 30]. These methods have demonstrated strong performance across394

tasks such as node classification[11, 15], link prediction [14, 43], and recommendation [33, 35, 40].395

Standard GNNs model each node in the graph as a single feature vector and do not account for396

sequential information within nodes. Bridging graph-based relational modeling with sequence-aware397

representations is therefore an important step toward richer models that capture both intra-sequence398

patterns and inter-sequence relations.399

A.3 Graph Large Language Models400

An emerging line of research seeks to leverage the generalization capabilities of foundation models401

for graph learning. Graph large language models (Graph LLMs) achieve this by integrating pretrained402

LLMs with graph-structured data through prompting [3, 21, 27], instruction tuning [10, 26, 34, 38],403

or hybrid architectures [12, 17, 22]. The promise of Graph LLMs lies in bridging reasoning over404

relational data with the flexibility of natural language interfaces. In line with this view, Zhou et al.405

[45] even conceptualizes that each graph can be seen as a new language for the LLMs to learn. Our406

approach, however, differs: rather than adapting pretrained LLMs to graphs, we introduce a unified407

architecture that integrates sequence modeling with GNNs to jointly capture temporal dynamics and408

relational structure.409

B Limitations and Discussion410

While BRIDGE provides a unified way to learn from sequences and graphs, several limitations remain.411

Use of timestamps. BRIDGE preserves event order but does not inject absolute timestamps or412

inter–event gaps. Likewise, TOKENXATTN attends over tokens without explicit time encoding. Tasks413

where absolute time or time interval between events are informative may benefit from adding relative414

or absolute time features, which we leave to future work.415

Complexity of TOKENXATTN. For preserving the granularity of event-level information, the416

complexity of TOKENXATTN is quadratic with respect to the sequence length. Some potential417

efficiency improvements can be applying a more efficient attention mechanism, such as linear418

attention, or reducing the sequence length through patching.419

11


	Introduction
	Related Works
	Problem Setup
	Methodology
	Bridge: End-to-End Model Architecture
	TokenXAttn: Token-Level Cross-Attention

	Experiments
	Friendship Prediction
	Fraud Detection

	Conclusion
	Additional Related Works
	Sequence Modeling
	Graph Modeling
	Graph Large Language Models

	Limitations and Discussion

