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ABSTRACT

Speculative decoding accelerates Large Language Model (LLM) inference by
using a small draft model to predict multiple tokens, and a large target model
to verify these tokens in parallel. Recent studies leverage the hidden state of
the target model to enhance draft model prediction accuracy. However, ex-
isting methods suffer from the degrading quality of draft token predictions at
later positions, due to error accumulation in draft model generated features.
In this paper, we propose Position Specialists (POSS), which consist of multi-
ple position-specialized draft layers to generate tokens at assigned position(s).
Position specialists substantially improve token acceptance rate at later posi-
tions within each drafting round, as each specialist only needs to focus on
handling a certain level of draft model feature deviation. Experiment results
on Llama-3-8B-Instruct and Llama-2-13B-chat across six datasets demonstrate
that POSS effectively improves over baselines on average acceptance length
and speed-up ratio. Our codebase is available at https://github.com/
poss-speculative-decoding/Position-Specialist.

1 INTRODUCTION

Speculative decoding (Leviathan et al., 2022; Chen et al., 2023) is an effective approach to accel-
erate the autoregressive decoding of Large Language Models (LLMs) through a draft-then-verify
framework. Specifically, it employs a lightweight draft model to generate candidate tokens autore-
gressively, which are then verified by the larger target model in parallel to determine accepted tokens
from proposed draft tokens, thereby reducing overall decoding time. The effectiveness of specula-
tive decoding largely depends on the average acceptance length τ (accepted token counts per round)
from the prediction depth L (predicted token counts generated by the draft model per round).

Recent efforts (Cai et al., 2024; Li et al., 2024a;b; 2025b) in speculative decoding utilize the target
model hidden states as input to enhance draft model prediction accuracy. EAGLE (Li et al., 2024a;b;
2025b) employs a one-layer Transformer as the draft model and trains it to predict the next token
with features from the target model. However, EAGLE-1,2 exhibit a training–inference discrepancy:
target model features are always available during training, but sometimes not at inference time.
Instead, it relies on features generated by the draft model. HASS (Zhang et al., 2024) and EAGLE-
3 (Li et al., 2025b) partially address this discrepancy by training the draft model to predict the next
token with features from previous draft steps. However, both approaches suffer from relying on a
single draft model to predict tokens at multiple positions in the draft sequence.

We hypothesize that effective draft model should be position-specialized within the prediction
length L: early positions require accurate predictions with reliable target model features, while
later positions must learn to mitigate the increasing levels of feature deviations. To evaluate the
prediction quality across positions, we introduce the metric of position-wise acceptance rate (pos-
acc) to measure the conditional probability of accepting the ith token given the acceptance of its
preceding (i − 1)th token. Our analysis reveals that both EAGLE and HASS suffer from rapidly
degrading pos-acc beyond the first few predicted tokens. This confirms our hypothesis that a single
draft model is limited by its generalization capability of various positions.

To address this challenge, we propose Position Specialists (POSS), a novel framework that consists
of multiple position-specialized draft layers, called position specialists. Each position specialist is
trained for predicting tokens at its assigned position(s), and only needs to handle an expected level
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Figure 1: This figure illustrates how POSS improves over single draft models like EAGLE and
HASS at inference time. Draft model-generated features have two functions: generate draft tokens
via LM head projection and serve as input to draft model at the next position. When generating draft
tokens, a slight deviation between draft and target features does not change the predicted tokens.
However, when biased features are used to predict the next positions, the existing deviation is am-
plified and causes a larger deviation in following steps, eventually leading to wrong token prediction.
POSS, however, resets the deviation propagation to a low level by switching to another draft layer.
As a result, POSS maintains draft token accuracy at later positions, achieving better acceptance rate.

of feature deviation at that position, thus enabling more accurate draft token predictions than a single
draft model which needs to handle varying levels of feature deviation at different positions.

We conduct extensive experiments on two model sizes (Llama-3-8B-Instruct and Llama-2-13B-
chat) across six benchmark datasets, and demonstrate that POSS consistently outperforms baseline
methods. On the average of 6 test datasets, POSS surpasses the strong baseline EAGLE-3 on aver-
age acceptance length by 9.2% (from 4.69 to 5.12) and on speed-up ratio by up to 10.5% (from
2.96x to 3.27x). We also carry out a comprehensive analysis and reveal that the efficiency of
POSS comes from reduced rounds of speculative generation, as a higher position-wise accep-
tance rate at deeper positions enables longer acceptance length τ per round.

Our primary contributions include:

• We introduce position-wise acceptance rate (pos-acc) as a crucial metric for analyzing the draft
quality of speculative decoding approaches.

• We propose Position Specialists (POSS), a novel framework that employs position-specialized
layers to address the challenge of accumulated levels of feature deviation in draft predictions.

• We conduct extensive experiments and analysis to demonstrate that POSS outperforms baseline
methods on both average acceptance length and speed-up ratio.

2 PRELIMINARY

2.1 SPECULATIVE DECODING

Speculative decoding harnesses the principle of speculative execution (Kung & Robinson, 1979),
where a smaller, faster draft model θD works alongside a larger target language model θT that we
aim to accelerate. The standard speculative decoding (Leviathan et al., 2022) operates in three key
phases. First, the draft model θD autoregressively generates a candidate sequence of length L. Next,
the target model θT evaluates all L draft tokens in parallel with a single forward pass. Finally,
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Figure 2: The inference and training stages of EAGLE, HASS, and our POSS method. The dashed
lines represent autoregressive decoding or training, and the solid lines represent parallel training.
The input concatenates context word embeddings x and features from previous step f . During in-
ference, EAGLE and HASS use a single draft model θD to generate features f (Di) for each position
i recursively. For draft model training, EAGLE-1,2 uses the target model feature f (T ) as input for
training. HASS and EAGLE-3 additionally use draft model-predicted features f (Di). Different from
them, POSS introduces different position specialists θSj . During inference, the position-specialized
draft models autoregressively generate features f (Sj

i ), where position i corresponds to the specialist
θSj . At training stage, POSS applies position-specialized training: A specialist θSj is trained on the
ith position using the previous step specialist feature.

draft tokens that align with the target distribution are accepted. This parallel evaluation significantly
reduces inference latency compared to traditional token-by-token generation.

2.2 HIDDEN STATE ASSISTED SPECULATIVE DECODING

Recent research efforts (Cai et al., 2024; Li et al., 2024a;b; 2025b) discover the potential of the
target model’s hidden state. Instead of using a complete auxiliary model for drafting, researchers
demonstrate that applying a few extra layers to process the last-layer hidden states of the target
model, referred to as features, suffices for effective draft generation. Medusa (Cai et al., 2024) uses
multiple language model heads to project a feature vector into different output spaces to predict
several subsequent tokens simultaneously. EAGLE-1,2 (Li et al., 2024a;b) represent a significant
breakthrough in speculative decoding through concatenating input embedding with feature vectors.
EAGLE-3 (Li et al., 2025b) substitutes the last-layer hidden states with those from low, middle, and
high-level layers, further improving the performance. EAGLE family employs a one-layer Trans-
former as the draft model θD and reuses LM head of the target model for token prediction. At
generation step t, EAGLE’s draft model θD predicts the next token xt+1 based on context x≤t and
features f<t:

P (xt+1) = Head(θD([xt; f
(T )
t−1], [xt−1; f

(T )
t−2], . . . , [x1; f

(T )
0 ])) (1)

Figure 2 provides an example of EAGLE at inference stage. θD autoregressively generates draft
tokens xt+1, xt+2, xt+3, where the subscripts represent the timesteps. Inputs are derived from dif-
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ferent sources, denoted by superscripts: f (T ) represents feature from the target model; f (Di) rep-
resents feature from the ith draft step of the draft model D. f (D) is used instead of f (T ) when
the target model features are unavailable, before the forward pass completion of subsequent tokens.
Therefore, the prediction of the kth draft position is formulated as:

P (xt+k) = Head(θD([xt+k−1; f
(Dk−1)
t+k−2 ], . . . , [xt+1; f

(D1)
t ], [xt; f

(T )
t−1], . . . , [x1; f

(T )
0 ])) (2)

Specifically, equation 2 degenerates to equation 1 when k = 1.

Although EAGLE-1,2 perform inference with equation 2, it is solely trained on equation 1. This
exhibits a fundamental training-inference discrepancy: θD needs to predict the subsequent tokens
(k > 1) with its own generated features during inference, but it never observes its own prediction
errors during training, which impairs the ability to effectively predict long draft sequences.

HASS and EAGLE-3 explicitly address the discrepancy through recursive feature alignment in train-
ing. Therefore, the training process aligns with the inference process, as shown in Figure 2. Even-
tually, they improve the acceptance probabilities of tokens at later positions compared to EAGLE-2.

3 METHOD

In this section, we introduce our Position Specialist (POSS) approach for speculative decoding. We
first introduce the concept of position-wise acceptance rate to reveal the fundamental limitations in
existing approaches in Section 3.1. We then propose our POSS with position specialized training in
Section 3.2 to address the limitation.

3.1 POSITION-WISE ACCEPTANCE RATE

Previous speculative decoding frameworks rely heavily on the generalizability of a single draft layer
for multi-position token generation. EAGLE-1,2 trains θD only on the immediate next position but
expects it to generalize to subsequent positions at inference time. While HASS and EAGLE-3 train
θD on both the immediate and later positions, only one draft model is used to generalize across
diverse feature sources and different draft positions. As the draft model is a single Transformer
layer, the generalizability is inherently limited due to model capacity.

To demonstrate the generalization limitation of EAGLE and HASS, we introduce position-wise
acceptance rate (pos-acc), which measures the probability that a token at position i is accepted
given its preceding token at position i− 1 is accepted. The pos-acc at position i is defined as:

pos-acci = P (Ai | Ai−1) =
P (Ai−1 ∩Ai)

P (Ai−1)
=

P (Ai)

P (Ai−1)
, i > 1 (3)

where Ai denotes the event that the token at position i is accepted during the verifying process.
Notice that the target model acceptance follows a strict sequential dependency: if xi is accepted, its
preceding tokens x[0:i−1] must also have been accepted, and therefore Ai ⊂ Ai−1.

We point out that higher pos-acc is crucial for achieving a higher acceptance length τ at each draft-
verification round. For a draft sequence of length L, the probability of accepting all draft tokens up
to position k (k ≤ L) is:

P (Ak) =P (A1 ∩A2 ∩ · · · ∩Ak) =

{
P (A1) if k = 1

P (A1)
∏k

i=2 pos-acci if k > 1
(4)

This chain rule decomposition reveals that the overall acceptance length depends on the multiplica-
tion of pos-acc, and is particularly sensitive to degradation in any single position. Notably, token
prediction becomes increasingly challenging at later positions due to the accumulation of prediction
errors and the growing uncertainty in longer draft positions.

In Figure 3, we demonstrate the empirical pos-acc of EAGLE-2,3 and HASS. EAGLE-2’s pos-acc
deteriorates rapidly beyond position k = 1. This is because the draft model of EAGLE-2 is solely
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trained on predicting the next immediate token. HASS and EAGLE-3 are able to maintain relatively
higher pos-acc at later positions because a single draft model is trained on multiple subsequent
positions. However, their pos-acc at position k = 1 becomes lower than other methods by about 1%
to 2%, because of their compromise to other positions. This critically impairs the overall acceptance
length due to the multiplicative nature of the acceptance probability in equation 4.

3.2 POSITION SPECIALISTS IMPROVE POSITION-WISE ACCEPTANCE RATE

1 2 3 4 5 6
Position

65
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Position-Wise Acceptance Rate at Different Positions
EAGLE-2
HASS
PosS-3(E2)
EAGLE-3
PosS-3(E3)

Figure 3: Position-wise acceptance rate (pos-
acc) of the ith token on MT-Bench dataset
by various speculative decoding methods.
The pos-acc of EAGLE-2 and HASS decays
fast as the draft sequence gets longer. Our
proposed POSS method keeps a stable and
higher pos-acc even at the deepest position .

To address the aforementioned limitation, we intro-
duce Position Specialists (POSS) to preserve early-
position acceptance rate while enhancing later posi-
tion predictions. POSS consists of multiple position-
specialized draft layers, called position specialists.
Each specialist is trained for certain position(s) and
generates draft tokens at its assigned position(s).
The number of positions that a specialist is assigned
to can be pre-defined as n, and POSS-n means each
specialist is responsible for n positions. Figure 2 ex-
hibits the training and inference of POSS-1. In the
example, there are 3 position specialists {θSi}3i=1,
with each assigned to predict the draft token xt+i.
During training, each specialist θSi learns to predict
using the input feature of draft model at the previous
step.

Figure 1 illustrates the draft process at the inference
stage, showing the deficit of a single draft model and
how POSS improves over it. All methods with EA-
GLE frameworks require the features from the target model for drafting. During a draft phase, the
target model-generated features at most positions are unavailable because these draft tokens have
not been verified by the target model. In this case, the input of the draft model is substituted by
draft model-generated features, which have an inevitable deviation from target features. Although
the slightly deviated features may still predict the current token accurately, the bias is passed to the
next draft position because these features also serve as input to the draft model for the next token
prediction. The feature deviation propagates and accumulates along draft positions until it becomes
too big to yield a correct token. Existing work, HASS and EAGLE-3, tries to mitigate feature devi-
ation by aligning training and inference, as exhibited in Figure 2. However, the limited capacity of
a single draft model prohibits it from handling all deviations. As a result, they either perform worse
at later or earlier positions.

The key point of POSS is to improve draft models’ ability to handle all kinds of deviations. Un-
like the single draft model, each position specialist in POSS is position-aware. The draft layers
beyond the first one are only trained to make accurate predictions from biased feature input, which
enables them to mitigate the deviation accumulated from previous steps. Another benefit brought by
position-specialized draft layers is that it avoids conflict optimization directions. The lower pos-acc
of EAGLE-3 at the first position is likely a result of training on all positions. Since it trains a lot on
draft model-generated features, with different levels of deviations, as input, it performs worse when
the input is only target features. However, this is not a problem for POSS, because tasks of largely
different optimization directions are distributed to different position specialists.

We further highlight that POSS is orthogonal to EAGLE-2 and EAGLE-3 frameworks. POSS uses
the same loss as HASS on EAGLE-2 framework and the same loss as EAGLE-3 on EAGLE-3
framework, but optimizes our designed draft model architecture. POSS-n predicts draft token xt+k

with equation 5, which differs from equation 2 only in the superscripts.

P (xt+k) = Head(θ(S⌈k/n⌉)([xt+k−1; f
(S⌈(k−1)/n⌉)
t+k−2 ], . . . , [xt+1; f

(S1)
t ], [xt; f

(T )
t−1], . . . , [x1; f

(T )
0 ]))

(5)

For implementation, we conduct an experiment in Section 5.1, comparing POSS-1,2,3, where they
show similar pos-acc. Considering the extra memory usage, the setting POSS-3 is recommended.
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4 EXPERIMENT

Table 1: Average acceptance length τ of all methods. L3 8B represents Llama-3-8B-Instruct, L2
13B represents Llama-2-13B-Chat.

Temperature=0
Model Method MT-Bench Alpaca GSM8K Natural Questions CNN/DM HumanEval Avg.

L3 8B

EAGLE-2 4.11 4.32 4.25 3.38 3.61 4.70 4.06
HASS 4.42 4.62 4.61 3.54 3.92 5.20 4.39

Gumiho 4.27 4.19 4.59 3.58 3.84 5.18 4.28
POSS-3(E2) 4.52 4.82 4.81 3.64 4.05 5.41 4.54
EAGLE-3 4.73 5.07 4.89 3.71 4.18 5.55 4.69

EAGLE-3+HASS 3.79 3.74 3.85 3.05 3.21 4.61 3.71
POSS-3(E3) 5.15 5.50 5.43 4.13 4.54 5.95 5.12

L2 13B

EAGLE-2 4.86 4.64 5.01 4.15 4.30 5.78 4.79
HASS 5.28 5.16 5.40 4.43 4.59 6.37 5.21

Gumiho 4.78 4.55 4.97 4.13 4.41 5.82 4.78
POSS-3(E2) 5.33 5.17 5.48 4.52 4.70 6.43 5.27

Temperature=1

L3 8B

EAGLE-2 3.83 4.15 4.09 3.18 3.39 4.50 3.86
HASS 4.01 4.39 4.49 3.40 3.65 5.00 4.16

Gumiho 3.90 3.95 4.33 3.32 3.59 4.84 3.99
POSS-3(E2) 4.13 4.46 4.67 3.37 3.76 5.12 4.25
EAGLE-3 4.31 4.62 4.75 3.45 3.85 5.30 4.38

EAGLE-3+HASS 3.21 3.34 3.53 2.44 2.89 4.29 3.28
POSS-3(E3) 4.66 4.98 5.24 3.81 4.14 5.69 4.75

L2 13B

EAGLE-2 4.69 4.44 4.82 4.12 4.25 5.54 4.64
HASS 5.04 4.92 5.24 4.36 4.60 6.03 5.03

Gumiho 4.57 4.40 4.80 4.03 4.25 5.66 4.62
POSS-3(E2) 5.12 4.98 5.39 4.35 4.54 6.15 5.09

4.1 EXPERIMENT SETUP

Metrics. We evaluate the performance of our approach using two key metrics: speed-up ratio and
average acceptance length.

• Speed-up Ratio: The speed-up ratio measures the improvement in generation efficiency compared
to the vanilla target model decoding, calculated as the ratio between throughputs (tokens generated
per second) of a speculative decoding approach to that of the target model autoregressive decoding.
A higher speed-up ratio indicates better performance.

• Average Acceptance Length τ : The average acceptance length represents the mean number of
tokens accepted in each round of L drafting positions (denoted as prediction length). It reflects
how effectively the draft model can predict longer sequences that match the target model output.
Longer acceptance lengths generally correlate with improved efficiency as they reduce the number
of draft iterations needed.

Datasets. We conduct comprehensive experiments on six datasets, following EAGLE. This in-
cludes MT-Bench (Zheng et al., 2023) for multi-turn conversation, Alpaca (Taori et al., 2023)
for instruction following, GSM8K (Cobbe et al., 2021) for mathematical reasoning, Natural
Questions (Kwiatkowski et al., 2019) for question answering, CNN/Daily Mail (shortened to
CNN/DM) (Nallapati et al., 2016) for summarization, and HumanEval (Chen et al., 2021) for code
generation.
Target Models. We evaluate on two model sizes: Llama-3-8B-Instruct (L3 8B) and Llama-2-
13B-chat (L2 13B). This allows us to evaluate how our approach performs across model sizes.
Llama-3-8B-Instruct serves as our primary model for ablation studies and detailed analysis, while
Llama-2-13B demonstrates the scalability of our method to larger models.
Draft Methods. We evaluate the following methods for comparison. EAGLE-2: the base method
in EAGLE-2 framework, trained with a classification loss on token and a regression loss on fea-
ture. HASS: EAGLE-2 with recursive feature alignment training and a topk token distillation loss.
Gumiho Li et al. (2025a): drafting the first two positions with EAGLE-2 and the following posi-
tions with Medusa. POSS(E2): our method with the loss of HASS. EAGLE-3: the base method in
EAGLE-3 framework with recursive feature alignment training, trained only with the classification
loss on token. EAGLE-3+HASS: EAGLE-3 with all training strategies of HASS. POSS(E3): our
method with the loss of EAGLE-3.
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Implementations. Our implementation is built upon the open-source repositories of EAGLE1,
HASS2, and SpecForge3. As EAGLE-2 is a widely adopted method and HASS is built upon it,
we mainly experiment with the EAGLE-2 framework. Besides, we also experiment POSS-3 on the
recently introduced EAGLE-3 framework in our Llama-3-8B-Instruct setting for fair comparison.
To distinguish our method on two frameworks, they are named “POSS(E2)” and “POSS(E3)” when
needed. Because EAGLE-3 introduces a much larger training set, we reproduce it using similar
training steps as methods in EAGLE-2 framework for fair comparison. All models apply tree-draft
inference implemented by EAGLE-2,3. The detailed settings are introduced in Appendix A.

Table 2: Speed-up ratios of all methods. L3 8B represents Llama-3-8B-Instruct, L2 13B represents
Llama-2-13B-Chat.

Temperature=0
Model Method MT-Bench Alpaca GSM8K Natural Questions CNN/DM HumanEval Avg.

L3 8B

EAGLE-2 2.77x 2.79x 2.87x 2.29x 2.27x 3.08x 2.68x
HASS 2.94x 2.97x 3.11x 2.38x 2.47x 3.48x 2.89x

Gumiho 3.04x 2.97x 3.19x 2.58x 2.71x 3.69x 3.03x
POSS-3(E2) 2.96x 3.10x 3.17x 2.45x 2.50x 3.53x 2.95x
EAGLE-3 2.99x 3.11x 3.05x 2.34x 2.63x 3.62x 2.96x

EAGLE-3+HASS 2.42x 2.33x 2.43x 1.95x 1.98x 2.83x 2.32x
POSS-3(E3) 3.35x 3.45x 3.41x 2.71x 2.84x 3.88x 3.27x

L2 13B

EAGLE-2 2.99x 2.95x 3.23x 2.71x 2.49x 3.71x 3.01x
HASS 3.28x 3.34x 3.52x 2.96x 2.72x 4.15x 3.33x

Gumiho 2.99x 2.92x 3.15x 2.70x 2.47x 3.79x 3.00x
POSS-3(E2) 3.28x 3.32x 3.59x 2.96x 2.74x 4.12x 3.34x

Temperature=1

L3 8B

EAGLE-2 2.67x 2.55x 2.09x 2.02x 2.80x 2.47x 2.43x
HASS 2.77x 2.79x 2.14x 2.09x 3.03x 2.56x 2.56x

Gumiho 2.40x 2.47x 2.55x 2.09x 2.07x 2.92x 2.42x
POSS-3(E2) 2.71x 2.86x 2.12x 2.18x 3.11x 2.58x 2.59x
EAGLE-3 2.64x 2.65x 2.93x 2.08x 2.30x 3.10x 2.62x

EAGLE-3+HASS 1.80x 1.83x 1.91x 1.37x 1.57x 2.22x 1.79x
POSS-3(E3) 2.90x 2.84x 3.11x 2.09x 2.49x 3.21x 2.77x

L2 13B

EAGLE-2 2.95x 2.88x 3.13x 2.76x 2.51x 3.48x 2.95x
HASS 3.22x 3.30x 3.46x 2.97x 2.67x 3.89x 3.25x

Gumiho 2.91x 2.88x 3.12x 2.70x 2.49x 3.60x 2.96x
POSS-3(E2) 3.22x 3.23x 3.49x 2.96x 2.73x 3.92x 3.26x

4.2 MAIN RESULTS

We introduce the main results in this section. Table 1 presents the average acceptance lengths of
different models. Table 2 presents the speed-up ratio of these models.

Table 3: Speedup ratio under vLLM framework.
Batch Size 1 2 4 8
EAGLE-3 1.72x 1.79x 1.64x 1.67x

PosS-3(E3) 2.15x 2.12x 2.07x 1.87x

Our methods achieve the highest overall aver-
age acceptance length under different sampling
temperatures, demonstrating the effectiveness
of position specialists in making accurate draft
predictions. In EAGLE-2 framework, POSS-
3(E2) achieves the best speed-up ratio under al-
most all settings. Although Gumiho outperforms POSS-3(E2) at L3 8B with temperature=0, it is less
stable and performs worse under other settings. In EAGLE-3 framework, POSS-3(E3) significantly
outperforms the baseline on average acceptance length and the speed-up ratio. This is because the
target model provides more powerful features in EAGLE-3 framework, increasing the potential of
draft models to predict longer, which is what POSS better at. This further demonstrates the great
potential of POSS: the superiority of POSS over other draft methods will be greater as the input
feature becomes stronger.

1https://github.com/SafeAILab/EAGLE
2https://github.com/HArmonizedSS/HASS
3https://github.com/sgl-project/SpecForge
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4.3 POSS IN VLLM

To evaluate the performance of POSS on real-world application, we conduct an experiment on
vLLM Kwon et al. (2023), a widely applied high-performance LLM generation framework. The
experiments are conducted on A100-80GB and use Llama-3.1-8B-Instruct as the target model. We
evaluate on all six datasets and take their average speedup ratio. The speedup ratio results are ex-
hibited in Table 3. POSS-3(E3) consistently outperforms EAGLE-3 at different batch sizes, demon-
strating the effectiveness of POSS on industry-standard framework.

5 ANALYSIS

5.1 POSITION-WISE ACCEPTANCE RATE
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Figure 4: The position-wise acceptance rate
of EAGLE, HASS, and variants of POSS. Ex-
periments are conducted on MT-Bench dataset,
with base model Llama-3-8B-Instruct and draft
depth=8. POSS maintains a relatively higher pos-
acc than corresponding baselines even at the 8th

position.

In Section 3.1, we introduce the metric
position-wise acceptance rate (pos-acc) to re-
flect the acceptance rate of a specific position,
which largely affects the overall acceptance
length. Here we demonstrate that POSS largely
improves pos-acc by mitigating the feature
deviation at each position and well balancing
all positions.

In Figure 4, we show the pos-acc with a draft
depth of 8 on different models. EAGLE-2,
with the least position generalization ability,
has pos-acc lower than 65% from the 5th po-
sition on. HASS can only maintain adequate
pos-acc at the first four positions, after which
performance degrades significantly due to a sin-
gle draft model. EAGLE-3, with an advanced
framework design, achieves higher pos-acc at
later positions. However, the first position accu-
racy of EAGLE-3 drops behind other methods,
because the single draft model needs to balance all positions, and the pos-acc at the first position is
sacrificed. In contrast, all variants of our POSS method maintain substantially higher pos-acc until
the last position. The separate position specialist design also avoids the compromise of all positions.
This demonstrates the effectiveness of POSS in mitigating position deviation and making accurate
predictions.

5.2 COMPUTATIONAL EFFICIENCY TRADEOFF ON DRAFT DEPTH

Although tree-draft inference is widely adopted, no previous work has systematically analysed how
draft depth influences generation speed. Here, we conduct a comprehensive analysis of computa-
tional costs and efficiency benefits brought by extending draft depth.

Each complete round of speculative generation involves two primary phases: the draft phase and
the verification phase. In this experiment, we quantitatively analyze the time cost through three key
metrics: (1) per-round computation time, (2) total round counts for test set generation, and (3) total
time cost for test set generation. We demonstrate a comprehensive analysis in Figure 5 and present
the following noteworthy observations.

Larger draft depth increases draft phase computation time. We present in Figure 5(a) the sum
of per-round computation time over 5,000 rounds across varying draft depths, decomposed into draft
phases and verification phases (bar chart), as well as the total rounds needed (line chart). Empirical
results show that the increased total pre-round time is mainly attributed to the draft phase, and longer
draft sequences do not influence verification time.

EAGLE-3 framework reduces draft time but increases verification time. In Figure 5(a), com-
paring to models of EAGLE-2 framework (HASS and POSS-3(E2)), models of EAGLE-3 frame-
work (EAGLE-3 and POSS-3(E3)) cost less time on draft, but more time on verification. The re-
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Figure 5: Computation time of different phases on MT-Bench dataset on different models across
varying draft depths. The bar plots present the decomposition of time spent on each phase of spec-
ulative decoding, where subfigure (a) measures the time spent on 5k rounds and subfigure (b) mea-
sures the time to complete an entire test set. The line plot presents the number of rounds needed to
complete a dataset. The lower the metrics are, the better the method is.

duction in draft time results from vocabulary-pruning setting, and the increase in verification time is
because of the additional feature aggregation designs in EAGLE-3.
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Figure 6: The throughput and average acceptance
length of 4 models on different draft depths. The
experiments are conducted on MT-Bench dataset.
The acceptance length consistently increases as
depth rises, while the throughput peaks at certain
depths. This also reflects the tradeoff among dif-
ferent draft depths.

POSS achieves the lowest overall computa-
tion time with reduced round counts. The
overall computation time is the multiplication
of the number of rounds and the pre-round time.
In Figure 5(a), the bar chart demonstrates that
POSS has similar per-round calculation time to
baseline methods, and the line chart shows that
POSS requires fewer rounds to complete the
whole test set, which is the result of a larger
acceptance length. The overall time cost pre-
sented in Figure 5(b) confirms that POSS is
faster than corresponding baselines. It is sur-
prising that EAGLE-3 is the slowest when the
draft depth is 4 and 5. This is because the first
position accuracy of EAGLE-3 is negatively af-
fected when training on large draft depth, as
discussed in Section 5.1.

5.3 ABLATION STUDY
ON DRAFT MODEL PREDICTION DEPTH

Figure 6 presents the throughput and average
acceptance length under different draft depths.
The average acceptance length τ increases with
the draft depth consistently, but the improve-
ment diminishes at higher depth. The dimin-
ishing improvement, along with the linearly in-
creasing time cost of draft depth, creates an op-
timal point for throughput. In the experiment on MT-Bench dataset, with Llama3-8B-Instruct as
the target model, we empirically demonstrate that the throughput peaks at draft depth = 5 and 7 for
models of EAGLE-2 and EAGLE-3 frameworks, respectively. This demonstrates that increasing
pos-acc at later positions is beneficial to improving the overall throughput.
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6 RELATED WORK

6.1 LINEAR SPECULATIVE DECODING

Early works (Xia et al., 2022) introduce the fundamental concept of using a draft model to predict
multiple tokens in parallel. This is followed by various improvements in linear speculative decoding,
including adaptive calibration techniques (Gautam et al., 2025), dynamic candidate length adjust-
ment (Huang et al., 2024b), and methods to optimize the latency-throughput tradeoff (Sadhukhan
et al., 2024). Recent advances focus on multi-token prediction (Gloeckle et al., 2024), efficient
multi-sampling (Ni et al., 2024), and token recycling (Luo et al., 2024). Some also explore parallel
decoding strategies with adaptive n-gram techniques (Ou et al., 2024; Wu et al., 2024; Liu et al.,
2024; Wei et al., 2024).

6.2 TREE SPECULATIVE DECODING

Tree-based speculative decoding has advanced through several key works. GRIFFIN (Hu et al.,
2025) and Sequoia (Chen et al., 2024) enhance token alignment methods, SpecInfer (Miao et al.,
2024) improves sampling techniques, and Gumiho Li et al. (2025a) combines parallel and autore-
gressive drafting as a hybrid architecture. Other notable approaches include dynamic tree prun-
ing (Zhong et al., 2024), early exit mechanisms (Elhoushi et al., 2024), hierarchical method (Sun
et al., 2024).

6.3 EFFICIENT INFERENCE

Recent works apply other methods to improve the inference speed. Judge Decoding (Bachmann
et al., 2025) uses a small judge model to evaluate parallel reasoning paths, while SpecReason (Pan
et al., 2025) and Speculative Thinking (Yang et al., 2025) leverage speculative computation for faster
inference. Other efficient reasoning techniques include efficient chain-of-thought methods (Wang
et al., 2025a; Huang et al., 2025), in-context learning methods (Huang et al., 2024a), non-myopic
generation (Ma et al., 2024) and system-level infra (Huang et al., 2024c).

7 CONCLUSION

This paper proposes POSS, a draft model consisting of several position specialists. This method mit-
igates feature deviation between the draft and target models, and reduces the deviation accumulation
across draft positions. Experiments show that POSS maintains a high position-wise acceptance rate
at later positions, achieving a larger acceptance length and faster generation speed than other meth-
ods.

REPRODUCIBILITY STATEMENT

The experiment setup and implementation details have been disclosed in Section 4.1 and Appendix A
for reproducibility. Additionally, we have carefully arranged our implementation code in an
anonymous GitHub repository, https://github.com/poss-speculative-decoding/
Position-Specialist.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

This paper uses LLM for polishing writing. Specifically, LLM is not used before the main content
is written, and is only used to examine potential typos and ambiguous expressions.
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A IMPLEMENTATION DETAILS

A.1 IMPLEMENTATION AT TRAINING STAGE

We mainly follow the settings of the existing work. As the implementation of EAGLE-2 and
EAGLE-3 varies a lot, we separately introduce models in each framework.

Under the EAGLE-2 framework, we implement EAGLE-2, HASS, POSS-1(E2), POSS-2(E2),
and POSS-3(E2). These models are trained with the ShareGPT dataset, with 68K data entries
(about 120K single dialogues after preprocessed by SpecForge (Shenggui Li, 2025)), aligning
with EAGLE-1,2 and Medusa. They are trained for 40 epochs, as is implemented by HASS. All
POSS variants apply the losses (including loss weights) of HASS.

Under the EAGLE-3 framework, we implement EAGLE-3 and POSS-3(E3). Following EAGLE-3,
the UltraChat-200K dataset, with 464K data entries, is added to the training set. Despite using a
much larger training set, EAGLE-3 still trains its model for 40 epochs4. For a fair comparison with
other models, we train EAGLE-3 and POSS-3(E3) for total update steps similar to models of the
EAGLE-2 framework, which is 10 epochs.

In POSS, the second and third layers depend on output of the previous layer. To initialize
POSS training, we start training from half-trained EAGLE checkpoints. In the EAGLE-2 frame-
work, for example, the EAGLE-2 model trained for 20 epochs is used for initializing all position
specialists of POSS. POSS is then trained for the remaining 20 epochs. In the EALGE-3 frame-
work, this number becomes 5, and all the processes are the same.

A.2 IMPLEMENTATION AT INFERENCE STAGE

All experiments in this paper apply the tree-draft strategy. The tree-draft inference involves three
components: depth, width, and total tokens (Li et al., 2024b). As discussed in Section 5.2, a balanced
depth is needed to reach the best performance. The analysis experiment results in Table 5 and Table 7
demonstrate that, for the EAGLE-2 framework, Llama3-8B-Instruct achieves the best performance
on depth=6, and Llama-2-13B-chat on depth=7. The experiment result in Figure 6 suggests that
models in the EAGLE-3 framework achieve the best performance in depth=7.

The influences of width and total tokens are complicated, so we apply the EAGLE-2 recommended
values for them. This means the width is set to 10, and the total tokens is set to 60 for Llama3-8B-
Instruct setting and 50 for Llama2-13B-chat setting.

B DIFFERENT DRAFTING HYPERPARAMETERS

Many factors influence the average acceptance length and speed-up ratio. Besides the prediction
accuracy of draft models and computational overhead, the structure of draft trees also matters. We
examine two key hyperparameters that affect the performance: depth and total tokens.

We take the EAGLE-2 framework models, and conduct experiments with depths from 6 to 9. In
addition to the default total tokens, we test a larger total tokens, 80. We evaluate the models on all
six datasets and take the average of them. Table 4 and Table 6 present the average acceptance length.
Table 5 and Table 7 present the speed-up ratio.

Interestingly, despite the consistent rise of average acceptance length as the number of total tokens
increases to 80, the speed-up ratio shows a sharp drop. This indicates the target model takes signifi-
cantly more time to verify. This phenomenon might result from the inner structure of the A100 GPU
device that we use for experiments, which is also observed by OPT-Tree (Wang et al., 2025b).

4The number of training epochs/steps of EAGLE-3 is not disclosed in the original paper, but can be found
in its official GitHub repository:https://github.com/SafeAILab/EAGLE/blob/main/eagle/
traineagle3/main.py
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Table 4: Average acceptance length under different hyperparameters. Experiments use Llama-3-8B-
Instruct as the base model. We average the results on all six datasets. The largest average acceptance
length within each column is bolded.

Temperature Depth 6 7 8 9
Total Tokens 60 80 60 80 60 80 60 80

T=0

HASS 4.39 4.49 4.49 4.62 4.54 4.67 4.59 4.73
PosS-1(E2) 4.54 4.64 4.65 4.78 4.74 4.89 4.79 4.94
PosS-2(E2) 4.55 4.67 4.68 4.81 4.74 4.90 4.79 4.96
PosS-3(E2) 4.50 4.62 4.61 4.75 4.69 4.83 4.73 4.89

T=1

HASS 4.16 4.24 4.22 4.34 4.26 4.39 4.30 4.41
PosS-1(E2) 4.28 4.37 4.35 4.48 4.44 4.58 4.47 4.58
PosS-2(E2) 4.27 4.37 4.37 4.53 4.43 4.57 4.48 4.64
PosS-3(E2) 4.28 4.35 4.30 4.49 4.40 4.53 4.43 4.53

Table 5: Speed-up ratio under different hyperparameters. Experiments use Llama-3-8B-Instruct as
the base model. We average the results on all six datasets. The largest number within each row is
bolded to show the upper bound of each method.

Temperature Depth 6 7 8 9
Total Tokens 60 80 60 80 60 80 60 80

T=0

HASS 2.89x 2.83x 2.84x 2.78x 2.76x 2.71x 2.67x 2.65x
PosS-1(E2) 2.94x 2.90x 2.90x 2.85x 2.83x 2.80x 2.76x 2.72x
PosS-2(E2) 2.98x 2.92x 2.93x 2.87x 2.84x 2.81x 2.77x 2.74x
PosS-3(E2) 2.95x 2.89x 2.89x 2.84x 2.83x 2.78x 2.73x 2.71x

T=1

HASS 2.63x 2.54x 2.56x 2.50x 2.47x 2.44x 2.41x 2.35x
PosS-1(E2) 2.73x 2.65x 2.66x 2.59x 2.60x 2.55x 2.53x 2.48x
PosS-2(E2) 2.66x 2.60x 2.63x 2.57x 2.55x 2.51x 2.48x 2.45x
PosS-3(E2) 2.67x 2.59x 2.60x 2.56x 2.55x 2.47x 2.48x 2.41x

C EXTRA MEMORY USAGE DURING INFERENCE

Involving extra draft layers requires extra GPU memory usage, and the GPU memory usage in-
creases linearly with the number of position specialists. Fortunately, this additional cost is negligi-
ble compared to the target model size since each specialist costs only one transformer layer (around
218M parameters per specialist for an 8B target model).

Empirically, Figure 7 visualizes the memory usage of the single draft model and POSS-1,2,3. Here,
EAGLE and HASS cost the same GPU memory, and they are de facto POSS-∞. Assuming the draft
depth is 6, the draft layers in the methods are 1, 2, 3, and 6, from left to right. In both target model
settings, POSS-3 and POSS-2 increase a few extra memory usage. POSS-1, despite using 6 times
draft layers than EAGLE-2, costs acceptable extra memory usage.

D DYNAMIC LAYER ALLOCATION

Throughout this paper, the degree of specialization, i.e., the number of positions allocated to a layer,
is fixed to 1, 2, or 3. In this section, we discuss the dynamic design of layer allocation.

A straightforward way to allocate multiple layers is Mixture-of-Experts (MoE). We design POSS-
3(E3)-MoE to investigate if standard MoE works for POSS or not. Specifically, POSS-3(E3)-MoE
applies the structure of POSS-3(E3), and a light-weight router to dynamically decide which layer to
use at each position. The router functions in the same manner during training and inference. POSS-
3(E3)-MoE uses the same training data and training steps as POSS-3(E3). The complete evaluation
results on all six datasets are exhibited in Table 8.
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Table 6: Average acceptance length under different hyperparameters. Experiments use Llama-2-
13B-chat as the base model. We average the results on all six datasets. The largest average accep-
tance length within each column is bolded.

Temperature Depth 6 7 8 9
Total Tokens 50 80 50 80 50 80 50 80

T=0

HASS 4.68 5.20 5.21 5.45 5.46 5.62 5.57 5.75
PosS-1(E2) 5.09 5.20 5.24 5.48 5.52 5.66 5.63 5.79
PosS-2(E2) 5.13 5.22 5.25 5.49 5.53 5.68 5.65 5.82
PosS-3(E2) 5.13 5.21 5.27 5.51 5.55 5.70 5.66 5.83

T=1

HASS 4.90 5.06 5.03 5.29 5.24 5.45 5.35 5.52
PosS-1(E2) 4.89 5.11 5.13 5.31 5.34 5.49 5.43 5.52
PosS-2(E2) 4.87 5.11 5.03 5.32 5.30 5.49 5.44 5.61
PosS-3(E2) 4.89 5.11 5.09 5.31 5.33 5.50 5.43 5.62

Table 7: Speed-up ratio under different hyperparameters. Experiments use Llama-2-13B-chat as the
base model. We average the results on all six datasets. The largest number within each row is bolded
to show the upper bound of each method.

Temperature Depth 6 7 8 9
Total Tokens 50 80 50 80 50 80 50 80

T=0

HASS 3.28x 3.02x 3.33x 3.08x 3.31x 3.09x 3.28x 3.09x
PosS-1(E2) 3.16x 2.93x 3.21x 3.08x 3.21x 3.09x 3.20x 3.09x
PosS-2(E2) 3.26x 3.00x 3.30x 3.06x 3.31x 3.09x 3.27x 3.07x
PosS-3(E2) 3.29x 3.00x 3.34x 3.09x 3.35x 3.11x 3.30x 3.10x

T=1

HASS 3.24x 2.94x 3.25x 3.00x 3.20x 3.01x 3.18x 2.98x
PosS-1(E2) 3.13x 2.93x 3.17x 2.95x 3.14x 2.97x 3.10x 2.92x
PosS-2(E2) 3.17x 2.94x 3.19x 2.98x 3.18x 2.99x 3.17x 2.98x
PosS-3(E2) 3.24x 2.97x 3.26x 3.00x 3.26x 3.02x 3.18x 3.01x

The results clearly show that standard MoE does not work with POSS, and here is an explanation for
it. In standard MoE, all experts are counterparts of each other, whose input and output are in the same
hidden state space. In POSS, however, each subsequent layer refines the feature bias produced by
the preceding one. Therefore, the input and output spaces are different for each position specialist,
and randomly mixing them introduces noise that confuses the model. This result, on the other hand,
proves the necessity of layer specialization.

Nevertheless, dynamic layer allocation is still a promising direction as long as it preserves the se-
quential order of layers. Equation 3 reveals that the accuracy at one position influences the accep-
tance rate of all following positions, highlighting the importance of correctly predicting the first
few positions. Therefore, it should be beneficial to let the first layer take charge of fewer positions
and assign more positions to later layers. For example, we can change the (3,3) allocation strategy
of POSS-3 into (2,4). The allocation becomes more complex when draft depth increases, where a
trainable module might be helpful. We leave this exploration for future work.

Table 8: Experiments of fixed layer allocation and MoE-based layer allocation. The fixed allocation
method performs better in terms of average acceptance length and speedup ratio, proving that layer
specialization is necessary for POSS, and mixing the order of layers causes performance degrada-
tion.

Temperature=0

Model MT-Bench Alpaca GSM8K Natural Questions CNN/DM HumanEval Avg.
τ speedup τ speedup τ speedup τ speedup τ speedup τ speedup τ speedup

PosS-3(E3) 5.15 3.35x 5.50 3.45x 5.43 3.41x 4.13 2.71x 4.54 2.84x 5.95 3.88x 5.12 3.27x
PosS-3(E3)-MoE 4.52 2.88x 4.72 2.95x 5.02 3.13x 3.87 2.45x 3.98 2.53x 5.43 3.51x 4.62 2.91x

Temperature=1
PosS-3(E3) 4.66 2.90x 4.98 2.84x 5.24 3.11x 3.81 2.09x 4.14 2.49x 5.69 3.21x 4.75 2.77x
PosS-3(E3)-MoE 3.53 1.86x 4.12 2.18x 4.22 2.14x 3.17 1.72x 3.55 1.84x 5.00 2.52x 3.93 2.05x
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Figure 7: The Inference-time GPU memory usage of different speculative decoding methods. The
memory usage is measured on the MT-bench test dataset. POSS methods require slightly more GPU
memory than EAGLE, the baseline method.
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