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Abstract

Many real–world datasets are both sequential and relational: each node carries an
event sequence while edges encode interactions. Existing methods in sequence
modeling and graph modeling often neglect one modality or the other. We argue
that sequences and graphs are not separate problems but complementary facets
of the same dataset, and should be learned jointly. We introduce BRIDGE, a uni-
fied end-to-end architecture that couples a sequence encoder with a GNN under
a single objective, allowing gradients to flow across both modules and learning
task-aligned representations. To enable fine-grained token-level message passing
among neighbors, we add TOKENXATTN, a token-level cross-attention layer that
passes messages between events in neighboring sequences. Across two settings,
friendship prediction (Brightkite) and fraud detection (Amazon), BRIDGE con-
sistently outperforms static GNNs, temporal graph methods, and sequence-only
baselines on ranking and classification metrics.

1 Introduction
Modern machine learning increasingly faces settings where data are both sequential and relational.
We study the general case in which an entity may have multiple relations with other entities, where
each entity generates a time-stamped event sequence. We adopt user-event modeling [1] as our
running example to motivate design choices and evaluation, since social platforms epitomize this
sequence-on-graph regime; the approach, however, applies broadly beyond this domain. On social
platforms, each user generates a sequence of personal events (e.g., logins, posts) while simultaneously
maintaining friendships with others. In e-commerce, a user may purchase items or write reviews as
an event sequence, while being connected to others through, for example, friendship relations. In
Figure 1, we illustrate the e-commerce setting: each user generates a personal sequence of events (e.g.,
logins, page visits, purchases, reviews), while also engaging in user-to-user relations that connect
them to other users (e.g., sending or receiving gifts, commenting on reviews). Such data are inherently
multimodal, combining temporal dynamics at the sequence level with structural dependencies across
the network, making it essential to model both modalities jointly for accurate prediction.

There have been efforts to incorporate temporal and sequential information into relational models,
i.e., graphs. For example, the temporal heterogeneous graph formulations, such as CTDG [2] and its
derived models [3–5], encode relational events between multiple entities with a timestamp assigned
to each relation. However, this formulation only works for events describing interactions with other
entities, such as transitive actions. User events, on the other hand, describe intransitive actions (e.g.,
‘sign in’, ‘login’, and ‘subscribe’) or status changes (e.g., ‘payment successful’, ‘payment declined’,
‘subscription status update’) that involve only a single user. Forcing such events into a graph requires
self-loops or introducing event nodes, resulting in a misleading graph where, for instance, everyone
who ‘logs in’ looks related through a shared login node.
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Figure 1: Illustration of data combining sequential and relational structure. Each entity is associated
with a sequence of events, while edges capture interactions between entities. For example, in e-
commerce, a user generates a sequence of purchases or reviews while also forming relations with
other users. Some example relations are friendship, family relation, sharing the same payment
method, or sharing the same address, etc.

When dealing with datasets that have both sequential and relational components, existing approaches
are less suitable for fully capturing this interplay. On one hand, sequence models such as recurrent
networks [6, 7] and Transformers [8, 9] excel at extracting temporal patterns within a sequence but
ignore how sequences are connected. On the other hand, graph neural networks (GNNs) [10, 11]
and temporal graph models [3, 12] focus on relational structure and evolving interactions, but
typically compress each sequence into a single feature vector, discarding fine-grained temporal
information. Spatial-temporal methods [13, 14] attempt to combine both, but often rely on the
unrealistic assumption of synchronized time steps. As a result, current methods either capture
sequential detail without relational context or relational structure without event-level granularity.

To bridge this gap, we propose a new perspective: treating each sequence not as a static node
embedding but as a dynamic set of event-level representations that can communicate across the graph.
Our approach introduces two complementary components.

• At the model level, we design BRIDGE, an end-to-end architecture that integrates a sequential
encoder with a GNN, to learn temporal and relational signals jointly.

• At the layer level, we develop TOKENXATTN, a token-wise cross-attention mechanism that
allows individual events in one sequence to attend to events in neighboring sequences.

The two components together enable richer information exchange and preserve the temporal informa-
tion of sequences while respecting the graph topology.

Across link prediction and fraud detection experiments, our approach consistently surpasses strong
GNN and temporal-graph baselines by treating sequences and graphs as a single system. This joint
view unlocks richer temporal–relational reasoning and points toward a new class of hybrid models
for complex, multi-modal data.

2 Related Works
This section reviews approaches that combine sequences and graphs. We leave additional related
works in Appendix A. A growing body of work seeks to leverage sequence and graph information,
motivated by applications where entities are connected but also evolve through temporal event
sequences. This line of research spans two major directions: (i) spatial-temporal graph methods,
which integrate time-series with graph structure, and (ii) temporal graph methods, which model the
sequence as edges with timestamps. We refer interested readers to Fathony et al. [1] for an extensive
comparison between our problem formulation and existing works.

Spatial-Temporal Graph Methods Spatial-temporal graph networks were originally designed for
time-series prediction problems such as traffic forecasting. Models like STGCN [15], STGformer [16],
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MTGCN [17], and MST-GAT [18] encode spatial relations (e.g., road networks) and temporal patterns.
In recommendation systems, hybrid approaches have also emerged. Shui et al. [19] models the
relational graph among items while simultaneously capturing user consumption sequences. Similarly,
Zhang et al. [20] treats users and items as different node types within a heterogeneous graph, enabling
message passing between items (sequential) and users (relational). A common limitation of these
methods is the assumption that all time series are synchronized and share identical time steps. By
contrast, our setting imposes no such constraint: sequences may be asynchronous, vary in length, and
even be non-overlapping. This flexibility better reflects real-world scenarios where user interactions
occur at irregular intervals and exhibit diverse temporal patterns across different users.

Temporal Graph Methods Temporal graph models such as TGN [3], TGAT [4],
DyRep [5],TNCN [21], and others [16, 20, 22, 23], attach timestamps to edges to model inter-
actions without aligned time steps. However, a temporal graph requires all events to be described
as a relation between two entities/users. Personal events that involve only a single entity cannot be
easily represented by a temporal graph. A common workaround is to introduce event nodes (e.g.,
representing “login” or “payment declined” as nodes) and connect them to the corresponding users,
but this can create high-degree hubs (e.g., a single “login” node connected to many users) and is often
unnatural in a graph formulation. As argued by Bechler-Speicher et al. [24], forcing an unsuitable
data modality into a graph form can fail to encode important information and may not be meaningful.

3 Problem Setup
We adopt the PRES formalization for personal and relational user events [1], simplified in that PRES
allows time-stamped relational events with possibly multiple events per user pair; we instead assume
a single relation type, so each user pair is either related or not. Let G = (V, E) be a user graph
with nodes V = {v1, . . . , vN} and (binary) edges E ⊆ V × V . Each node vi carries a sequence
Si = [e1, . . . , eMi

] of length Mi, where each element et is a personal event. Although some events
may have timestamps, our method only use the ordering of user events, not the exact absolute time,
so we omit them from the notation.

4 Methodology
To capture both sequential and relational structure in the general setting described above, our approach
consists of two main components:

1. Model level (BRIDGE): an end-to-end architecture that integrates a sequential model with a
graph neural network (GNN).

2. Layer level (TOKENXATTN): a token-wise cross-attention message-passing layer that
enables tokens in a sequence to attend to tokens in neighboring sequences.

4.1 BRIDGE: End-to-End Model Architecture

Our architecture integrates sequential and graph components end-to-end. The sequential module
encodes each user’s event sequence Si into a sequence of embedding vectors, Xi ∈ RMi×d, where
Mi is the sequence length and d is the embedding dimension. We then pass this to a graph module.
As standard GNN layers assume single-vector node features Zi ∈ Rd, we compress Xi via pooling
mechanism: Zi = Compress(Xi), before performing graph message-passing operations among
neighboring nodes. Alternatively, our proposed TOKENXATTN (Section 4.2) operates directly on Xi,
enabling event-level interaction across the graph structure. The graph model’s output is added back
to the original representation, Zi, via a residual connection.

Variants. Algorithm 1 specifies a family of sequence–graph models that we denote BRIDGE. The
graph step can be instantiated with standard GNN layers (GCN, GAT, TransformerConv) or with
the token-wise cross-attention layer introduced next. We refer to these variants as BRIDGE-GCN,
BRIDGE-GAT, BRIDGE-TransformerConv, and BRIDGE-TOKENXATTN.

4.2 TOKENXATTN: Token-Level Cross-Attention

In the previous subsection, we mentioned that conventional GNN layers [25–27] assume each node
is represented by a single feature vector. However, in our setting, each user corresponds to a
sequence of events with inherent temporal structure. Compressing an entire sequence into one vector
Zi := Compress(Xi) ∈ Rd, whether by pooling or taking the final event’s embedding, inevitably
discards the temporal information. We propose keeping the full sequence embedding for message
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Figure 2: Illustration of our proposed model. (Left) BRIDGE, the end-to-end sequence–graph
architecture, where the sequential module encodes node sequences and the resulting embeddings
serve as node features for the graph module. (Right) TOKENXATTN, a zoomed-in view of the token-
wise cross-attention layer that enables event-level message passing between neighboring sequences.

Algorithm 1 BRIDGE

Require: Graph G = (V, E); sequences {Si}Ni=1; Number of message passing layers L
Ensure: Final node representations {hi}Ni=1

1: for vi ∈ V do
2: Xi ← SeqEncoder(Si)
3: end for
4: for ℓ = 1, . . . , L do
5: for vi ∈ V do
6: H

(ℓ)
i ← MessagePassing

(
i, Xi, {Xj}j∈N (i)

)
▷ GCN, GAT, TOKENXATTN, etc.

7: Xi ← Xi +H
(ℓ)
i ▷ residual

8: end for
9: end for

10: for vi ∈ V do
11: hi ← vec(Compress(Xi))
12: end for

passing, i.e., Zi = Xi ∈ RMi×d, as different events in a neighbor’s history have different effects on
the target user (e.g., the most recent action is often most influential). To preserve this granularity,
we retain event-level embeddings: each user i is represented by a matrix Xi ∈ RMi×d, where Mi

is the sequence length. Building on this representation, we introduce a token-wise cross-attention
mechanism (Algorithm 2) that enables token-level message passing.

General neighbor aggregation. After computing the per-neighbor messages Hi←j , the final step
is to aggregate them into an updated representation for user i. We denote this step by a flexible
aggregation function fagg, which combines neighbor messages using edge weights wij and an operator
AGG ∈ {sum,mean}:

Hi = fagg
(
{Hi←j}j∈N (i)

)
= AGG j∈N (i)

(
wij Hi←j

)
, Hi ∈ RMi×dh .

Different GNN variants define wij differently. For example, mean aggregation sets wij = 1
|N (i)| ,

GCN uses wij =
1√

deg(i) deg(j)
, and GAT learns wij through edge attention mechanisms.

Finally, to capture multi-hop dependencies, we stack standard GNN layers on top of TOKENXATTN,
enabling information to propagate beyond immediate neighbors and reach higher-order neighbors.
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Algorithm 2 Token-Level Cross-Attention (TOKENXATTN)

Require: Node i; token matrix Xi ∈ RMi×d; neighbor tokens {Xj}j∈N (i); weights
WQ,WK ,WV ∈ Rd×dh ; edge weights {wij}j∈N (i); fagg ∈ {sum,mean}

Ensure: Hi ∈ RMi×dh

1: Qi ← XiWQ

2: for all j ∈ N (i) do
3: Kj ← XjWK ; Vj ← XjWV

4: Ai←j ← softmax
(
QiK

⊤
j /
√
dh

)
▷ ∈ RMi×Mj

5: Hi←j ← Ai←jVj ▷ ∈ RMi×dh

6: end for
7: if fagg = sum then
8: Hi ←

∑
j∈N (i) wij Hi←j

9: else ▷ fagg = mean

10: Hi ←
1

|N (i)|
∑

j∈N (i) wij Hi←j

11: end if
12: return Hi

5 Experiments
We validate our methods on two tasks, friendship prediction and fraud detection. For both experiments,
we report the average over three runs.

5.1 Friendship Prediction
Experimental Setup. We perform friendship prediction on the Brightkite dataset [28, 29] and
Amazon reviews [30]. Brightkite is a location-based social networking platform, and the dataset
contains location check-ins and friendship relationships among Brightkite users. Each check-in is
originally recorded in latitude and longitude, which we converted into Geohash-8 representation [31].
Example geohashes include 9v6kpmr1, gcpwkeq6, and u0yhxgm1, where nearby locations share
similar prefixes. Each user has a sequence of geohash check-ins, where we further split each geohash8
into 4 tokens, where the tokens represent increasingly higher resolution (smaller areas) of the location.
For Amazon, we use the Musical, Clothing, and Electronics categories. Each user’s sequence consists
of product IDs and ratings; the “friendship” graph is constructed via co-review ties—two users are
connected if they have co-reviewed at least three products.

Compared Methods. We compare three categories of baselines with BRIDGE:
1. Graph-Only Models. GCN [25], GAT [26], and TransformerConv [27] operate on a static

user friendship graph using single-vector node representations, ignoring the user sequences.
2. Temporal Graph Models. TGN [3], DyRep [5], and TNCN [21] are dynamic graph learning

methods that model event sequences as timestamped edges. Here, we convert each Geohash8
into a node (we do not perform a tokenized split of the geohash) and connect a user to the
geohash node every time they check in. The friendship info does not have a timestamp, so
we randomly add a time to it within each user’s check-in timeline.

3. Two-Stage Training. GCN + S, GAT + S, and TransformerConv + S extend the static graphs
by incorporating sequence embeddings as node features. These embeddings are obtained
from a bidirectional encoder transformer model that we trained with masked language
modeling on the user sequence tokens.

4. BRIDGE. We stack a BERT sequence encoder with different GNN backbones, trained
jointly in an end-to-end manner. In particular, the proposed TOKENXATTN layer achieves
the best performance across all metrics. Unlike the Two-Stage Training, BRIDGE does not
use frozen embeddings but learns the BERT and GNN components jointly on the target task.

Note that we do not compare against spatio-temporal models because they require synchronized time
series with identical time steps across all nodes, which is incompatible with our problem setting.

Evaluation Metrics. For the friendship prediction task, we follow prior works [32–34] and use
ranking-based metrics: mean reciprocal rank (MRR) and Hits-at-k, for k in {1,3,5,10}. At evaluation
time, we rank the ground-truth friendship of each user against 100 negative samples, generated by
uniformly sampling users not already connected to the target user in the training set.
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Table 1: Link ranking performance across four datasets (higher is better). H@k denotes the fraction
of test queries for which at least one ground-truth link appears among the top-k predictions. Best
results are bolded and the runner-ups are underlined.

Brightkite Amazon–Clothing

Method MRR H@1 H@3 H@5 H@10 MRR H@1 H@3 H@5 H@10

Graph Only (Static)
GCN 67.4±1.9 55.6±2.4 75.5±1.8 82.3±1.3 89.2±0.7 17.3±1.5 9.1±1.7 17.4±2.0 23.3±1.9 34.1±0.7

GAT 65.4±1.6 53.6±2.0 73.0±1.4 80.1±1.0 87.8±0.6 16.2±2.3 10.3±2.5 14.3±2.7 18.0±2.1 27.5±1.6

TransformerConv 68.5±0.2 56.9±0.2 76.6±0.4 83.2±0.4 89.8±0.3 18.8±0.7 10.5±1.1 19.2±0.3 25.2±0.3 35.5±0.4

Two-Stage (Static + Sequence)
GCN + S 68.6±1.1 56.9±1.4 76.7±1.0 83.4±0.7 90.0±0.3 13.5±2.7 5.3±2.8 12.0±3.5 18.2±2.8 31.6±0.7

GAT + S 67.9±0.5 56.4±0.6 75.7±0.6 82.3±0.5 89.4±0.2 14.1±4.6 7.3±4.8 12.5±5.5 17.2±5.6 28.8±3.6

TransformerConv + S 72.7±0.3 61.9±0.4 80.5±0.3 86.3±0.1 91.7±0.1 17.7±1.1 8.9±1.4 17.6±1.3 24.2±1.1 35.8±1.1

Temporal Graphs
TGN 38.7±1.6 24.8±1.8 43.8±1.7 53.9±1.3 68.1±1.1 14.8±1.4 4.9±0.8 13.4±2.1 20.8±3.0 36.9±3.4

DyRep 26.4±3.7 14.0±3.1 28.2±4.8 37.5±5.5 53.4±5.5 13.3±0.8 3.6±0.6 11.2±1.0 18.9±1.3 34.3±1.5

TNCN 53.8±0.5 42.9±0.4 58.2±0.6 65.9±1.0 76.0±1.1 31.7±1.8 22.5±1.7 33.9±2.5 39.6±2.1 48.1±1.6

BRIDGE
BRIDGE-GCN 92.2±0.6 89.9±0.7 93.6±0.6 94.8±0.5 96.3±0.4 49.5±3.4 32.6±2.9 61.1±7.3 73.9±3.2 82.3±1.1

BRIDGE-GAT 78.8±0.4 70.2±0.5 85.3±0.3 89.5±0.1 93.4±0.1 69.6±0.4 63.0±0.5 74.1±0.3 77.5±0.3 80.4±0.1

BRIDGE-TransformerConv 78.4±0.7 69.6±1.0 84.9±0.7 89.3±0.4 93.4±0.3 43.5±0.6 30.4±0.7 44.8±1.3 58.1±3.3 82.0±0.2

BRIDGE-TOKENXATTN 92.9±0.7 90.7±0.9 94.2±0.6 95.4±0.5 96.7±0.3 70.3±1.7 64.5±2.6 74.2±1.0 77.0±0.6 79.6±0.2

Amazon–Electronics Amazon–Musical

Method MRR H@1 H@3 H@5 H@10 MRR H@1 H@3 H@5 H@10

Graph Only (Static)
GCN 48.9±3.9 34.9±4.4 56.9±4.2 66.6±3.3 76.5±2.2 14.4±0.7 6.9±0.7 14.3±1.6 19.3±0.5 27.9±1.9

GAT 35.8±14.9 30.1±0.6 51.3±0.2 49.9±21.2 61.4±22.5 13.0±1.1 7.4±1.1 10.4±1.3 13.7±2.8 22.3±6.9

TransformerConv 55.8±0.7 43.0±1.0 63.8±0.6 71.5±0.4 79.5±0.1 25.0±0.1 15.5±0.4 25.8±0.4 32.6±1.0 45.1±1.2

Two-Stage (Static + Sequence)
GCN + S 50.7±0.8 37.0±0.8 58.8±1.1 68.1±0.9 77.2±0.5 16.6±4.9 9.0±4.8 15.1±5.7 20.0±5.9 32.0±5.3

GAT + S 41.0±16.0 36.7±0.4 58.0±1.1 55.5±20.0 65.8±18.7 12.4±0.5 5.7±1.1 10.4±0.4 15.1±0.1 24.8±0.8

TransformerConv + S 58.4±0.2 46.2±0.3 66.2±0.1 73.5±0.1 80.8±0.0 23.6±1.9 14.1±1.7 23.4±2.4 30.2±1.7 44.6±2.9

Temporal Graphs
TGN 33.8±1.5 21.1±1.3 37.6±1.8 46.5±2.1 60.0±1.8 13.2±0.8 5.9±0.6 12.1±1.3 17.3±1.9 25.8±1.4

DyRep 17.0±1.9 7.0±1.8 16.8±2.4 23.7±2.1 37.0±2.1 11.6±0.7 4.7±1.0 9.6±0.3 14.1±1.0 24.6±0.5

TNCN 45.4±1.1 35.7±1.2 49.8±1.1 55.8±0.9 63.0±1.2 19.8±3.0 11.1±2.5 20.3±3.5 26.2±4.8 36.7±4.5

BRIDGE
BRIDGE-GCN 74.6±0.2 68.5±0.4 78.5±0.1 81.8±0.2 85.2±0.1 44.5±1.2 30.0±1.4 54.7±1.7 63.2±1.0 70.2±0.5

BRIDGE-GAT 68.9±0.2 60.3±0.3 75.0±0.2 79.1±0.1 82.5±0.1 48.9±1.5 37.2±1.5 54.9±2.4 65.2±2.1 72.0±0.8

BRIDGE-TransformerConv 69.6±0.3 60.4±0.4 75.9±0.2 80.6±0.2 84.8±0.2 47.3±2.1 36.9±1.9 51.2±1.6 58.4±3.3 69.4±6.2

BRIDGE-TOKENXATTN 76.6±0.4 69.3±0.5 82.1±0.3 85.5±0.1 88.3±0.1 54.7±4.1 45.7±4.5 59.9±5.7 64.4±4.9 69.2±4.0

Results. From Table 1, we observe a clear hierarchy of performance. Augmenting static graph
methods with sequence embeddings as node features (Two-Stage) consistently improves their results.
Our proposed variants of BRIDGE achieve the best scores across all metrics, substantially outper-
forming methods in the other three categories. By contrast, temporal graph models do not perform
well, likely because encoding geohash as a node and user check-in sequences as time-stamped edges
fails to capture fine-grained sequential patterns and can introduce spurious neighbor relations (e.g.,
treating any two users who check in at the same location as second-degree neighbors). In addition,
by converting a Geohash into a node, we lose all the hierarchical information in the Geohash (i.e.
first digit of a Geohash conveys larger area information than the second, third, etc.), whereas in our
sequence model, we still retain this information by tokenizing a Geohash8 into 4 tokens. Finally, as
the friendship does not have time information, we need to incorporate randomized timestamps into
the temporal graph model, which may also cause performance degradation.

5.2 Fraud Detection
Experimental Setup. We evaluate fraud detection on Amazon review data [30]. Each user’s
sequence comprises product IDs and ratings; for this task, we also encode the associated review text.
Each review may receive “helpful” or “unhelpful” votes from other users. Following Dou et al. [35],
we use this helpfulness information as a proxy for fraud review incidents. Specifically, we label a
user with at least 5 reviews as fraudulent if more than 70% of their reviews are marked unhelpful.
Relational edges are defined by co-review patterns: two users are connected if they have co-reviewed
at least three products.

Compared Methods. Similar to the friendship prediction task, we evaluate static graph and
temporal graph methods on the relational graph, using the resulting node embeddings for classification.
We further compare against a text-based baseline that uses pretrained review embeddings.
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1. Graph-Only Models. GCN [25], GAT [26], and TransformerConv [27] operate on a static
user co-review graph with single-vector node representations, ignoring user sequences.

2. Temporal Graph Models. We run TGN [3] and DyRep [5]. TNCN [21] is not directly
applicable here, as it is designed for link prediction tasks. In this setup, the combination of
product and rating is converted to a node. If a user rates the product with a particular rating,
we connect the user node to the product rating node with a timestamped edge.

3. SBert Seq. We encode each review with Sentence-BERT1 to obtain a sequence of em-
beddings per user. For classification, we average the embeddings to form a single user
representation, which is passed to a classifier.

4. BRIDGE. Our approach combines Sentence-BERT embedding of review texts with a
learnable rating embedding. The rating embedding and GNN backbone are trained jointly
for fraud detection, allowing the model to integrate both textual and relational signals.

Evaluation Metrics. For fraud detection, we report two classification metrics: Max F1 (best F1
across thresholds) and PR-AUC (area under the precision–recall curve).

Table 2: Fraud detection performance across three Amazon categories.

Amazon-Movies Amazon-Electronics Amazon-Clothing

Method Max F1 PR AUC Max F1 PR AUC Max F1 PR AUC

Graph Only (Static)
GCN 32.4±2.2 19.4±2.0 12.0±0.0 6.4±0.2 4.9±0.1 2.4±0.3

GAT 33.5±0.1 20.2±0.5 12.0±0.1 6.5±0.4 4.6±0.1 2.2±0.0

TransformerConv 33.6±0.1 20.3±1.1 12.0±0.2 6.4±0.2 4.6±0.2 2.2±0.1

Temporal Graphs
TGN 44.9±0.4 34.6±0.3 14.5±0.9 9.0±0.6 8.0±1.6 3.7±0.6

DyRep 44.1±0.5 31.2±0.2 12.4±0.5 7.0±0.2 5.4±0.5 2.7±0.4

Sequence Only (Review Text Embedding)
SBert 75.6±0.7 83.1±1.0 42.2±1.3 38.7±1.9 34.2±3.2 31.9±3.1

BRIDGE
BRIDGE-GCN 78.8±0.9 85.6±0.6 45.2±1.9 43.4±2.1 36.0±1.7 34.8±2.6

BRIDGE-GAT 80.1±0.8 86.9±0.4 46.2±1.3 45.2±2.5 38.4±1.2 36.3±1.6

BRIDGE-TransformerConv 79.8±0.9 86.9±1.0 47.9±2.6 46.6±4.0 37.0±1.7 35.4±2.6

BRIDGE-TOKENXATTN 80.0±1.0 87.7±0.8 49.2±2.1 51.6±3.4 36.1±1.8 34.4±3.2

Results. From Table 2, a consistent ordering emerges: graph-only < temporal graph < sequence-
only (SBERT) < BRIDGE. Temporal structure helps over static graphs but still trails a simple SBERT
average, highlighting the importance of textual information for this task. All BRIDGE variants
outperform the baselines, showing clear gains from coupling event sequences with graph context.

6 Conclusion
We presented BRIDGE, a unified end-to-end architecture that learns from sequences and graphs
jointly, eliminating the common handoff where sequence encoders are frozen and passed to a
separate GNN. In BRIDGE, the sequential and relational components are trained together under
a single objective, allowing gradients to flow across both parts of the model and yielding task-
aligned representations. This simple design choice, treating sequence and graph modeling as one
training problem, consistently outperforms static GNNs, temporal graph models, and sequence-only
baselines across friendship prediction and fraud detection, demonstrating its effectiveness. We further
proposed TOKENXATTN, a token-level cross-attention layer that enables interaction between events
across neighboring sequences. Rather than viewing sequences and graphs as separate problems,
we argue they are complementary components of the same dataset—BRIDGE unifies them under
a single architecture, with TOKENXATTN enabling event-level interactions across them. Looking
forward, we believe this perspective opens the door to new models that can seamlessly integrate
multimodal sequential and relational signals across a wide range of domains, from social networks to
recommendation systems and beyond.

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

7

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


References
[1] Rizal Fathony, Igor Melnyk, Owen Reinert, Nam H. Nguyen, Daniele Rosa, and C. Bayan Bruss.

Integrating Sequential and Relational Modeling for User Events: Datasets and Prediction Tasks,
October 2025. URL http://arxiv.org/abs/2510.11903. arXiv:2510.11903 [cs].

[2] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network embeddings. In Companion Proceedings of
the The Web Conference 2018, pages 969–976, 2018.

[3] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal Graph Networks for Deep Learning on Dynamic Graphs, October
2020. URL http://arxiv.org/abs/2006.10637. arXiv:2006.10637 [cs].

[4] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive
Representation Learning on Temporal Graphs, February 2020. URL http://arxiv.org/
abs/2002.07962. arXiv:2002.07962 [cs].

[5] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. DyRep: Learning
Representations over Dynamic Graphs. September 2018. URL https://openreview.net/
forum?id=HyePrhR5KX.

[6] Alex Sherstinsky. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term
Memory (LSTM) network. Physica D: Nonlinear Phenomena, 404:132306, March 2020. ISSN
0167-2789. doi: 10.1016/j.physd.2019.132306. URL https://www.sciencedirect.com/
science/article/pii/S0167278919305974.

[7] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9
(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
https://ieeexplore.ieee.org/abstract/document/6795963.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[9] Bryan Lim, Sercan Ö. Arık, Nicolas Loeff, and Tomas Pfister. Temporal Fusion Transformers
for interpretable multi-horizon time series forecasting. International Journal of Forecasting, 37
(4):1748–1764, October 2021. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2021.03.012. URL
https://www.sciencedirect.com/science/article/pii/S0169207021000637.

[10] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph Neural Networks: A Review of Methods and
Applications, October 2021. URL http://arxiv.org/abs/1812.08434. arXiv:1812.08434
[cs].

[11] Yu Huang, Min Zhou, Menglin Yang, Zhen Wang, Muhan Zhang, Jie Wang, Hong Xie, Hao
Wang, Defu Lian, and Enhong Chen. Foundations and Frontiers of Graph Learning Theory,
July 2024. URL http://arxiv.org/abs/2407.03125. arXiv:2407.03125 [cs].

[12] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth,
and Pascal Poupart. Representation Learning for Dynamic Graphs: A Survey, April 2020. URL
http://arxiv.org/abs/1905.11485. arXiv:1905.11485 [cs].

[13] Senzhang Wang, Jiannong Cao, and Philip S. Yu. Deep Learning for Spatio-Temporal Data Min-
ing: A Survey, June 2019. URL http://arxiv.org/abs/1906.04928. arXiv:1906.04928
[cs].

[14] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion Convolutional Recurrent Neural
Network: Data-Driven Traffic Forecasting, February 2018. URL http://arxiv.org/abs/
1707.01926. arXiv:1707.01926 [cs].

8

http://arxiv.org/abs/2510.11903
http://arxiv.org/abs/2006.10637
http://arxiv.org/abs/2002.07962
http://arxiv.org/abs/2002.07962
https://openreview.net/forum?id=HyePrhR5KX
https://openreview.net/forum?id=HyePrhR5KX
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://ieeexplore.ieee.org/abstract/document/6795963
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.sciencedirect.com/science/article/pii/S0169207021000637
http://arxiv.org/abs/1812.08434
http://arxiv.org/abs/2407.03125
http://arxiv.org/abs/1905.11485
http://arxiv.org/abs/1906.04928
http://arxiv.org/abs/1707.01926
http://arxiv.org/abs/1707.01926


[15] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-Temporal Graph Convolutional Networks:
A Deep Learning Framework for Traffic Forecasting. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, pages 3634–3640, July 2018. doi:
10.24963/ijcai.2018/505. URL http://arxiv.org/abs/1709.04875. arXiv:1709.04875
[cs].

[16] Hongjun Wang, Jiyuan Chen, Tong Pan, Zheng Dong, Lingyu Zhang, Renhe Jiang, and Xuan
Song. STGformer: Efficient Spatiotemporal Graph Transformer for Traffic Forecasting, October
2024. URL http://arxiv.org/abs/2410.00385. arXiv:2410.00385 [cs] version: 1.

[17] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang.
Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’20, pages 753–763, New York, NY, USA, August 2020. Association
for Computing Machinery. ISBN 978-1-4503-7998-4. doi: 10.1145/3394486.3403118. URL
https://dl.acm.org/doi/10.1145/3394486.3403118.

[18] Chaoyue Ding, Shiliang Sun, and Jing Zhao. MST-GAT: A Multimodal Spatial-Temporal
Graph Attention Network for Time Series Anomaly Detection. Information Fusion, 89:527–536,
January 2023. ISSN 15662535. doi: 10.1016/j.inffus.2022.08.011. URL http://arxiv.org/
abs/2310.11169. arXiv:2310.11169 [cs].

[19] Zeren Shui, Ge Liu, Anoop Deoras, and George Karypis. Sequence-graph
duality: Unifying user modeling with self-attention for sequential recom-
mendation, 2022. URL https://www.amazon.science/publications/
sequence-graph-duality-unifying-user-modeling-with-self-attention-for-sequential-recommendation.

[20] Mengqi Zhang, Shu Wu, Xueli Yu, Qiang Liu, and Liang Wang. Dynamic Graph Neural
Networks for Sequential Recommendation. IEEE Transactions on Knowledge and Data
Engineering, 35(05):4741–4753, May 2023. ISSN 1041-4347. doi: 10.1109/TKDE.2022.
3151618. URL https://www.computer.org/csdl/journal/tk/2023/05/09714053/
1B0XPB9Fgk0. Publisher: IEEE Computer Society.

[21] Xiaohui Zhang, Yanbo Wang, Xiyuan Wang, and Muhan Zhang. Efficient neural common
neighbor for temporal graph link prediction, 2024. URL https://arxiv.org/abs/2406.
07926.

[22] Sangwoo Seo, Sungwon Kim, Jihyeong Jung, Yoonho Lee, and Chanyoung Park. Self-
Explainable Temporal Graph Networks based on Graph Information Bottleneck, June 2024.
URL http://arxiv.org/abs/2406.13214. arXiv:2406.13214 [cs].

[23] Lisi Qarkaxhija, Vincenzo Perri, and Ingo Scholtes. De Bruijn goes Neural: Causality-Aware
Graph Neural Networks for Time Series Data on Dynamic Graphs, September 2022. URL
http://arxiv.org/abs/2209.08311. arXiv:2209.08311 [cs].

[24] Maya Bechler-Speicher, Ben Finkelshtein, Fabrizio Frasca, Luis Müller, Jan Tönshoff, Antoine
Siraudin, Viktor Zaverkin, Michael M. Bronstein, Mathias Niepert, Bryan Perozzi, Mikhail
Galkin, and Christopher Morris. Position: Graph learning will lose relevance due to poor
benchmarks, 2025. URL https://arxiv.org/abs/2502.14546.

[25] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks, 2017. URL https://arxiv.org/abs/1609.02907.
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A Additional Related Works
A.1 Sequence Modeling

Transformer-based sequence models have delivered state-of-the-art performance across a wide range
of language and vision tasks by learning contextual representations over token sequences [8, 36–38].
Given an input sequence, these models map each token to a continuous embedding and use self-
attention to capture local and long-range dependencies within the sequence. While highly effective
for modeling the internal structure of a single sequence, this paradigm typically treats each sequence
in isolation and does not leverage information from related sequences.

A.2 Graph Modeling

Graph models capture relational structures among entities (nodes). In particular, graph neural
networks (GNNs) propagate and aggregate information over local neighborhoods to learn node, edge,
or graph level embeddings [25, 27, 39]. These methods have demonstrated strong performance across
tasks such as node classification[25, 40], link prediction [41, 42], and recommendation [43–45].
Standard GNNs model each node in the graph as a single feature vector and do not account for
sequential information within nodes. Bridging graph-based relational modeling with sequence-aware
representations is therefore an important step toward richer models that capture both intra-sequence
patterns and inter-sequence relations.

A.3 Graph Large Language Models

An emerging line of research seeks to leverage the generalization capabilities of foundation models
for graph learning. Graph large language models (Graph LLMs) achieve this by integrating pretrained
LLMs with graph-structured data through prompting [46–48], instruction tuning [49–52], or hybrid
architectures [53–55]. The promise of Graph LLMs lies in bridging reasoning over relational data
with the flexibility of natural language interfaces. In line with this view, Zhou et al. [56] even
conceptualizes that each graph can be seen as a new language for the LLMs to learn. Our approach,
however, differs: rather than adapting pretrained LLMs to graphs, we introduce a unified architecture
that integrates sequence modeling with GNNs to jointly capture temporal dynamics and relational
structure.

B Limitations and Discussion

While BRIDGE provides a unified way to learn from sequences and graphs, several limitations remain.

Use of timestamps. BRIDGE preserves event order but does not inject absolute timestamps or
inter–event gaps. Likewise, TOKENXATTN attends over tokens without explicit time encoding. Tasks
where absolute time or time interval between events are informative may benefit from adding relative
or absolute time features, which we leave to future work.

Complexity of TOKENXATTN. For preserving the granularity of event-level information, the
complexity of TOKENXATTN is quadratic with respect to the sequence length. Some potential
efficiency improvements can be applying a more efficient attention mechanism, such as linear
attention, or reducing the sequence length through patching.
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