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Abstract

Many real-world datasets are both sequential and relational: each node carries an
event sequence while edges encode interactions. Existing methods in sequence
modeling and graph modeling often neglect one modality or the other. We argue
that sequences and graphs are not separate problems but complementary facets
of the same dataset, and should be learned jointly. We introduce BRIDGE, a uni-
fied end-to-end architecture that couples a sequence encoder with a GNN under
a single objective, allowing gradients to flow across both modules and learning
task-aligned representations. To enable fine-grained token-level message passing
among neighbors, we add TOKENXATTN, a token-level cross-attention layer that
passes messages between events in neighboring sequences. Across two settings,
friendship prediction (Brightkite) and fraud detection (Amazon), BRIDGE con-
sistently outperforms static GNNSs, temporal graph methods, and sequence-only
baselines on ranking and classification metrics.

1 Introduction

Modern machine learning increasingly faces settings where data are both sequential and relational.
We study the general case in which an entity may have multiple relation with other entities, where
each entity generates a time-stamped event sequence. We adopt user-event modeling as our running
example to motivate design choices and evaluation, since social platforms epitomize this sequence-on-
graph regime; the approach, however, applies broadly beyond this domain. On social platforms, each
user generates a sequence of personal events (e.g., logins, posts) while simultaneously maintaining
friendships with others. In e-commerce, a user may purchase items or write reviews as event
sequences, while being connected to others through co-purchasing or co-review relations. In Figure[T]
we illustrate the e-commerce setting: each user generates a personal sequence of events (e.g., logins,
page visits, purchases, reviews), while also engaging in relational events that connect them to other
users (e.g., sending or receiving gifts, commenting on reviews). Such data are inherently multimodal,
combining temporal dynamics at the sequence level with structural dependencies across the network,
making it essential to model both modalities jointly for accurate prediction.

There have been efforts to incorporate temporal and sequential information into relational models,
i.e., graphs. For example, the temporal heterogeneous graph formulations, such as CTDG [19] and
its derived models [23| 28| 37]], encode relational events between multiple entities with a timestamp
assigned to each relation. However, this formulation only works for events describing interactions with
other entities, such as transitive actions. User events, on the other hand, describe intransitive actions
(e.g., ‘sign in’, ‘login’, and ‘subscribe’) or status changes (e.g., ‘payment successful’, ‘payment
declined’, ‘subscription status update’) that involve only a single user. Forcing such events into
a graph requires self-loops or introducing event nodes, resulting in a misleading graph where, for
instance, everyone who ‘logs in’ looks related through a shared login node.

When dealing with datasets that have both sequential and relational components, existing approaches
fall short of fully capturing this interplay. On one hand, sequence models such as recurrent networks
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Figure 1: Illustration of data combining sequential and relational structure. Each entity is associated
with a sequence of events, while edges capture interactions between entities. For example, in e-
commerce, a user generates a sequence of purchases or reviews while also forming relations with
other users through co-reviews or social interactions.

and Transformers excel at extracting temporal patterns within a sequence but ignore how sequences
are connected. On the other hand, graph neural networks (GNNs) and temporal graph models focus
on relational structure and evolving interactions, but typically compress each sequence into a single
feature vector, discarding fine-grained temporal information. Spatial-temporal methods attempt to
combine both, but often rely on the unrealistic assumption of synchronized time steps. As a result,
current methods either capture sequential detail without relational context or relational structure
without event-level granularity.

To bridge this gap, we propose a new perspective: treating each sequence not as a static node
embedding but as a dynamic set of event-level representations that can communicate across the graph.
Our approach introduces two complementary components.

» Atthe model level, we design BRIDGE, an end-to-end architecture that integrates a sequential
encoder with a GNN, to learn temporal and relational signals jointly.

* At the layer level, we develop TOKENXATTN, a token-wise cross-attention mechanism that
allows individual events in one sequence to attend to events in neighboring sequences.

The two components together enable richer information exchange and preserve the temporal informa-
tion of sequences while respecting the graph topology.

Across link prediction and fraud detection experiments, our approach consistently surpasses strong
GNN and temporal-graph baselines by treating sequences and graphs as a single system. This joint
view unlocks richer temporal-relational reasoning and points toward a new class of hybrid models
for complex, multi-modal data.

2 Related Works

This section reviews approaches that combine sequences and graphs. We leave additional related
works in A growing body of work seeks to leverage sequence and graph information,
motivated by applications where entities are connected but also evolve through temporal event
sequences. This line of research spans two major directions: (i) spatial-temporal graph methods,
which integrate time-series with graph structure, and (ii) temporal graph methods, which model the
sequence as edges with timestamps.

Spatial-Temporal Graph Methods Spatial-temporal graph networks were originally designed for
time-series prediction problems such as traffic forecasting. Models like STGCN [41], STGformer [32],
MTGCN [36], and MST-GAT [7] encode spatial relations (e.g., road networks) and temporal patterns.
In recommendation systems, hybrid approaches have also emerged. Shui et al. [25] models the
relational graph among items while simultaneously capturing user consumption sequences. Similarly,
Zhang et al. [42]] treats users and items as different node types within a heterogeneous graph, enabling
message passing between items (sequential) and users (relational). A common limitation of these
methods is the assumption that all time series are synchronized and share identical time steps. By
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contrast, our setting imposes no such constraint: sequences may be asynchronous, vary in length, and
even be non-overlapping.

Temporal Graph Methods Temporal graph models such as TGN [23]], TGAT [37]], and DyRep [28]],
attach timestamps to edges to model interactions without aligned time steps. However, a temporal
graph requires all events to be described as a relation between two entities/users. Personal events
that involve only a single entity cannot be easily represented by a temporal graph. A common
workaround is to introduce event nodes (e.g., representing “login” or “payment declined” as nodes)
and connect them to the corresponding users, but this can create high-degree hubs (e.g., a single
“login” node connected to many users) and is often unnatural in a graph formulation. As argued by
Bechler-Speicher et al. [1], forcing an unsuitable data modality into a graph form can fail to encode
important information and may not be meaningful.

3 Problem Setup

We consider graph-structured data in which each node is associated with a sequence; equivalently, this
can be viewed as a collection of sequences that are not independent but connected through a graph.
Formally, let G = (V, £) denote the graph with nodes V and edges £. V = {vy,...,vn} denote
the set of IV nodes. Each node v; is associated with a sequence of elements, .S; = [eq, ..., epr,], of
length M;. Each element e; may carry a timestamp, but since our method does not rely on absolute
time, we omit timestamps for notational simplicity.

This dual structure presents a modeling challenge: the sequences are inherently temporal and suited
for sequential models, while the graph edges capture dependencies among nodes. Neither sequential
modeling nor graph-based modeling alone is sufficient, motivating the need for a joint approach that
integrates both. In the remainder of this paper, we adopt terminology from user—event data (nodes
representing users, sequence elements representing events) to illustrate the setting more concretely,
although the formulation itself is general.

4 Methodology

To capture both sequential and relational structure in the general setting described above, our approach
consists of two main components:

1. Model level (BRIDGE): an end-to-end architecture that integrates a sequential model with a
graph neural network (GNN).

2. Layer level (TOKENXATTN): a token-wise cross-attention message-passing layer that
enables tokens in a sequence to attend to tokens in neighboring sequences.

4.1 BRIDGE: End-to-End Model Architecture

Our architecture integrates sequential and graph components in an end-to-end framework. The
sequential module first encodes each user’s event sequence S; into an embedding X; € RM:*d,
which is then treated as the node feature input to the graph model. In standard message passing, the
node feature is a d-dimensional vector; in such a case we compress X; along the first dimension via
e.g., mean or max pooling to obtain a node feature Z; € R. The graph model performs message
passing over the relational user graph, and its output is added back to the original sequence embedding
via a residual connection, yielding updated node representations for downstream tasks.

Variants. [Algorithm [|specifies a family of sequence—graph models that we denote BRIDGE. The
graph step can be instantiated with standard GNN layers (GCN, GAT, TransformerConv) or with
the token-wise cross-attention layer introduced next. We refer to these variants as BRIDGE-GCN,
BRIDGE-GAT, BRIDGE-TransformerConv, and BRIDGE-TOKENXATTN.

4.2 TOKENXATTN: Token-Level Cross-Attention

In the previous subsection, we mentioned that conventional GNN layers [[15} 24} 31]] assume each
node is represented by a single feature vector. However, in our setting, each user corresponds to a
sequence of events with inherent temporal structure. Compressing an entire sequence into one vector
Z; = Compress(X;) € R, whether by pooling or taking the final event’s embedding, inevitably
discards the temporal information. We propose keeping the full sequence embedding for message
passing, i.e., Z; = X; € RMixd_qq different events in a neighbor’s history have different effects on
the target user (e.g., the most recent action is often most influential). To preserve this granularity,
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Figure 2: Illustration of our proposed model. (Left) BRIDGE, the end-to-end sequence—graph
architecture, where the sequential module encodes node sequences and the resulting embeddings
serve as node features for the graph module. (Right) TOKENXATTN, a zoomed-in view of the token-
wise cross-attention layer that enables event-level message passing between neighboring sequences.

Algorithm 1 BRIDGE

Require: Graph G = (V, £); sequences {S;} Y, ; Number of message passing layers L
Ensure: Final node representations {h; }
1: forv; € Vdo
2 X; + SeqEncoder(.S;)
3: end for
4: for{=1,...,Ldo
5: for v; € V do
6: Hi(e) < MessagePassing (i, X;, {X;}jen(i)) > GCN, GAT, TOKENXATTN, etc.
7
8

X, + X, + Hi(e) > residual
: end for
9: end for
10: for v; € V do
11: h; < vec(Compress(X;))
12: end for

we retain event-level embeddings: each user i is represented by a matrix X; € RM: x4 where M;
is the sequence length. Building on this representation, we introduce a token-wise cross-attention

mechanism that enables token-level message passing.

General neighbor aggregation. After computing the per-neighbor messages H;.;, the final step
is to aggregate them into an updated representation for user i. We denote this step by a flexible
aggregation function f,g,, which combines neighbor messages using edge weights w;; and an operator
AGG € {sum, mean}:

Hi = fue({HicjYjent)) = AGG jen)(wij Hiej),  Hy € RM>,

Different GNN variants define w;; differently. For example, mean aggregation sets w;; = i Nl(i)\ ,

GCN uses w;; = —— L and GAT learns w;; through edge attention mechanisms.
deg(4) deg(j)

Finally, to capture multi-hop dependencies, we stack standard GNN layers on top of TOKENXATTN,
enabling information to propagate beyond immediate neighbors and reach higher-order neighbors.
S Experiments

We validate our methods on two tasks, friendship prediction and fraud detection. For both experiments,
we report the average over three runs.
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Algorithm 2 Token-Level Cross-Attention (TOKENXATTN)

Require: Node i; token matrix X; € RMixd, neighbor tokens {X j }je N (D)5 weights
Wo, Wi, Wy € R¥*dn; edge weights {w;;}jenr(i): fage € {Sum, mean}
Ensure: H, € RMixdn
1: Q; + X Wq
2: for all j € N (i) do
3: KJ’ <—XjWK; ‘/j(—XjWV
4 Ajj softmax(QiKJ—»r/\/@) > € RMixM;
5: Hi<—j “— AH;JV'] > e RMith
6: end for
7: if fige = sum then
8 H7 «— Zje/\f(i) Wij H1'<_j
9: else > fage = Mean
1
10: H; + WEJE.N‘(U Wij Hi<—j
11: end if
12: return H;

5.1 Friendship Prediction

Experimental Setup. We perform friendship prediction on the Brightkite dataset [4) [16] and
Amazon reviews [18]]. Brightkite is a location-based social networking platform, and the dataset
contains location check-ins and friendship relationships among Brightkite users. Each check-in is
originally recorded in latitude and longitude, which we converted into Geohash-8 representation [20].
Example geohashes include 9vokpmrl, gcpwkeq6, and uOyhxgml, where nearby locations share
similar prefixes. Each user has a sequence of geohash checkins, where we further split each geohash8
into 4 tokens, where the tokens represent increasingly higher resolution (smaller areas) of the location.
For Amazon, we use the Musical, Clothing, and Electronics categories. Each user’s sequence consists
of product IDs and ratings; the “friendship” graph is constructed via co-review ties—two users are
connected if they have co-reviewed at least three products.

Compared Methods. We compare three categories of baselines with BRIDGE:

1. Graph Only models. GCN [15]], GAT [31]], and TransformerConv [24] operate on a static
user friendship graph using single-vector node representations, ignoring the user sequences.

2. Temporal Graph models. TGN [23]], DyRep [28]], and TNCN [44] are dynamic graph
learning methods that model event sequences as timestamped edges. Here, we convert each
Geohash8 into a node (we do not perform a tokenized split of the geohash) and connect
a user to the geohash node every time they check in. The friendship info does not have a
timestamp, so we randomly add a time to it within each user’s check-in timeline.

3. Two-Stage Training. GCN + S, GAT + S, and TransformerConv + S extend the static graphs
by incorporating sequence embeddings as node features. These embeddings are obtained
from a BERT model pretrained with masked language modeling on the user sequences.

4. BRIDGE. We stack a BERT sequence encoder with different GNN backbones, trained
jointly in an end-to-end manner. In particular, the proposed TOKENXATTN layer achieves
the best performance across all metrics. Unlike the Two-Stage Training, BRIDGE does not
use frozen embeddings but learns the BERT and GNN components jointly on the target task.

Evaluation Metrics. For the friendship prediction task, we follow prior works [9} [13/[39] and use
ranking-based metrics: mean reciprocal rank (MRR) and Hits-at-k, for k in {1,3,5,10}. At evaluation
time, we rank the ground-truth friendship of each user against 100 negative samples, generated by
uniformly sampling users not already connected to the target user in the training set.

Results. From [Table 1} we observe a clear hierarchy of performance. Augmenting static graph
methods with sequence embeddings as node features (Two-Stage) consistently improves their results.
Our proposed variants of BRIDGE achieve the best scores across all metrics, substantially outper-
forming methods in the other three categories. By contrast, temporal graph models do not perform
well, likely because encoding geohash as a node and user checkin sequences as time-stamped edges
fails to capture fine-grained sequential patterns and can introduce spurious neighbor relations (e.g.,
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treating any two users who check in at the same location as second-degree neighbors). In addition,
by converting a Geohash into a node, we lose all the hierarchical information in the Geohash (i.e.
first digit of a Geohash conveys larger area information than the second, third, etc.), whereas in our
sequence model, we still retain this information by tokenizing a Geohash8 into 4 tokens. Finally, as
the friendship does not have time information, we need to incorporate randomized timestamps into
the temporal graph model, which may also cause performance degradation.

5.2 Fraud Detection

Experimental Setup. We evaluate fraud detection on Amazon review data [18]]. Each user’s
sequence comprises product IDs and ratings; for this task, we also encode the associated review text.
Each review may receive “helpful” or “unhelpful” votes from other users. Following Dou et al. 8],
we use this helpfulness information as a proxy for fraud review incidents. Specifically, we label a
user with at least 5 reviews as fraudulent if more than 70% of their reviews are marked unhelpful.
Relational edges are defined by co-review patterns: two users are connected if they have co-reviewed
at least three products.

Compared Methods. Similar to the friendship prediction task, we evaluate static graph and
temporal graph methods on the relational graph, using the resulting node embeddings for classification.
We further compare against a text-based baseline that uses pretrained review embeddings.

1. Graph Only models. GCN [15], GAT [31]], and TransformerConv [24] operate on a static
user co-review graph with single-vector node representations, ignoring user sequences.

2. Temporal Graph models. We run TGN [23] and DyRep [28]. TNCN [44] is not directly
applicable here, as it is designed for link prediction tasks. In this setup, the combination of
product and rating is converted to a node. If a user rates the product with a particular rating,
we connect the user node to the product rating node with a timestamped edge.

3. SBert Seq. We encode each review with Sentence-BER to obtain a sequence of em-
beddings per user. For classification, we average the embeddings to form a single user
representation, which is passed to a classifier.

4. BRIDGE. Our approach combines Sentence-BERT embedding of review texts with a
learnable rating embedding. The rating embedding and GNN backbone are trained jointly
for fraud detection, allowing the model to integrate both textual and relational signals.

Evaluation Metrics. For fraud detection, we report two classification metrics: Max F1 (best F1
across thresholds) and PR-AUC (area under the precision—recall curve).

Results. From|Table 2] a consistent ordering emerges: graph-only < temporal graph < sequence-
only (SBERT) < BRIDGE. Temporal structure helps over static graphs but still trails a simple SBERT
average, highlighting the importance of textual information for this task. All BRIDGE variants
outperform the baselines, showing clear gains from coupling event sequences with graph context.

6 Conclusion

We presented BRIDGE, a unified end-to-end architecture that learns from sequences and graphs
jointly, eliminating the common handoff where sequence encoders are frozen and passed to a
separate GNN. In BRIDGE, the sequential and relational components are trained together under
a single objective, allowing gradients to flow across both parts of the model and yielding task-
aligned representations. This simple design choice, treating sequence and graph modeling as one
training problem, consistently outperforms static GNNs, temporal graph models, and sequence-only
baselines across friendship prediction and fraud detection, demonstrating its effectiveness. We further
proposed TOKENXATTN, a token-level cross-attention layer that enables interaction between events
across neighboring sequences. Rather than viewing sequences and graphs as separate problems,
we argue they are complementary components of the same dataset—BRIDGE unifies them under
a single architecture, with TOKENXATTN enabling event-level interactions across them. Looking
forward, we believe this perspective opens the door to new models that can seamlessly integrate
multimodal sequential and relational signals across a wide range of domains, from social networks to
recommendation systems and beyond.

"https://huggingface.co/sentence-transformers/all-Minil.M-L6-v2
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Table 1: Link ranking performance across four datasets (higher is better). H@k denotes the fraction
of test queries for which at least one ground-truth link appears among the top-k predictions.

Brightkite Amazon-Clothing

Method MRR He@l H@3 H@5 H@10 H@50 | MRR H@1 H@3 HE@5 He@10 H@50
Graph Only (Static)
GCN 0.6962 0.5832 0.7759 0.8388 0.9006 0.9672 |0.1909 0.1103 0.1953 0.2535 0.3496 0.6423
GAT 0.6683 0.5538 0.7427 0.8098 0.8833 0.9687 | 0.1451 0.0884 0.1180 0.1577 0.2574 0.6444
TransformerConv 0.6876 0.5706 0.7702 0.8364 0.9009 0.9699 | 0.1951 0.1159 0.1943 0.2503 0.3512 0.6456
Two-Stage (Static + Sequence)
GCN + S 0.6917 0.5754 0.7739 0.8400 0.9027 0.9697 | 0.1632 0.0827 0.1571 0.2094 0.3233 0.6452
GAT + S 0.6850 0.5700 0.7643 0.8292 0.8963 0.9724 | 0.1829 0.1193 0.1757 0.2189 0.2970 0.6407
TransformerConv + S 0.7298 0.6239 0.8073 0.8640 0.9170 0.9719 | 0.1896 0.1040 0.1890 0.2518 0.3695 0.7231
Temporal Graphs
TGN 0.4056 0.2684 0.4579 0.5548 0.6929 0.9721 | 0.1616 0.0576 0.1536 0.2330 0.3916 0.8200
DyRep 0.2994 0.1720 0.3267 0.4216 0.5717 0.9519 | 0.1309 0.0345 0.1155 0.1823 0.3251 09171
TNCN 0.5347 0.4251 0.5799 0.6559 0.7564 0.9655 | 0.3108 0.2230 0.3267 0.3846 0.4683 0.8407
BRIDGE
BRIDGE-GCN 0.9353 0.9163 0.9470 0.9567 0.9689 0.9920 | 0.4554 0.2983 0.5175 0.6993 0.8357 0.8958
BRIDGE-GAT 0.7935 0.7107 0.8568 0.8970 0.9336 0.9799 | 0.6992 0.6351 0.7441 0.7778 0.8051 0.8684
BRIDGE-TransformerConv  0.7902 0.7043 0.8539 0.8964 0.9365 0.9912 |0.4370 0.3133 0.4419 0.5537 0.8207 0.9020
BRIDGE-TokenXAttn 0.9458 0.9304 0.9545 0.9633 0.9735 0.9947 | 0.4037 0.3466 0.4301 0.4569 0.4807 0.5627

Amazon-Electronics Amazon-Musical
Method MRR H@l H@3 H@5 H@10 H@50 | MRR H@l1 H@3 HE@5 He10 H@50
Graph Only (Static)
GCN 0.5312 0.3968 0.6135 0.7007 0.7876 0.9033 | 0.1463 0.0727 0.1399 0.1988 0.2965 0.6657
GAT 0.4411 0.2961 0.5120 0.6223 0.7453 0.9009 | 0.1256 0.0622 0.1005 0.1438 0.2410 0.7018
TransformerConv 0.5665 0.4419 0.6446 0.7194 0.7967 0.9173 | 0.2489 0.1516 0.2571 0.3320 0.4625 0.7463
Two-Stage (Static + Sequence)
GCN + S 0.5156 0.3778 0.5997 0.6907 0.7782 0.8996 | 0.1861 0.1133 0.1738 0.2177 0.3237 0.7429
GAT + S 0.5061 0.3692 0.5878 0.6738 0.7636 0.9101 | 0.1294 0.0689 0.1088 0.1516 0.2382 0.6680
TransformerConv + S 0.5865 0.4652 0.6630 0.7358 0.8084 0.9276 | 0.2550 0.1594 0.2604 0.3159 0.4742 0.8279
Temporal Graphs
TGN 0.3549 0.2259 0.3971 0.4889 0.6196 0.9264 |0.1358 0.0562 0.1314 0.1935 0.2712 0.6989
DyRep 0.1731 0.0687 0.1733 0.2463 0.3878 0.8990 | 0.1237 0.0585 0.0980 0.1446 0.2521 0.6726
TNCN 0.4424 0.3446 0.4863 0.5475 0.6185 0.8547 | 0.1691 0.0848 0.1720 0.2234 0.3262 0.7085
BRIDGE
BRIDGE-GCN 0.7466 0.6864 0.7851 0.8174 0.8517 0.9112 | 0.4453 0.2959 0.5514 0.6419 0.7085 0.8479
BRIDGE-GAT 0.6910 0.6062 0.7520 0.7926 0.8260 0.9273 | 0.5045 0.3853 0.5775 0.6757 0.7229 0.8306
BRIDGE-TransformerConv  0.6984 0.6081 0.7608 0.8074 0.8492 0.9619 | 0.4819 0.3787 0.5180 0.5786 0.7168 0.8823
BRIDGE-TokenXAttn 0.7318 0.6724 0.7685 0.8069 0.8353 0.8996 | 0.5870 0.5075 0.6341 0.6702 0.7157 0.8368

A Additional Related Works

Al

Sequence Modeling

Transformer-based sequence models have delivered state-of-the-art performance across a wide range
of language and vision tasks by learning contextual representations over token sequences [2, 15} 16} [29].
Given an input sequence, these models map each token to a continuous embedding and use self-
attention to capture local and long-range dependencies within the sequence. While highly effective
for modeling the internal structure of a single sequence, this paradigm typically treats each sequence
in isolation and does not leverage information from related sequences.
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Table 2: Fraud detection performance across three Amazon categories.

Amazon-Movies Amazon-Electronics  Amazon-Clothing
Method MaxF1 PRAUC MaxF1 PRAUC MaxF1l PRAUC
Graph Only (Static)
GCN 0.3374 0.2037 0.1197 0.0640 0.0485 0.0236
GAT 0.3390 0.2146 0.1192 0.0638 0.0497 0.0240
TransformerConv 0.3356 0.2129 0.1190 0.0639 0.0462 0.0216
Temporal Graphs
TGN 0.4438 0.3548 0.1449 0.0897 0.0799 0.0369
DyRep 0.4412 0.3117 0.1247 0.0676 0.0545 0.0270
Sequence Only (Review Text Embedding)
SBert Seq 0.7809 0.8559 0.4218 0.3867 0.3423 0.3195
BRIDGE
BRIDGE-GCN 0.7956 0.8565 0.4524 0.4343 0.3598 0.3481
BRIDGE-GAT 0.8039 0.8704 0.4617 0.4518 0.3840 0.3629
BRIDGE-TransformerConv ~ 0.7984 0.8694 0.4789 0.4656 0.3702 0.3539
BRIDGE-TokenXAT 0.7969 0.8771 0.5016 0.5228 0.3606 0.3442

A.2 Graph Modeling

Graph models capture relational structures among entities (nodes). In particular, graph neural
networks (GNNs) propagate and aggregate information over local neighborhoods to learn node, edge,
or graph level embeddings [15} 24} [30]. These methods have demonstrated strong performance across
tasks such as node classification[11} [15]], link prediction [[14}43]], and recommendation [33} 135 40].
Standard GNNs model each node in the graph as a single feature vector and do not account for
sequential information within nodes. Bridging graph-based relational modeling with sequence-aware
representations is therefore an important step toward richer models that capture both intra-sequence
patterns and inter-sequence relations.

A.3 Graph Large Language Models

An emerging line of research seeks to leverage the generalization capabilities of foundation models
for graph learning. Graph large language models (Graph LLMs) achieve this by integrating pretrained
LLMs with graph-structured data through prompting [3| 21} 27], instruction tuning [[10, 26} |34} 38]],
or hybrid architectures [12| 17, 22]. The promise of Graph LLMs lies in bridging reasoning over
relational data with the flexibility of natural language interfaces. In line with this view, Zhou et al.
[45] even conceptualizes that each graph can be seen as a new language for the LLMs to learn. Our
approach, however, differs: rather than adapting pretrained LLMs to graphs, we introduce a unified
architecture that integrates sequence modeling with GNNS to jointly capture temporal dynamics and
relational structure.

B Limitations and Discussion

While BRIDGE provides a unified way to learn from sequences and graphs, several limitations remain.

Use of timestamps. BRIDGE preserves event order but does not inject absolute timestamps or
inter—event gaps. Likewise, TOKENXATTN attends over tokens without explicit time encoding. Tasks
where absolute time or time interval between events are informative may benefit from adding relative
or absolute time features, which we leave to future work.

Complexity of TOKENXATTN. For preserving the granularity of event-level information, the
complexity of TOKENXATTN is quadratic with respect to the sequence length. Some potential
efficiency improvements can be applying a more efficient attention mechanism, such as linear
attention, or reducing the sequence length through patching.
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