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ABSTRACT

Generative modeling for single-cell RNA-seq has proven transformative in cru-
cial fields such as learning single-cell representations and perturbation responses.
However, despite their appeal in relevant applications involving data augmenta-
tion and unseen cell state prediction, use cases like generating artificial biological
samples are still in their pioneering phase. While common approaches producing
single-cell samples from noise operate in continuous space by assuming normal-
ized gene expression, we argue for the necessity of sample generation in a raw
transcription count space to favor processing-agnostic data generation and flexi-
ble downstream applications. To this end, we propose cellFlow, a Flow-Matching-
based model that generates single-cell count data. In our empirical study, cellFlow
performs on par with existing methods operating on normalized data when eval-
uated on three biological datasets. By carefully considering raw single-cell dis-
tributional properties, cellFlow is a promising avenue for future developments in
single-cell generative models.

1 INTRODUCTION

Single-cell transcriptomics has enriched our understanding of biological systems. Mainly driven
by advancements in RNA-sequencing technologies, datasets have increased in size and complex-
ity (Angerer et al., 2017). Atlasing efforts such as the Human Cell Atlas underscore this develop-
ment (Regev et al., 2017). However, cell atlases are limited by existing and available data. The data
usable for biological research is thus restricted by the specific experiments conducted. Generative
modeling offers a solution: we envision a reliable generative model as an augmentation to single-cell
atlases, predicting novel cell states, perturbations (Lotfollahi et al., 2019) or even replacing large
data storages with parameterized models able to recreate a desired single-cell dataset. Toward this
vision, the reliability and realistic characteristics of generated samples are key to their use.

Generative modeling has already begun to impact the field of single-cell transcriptomics, both based
on standard probabilistic parameter estimation (Cao et al., 2021; Crowell et al., 2023) and deep
learning models (Sadria & Layton, 2023; Marouf et al., 2020; Heydari et al., 2022). However, cur-
rent deep learning approaches are tailored to generate continuous normalized data, where the gene
expression in different cells has been rescaled to sum to the same value. This strong assumption
limits the application of such models to contexts where the heterogenous number of counts in the
cell matter biologically or where more complex normalizations are required. Conversely, genera-
tive models operating in the count space such as scVI Lopez et al. (2018) are mostly employed for
representation learning and not optimized to generate single-cells from noise. To address these is-
sues, we opted to provide a more flexible tool designed to reproduce realistic single-cell raw counts,
facilitating compatibility with any downstream pipeline.
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Here, we present cellFlow (Fig. 1), a flow-based generative model for single-cell counts that over-
comes the need for data normalization or the use of a low-dimensional continuous latent space. This
is achieved by mapping discrete data to the continuous parameter space of a Negative Binomial
likelihood modeling overdispersed counts, and subsequently training a flow-based generative model
on top of it. As a generative model, we leverage the recently proposed Conditional Flow Match-
ing (Tong et al., 2023b), which showed promising performance both on image-based and biological
data. In summary, we propose the following contributions:

• An approach to apply flow-based generative models to discrete data under an assumed
likelihood model without a representation bottleneck.

• A formulation of such model for single-cell data based on a Negative Binomial distribution.

• An empirical study on three real-world single-cell RNA-sequencing datasets.

2 RELATED WORKS

Traditional models for simulating single-cell RNA-seq, such as those based on probabilistic param-
eter estimation frameworks Zappia et al. (2017), have been complemented by deep-learning-based
generative models. Notably, scVI Lopez et al. (2018), a VAE adapted to single-cell data’s discrete
distributional properties, addresses tasks such as batch integration and representation learning. Other
approaches, including VAEs for single-cell generation Heydari et al. (2022), GANs Marouf et al.
(2020), and Diffusion Models Luo et al. (2024); Sadria & Layton (2023), also aim for single-cell
data generation. Our work builds upon Flow Matching (FM) Lipman et al. (2023), a novel frame-
work for stable normalizing flows, applied previously in trajectory inference Tong et al. (2023a;b)
and Optimal Transport Klein et al. (2023). However, our method explores flows as generative mod-
els of discrete single-cell counts at cellular resolution, opening new avenues for exploration in the
field.

3 BACKGROUND

3.1 MODELING SINGLE-CELL RNA-SEQUENCING COUNTS

Gene expression in single cells is captured via scRNA-seq as a vector of discrete counts represent-
ing the number of molecules detected experimentally at a measured cell state for a certain gene.
Single-cell counts are complex in nature. Cells may vary in size or exhibit different detection rates.
Consequently, technical and biological variation is responsible for essential characteristics to be ac-
counted for when modeling scRNA-seq, such as sparsity and overdispersion. A common choice is to
assume that each gene in each cell follows a Negative Binomial distribution, which allows a flexible
relation between gene-specific means and variances depending on an inverse dispersion parameter.

Figure 1: cellFlow framework. a. A deep dimensionality-preserving encoder trained via maximum likelihood
maps discrete single-cell data to the continuous mean of the Negative Binomial distribution. b. A flow-based
generative model is trained to transform noise to the output space of the encoder model.
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We denote the single-cell gene expression matrix as X ∈ NN×G
0 with N and G the number of cells

and genes, respectively. Each entry of Xng is assumed to follow a Negative Binomial (NB) model:
Xng ∼ NB(µng,θg) (1)

where µng ∈ R+ is a cell-gene specific mean and θg ∈ R+ the gene specific inverse dispersion.
In other words, we assume that each cell has an individual mean expression, whereas technical
variation is modeled as a single inverse dispersion value learnt per gene across the whole dataset.

The expression value of single genes spans a wide range depending on the technology and biological
system employed for the study. In single-cell generative modeling it is common practice to decom-
pose gene expression into the product of gene proportions ρng and a size factor ln =

∑G
g=1 Xng

which represents the total number of counts in the cell and depends on various factors such as tech-
nical effects or cell size. In VAEs, µ is a function of a latent variable z:

µ = l ρ , ρ = softmax(hψ(z)) , (2)
with hψ representing a decoder parameterized by ψ.

3.2 CONTINUOUS NORMALIZING FLOWS

Consider continuous data in Z ∈ RG. Notably, the density p(z) can be modeled as a time-dependent
probability path p : [0, 1] × Rd → R+ which transforms a simple distribution p0(z), such as a
standard Gaussian, into p1(z) = p(z), where we denote the probability density at time t ∈ [0, 1] as
pt. The probability path is said to be generated by a time-dependent vector field ut : [0, 1]×RG →
RG if p and u satisfy the continuity equation dp

dt = −∇ · (ptut). The vector field ut can be seen as
modeling the instantaneous change of an invertible time-dependent diffeomorphic transformation of
z indicated as ϕt : RG → RG such that:

d

dt
ϕt(z) = ut(ϕt(z)) , ϕ0(z) = z . (3)

A Continuous Normalizing Flow (CNF) is then defined as pt = [ϕt]∗p0, with

[ϕt]∗p0 = p0(ϕ
−1
t (z))det

[
∂ϕ−1

t

∂z
(z)

]
(4)

and ∗ representing the push-forward operations. In other words, by deterministically transforming
the variable z following the vector field ut(z), ϕt(z) causes the prior density p0 to evolve into p1.

3.3 CONDITIONAL FLOW MATCHING

We deal with the formulation of CNF which leverages Neural Ordinary Differential Equations (Neu-
ralODEs). Specifically, our goal is to learn a parameterized velocity field vξ(t, z) which approxi-
mates ut(z) from Section 3.2. To do so, we resort to Conditional Flow Matching (CFM), a flexible
framework to learn normalizing flows without the need to simulate NeuralODEs during training.
Briefly, Tong et al. (2023b) express the time marginal pt(z) as a mixture conditioned on a latent
variable c with density q(c), i.e., pt(z) =

∫
pt(z|c)q(c)dc. The marginal field ut(z) is related to

the conditional field ut(z|c) generating pt(z|c) by:

ut(z) = Eq(c)
[
ut(z|c)pt(z|c)

pt(z)

]
. (5)

Given a specific formulation of the conditioning variable c, ut(z|c) and pt(z|c) are tractable and
training vξ(t, z) to approximate ut(z|c) is equivalent to regressing against ut(z) up to a constant
independent of ξ. In our approach, we follow Optimal Transport CFM (OT-CFM) described in Tong
et al. (2023b), which involves defining c as pairs of samples (z0, z1), which are sampled from the
static Optimal Transport coupling c ∼ q(c) = π∗(Z0,Z1), where Z0 and Z1 represent the source
and target sets of observations, respectively. By assuming Gaussian marginals for pt and connecting
z0 and z1 through Gaussian flows, both pt(z|c) and ut(z|c) become computationally manageable:

pt(z|c) = N (tz1 + (1− t)z0, σ
2) , ut(z|c) = z1 − z0, (6)

where σ2 is a predefined value. Consequently, the CFM loss is expressed as:
LOT−CFM = Et,q(c),pt(z|c)∥vξ(t, z)− ut(z|c)∥2, (7)

with t being sampled from a uniform distribution U(0, 1). When p0 is set as a Gaussian prior over
RG, samples from N (0, IG) can be used to generate observations from the data distribution.
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4 CELLFLOW

4.1 PROBLEM STATEMENT

Our objective is to develop a statistical model utilizing OT-CFM for generating single-cell counts.
The challenge lies in handling discrete data, which violates the assumptions of continuous flows.
While prior works have explored discrete normalizing flows (Tran et al., 2019) and dequantization
methods (Ho et al., 2019), none have addressed the complexities of high-dimensional single-cell
data, characterized by sparsity and overdispersion. To tackle this, we leverage the distributional
properties of single-cell data, as discussed in Section 3.1, by learning to generate gene expression
mapped to a continuous space representing the mean of a Negative Binomial distribution. Realistic
single-cell count data can then be sampled from the generated parameter vectors following Eq. (1).

4.2 THE PROBABILISTIC MODEL

Let X ∈ NN×G
0 be a single-cell dataset and Y ∈ (0, 1)N×Ny a matrix of one-hot categorical

conditions indexed 1 through Ny . Considering a single data point (x,y) consisting of a row from
the data matrices above, we define the following latent variable generative model:

p(x, z, l,y) = p(x|z, l;θ)p(z|l,y)p(l|y)p(y) (8)

where z ∈ RG is a latent variable, l is the size factor, defined as the total number of counts in a
cell, and θ is the inverse dispersion parameter described in Eq. (1). In what follows, we examine our
choices of the individual elements of the model in Eq. (8).

Condition probability p(y). We model p(y) as a categorical distribution Cat(Ny, πy), where Ny
is the number of categories and πy is a vector of per-class probabilities. We fit the vector πy on the
data as the observed proportions of each of the Ny conditions.

Size factor probability p(l|y). We assume that the size factor is log-normally distributed as
LogNormal(µl,y, σl,y) with category-specific means µl,y and standard deviations σl,y. Similarly
to p(y), we fit the parameters of p(l|y) on the data.

Latent variable probability p(z|l,y). As p(z|l,y), we choose a CNF trained via OT-CFM (see
Section 3.3). In other words, we learn a parameterized velocity function vξ(t,x, l,y) that generates
an Optimal Transport probability flow pt transporting a standard multivariate Gaussian distribution
to the density of z, for which we do not assume any parametric form.

Likelihood model p(x|z, l;θ). Finally, we formulate the likelihood model from which gener-
ated counts are sampled given z, l and y. As previously noted, we assume a parametric form of
p(x|z, l;θ) as the Negative Binomial distribution NB(lρ,θ) where ρ = softmax(z). It is important
to notice that our formulation is analogous to that in Eq. (2). However, we do not make use of a
parameterized decoder hψ . That is, we assume that z already denotes the pre-softmax representation
of the gene proportions with no need for additional non-linearities.

4.3 TRAINING

In practice, we train each element of Eq. (8) separately. Given the data as described in Section 4.2,
we derive the parameterizations for p(y) and p(l|y) trivially by fitting the distributions to the em-
pirical category proportions and (conditional) size factors. To train OT-CFM and learn to generate
z from Gaussian noise, we first need to find a proper representation z that equates gene proportions
before performing softmax and scaling by l. In our case, we learn such a representation from the
data by means of a dimensionality-preserving encoder fν that maps a discrete data point x to z and
is trained via maximum likelihood optimization following:

argmax
ν,θ

p(x|z, l;θ) = argmax
ν,θ

NB(l · softmax(fν(x)),θ) , (9)

where z = fν(x), p follows a Negative Binomial density, and θ is learnt as a per-gene inverse dis-
persion parameter to optimize the likelihood. In other words, fν encodes the data into a continuous
space corresponding to the mean of a cell’s distribution up to a softmax and a scaling operation.
The reason behind such a choice is that z lives in an unconstrained domain, making training a Neu-
ralODE easier than forcing it to directly generate the strictly positive mean of the Negative Binomial.
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Table 1: Evaluation metrics of single-cell data generated by different models. Output type indicates whether a
model is designed to generate counts or normalized expression vectors. Bold and underlined entries represent
the best and second-best models.

Output type 2-WD(↓) MMD(↓) Recall(↑)

PBMC Dentate gyrus Lung PBMC Dentate gyrus Lung PBMC Dentate gyrus Lung
Splatter counts 2.17 1.79 2.63 1.45 0.55 3.11 0.14 0.14 0.05
scGAN normalized 2.17 1.72 2.02 1.19 0.76 2.89 0.29 0.63 0.12
ACTIVA normalized 2.21 2.50 2.34 0.85 3.84 4.70 0.53 0.08 0.18
scDiffusion normalized 2.49 1.77 1.90 1.76 0.32 2.05 0.06 0.08 0.01
cellFlow counts 2.18 1.77 2.04 1.41 0.88 2.93 0.90 0.60 0.41

Given an optimized encoder fν , we train OT-CFM by encoding each batch as z = fν(x) and training
the vector field vξ on the derived representation as described in Section 3.3.

4.4 SAMPLING

In order to sample from a trained model, we first draw a conditioning vector y ∼ p(y) and use it
to index the log-normal distribution from which the library size is sampled. A noise vector z0 ∼
N (0, IG) is then sampled and used as the initial condition for the following simulation:

z1 = z0 +

∫ 1

0

vξ(t, zt, l,y)dt (10)

We then map z1 to the mean vector µ = l softmax(z1) and generate RNA-seq counts by sampling
x ∼ NB(µ,θ), where θ has been pre-trained via likelihood optimization (see Section 4.3).

5 EXPERIMENTS

5.1 DATASETS

We evaluate cellFlow on three single-cell RNA-sequencing datasets; (i) We first employ a PBMC
(Peripheral Blood Mononuclear Cells) dataset freely available for download from 10X Genomics
and considered in the Seurat package Satija et al. (2015) tutorials 1. The dataset consists of 2700
single cells from a healthy donor clustering into 8 cell types; (ii) The dentate gyrus dataset La Manno
et al. (2018) follows the expression of 18,213 cells from a developing mouse hippocampus. It counts
14 cell types denoting the different stages of cellular differentiation; (iii) We also use a dataset of
lung cells Vieira Braga et al. (2019) consisting of 32,472 cells with 17 cell types. Such datasets
contain substantial batch effects being cellular samples collected from three separate sources. For
all datasets, cellFlow is conditioned on cell type.

5.2 BASELINES

As baselines, we include three recent deep generative models for single-cell data generation: scGAN
Marouf et al. (2020), scDiffusion Luo et al. (2024) and ACTIVA Heydari et al. (2022). Although
similar in scope to cellFlow, all methods are designed to generate real-valued normalized gene ex-
pression, where cell counts are normalized to sum to a pre-defined value. We train them in their
original settings and compare them to cellFlow on a subset of 2000 highly variable genes. As a
baseline, we also considered Splatter Zappia et al. (2017), a simulation tool of single-cell counts
based on gene expression parameter estimation.

5.3 EVALUATION METRICS

We evaluated the generated samples both qualitatively and quantitatively. Qualitatively, we assess
the joint UMAP McInnes et al. (2018) and Principal Component Analysis (PCA) visualization of real
and generated data. Quantitatively, our focus lies on two key aspects: data characteristics and dis-
tributional similarities. For the former, we study if the sparsity patterns of generated count samples
preserve those observed in the real data. To quantify the closeness of generated data to the original

1https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
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distribution, we evaluate (i) the squared Wasserstein-distance (2-WD) and (ii) the linear Maximum
Mean Discrepancy (MMD) measures between real and generated datasets (see Appendix B). Addi-
tionally, we include (iii) the Recall measure (Sajjadi et al., 2018), which gets closer to 1 the more
real samples lie on the generated data, estimated via 10-nearest-neighbors (kNN) balls around fake
cells. All metrics were computed in a reduced feature space of 50 PCs.

5.4 RESULTS

We present our quantitative results in Table 1, where we compare cellFlow with the considered
simulation methods. Notably, cellFlow performs competitively with other models, reaching the best
or second-best Recall score in two out of three datasets and the second-best squared Wasserstein
distance in both the PBMC3K and Dentate gyrus datasets. A better Recall means that the generated
data mixes with real data neighborhoods more effectively, as exemplified by Fig. 2a via the PBMC3k
dataset, where the largest score discrepancy between our and competing models arises.

a
ACTIVAscGAN scDiffusion

c

scCFM (ours)

scCFM (ours)scDiffusion

Modelling sparsity - Dentategyrus

generated

real
PC1

PC
2

ACTIVAscGAN

b

HI = 0.64 HI = 0.69HI = 0.37HI = 0.66

*HI: histogram intersection

Generation in low data regime - PBMC3k
Marker gene expression - PBMC3k

Figure 2: Evaluation of the generated single-cell samples with real data in blue and generated data in orange.
a. PCA visualization of generated compared to the real dataset. b. Gene expression of known markers in the
PBMC3k dataset. c. Frequency of zeros in real and generated cells. HI stands for Histogram Intersection.

We remark that our task of generating counts from noise is complicated and unexplored, as we
preserve the nature of the data and allow a more flexible downstream usage such as datasets where a
homogeneous normalization is not optimal at preserving the biological signal. Despite the complex
task, our conditional model reproduces faithful lineage-specific marker expression (see Fig. 2b for an
example on the PBMC3k dataset) and, therefore, shows promising performance as a tool for realistic
gene expression generation. Finally, in Fig. 2c we demonstrate that considering a discrete likelihood
model, like in our case, better captures key properties such as data sparsity, as the frequency of
per-cell zero counts better approximates the one of observed data. This aspect is inherent in our
model formulation. While other generative models assume continuous single-cell data, samples
from cellFlow incorporate realistic single-cell distributional properties.

6 CONCLUSION

In this work, we presented cellFlow, a deep-learning approach for training flow-based models to
generate single-cell discrete counts. To alleviate the issue of applying continuous models to discrete
data, we developed a deep dimensionality-preserving encoder that maps single-cell data to the con-
tinuous parameter space of a Negative Binomial likelihood. The parameter space allows the training
of an OT-CFM model such that, during sampling, noise vectors are mapped to the continuous single-
cell parameters used to sample the data likelihood and obtain realistic counts. We tested our model
on three single-cell datasets, showing competitive performance with existing generative models for
normalized counts and better sparsity-preservation properties of generated scRNA-seq vectors. To
the best of our knowledge, this represents a novel and promising research direction that warrants
extensive exploration. Future efforts will build on the introduced model for a comprehensive assess-
ment of potential downstream tasks, such as data augmentation and perturbation prediction, and the
generation of multi-modal data following different likelihood models.
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A MODEL DETAILS

A.1 ENCODER MODEL

The encoder model is a two-layer Multi-Layer Perceptron (MLP) with ELU activation function and
batch normalization. The first two linear layers count 512 units, projecting the data into a lower
dimension. The last two layers map the bottleneck back to the gene expression dimension. We train
the model with a learning rate of 0.001 and AdamW optimizer.

A.2 VELOCITY MODEL vξ

For the velocity model, we develop a deep Residual Neural Network (ResNet) model inspired by
the UNET used in Denoising Diffusion Models (Ho et al., 2020) but without the multiscale structure
typical of computer vision applications. More in detail, an initial linear layer maps the cell to a
512-dimensional space. Here, three ResNet blocks are stacked on top of each other and transform
the data across hidden representations. At every step of the ResNet, embeddings for the library
size, cell type label and time are projected into the same dimension of the hidden representations
and added to them. Library size and time are embedded with sinusoidal embeddings Vaswani et al.
(2017), whereas the one-hot label for cell type is initialized as a torch.nn.Embedding object
of dimension 256. All non-linearities are SiLU activation functions. After the residual blocks, a
final upsampling layer maps the hidden output of the ResNet blocks to the gene dimension.

A.3 HYPERPARAMETERS FOR OT-CFM TRAINING

We train OT-CFM with a batch size of 256 and σ = 0.0001 controlling the deviation around the
straight line between source and target described in Eq. (6). The generative model was trained
with a learning rate of 0.0001 and AdamW optimizer. For sampling, we employed the NeuralODE
function of the torchdyn Python package. We set the solver type to dopri5 with adjoint
sensitivity and parameters atol and rtol set to 1e-5. For batch Optimal Transport we use an
exact solver from the pot package.

B EXPERIMENTAL DETAILS

On each dataset, we explore the following hyperparameters:

Table 2: Hyperparameters for training cellFlow.

Name Values Description
Covariate embedding size [128, 256] Size of cell type embedding
Embedding dimension [128, 256] Dimension of condition embeddings in the ResNet
Number of blocks [2, 3, 4] Number of ResNet blocks
Learning rate [0.0001, 0.001] Learning rate to train cellFlow
σ [0, 0.0001, 0.001, 0.01, 0.1] Variance of Gaussian around the straight line between matched samples
Batch size [128, 256, 256] Batch size for Flow Matching

We choose the best configuration based on the OT-CFM loss described in Eq. (7) on a left-out test set.

For metric computation in Table 1, we simulate as many cells as those in the real dataset for all
methods. Both real and generated cells are reduced to 2000 highly variable genes and subsequently
transoformed to a 50-PC matrix to remove noise. The PC matrices of both real and generated data
are standardized and compared with the described metrics.

C METRICS DESCRIPTIONS

C.1 SQUARED WASSERSTEIN DISTANCE

The 2-Wasserstein distance, also known as the Wasserstein-2 or Euclidean Wasserstein distance,
measures the dissimilarity between two probability distributions in terms of their optimal trans-
portation cost. It quantifies how much ”work” is needed to transform one distribution into the other,
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with smaller distances indicating greater similarity between the distributions. The 2-Wasserstein
distance is computed as the square root of the minimum transport cost among all possible mappings
between the distributions, weighted by the Euclidean distance in the underlying space.

The formula for computing the 2-Wasserstein distance between two distributions P andQwith finite
second moments is given by:

W2(P,Q) =

(
inf

γ∈Γ(P,Q)

∫
Rd×Rd

∥x− y∥2 dγ(x, y)
)1/2

where Γ(P,Q) represents the set of all joint probability distributions on Rd × Rd with marginals P
and Q, and ∥ · ∥ denotes the Euclidean norm.

C.2 MEAN MAXIMUM DISCREPANCY

The linear Mean Maximum Discrepancy (MMD) is a metric used to measure the distance between
probability distributions. It evaluates dissimilarities between distributions by comparing their em-
pirical means and covariances in a reproducing kernel Hilbert space (RKHS). The linear MMD is
particularly suited for capturing differences in the first and second moments of distributions and is
often used in tasks such as domain adaptation and two-sample testing.

The formula for computing the linear MMD between two distributions P and Q with finite second
moments is given by:

MMD(P,Q) =

∥∥∥∥∥∥ 1n
n∑
i=1

ϕ(xi)−
1

m

m∑
j=1

ϕ(yj)

∥∥∥∥∥∥
2

H

(11)

where (x1,x2, ...,xn) and (y1,y2, ...,ym) are samples drawn from distributions P and Q respec-
tively, and ϕ represents the feature map that maps samples into a reproducing kernel Hilbert space
H.

C.3 RECALL

Given a real and a generated dataset with X and Y withN andM observations, Recall (Sajjadi et al.,
2018) is a metric used to measure the expected likelihood of real samples against a fake manifold.
It is computed as:

Recall =
1

N

N∑
i=1

1Xi∈manifold(Y1,...,YM ) (12)

where N is the number of real samples, 1(·) is the indicator function, and manifold(y1, . . . ,yM )
constructs manifolds using spheres around fake samples. In this context, a sphere centered at each
fake sample yi with a radius equal to the distance to its k-th nearest neighbor, excluding itself, forms
the manifold. This construction enables the comparison of real samples against a neighborhood of
fake samples.

D BASELINE DESCRIPTION

D.1 SPLATTER ZAPPIA ET AL. (2017)

Splatter is a versatile tool for generating synthetic single-cell RNA sequencing (scRNA-seq) counts.
It offers six different simulation models accessible through a user-friendly interface. Users can
simulate various biological scenarios by adjusting parameters such as the number of cells, genes,
and levels of biological variation and technical noise. The simulation process involves two steps:
estimating parameters from real datasets and using these parameters to generate synthetic scRNA-
seq data.
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D.2 SCGAN (MAROUF ET AL., 2020)

The scGAN model is a Generative Adversarial Network (GAN) Goodfellow et al. (2014) tailored
for realistic scRNA-seq data generation. It minimizes the Wasserstein distance between distribu-
tions of real and generated cells, utilizing a generator network to produce synthetic samples and a
critic network for discrimination. The model employs fully connected layers, incorporates a custom
library-size normalization (LSN) layer for stable training, and extends to conditional scGAN (csc-
GAN) for type-specific cell generation. Evaluation involves metrics like t-SNE and marker gene
correlation to gauge generated cell quality.

D.3 ACTIVA (HEYDARI ET AL., 2022)

The ACTIVA model incorporates three primary networks, including a self-evaluating VAE at its
core and a cell-type classifier as its conditioner. The objective functions of the model are formulated
to train the encoder network as an adversary of the generator network, facilitating realistic data gen-
eration. The encoder network serves to map scRNA-seq data into an approximate posterior while
acting as a discriminator to judge the quality of generated samples against training data. Various loss
components, including KL divergence regularization, reconstruction error, and cell-type matching,
are employed to train both the encoder and generator networks effectively. Additionally, an auto-
mated cell-type conditioning technique is introduced to encourage the generator to produce cells
classified similarly to the input data. The model’s flexibility allows for the use of any classifier as a
conditioner, enabling adaptation to diverse classification tasks.

D.4 SCDIFFUSION (LUO ET AL., 2024)

The scDiffusion model comprises an autoencoder, a diffusion backbone network, and a conditional
classifier. The autoencoder transforms gene expression profiles into latent space embeddings, the
diffusion backbone network learns the reverse diffusion process, and the conditional classifier guides
cell generation under specific conditions. During training, the autoencoder creates embeddings from
real data, followed by diffusion to generate noisy embeddings for backbone training, while the
classifier predicts labels. In inference, the diffusion backbone denoises embeddings to produce new
ones for gene expression data generation. The autoencoder addresses high-dimensional data and
non-Gaussian distribution, while the diffusion backbone network utilizes fully connected layers and
a residual structure. In the diffusion process, noise is iteratively added to embeddings, and during
inference, noise is iteratively removed to generate new embeddings for final data generation.

E DATA PREPROCESSING AND DESCRIPTION

Single cells were pre-processed via the Scanpy (Wolf et al., 2018) software. Count normalization
was applied only to baselines requiring real-valued data. In such settings, cells were normalized
to sum to 1e4. To train cellFlow we select 2000 highly variable genes per dataset using the func-
tion scanpy.pp.highly variable genes with flavor seurat v3. Since cellFlow works
in count space, the data is not normalized to train it.

F COMPUTATIONAL RESOURCES

We utilized Python 3.10 for our model’s implementation, employing PyTorch 2.0 for deep learning
models. Our experiments were conducted separately on GPU servers with the following specifica-
tions:

• GPU: 16x Tesla V100 GPUs with 32GB RAM per card
• GPU: 2x Tesla V100 GPUs with 16GB RAM per card
• GPU: 8x A100-SXM4 GPUs with 40GB RAM per card
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