Under review as a conference paper at ICLR 2026

P0OSS: POSITION SPECIALIST GENERATES BETTER
DRAFT FOR SPECULATIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding accelerates Large Language Model (LLM) inference by
using a small draft model to predict multiple tokens, and a large target model
to verify these tokens in parallel. Recent studies leverage the hidden state of
the target model to enhance draft model prediction accuracy. However, ex-
isting methods suffer from the degrading quality of draft token predictions at
later positions, due to error accumulation in draft model generated features.
In this paper, we propose Position Specialists (POSS), which consist of multi-
ple position-specialized draft layers to generate tokens at assigned position(s).
Position specialists substantially improve token acceptance rate at later posi-
tions within each drafting round, as each specialist only needs to focus on
handling a certain level of draft model feature deviation. Experiment results
on Llama-3-8B-Instruct and Llama-2-13B-chat across six datasets demonstrate
that POSS effectively improves over baselines on average acceptance length
and speed-up ratio. Our codebase is available at https://github.com/
poss—speculative-decoding/Position—-Specialist.

1 INTRODUCTION

Speculative decoding (Leviathan et al., 20225 (Chen et al., 2023) is an effective approach to accel-
erate the autoregressive decoding of Large Language Models (LLMs) through a draft-then-verify
framework. Specifically, it employs a lightweight draft model to generate candidate tokens autore-
gressively, which are then verified by the larger target model in parallel to determine accepted tokens
from proposed draft tokens, thereby reducing overall decoding time. The effectiveness of specula-
tive decoding largely depends on the average acceptance length 7 (accepted token counts per round)
from the prediction depth L (predicted token counts generated by the draft model per round).

Recent efforts (Cai et al., 2024; |Li et al.| |2024alb; [2025) in speculative decoding utilize the target
model hidden states as input to enhance draft model prediction accuracy. EAGLE (Li et al.|[2024aib;
2025) employs a one-layer Transformer as the draft model and trains it to predict the next token with
features from the target model. However, EAGLE-1,2 exhibit a training—inference discrepancy:
target model features are always available during training, but sometimes not at inference time.
Instead, it relies on features generated by the draft model. HASS (Zhang et al.,[2024) and EAGLE-
3 (Li et al.l [2025) partially address this discrepancy by training the draft model to predict the next
token with features from previous draft steps. However, both approaches suffer from relying on a
single draft model to predict tokens at multiple positions in the draft sequence.

We hypothesize that effective draft model should be position-specialized within the prediction
length L: early positions require accurate predictions with reliable target model features, while
later positions must learn to mitigate the increasing levels of feature deviations. To evaluate the
prediction quality across positions, we introduce the metric of position-wise acceptance rate (pos-
acc) to measure the conditional probability of accepting the i™ token given the acceptance of its
preceding (i — 1) token. Our analysis reveals that both EAGLE and HASS suffer from rapidly
degrading pos-acc beyond the first few predicted tokens. This confirms our hypothesis that a single
draft model is limited by its generalization capability of various positions.

To address this challenge, we propose Position Specialists (POSS), a novel framework that consists
of multiple position-specialized draft layers, called position specialists. Each position specialist is
trained for predicting tokens at its assigned position(s), and only needs to handle an expected level

https://github.com/poss-speculative-decoding/Position-Specialist
https://github.com/poss-speculative-decoding/Position-Specialist

Under review as a conference paper at ICLR 2026

(r)y Target model-
Single Draft Model 6 p {POSS-3 051 } {POSS-3 052} D : f; generated feature
@ T) Target model feature
o A

navailable at inference)

®Q across :
runs 5 f(D)SmgIe draft model-

i generated feature
brown fox Ijumpso over

@ (D;) PosS models-
-

jumps overi EDD fz generated feature

l . : Draft features in current round

: Verified i i d
[etz ekl 0T} —>: Verified in previous roun

- -->»: Not yet verified in current round

: Predicted features deviate from target features. (represented by purple arrows)

@: The feature deviation accumulates along draft positions. (represented by gradually longer purple arrows@@)
@: Projection (feature — token) is tolerant to feature deviation within certain degree, but the predicted token
changes beyond that level.(@ p, fails at the 4’5 ("jumps") and the 5” word ("over"))

@: PosS mitigates feature deviation by switching to another draft layer, maintaining correct token prediction.

Figure 1: This figure illustrates how POSS improves over single draft models like EAGLE and
HASS at inference time. Draft model-generated features have two functions: generate draft tokens
via LM head projection and serve as input to draft model at the next position. When generating draft
tokens, a slight deviation between draft and target features does not change the predicted tokens.
However, when biased features are used to predict the next positions, the existing deviation is am-
plified and causes a larger deviation in following steps, eventually leading to wrong token prediction.
PoOsS, however, resets the deviation propagation to a low level by switching to another draft layer.
As aresult, POSS maintains draft token accuracy at later positions, achieving better acceptance rate.

of feature deviation at that position, thus enabling more accurate draft token predictions than a single
draft model which needs to handle varying levels of feature deviation at different positions.

We conduct extensive experiments on two model sizes (Llama-3-8B-Instruct and Llama-2-13B-
chat) across six benchmark datasets, and demonstrate that POSS consistently outperforms baseline
methods. On the average of 6 test datasets, POSS surpasses the strong baseline EAGLE-3 on aver-
age acceptance length by 9.2% (from 4.69 to 5.12) and on speed-up ratio by up to 10.5% (from
2.96x to 3.27x). We also carry out a comprehensive analysis and reveal that the efficiency of
PoOSS comes from reduced rounds of speculative generation, as a higher position-wise accep-
tance rate at deeper positions enables longer acceptance length 7 per round.

Our primary contributions include:
* We introduce position-wise acceptance rate (pos-acc) as a crucial metric for analyzing the draft
quality of speculative decoding approaches.

* We propose Position Specialists (POSS), a novel framework that employs position-specialized
layers to address the challenge of accumulated levels of feature deviation in draft predictions.

* We conduct extensive experiments and analysis to demonstrate that POSS outperforms baseline
methods on both average acceptance length and speed-up ratio.

2 PRELIMINARY

2.1 SPECULATIVE DECODING

Speculative decoding harnesses the principle of speculative execution (Kung & Robinson, [1979),
where a smaller, faster draft model 6 works alongside a larger target language model 6 that we
aim to accelerate. The standard speculative decoding (Leviathan et al., [2022) operates in three key
phases. First, the draft model 6 autoregressively generates a candidate sequence of length L. Next,
the target model 6 evaluates all L draft tokens in parallel with a single forward pass. Finally,

Under review as a conference paper at ICLR 2026

EAGLE/HASS PosS Inference:

) Tt41 | T2 Te43 T4l | T2 | Te43
Inference: W Position-Specialized e
ingle Draft Model (D: S
Single Draft Model| ‘)f i Draft Models ft(1) MY
f i% if AR
Loviovi Povi v
Tt | Tit+1|Te42 Tt | Tit+1|Te42
(Ds) ¢(D S1)| £(52)
P I EE
EAGLE-1,2 Training: HASS/EAGLE-3 Training: PosS Training: autoregressive +
parallel training autoregressive training position-specialized training
Ti41|T142 | Tet3 Tt+1 Tt+2 Tt+3 Tt+1 Tt+2 Zt+3
D1) ¢(D1) ¢ (D: D. (D3) D. St S2 (83
PN PN@N PO . 7 S ft)
A (A U A . | A w0
[Draft Model 8 } { Draft Model 6p J [Posses.J f [POSS oSzJ‘; -
C AT AT A AT TATT A
Tt |Teyl Ter2 Tep1 Tt T4 Tl Tey2
@] @] (@ PG @) @ Sl Nlpen
I e I I T
—> parallel training ----> autoregressive decoding / training

Figure 2: The inference and training stages of EAGLE, HASS, and our POSS method. The dashed
lines represent autoregressive decoding or training, and the solid lines represent parallel training.
The input concatenates context word embeddings x and features from previous step f. During in-
ference, EAGLE and HASS use a single draft model 6 to generate features f(P+) for each position
1 recursively. For draft model training, EAGLE-1,2 uses the target model feature f (T) as input for
training. HASS and EAGLE-3 additionally use draft model-predicted features f(P:). Different from
them, POSS introduces different position specialists fg;. During inference, the posmon—spemallzed

draft models autoregressively generate features f (7). where position ¢ corresponds to the specialist
fg;. At training stage, POSS applies position-specialized training: A specialist fg; is trained on the
h position using the previous step specialist feature.

draft tokens that align with the target distribution are accepted. This parallel evaluation significantly
reduces inference latency compared to traditional token-by-token generation.

2.2 HIDDEN STATE ASSISTED SPECULATIVE DECODING

Recent research efforts (Cai et al.|[2024; |Li et al., [2024a3b; 2025)) discover the potential of the target
model’s hidden state. Instead of using a complete auxiliary model for drafting, researchers demon-
strate that applying a few extra layers to process the last-layer hidden states of the target model,
referred to as features, suffices for effective draft generation. Medusa (Cai et al.,[2024) uses multiple
language model heads to project a feature vector into different output spaces to predict several sub-
sequent tokens simultaneously. EAGLE-1,2 (Li et al.,[2024ajb) represent a significant breakthrough
in speculative decoding through concatenating input embedding with feature vectors. EAGLE-3 (Li
et al.| 2025)) substitutes the last-layer hidden states with those from low, middle, and high-level lay-
ers, further improving the performance. EAGLE family employs a one-layer Transformer as the
draft model 6 and reuses LM head of the target model for token prediction. At generation step ¢,
EAGLE’s draft model 6 predicts the next token z;, based on context x<; and features f;:

P(y41) = Head(0p ([w;), [we—1s ST), - [£5T) (1

Figure [2| provides an example of EAGLE at inference stage. 6p autoregressively generates draft
tokens 41, Ti42, Tiy3, Where the subscripts represent the timesteps. Inputs are derived from dif-

ferent sources, denoted by superscripts: f(T) represents feature from the target model; f(P%) rep-

Under review as a conference paper at ICLR 2026

resents feature from the i*" draft step of the draft model D. f(P) is used instead of f(7) when
the target model features are unavailable, before the forward pass completion of subsequent tokens.
Therefore, the prediction of the k*" draft position is formulated as:

P(aeer) = Head(Op ([esr—s ity)l 7)) Lo S0, e f571) @)
Specifically, equation 2] degenerates to equation [Tjwhen k = 1.

Although EAGLE-1,2 perform inference with equation [2] it is solely trained on equation [I] This
exhibits a fundamental training-inference discrepancy: 6p needs to predict the subsequent tokens
(k > 1) with its own generated features during inference, but it never observes its own prediction
errors during training, which impairs the ability to effectively predict long draft sequences.

HASS and EAGLE-3 explicitly address the discrepancy through recursive feature alignment in train-
ing. Therefore, the training process aligns with the inference process, as shown in Figure 2] Even-
tually, they improve the acceptance probabilities of tokens at later positions compared to EAGLE-2.

3 METHOD

In this section, we introduce our Position Specialist (POSS) approach for speculative decoding. We
first introduce the concept of position-wise acceptance rate to reveal the fundamental limitations in
existing approaches in Section[3.1] We then propose our POSS with position specialized training in
Section[3.2]to address the limitation.

3.1 POSITION-WISE ACCEPTANCE RATE

Previous speculative decoding frameworks rely heavily on the generalizability of a single draft layer
for multi-position token generation. EAGLE-1,2 trains 6 only on the immediate next position but
expects it to generalize to subsequent positions at inference time. While HASS and EAGLE-3 train
fp on both the immediate and later positions, only one draft model is used to generalize across
diverse feature sources and different draft positions. As the draft model is a single Transformer
layer, the generalizability is inherently limited due to model capacity.

To demonstrate the generalization limitation of EAGLE and HASS, we introduce position-wise
acceptance rate (pos-acc), which measures the probability that a token at position ¢ is accepted
given its preceding token at position ¢ — 1 is accepted. The pos-acc at position ¢ is defined as:

P(A;_1NA; P(A; .
pos-acc, = P(A; | Ai—1) = (P(Al-l)) = P(1(4')1) , i>1 3)

where A; denotes the event that the token at position i is accepted during the verifying process.
Notice that the target model acceptance follows a strict sequential dependency: if x; is accepted, its
preceding tokens z|o.;_1) must also have been accepted, and therefore A; C A; .

We point out that higher pos-acc is crucial for achieving a higher acceptance length 7 at each draft-
verification round. For a draft sequence of length L, the probability of accepting all draft tokens up
to position k (k < L) is:

P(Ay) ifk=1

4
P(Ay) Hf:z pos-acc;, ifk >1 @

P(AlﬁAgﬁ"'ﬂA}C):{

This chain rule decomposition reveals that the overall acceptance length depends on the multiplica-
tion of pos-acc, and is particularly sensitive to degradation in any single position. Notably, token
prediction becomes increasingly challenging at later positions due to the accumulation of prediction
errors and the growing uncertainty in longer draft positions.

In Figure [3] we demonstrate the empirical pos-acc of EAGLE-2,3 and HASS. EAGLE-2’s pos-acc
deteriorates rapidly beyond position & = 1. This is because the draft model of EAGLE-2 is solely
trained on predicting the next immediate token. HASS and EAGLE-3 are able to maintain relatively

Under review as a conference paper at ICLR 2026

higher pos-acc at later positions because a single draft model is trained on multiple subsequent
positions. However, their pos-acce at position k = 1 becomes lower than other methods by about 1%
to 2%, because of their compromise to other positions. This critically impairs the overall acceptance
length due to the multiplicative nature of the acceptance probability in equation 4]

3.2 POSITION SPECIALISTS IMPROVE POSITION-WISE ACCEPTANCE RATE

To address the aforementioned limitation, we intro-
duce Position Specialists (POSS) to preserve early-
position acceptance rate while enhancing later posi- %
tion predictions. POSS consists of multiple position-
specialized draft layers, called position specialists.
Each specialist is trained for certain position(s) and §8°
generates draft tokens at its assigned position(s). §
The number of positions that a specialist is assigned

to can be pre-defined as n, and POSS-n means each 70
specialist is responsible for n positions. Figure [2]ex-
hibits the training and inference of POSS-1. In the
example, there are 3 position specialists {fg: }5_;,
with each assigned to predict the draft token xy;.
During training, each specialist §g: learns to predict
using the input feature of draft model at the previous
step.

Position-Wise Acceptance Rate at Different Positions

EAGLE-2
mm HASS

PosS-3(E2)
mm EAGLE-3
EEm PosS-3(E3)

1 2 3

4 5 6
Position
Figure 3: Position-wise acceptance rate (pos-
acc) of the i*" token on MT-Bench dataset
by various speculative decoding methods.
The pos-acc of EAGLE-2 and HASS decays
fast as the draft sequence gets longer. Our
Figure [T]illustrates the draft process at the inference proposed POSS method keeps a stable and
stage, showing the deficit of a single draft model and higher pos-acc even at the deepest position .
how POSS improves over it. All methods with EA-
GLE frameworks require the features from the target model for drafting. During a draft phase, the
target model-generated features at most positions are unavailable because these draft tokens have
not been verified by the target model. In this case, the input of the draft model is substituted by
draft model-generated features, which have an inevitable deviation from target features. Although
the slightly deviated features may still predict the current token accurately, the bias is passed to the
next draft position because these features also serve as input to the draft model for the next token
prediction. The feature deviation propagates and accumulates along draft positions until it becomes
too big to yield a correct token. Existing work, HASS and EAGLE-3, tries to mitigate feature devi-
ation by aligning training and inference, as exhibited in Figure[2] However, the limited capacity of
a single draft model prohibits it from handling all deviations. As a result, they either perform worse
at later or earlier positions.

The key point of POSS is to improve draft models’ ability to handle all kinds of deviations. Un-
like the single draft model, each position specialist in POSS is position-aware. The draft layers
beyond the first one are only trained to make accurate predictions from biased feature input, which
enables them to mitigate the deviation accumulated from previous steps. Another benefit brought by
position-specialized draft layers is that it avoids conflict optimization directions. The lower pos-acc
of EAGLE-3 at the first position is likely a result of training on all positions. Since it trains a lot on
draft model-generated features, with different levels of deviations, as input, it performs worse when
the input is only target features. However, this is not a problem for POSS, because tasks of largely
different optimization directions are distributed to different position specialists.

We further highlight that POSS is orthogonal to EAGLE-2 and EAGLE-3 frameworks. We use the
same loss as HASS and EAGLE-3, but optimize our designed draft model architecture. POSS-n
predicts draft token z; with equationE[, which differs from equation |Z| only in the superscripts.

[k/n] 1
P(z111) = Head(8 g/t ([wesns £y Do loerns 1500l 0o fens £571) 0 5)

For implementation, we conduct an experiment in Section [6.1] comparing P0OSS-1,2,3, where they
show similar pos-acc. Considering the extra memory usage, the setting POSS-3 is recommended.

Under review as a conference paper at ICLR 2026

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Metrics. We evaluate the performance of our approach using two key metrics: speed-up ratio and
average acceptance length.

* Speed-up Ratio: The speed-up ratio measures the improvement in generation efficiency compared
to the vanilla target model decoding, calculated as the ratio between throughputs (tokens generated
per second) of a speculative decoding approach to that of the target model autoregressive decoding.
A higher speed-up ratio indicates better performance.

» Average Acceptance Length 7: The average acceptance length represents the mean number of
tokens accepted in each round of L drafting positions (denoted as prediction length). It reflects
how effectively the draft model can predict longer sequences that match the target model output.
Longer acceptance lengths generally correlate with improved efficiency as they reduce the number
of draft iterations needed.

Datasets. We conduct comprehensive experiments on six datasets, following EAGLE. This in-

cludes MT-Bench (Zheng et al., [2023)) for multi-turn conversation, Alpaca (Taori et al., [2023)

for instruction following, GSM8K (Cobbe et all 2021) for mathematical reasoning, Natural

Questions (Kwiatkowski et al., 2019) for question answering, CNN/Daily Mail (shortened to

CNN/DM) (Nallapati et al., 2016) for summarization, and HumanEval (Chen et al.,|2021) for code

generation.

Target Models. We evaluate our method on two model sizes: Llama-3-8B-Instruct (L3 8B) and
Llama-2-13B-chat (L2 13B). This allows us to evaluate how our approach performs across model
sizes. Llama-3-8B-Instruct serves as our primary model for ablation studies and detailed analysis,
while Llama-2-13B demonstrates the scalability of our method to larger models.

Implementations. Our implementation is built upon the open-source repositories of EAGLEﬂ
HASSEL and SpecForgeEl As EAGLE-2 is a widely adopted method and HASS is built upon it,
we mainly experiment with the EAGLE-2 framework. Besides, we also experiment POSS-3 on the
recently introduced EAGLE-3 framework in our Llama-3-8B-Instruct setting for fair comparison.
To distinguish our method on two frameworks, they are named “POSS(E2)” and “POSS(E3)” when
needed. Because EAGLE-3 introduces a much larger training set, we reproduce it using similar
training steps as methods in EAGLE-2 framework for fair comparison. All models apply tree-draft
inference implemented by EAGLE-2,3. The detailed settings are introduced in Appendix [A]

Table 1: Average acceptance length 7 of all methods. L3 8B represents Llama-3-8B-Instruct, L2
13B represents Llama-2-13B-Chat.

Temperature=0

Model Method MT-Bench Alpaca GSMS8K Natural Questions CNN/DM HumanEval Avg.

EAGLE-2 4.11 432 425 3.38 3.61 4.70 4.06

HASS 442 4.62 4.61 3.54 3.92 5.20 4.39

L3 8B | P0OSS-3(E2) 4.52 4.82 4.81 3.64 4.05 5.41 4.54

EAGLE-3 4.73 5.07 4.89 371 4.18 5.55 4.69

P0sS-3(E3) 5.15 5.50 5.43 4.13 4.54 5.95 5.12

EAGLE-2 4.86 4.64 5.01 4.15 4.30 5.78 4.79

L2 13B HASS 5.28 5.16 5.40 443 4.59 6.37 5.21

PoSS-3(E2) 5.33 517 5.48 4.52 4.70 6.43 5.27
Temperature=1

EAGLE-2 3.83 4.15 4.09 3.18 3.39 4.50 3.86

HASS 4.01 4.39 4.49 3.40 3.65 5.00 4.16

L3 8B | P0OSS-3(E2) 4.13 4.46 4.67 3.37 3.76 5.12 4.25

EAGLE-3 431 4.62 4775 3.45 3.85 5.30 4.38

P0sS-3(E3) 4.66 4.98 5.24 3.81 4.14 5.69 4.75

EAGLE-2 4.69 4.44 4.82 4.12 4.25 5.54 4.64

L2 13B HASS 5.04 4.92 5.24 4.36 4.60 6.03 5.03

PoSS-3(E2) 5.12 4.98 5.39 4.35 4.54 6.15 5.09

https://github.com/SafeAILab/EAGLE
Zhttps://github.com/HArmonizedSS/HASS
Shttps://github.com/sgl-project/SpecForge

https://github.com/SafeAILab/EAGLE
https://github.com/HArmonizedSS/HASS
https://github.com/sgl-project/SpecForge

Under review as a conference paper at ICLR 2026

5 RESULTS

We introduce the main results in this section. Table [I] presents the average acceptance lengths of
different models. Table 2] presents the speed-up ratio of these models.

Our methods achieve the highest overall average acceptance length under different sampling temper-
atures, demonstrating the effectiveness of position specialists in making accurate draft predictions.
When L3 8B serves as the target model, POSS achieves consistently higher speed-up ratio over the
baselines. When L2 13B is the target model and generates stronger feature representations, POSS is
less advantageous, but POSS-3 still achieves the highest speed-up ratio.

Table 2: Speed-up ratios of all methods. L3 8B represents Llama-3-8B-Instruct, L2 13B represents
Llama-2-13B-Chat.

Temperature=0

Model Method MT-Bench Alpaca GSMS8K Natural Questions CNN/DM HumanEval Avg.

EAGLE-2 2.77x 2.79x 2.87x 2.29x 2.27x 3.08x 2.68x

HASS 2.94x 2.97x 3.11x 2.38x 2.47x 3.48x 2.89x

L3 8B | P0OSS-3(E2) 2.96x 3.10x 3.17x 2.45x 2.50x 3.53x 2.95x

EAGLE-3 2.99x 3.11x 3.05x 2.34x 2.63x 3.62x 2.96x

PosS-3(E3) 3.35x 3.45x 3.41x 2.71x 2.84x 3.88x 3.27x

EAGLE-2 2.99x 2.95x 3.23x 2.71x 2.49x 3.71x 3.01x

L2 13B HASS 3.28x 3.34x 3.52x 2.96x 2.72x 4.15x 3.33x

PosS-3(E2) 3.28x 3.32x 3.59x 2.96x 2.74x 4.12x 3.34x
Temperature=1

EAGLE-2 2.67x 2.55x 2.09x 2.02x 2.80x 2.47x 2.43x

HASS 2.77x 2.79x 2.14x 2.09x 3.03x 2.56x 2.56x

L3 8B | PosS-3(E2) 2.71x 2.86x 2.12x 2.18x 3.11x 2.58x 2.59x

EAGLE-3 2.64x 2.65x 2.93x 2.08x 2.30x 3.10x 2.62x

Po0sS-3(E3) 2.90x 2.84x 3.11x 2.09x 2.49x 3.21x 2.77x

EAGLE-2 2.95x 2.88x 3.13x 2.76x 2.51x 3.48x 2.95x

L2 13B HASS 3.22x 3.30x 3.46x 2.97x 2.67x 3.89x 3.25x

PosS-3(E2) 3.22x 3.23x 3.49x 2.96x 2.73x 3.92x 3.26x

6 ANALYSIS

6.1 POSITION-WISE ACCEPTANCE RATE

In Section we introduce the metric o5 Position-Wise Acceptance Rate
position-wise acceptance rate (pos-acc) to re-
flect the acceptance rate of a specific position,
which largely affects the overall acceptance
length. Here we demonstrate that POSS largely
improves pos-acc by mitigating the feature
deviation at each position and well balancing
all positions. 70

EAGLE-2
EEE HASS

PosS-1(E2)

PosS-2(E2)
I PosS-3(E2)
B EAGLE-3
EEN PosS-3(E3)

® ©
=} «

Acceptance Ratio (%)
N
w

In Figure [we show the pos-acc with a draft 65
depth of 8 on different models. EAGLE-2, Position

with the least position generalization ability, Figure 4: The position-wise acceptance rate

_ th 5o-
Eﬁisogocs)naccfllzvgesr (:tillrzlmoglsy%rnf;ior?tlaitrllleagequra)l(t)e of EAGLE, HASS, and variants of POSS. Ex-
) periments are conducted on MT-Bench dataset,

pos-acc at the first four positions, after which

performance degrades significantly due to a sin- with base model Llama-3-8B-Instruct and draft

gle draft model. EAGLE-3, with an advanced depth=8. POSS maintains ar(.elatlvely higher pos-

framework desion achieve; hicher pos-ace at €€ than corresponding baselines even at the 8"
&n, gher p position.

later positions. However, the first position accu-
racy of EAGLE-3 drops behind other methods,
because the single draft model needs to balance all positions, and the pos-acc at the first position is
sacrificed. In contrast, all variants of our POSS method maintain substantially higher pos-acc until
the last position. The separate position specialist design also avoids the compromise of all positions.

Under review as a conference paper at ICLR 2026

Bars: Decomposed Time Cost of 5k Rounds Bars: Decompsed Time Cost
Lines: Rounds Needed for Completing the Entire Test set of Completing the Entire Test set
3 HASS [EAGLE-3 FZA draft =3 others
12000 [0 PosS-3(E2) [PosS-3(E3) 24 verification

~ 250 ~500
g .y
o 10000 § o _ — —
< 200 € ©400] | B i S
(9] 1 o &5 "
3 o 7% 8000 § 8 3 % & E E o 3
3 el % & A © 3 2 KX KX
2 s § : § R =3 1 11 5
7 K RS S8 e |, 28 s % :
O 100 SaA80s % %5 ® 0200 8 P S B
) AL & A o w X %
g % % BOER % o4 [C S KR 02 &
F 50 : S5 % 4000 100 G ‘? 4

0 d=4 d=5 d=6 d=7 d=8 2000 0 d=4 d=5 d=6 d=7 d=8

Draft Depth Draft Depth
(a) (b)

Figure 5: Computation time of different phases on MT-Bench dataset on different models across
varying draft depths. The bar plots present the decomposition of time spent on each phase of spec-
ulative decoding, where subfigure (a) measures the time spent on 5k rounds and subfigure (b) mea-
sures the time to complete an entire test set. The line plot presents the number of rounds needed to
complete a dataset. The lower the metrics are, the better the method is.

This demonstrates the effectiveness of POSS in mitigating position deviation and making accurate
predictions.

6.2 COMPUTATIONAL EFFICIENCY TRADEOFF ON DRAFT DEPTH

Although tree-draft inference is widely adopted, no previous work has systematically analysed how
draft depth influences generation speed. Here, we conduct a comprehensive analysis of computa-
tional costs and efficiency benefits brought by extending draft depth.

Each complete round of speculative generation involves two primary phases: the draft phase and
the verification phase. In this experiment, we quantitatively analyze the time cost through three key
metrics: (1) per-round computation time, (2) total round counts for test set generation, and (3) total
time cost for test set generation. We demonstrate a comprehensive analysis in Figure [and present
the following noteworthy observations.

Larger draft depth increases draft phase computation time. We present in Figure[5{a) the sum
of per-round computation time over 5,000 rounds across varying draft depths, decomposed into draft
phases and verification phases (bar chart), as well as the total rounds needed (line chart). Empirical
results show that the increased total pre-round time is mainly attributed to the draft phase, and longer
draft sequences do not influence verification time.

EAGLE-3 framework reduces draft time but increases verification time. In Figure[5[a), com-
paring to models of EAGLE-2 framework (HASS and P0SS-3(E2)), models of EAGLE-3 frame-
work (EAGLE-3 and P0OSS-3(E3)) cost less time on draft, but more time on verification. The re-
duction in draft time results from vocabulary-pruning setting, and the increase in verification time is
because of the additional feature aggregation designs in EAGLE-3.

PoSS achieves the lowest overall computation time with reduced round counts. The overall
computation time is the multiplication of the number of rounds and the pre-round time. In Fig-
ure Eka), the bar chart demonstrates that POSS has similar per-round calculation time to baseline
methods, and the line chart shows that POSS requires fewer rounds to complete the whole test set,
which is the result of a larger acceptance length. The overall time cost presented in Figure 5{b) con-
firms that POSS is faster than corresponding baselines. It is surprising that EAGLE-3 is the slowest
when the draft depth is 4 and 5. This is because the first position accuracy of EAGLE-3 is negatively
affected when training on large draft depth, as discussed in Section [6.1}

Under review as a conference paper at ICLR 2026

6.3 ABLATION STUDY ON DRAFT MODEL PREDICTION DEPTH

Figure [6] presents the throughput and average acceptance length under different draft depths. The
average acceptance length 7 increases with the draft depth consistently, but the improvement dimin-
ishes at higher depth. The diminishing improvement, along with the linearly increasing time cost of
draft depth, creates an optimal point for throughput. In the experiment on MT-Bench dataset, with
Llama3-8B-Instruct as the target model, we empirically demonstrate that the throughput peaks at
draft depth = 5 and 7 for models of EAGLE-2 and EAGLE-3 frameworks, respectively. This demon-
strates that increasing pos-acc at later positions is beneficial to improving the overall throughput.

Throughput & Acceptance Length

I}
1507 & Hass (Throughput) M- HASS (Acceptance Length)
—*— EAGLE-3 (Throughput) EAGLE-3 (Acceptance Length)

7 RELATED WORK

‘m-
~#— P0sS-3(E2) (Throughput) -Ml- PosS-3(E2) (Acceptance Length) 5.75
-Bl- PosS-3(E3) (Acceptance Length) :

7.1 LINEAR SPECULATIVE DECODING e PosS:3(E3) (Throughput)
140
Early works (Xia et all 2022) introduce the
fundamental concept of using a draft model
to predict multiple tokens in parallel. This
is followed by various improvements in lin-
ear speculative decoding, including adaptive
calibration techniques (Gautam et al. 2025),
dynamic candidate length adjustment (Huang
et all [2024b), and methods to optimize the)
latency-throughput tradeoff (Sadhukhan et al., w7 I;gf{ff"
2024). Recent advances focus on multi-token .
prediction (Gloeckle et al., |2024)), efficient
multi-sampling (Ni et al.| 2024), and token re- 100
cycling (Luo et al.| 2024). Some also explore
parallel decoding strategies with adaptive n-

gram techniques (Ou et al} 2024 [Viu et al Figure 6: The throughput and average acceptance
20245 Liu et aly 20245 Wet et al} [2029). length of 4 models on different draft depths. The

experiments are conducted on MT-Bench dataset.
7.2 TREE SPECULATIVE DECODING The acceptance length consistently increases as
depth rises, while the throughput peaks at certain

Tree-based speculative decoding has advanced jorhs. This also reflects the tradeoff among dif-
through several key works. GRIFFIN (Hul foront draft depths.

et al.,[2025)) and Sequoia (Chen et al.,[2024) en-

hance token alignment methods, while SpecIn-

fer (Miao et al.l 2024)improves sampling techniques. Other notable approaches include dynamic
tree pruning (Zhong et al.| [2024), early exit mechanisms (Elhoushi et al.} 2024), and hierarchical
method (Sun et al.| [2024).

130

120

Acceptance Length

B
n
<)

Throughput (tokens/seconds)

»
N
[

\, l\

4.00

B
w
o
~
[oe]

Draft Depth

7.3 EFFICIENT INFERENCE

Recent works apply other methods to improve the inference speed. Judge Decoding (Bachmann
et al. [2025) uses a small judge model to evaluate parallel reasoning paths, while SpecReason (Pan
et al.,|2025)) and Speculative Thinking (Yang et al.,2025) leverage speculative computation for faster
inference. Other efficient reasoning techniques include efficient chain-of-thought methods (Wang
et al., 2025a Huang et al., 2025)), in-context learning methods (Huang et al., 2024a)), non-myopic
generation (Ma et al.,|2024) and system-level infra (Huang et al., 2024c).

8 CONCLUSION

This paper proposes POSS, a draft model consisting of several position specialists. This method mit-
igates feature deviation between the draft and target models, and reduces the deviation accumulation
across draft positions. Experiments show that POSS maintains a high position-wise acceptance rate
at later positions, achieving a larger acceptance length and faster generation speed than other meth-
ods.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The experiment setup and implementation details have been disclosed in Section[d.T]and Appendix[A]
for reproducibility. Additionally, we have carefully arranged our implementation code in an
anonymous GitHub repository, https://github.com/poss—-speculative-decoding/
Position—-Specialist.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

This paper uses LLM for polishing writing. Specifically, LLM is not used before the main content
is written, and is only used to examine potential typos and ambiguous expressions.

REFERENCES

Gregor Bachmann, Sotiris Anagnostidis, Albert Pumarola, Markos Georgopoulos, Artsiom
Sanakoyeu, Yuming Du, Edgar Schonfeld, Ali Thabet, and Jonas Kohler. Judge decoding: Faster
speculative sampling requires going beyond model alignment. arXiv preprint arXiv:2501.19309,
2025.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple 1lm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, L. Sifre, and John M.
Jumper. Accelerating large language model decoding with speculative sampling. ArXiv,
abs/2302.01318, 2023. URL https://api.semanticscholar.org/CorpusID:
256503945.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374,

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layerskip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Aayush Gautam, Susav Shrestha, and Narasimha Annapareddy. Token-driven gammatune: Adaptive
calibration for enchanced speculative decoding. arXiv preprint arXiv:2504.00030, 2025.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Syn-

naeve. Better & faster large language models via multi-token prediction. arXiv preprint
arXiv:2404.19737, 2024.

10

https://github.com/poss-speculative-decoding/Position-Specialist
https://github.com/poss-speculative-decoding/Position-Specialist
https://api.semanticscholar.org/CorpusID:256503945
https://api.semanticscholar.org/CorpusID:256503945
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

Under review as a conference paper at ICLR 2026

Shijing Hu, Jingyang Li, Xingyu Xie, Zhihui Lu, Kim-Chuan Toh, and Pan Zhou. Griffin: Effective
token alignment for faster speculative decoding. arXiv preprint arXiv:2502.11018, 2025.

Chengsong Huang, Langlin Huang, and Jiaxin Huang. Divide, reweight, and conquer: A logit
arithmetic approach for in-context learning. arXiv preprint arXiv:2410.10074, 2024a.

Chengsong Huang, Langlin Huang, Jixuan Leng, Jiacheng Liu, and Jiaxin Huang. Efficient test-time
scaling via self-calibration. arXiv preprint arXiv:2503.00031, 2025.

Kaixuan Huang, Xudong Guo, and Mengdi Wang. Specdec++: Boosting speculative decoding via
adaptive candidate lengths. arXiv preprint arXiv:2405.19715, 2024b.

Xi Huang, Yinxu Tang, Junling Li, Ning Zhang, and Xuemin Shen. Toward effective retrieval
augmented generative services in 6g networks. IEEE Network, 38(6):459-467, 2024c. doi: 10.
1109/MNET.2024.3436670.

H. T. Kung and John T. Robinson. On optimistic methods for concurrency control. In TODS, 1979.
URLhttps://api.semanticscholar.org/CorpusID:61600099.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452-466, 2019. doi: 10.1162/tacl_a_00276. URL
https://aclanthology.org/Q19-1026/.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, 2022. URL https://api.
semanticscholar.org/CorpusID:254096365.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
rethinking feature uncertainty. In International Conference on Machine Learning, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of lan-
guage models with dynamic draft trees. In Empirical Methods in Natural Language Processing,
2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-3: Scaling up inference
acceleration of large language models via training-time test, 2025. URL https://arxiv.
org/abs/2503.01840.

Tianyu Liu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, and Winston Hu. Parallel speculative decoding
with adaptive draft length. arXiv preprint arXiv:2408.11850, 2024.

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming Zhang, Xuanyu Zhang, Qing Yang, Dongliang
Xu, and Wanxiang Che. Turning trash into treasure: Accelerating inference of large language
models with token recycling. arXiv preprint arXiv:2408.08696, 2024.

Chang Ma, Haiteng Zhao, Junlei Zhang, Junxian He, and Lingpeng Kong. Non-myopic generation
of language models for reasoning and planning. arXiv preprint arXiv:2410.17195, 2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large lan-
guage model serving with tree-based speculative inference and verification. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, pp. 932-949, 2024.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos santos, Caglar Gulcehre, and Bing Xi-
ang. Abstractive text summarization using sequence-to-sequence rnns and beyond, 2016. URL
https://arxiv.org/abs/1602.06023.

Yunsheng Ni, Chuanjian Liu, Yehui Tang, Kai Han, and Yunhe Wang. Ems-sd: Efficient
multi-sample speculative decoding for accelerating large language models. arXiv preprint
arXiv:2405.07542, 2024.

11

https://api.semanticscholar.org/CorpusID:61600099
https://aclanthology.org/Q19-1026/
https://api.semanticscholar.org/CorpusID:254096365
https://api.semanticscholar.org/CorpusID:254096365
https://arxiv.org/abs/2503.01840
https://arxiv.org/abs/2503.01840
https://arxiv.org/abs/1602.06023

Under review as a conference paper at ICLR 2026

Jie Ou, Yueming Chen, and Wenhong Tian. Lossless acceleration of large language model via
adaptive n-gram parallel decoding. arXiv preprint arXiv:2404.08698, 2024.

Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specrea-
son: Fast and accurate inference-time compute via speculative reasoning. arXiv preprint
arXiv:2504.07891, 2025.

Ranajoy Sadhukhan, Jian Chen, Zhuoming Chen, Vashisth Tiwari, Ruihang Lai, Jinyuan Shi, Ian En-
Hsu Yen, Avner May, Tiangi Chen, and Beidi Chen. Magicdec: Breaking the latency-throughput
tradeoff for long context generation with speculative decoding. arXiv preprint arXiv:2408.11049,
2024.

Chao Wang Fan Yin Shuai Shi Yubo Wang Yi Zhang Yingyi Huang Haoshuai Zheng Yineng Zhang
Shenggui Li, Yikai Zhu. Specforge: Train speculative decoding models effortlessly. https:
//github.com/sgl-project/specforge, 2025.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu—lab/stanford_alpacal 2023.

Jikai Wang, Juntao Li, Lijun Wu, and Min Zhang. Efficient reasoning for llms through speculative
chain-of-thought. arXiv preprint arXiv:2504.19095, 2025a.

Jikai Wang, Yi Su, Juntao Li, Qingrong Xia, Zi Ye, Xinyu Duan, Zhefeng Wang, and Min Zhang.
OPT-tree: Speculative decoding with adaptive draft tree structure. Transactions of the Association
for Computational Linguistics, 13:188—-199, 2025b. doi: 10.1162/tacl_.a_00735. URL https:
//aclanthology.org/2025.tacl-1.8/.

Zhepei Wei, Wei-Lin Chen, Xinyu Zhu, and Yu Meng. Fast and accurate language model decoding
via parallel token processing. In Adaptive Foundation Models: Evolving Al for Personalized and
Efficient Learning, 2024. URL https://openreview.net/forum?id=coZ0nwI78u.

Pengfei Wu, Jiahao Liu, Zhuocheng Gong, Qifan Wang, Jinpeng Li, Jingang Wang, Xunliang Cai,
and Dongyan Zhao. Parallel decoding via hidden transfer for lossless large language model ac-
celeration. arXiv preprint arXiv:2404.12022, 2024.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative de-
coding: Exploiting speculative execution for accelerating seq2seq generation. arXiv preprint
arXiv:2203.16487, 2022.

Wang Yang, Xiang Yue, Vipin Chaudhary, and Xiaotian Han. Speculative thinking: Enhanc-
ing small-model reasoning with large model guidance at inference time. arXiv preprint
arXiv:2504.12329, 2025.

Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning harmonized representations
for speculative sampling. arXiv preprint arXiv:2408.15766, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Shuzhang Zhong, Zebin Yang, Ruihao Gong, Runsheng Wang, Ru Huang, and Meng Li. Propd:

Dynamic token tree pruning and generation for llm parallel decoding. In Proceedings of the 43rd
IEEE/ACM International Conference on Computer-Aided Design, pp. 1-8, 2024.

12

https://github.com/sgl-project/specforge
https://github.com/sgl-project/specforge
https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2025.tacl-1.8/
https://aclanthology.org/2025.tacl-1.8/
https://openreview.net/forum?id=coZ0nwI78u
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 IMPLEMENTATION AT TRAINING STAGE

We mainly follow the settings of the existing work. As the implementation of EAGLE-2 and
EAGLE-3 varies a lot, we separately introduce models in each framework.

Under the EAGLE-2 framework, we implement EAGLE-2, HASS, P0SS-1(E2), P0osS-2(E2),
and POSS-3(E2). These models are trained with the ShareGPT dataset, with 68K data entries
(about 120K single dialogues after preprocessed by SpecForge (Shenggui Li, 2025)), aligning
with EAGLE-1,2 and Medusa. They are trained for 40 epochs, as is implemented by HASS. All
POSS variants apply the losses (including loss weights) of HASS.

Under the EAGLE-3 framework, we implement EAGLE-3 and POSS-3(E3). Following EAGLE-3,
the UltraChat-200K dataset, with 464K data entries, is added to the training set. Despite using a
much larger training set, EAGLE-3 still trains its model for 40 epochsﬂ For a fair comparison with
other models, we train EAGLE-3 and P0OSS-3(E3) for total update steps similar to models of the
EAGLE-2 framework, which is 10 epochs.

In PoOSS, the second and third layers depend on output of the previous layer. To initialize
POSS training, we start training from half-trained EAGLE checkpoints. In the EAGLE-2 frame-
work, for example, the EAGLE-2 model trained for 20 epochs is used for initializing all position
specialists of POSS. POSS is then trained for the remaining 20 epochs. In the EALGE-3 frame-
work, this number becomes 5, and all the processes are the same.

A.2 IMPLEMENTATION AT INFERENCE STAGE

The tree-draft inference involves three components: depth, width, and total tokens (Li et al.,|2024b).
As discussed in Section [6.2] a balanced depth is needed to reach the best performance. The analysis
experiment results in Table E] and Table E] demonstrate that, for the EAGLE-2 framework, Llama3-
8B-Instruct achieves the best performance on depth=6, and Llama-2-13B-chat on depth=7. The
experiment result in Figure [6] suggests that models in the EAGLE-3 framework achieve the best
performance in depth=7.

The influences of width and total tokens are complicated, so we apply the EAGLE-2 recommended
values for them. This means the width is set to 10, and the total tokens is set to 60 for Llama3-8B-
Instruct setting and 50 for Llama2-13B-chat setting.

B DIFFERENT DRAFTING HYPERPARAMETERS

Many factors influence the average acceptance length and speed-up ratio. Besides the prediction
accuracy of draft models and computational overhead, the structure of draft trees also matters. We
examine two key hyperparameters that affect the performance: depth and total tokens.

We take the EAGLE-2 framework models, and conduct experiments with depths from 6 to 9. In
addition to the default total tokens, we test a larger total tokens, 80. We evaluate the models on all
six datasets and take the average of them. Table[3|and Table[5|present the average acceptance length.
Table 4] and Table 6] present the speed-up ratio.

Interestingly, despite the consistent rise of average acceptance length as the number of total tokens
increases to 80, the speed-up ratio shows a sharp drop. This indicates the target model takes signifi-
cantly more time to verify. This phenomenon might result from the inner structure of the A100 GPU
device that we use for experiments, which is also observed by OPT-Tree (Wang et al., | 2025b).

*The number of training epochs/steps of EAGLE-3 is not disclosed in the original paper, but can be found
in its official GitHub repository:https://github.com/SafeAILab/EAGLE/blob/main/eagle/
traineagle3/main.py

13

https://github.com/SafeAILab/EAGLE/blob/main/eagle/traineagle3/main.py
https://github.com/SafeAILab/EAGLE/blob/main/eagle/traineagle3/main.py

Under review as a conference paper at ICLR 2026

Table 3: Average acceptance length under different hyperparameters. Experiments use Llama-3-8B-
Instruct as the base model. We average the results on all six datasets. The largest average acceptance
length within each column is bolded.

Depth 6 7 8 9

Temperature —r o kens T 60 80 60 S0 60 80 60 S0
HASS 439 449 449 462 454 467 459 473

-0 PosS-1(E2) | 454 464 4.65 478 474 489 479 494
PosS-2(E2) | 455 4.67 4.68 481 474 490 479 4.96

PosS-3(E2) | 450 4.62 461 475 469 483 473 4.89

HASS 416 424 422 434 426 439 430 441

T PosS-1(E2) | 428 437 435 448 4.44 458 447 458
PosS-2(E2) | 427 437 437 453 443 457 448 4.64

PosS-3(E2) | 4.28 435 430 449 440 453 443 453

Table 4: Speed-up ratio under different hyperparameters. Experiments use Llama-3-8B-Instruct as
the base model. We average the results on all six datasets. The largest number within each row is
bolded to show the upper bound of each method.

Temperature Depth 6 7 8 K
Total Tokens 60 80 60 80 60 80 60 80

HASS 2.89x 2.83x 2.84x 2.78x 2.76x 2.71x 2.67x 2.65x

T=0 PosS-1(E2) | 2.94x 2.90x 2.90x 2.85x 2.83x 2.80x 2.76x 2.72x
PosS-2(E2) | 2.98x 2.92x 2.93x 2.87x 2.84x 2.81x 2.77x 2.74x

PosS-3(E2) | 2.95x 2.89x 2.89x 2.84x 2.83x 2.78x 2.73x 2.71x

HASS 2.63x 2.54x 2.56x 2.50x 247x 244x 2.41x 2.35x

T=1 PosS-1(E2) | 2.73x 2.65x 2.66x 2.59x 2.60x 2.55x 2.53x 2.48x
PosS-2(E2) | 2.66x 2.60x 2.63x 2.57x 2.55x 2.51x 248x 2.45x

PosS-3(E2) | 2.67x 2.59x 2.60x 2.56x 2.55x 2.47x 2.48x 2.41x

C EXTRA MEMORY USAGE DURING INFERENCE

Involving extra draft layers requires extra GPU memory usage, and the GPU memory usage in-
creases linearly with the number of position specialists. Fortunately, this additional cost is negligi-
ble compared to the target model size since each specialist costs only one transformer layer (around
218M parameters per specialist for an 8B target model).

Empirically, Figure[7] visualizes the memory usage of the single draft model and P0sS-1,2,3. Here,
EAGLE and HASS cost the same GPU memory, and they are de facto POSS-co. Assuming the draft
depth is 6, the draft layers in the methods are 1, 2, 3, and 6, from left to right. In both target model
settings, POSS-3 and POSS-2 increase a few extra memory usage. POSS-1, despite using 6 times
draft layers than EAGLE-2, costs acceptable extra memory usage.

14

Under review as a conference paper at ICLR 2026

Table 5: Average acceptance length under different hyperparameters. Experiments use Llama-2-
13B-chat as the base model. We average the results on all six datasets. The largest average accep-
tance length within each column is bolded.

Depth 6 7 8 9
Total Tokens | 50 80 50 80 50 80 50 80

HASS 4.68 520 521 545 546 5.62 557 575
PosS-1(E2) | 5.09 520 524 548 552 566 563 5.79

Temperature

T=0 PosS-2(E2) | 513 522 525 549 553 568 565 582
PosS-3(E2) | 5.13 521 527 551 5.55 570 5.66 5.83

HASS 490 506 503 529 524 545 535 552

T=1 PosS-1(E2) | 489 511 513 531 534 549 543 552

PosS-2(E2) | 4.87 511 5.03 532 530 549 544 5.61
PosS-3(E2) | 489 511 509 531 533 550 543 5.62

Table 6: Speed-up ratio under different hyperparameters. Experiments use Llama-2-13B-chat as the
base model. We average the results on all six datasets. The largest number within each row is bolded
to show the upper bound of each method.

Temperature Depth 6 7 8 K
Total Tokens 50 80 50 80 50 80 50 80
HASS 3.28x 3.02x 3.33x 3.08x 3.31x 3.09x 3.28x 3.09x
T=0 PosS-1(E2) | 3.16x 293x 3.21x 3.08x 3.21x 3.09x 3.20x 3.09x
- PosS-2(E2) | 3.26x 3.00x 3.30x 3.06x 3.31x 3.09x 3.27x 3.07x
PosS-3(E2) | 3.29x 3.00x 3.34x 3.09x 3.35x 3.11x 3.30x 3.10x
HASS 3.24x 294x 3.25x 3.00x 3.20x 3.0lx 3.18x 2.98x
T=1 PosS-1(E2) | 3.13x 293x 3.17x 295x 3.14x 2.97x 3.10x 2.92x
- PosS-2(E2) | 3.17x 294x 3.19x 298x 3.18x 2.99x 3.17x 2.98x
PosS-3(E2) | 3.24x 297x 3.26x 3.00x 3.26x 3.02x 3.18x 3.0lx
Inference-time Memory Usage
401 Llama-3-8B-Instruct
35 - Llama-2-13B-Chat

w
o

N
(S
L

Memory Usage (GB)
=N
ul o

=
o

6]

EAGLE/HASS P0sS-3 P0SS-2 P0SS-1
Method

Figure 7: The Inference-time GPU memory usage of different speculative decoding methods. The
memory usage is measured on the MT-bench test dataset. POSS methods require slightly more GPU
memory than EAGLE, the baseline method.

15

	Introduction
	Preliminary
	Speculative Decoding
	Hidden State Assisted Speculative Decoding

	Method
	Position-Wise Acceptance Rate
	Position Specialists Improve Position-Wise Acceptance Rate

	Experiment
	Experiment Setup

	Results
	Analysis
	Position-Wise Acceptance Rate
	Computational Efficiency Tradeoff on Draft Depth
	Ablation Study on Draft Model Prediction Depth

	Related Work
	Linear Speculative Decoding
	Tree Speculative Decoding
	Efficient Inference

	Conclusion
	Implementation Details
	Implementation at Training Stage
	Implementation at Inference Stage

	Different Drafting Hyperparameters
	Extra Memory Usage During Inference

