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Abstract

Image captioning has drawn remarkable atten-001
tion from the natural language processing and002
computer vision fields. Aiming to reduce the re-003
liance on curated data, several studies have ex-004
plored image captioning without relying on any005
humanly-annotated image-text pairs, although006
existing methods are still outperformed by fully007
supervised approaches. This paper proposes008
TTLLCap, i.e. a text-only training method for009
image captioning, based on prompting a pre-010
trained language model decoder with informa-011
tion obtained from CLIP representations of the012
inputs. Specifically, we experimented with the013
combined use of (a) retrieved examples of cap-014
tions, (b) relevant concepts for the input, and (c)015
latent vector representations. Through exten-016
sive experiments, we show that TTLLCap out-017
performs previous training-free methods, and018
is also competitive with other text-only training019
methods. We also analyze the impact of differ-020
ent choices regarding the configuration of the021
retrieval-augmentation component. The source022
code supporting our experiments is available023
from a public GitHub repository1.024

1 Introduction025

Image captioning concerns generating descriptions026

for input images. The task has drawn remark-027

able attention from the natural language process-028

ing and computer vision fields, due to its wide029

applications. Current captioning models based030

on the encoder-decoder framework have achieved031

tremendous progress in advancing the state-of-the-032

art (Alayrac et al., 2022; Li et al., 2023b). These033

models are usually trained with full supervision,034

relying on large-scale humanly-annotated training035

data (i.e., curated image-caption pairs) whose avail-036

ability depends on expensive labeling work.037

Aiming to improve data- and parameter-038

efficiency, several studies have proposed the use of039
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encoder-decoder models that re-use off-the-shelf 040

pre-trained vision encoders such as CLIP (Radford 041

et al., 2021) and language decoder models such as 042

GPT2 (Radford et al., 2019), keeping the parame- 043

ters of these components frozen and only training a 044

mapping between the two. In some cases, authors 045

have proposed to leverage retrieval-augmented gen- 046

eration to further improve efficiency, while allow- 047

ing for training-free domain transfer and the ex- 048

ploration of captioning data in a training-free fash- 049

ion (Ramos et al., 2023c). To further mitigate the 050

data needs and improve the generalization in real- 051

world scenarios, several studies have explored cap- 052

tioning without relying on any humanly-annotated 053

image-text pairs. These methods can be divided 054

into two groups, namely training-free and text-only 055

training methods. Training-free approaches realize 056

zero-shot captioning using pre-trained models with- 057

out fine-tuning (e.g., a pre-trained vision-language 058

model like CLIP is used to guide a pre-trained lan- 059

guage model such as GPT2, to generate sentences 060

that match the given image). In turn, text-only 061

training methods fine-tune the decoder based on 062

high-quality text data, without relying on corre- 063

sponding images during training. Despite signifi- 064

cant advances, existing training-free methods are 065

given to hallucination problems, and while text- 066

only training can achieve strong results, it is still 067

outperformed by fully supervised approaches. 068

This paper proposes Text-only Training with 069

Latents plus Language prompt-based Captioning 070

(TTLLCap), an improved text-only training method 071

that combines ideas from several previous studies, 072

namely retrieval-augmented generation as in Small- 073

Cap and LMCap (Ramos et al., 2023c,b), a prompt- 074

ing strategy similar to that of the Socratic models 075

framework (Zeng et al., 2022), and also the idea 076

of decoding latent representations from the CLIP 077

model (Gu et al., 2022; Nukrai et al., 2022; Qiu 078

et al., 2024; Wang et al., 2024). Instead of simply 079

using a corpus of textual captions to train a decoder 080
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model, we also rely on the text-only training cor-081

pus as a retrieval datastore, and use efficient Low-082

Rank Adaptation (LoRA) to fine-tune the decoder083

towards generating captions conditioned on a com-084

bination of (a) similar captions obtained through085

retrieval, (b) relevant concepts for the input, and (c)086

a latent representation of the input. The three afore-087

mentioned elements are all obtained from CLIP088

representations (either from textual captions, dur-089

ing training, or from the input image, during infer-090

ence), using a simple strategy to circumvent the091

known CLIP modality gap (Gu et al., 2023). Com-092

bining retrieval-augmentation with LoRA training093

also mitigates the forgetting of the knowledge con-094

tained in the pre-trained language model decoder.095

Experiments with MSCOCO (Lin et al., 2014)096

and NoCaps (Agrawal et al., 2019) show that097

TTLLCap outperforms several previous training-098

free and text-only training methods, particularly099

in terms of the generalization capabilities in No-100

Caps. The retrieval of similar captions is indeed the101

most impactfull aspect in the proposed combina-102

tion, and we also analyzed the impact of different103

choices regarding the configuration of the retrieval-104

augmentation component, including the number of105

retrieval examples and trade-offs between retrieved106

caption similarity and diversity.107

2 Related Work108

This section reviews relevant previous work related109

to the proposed approach.110

2.1 Zero-Shot Image Captioning111

Several previous studies have proposed to re-112

purpose text-image matching models, such as113

CLIP (Radford et al., 2021), to generate image114

captions without any task-specific training (Tewel115

et al., 2022; Zeng et al., 2023; Ramos et al., 2023b).116

For instance, ZeroCap (Tewel et al., 2022) uses117

a pre-trained CLIP model together with a GPT2118

language model, being truly zero-shot in the sense119

that the only optimization that is considered is per-120

formed ex post facto in the activation space during121

decoding, without re-training or fine-tuning the122

model parameters. In particular, ZeroCap uses a123

customized decoding algorithm, in which the con-124

text cache (i.e., all the key and value vectors in the125

self-attention modules) is updated with the guid-126

ance of CLIP and GPT2, for every prediction step.127

Other authors have instead proposed zero-shot128

strategies that do not directly involve the use of129

image data, instead relying on textual information130

alone. For instance Zeng et al. (2022) proposed 131

the Socratic models framework, where different 132

pre-trained models communicate via zero-shot or 133

few-shot prompting, without any multimodal train- 134

ing. For the task of image captioning, the GPT-3 135

language model can be prompted with information 136

about the input image (e.g., information about the 137

number of people present in the image, places, ob- 138

jects, and general classes associated to the image), 139

as obtained with a pre-trained CLIP model. In turn, 140

Ramos et al. (2023b) proposed LMCap, building 141

on similar ideas to those of Socratic models (i.e., 142

LMCap is an image-blind method that generates 143

captions only with basis on textual information pro- 144

vided as input). In this case, CLIP is first used to 145

retrieve captions from similar images, and these 146

captions are then combined into a prompt for a 147

GPT2 language model decoder. 148

2.2 Text-Only Training for Image Captioning 149

Instead of zero-shot approaches, several authors 150

have instead explored text-only training for image 151

captioning, e.g. learning a decoder that generates 152

captions from a frozen CLIP text encoder, and us- 153

ing only textual information, unpaired to any im- 154

ages, for model training (Su et al., 2022; Nukrai 155

et al., 2022; Gu et al., 2022; Tam et al., 2023; Li 156

et al., 2023c; Wang et al., 2023; Qiu et al., 2024; 157

Liu et al., 2024a; Wang et al., 2024). The train- 158

ing objective is thus, for a given textual corpus, 159

the reconstruction of each input text from a textual 160

embedding vector produced with CLIP, whereas at 161

inference time we provide the model with a CLIP 162

embedding for an image and the decoder gener- 163

ates the corresponding caption. To rectify the gap 164

between the textual and visual CLIP embedding 165

spaces (i.e., previous studies have shown that the 166

text and image vectors from CLIP can be far apart 167

and for instance, on MSCOCO captions, the aver- 168

age cosine similarity between an image and paired 169

caption is only 0.26, while the average similarity 170

between two unrelated captions is 0.35 (Liang et al., 171

2022)), most of these studies have explored some 172

form of noise injection during training (e.g., Gaus- 173

sian noise can be added to the text embeddings 174

produced by CLIP (Gu et al., 2022; Nukrai et al., 175

2022; Qiu et al., 2024; Wang et al., 2024), in order 176

to define a ball, in the embedding space, that should 177

map to the same image). 178

Noting that the weak visual guidance in the 179

paradigm described in the previous paragraph can 180

often lead to a modality bias (i.e., the language 181
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prior in the language model dominates the decod-182

ing process, often leading to descriptions that are183

unrelated to the corresponding images), some pre-184

vious studies (Wang et al., 2022; Fei et al., 2023;185

Zeng et al., 2024; Wang et al., 2024) have explored186

methods that rely on initializing the decoder with187

hard textual prompts that encode visual concepts188

(e.g., nouns extracted from texts during training,189

or entities retrieved from the input image during190

inference). The idea is to better guide the language191

model towards the visual entities, this way enabling192

more coherent caption generation.193

More recently, some authors have proposed ap-194

proaches that address the modality gap through195

synthetic image-text pairs (Ma et al., 2024; Liu196

et al., 2024b). For instance Liu et al. (2024b) used197

a pre-trained text-to-image model to generate im-198

ages for a training set of textual captions. Each199

generated image, corresponding to a training text,200

is encoded in the CLIP embedding space, and a201

lightweight decoder model is trained to generate202

captions from the CLIP representations. Addition-203

ally, salient objects in images are recognized with a204

pre-trained detection model, and the corresponding205

textual labels are used as hard prompts that enhance206

the learning of the modality alignment.207

2.3 Retrieval-Augmented Image Captioning208

The idea of extending the information encoded209

within language model parameters, through non-210

parametric knowledge retrieved from datastores211

(i.e., external memories), has been used extensively212

in different NLP tasks. The success of retrieval-213

augmented generation has also inspired some re-214

cent studies in image captioning (Sarto et al., 2022;215

Ramos et al., 2023a,c,b; Yang et al., 2023; Ramos216

et al., 2024; Li et al., 2023a; Sarto et al., 2024).217

For instance SmallCap (Ramos et al., 2023c) cor-218

responds to an encoder-decoder model in which219

a language decoder is prompted with captions re-220

trieved from a datastore through the use of CLIP.221

The model itself uses a frozen CLIP encoder, a222

frozen GPT2 decoder, and a cross-attention layer223

that is trained to map across modalities. The au-224

thors of SmallCap also developed the aforemen-225

tioned LMCap model (Ramos et al., 2023b), which226

uses a similar strategy for prompting GPT2, but in227

which only the textual information is used to gener-228

ate the output captions (i.e., this approach does not229

involve cross-attention towards the representations230

produced with a vision encoder, corresponding to231

an image-blind approach).232

Despite its potential, the power of retrieval- 233

augmented generation is highly dependent on con- 234

figuration options. Considering general NLP appli- 235

cations, some previous studies have analyzed the 236

sensitivity of retrieval-augmented generation to as- 237

pects such as the number of retrieved instances, the 238

ordering of the retrieved instances, or the quality 239

and diversity of the retrieval results (Hsia et al., 240

2024; Cuconasu et al., 2024). Still, within the 241

specific context of multimodal tasks like image 242

captioning, significantly less work has looked into 243

these issues (Peng et al., 2023; Yang et al., 2024). 244

Some authors have noted that retrieved examples 245

adequately describing the salient image objects, 246

with simpler language patterns, seem to improve 247

results. Retrieving examples with high similarity 248

towards the input seems to be more important than 249

the retrieval of diverse examples, while at the same 250

time excessive similarity can lead models to create 251

short-cut inferences from the retrieved instances, 252

potentially misleading generation with low-quality 253

captions. However, we believe that additional stud- 254

ies are needed in order to confirm these statements. 255

3 Proposed Method 256

The proposed approach, which we named Text- 257

only Training with Latents plus Language prompt- 258

based Captioning (TTLLCap), combines retrieval- 259

augmented generation as in SmallCap and LM- 260

Cap (Ramos et al., 2023c,b), together with a 261

prompting strategy similar to that of the Socratic 262

models framework (Zeng et al., 2022), and also the 263

idea of decoding latent representations from CLIP, 264

after noise injection to avoid the modality gap (Gu 265

et al., 2022; Nukrai et al., 2022; Qiu et al., 2024; 266

Wang et al., 2024). The method is based on the 267

use of textual information during training, whereas 268

during inference it uses a textual prompt together 269

with visual information encoded with CLIP. 270

Specifically, during training, examples of image 271

captions are first encoded with the CLIP text en- 272

coder into a vector representation, to which we add 273

Gaussian noise in order to close the CLIP modality 274

gap, spreading out the text vectors so that they bet- 275

ter overlap with what would be the corresponding 276

image vectors. The resulting vector representations 277

are used to search for other similar captions in a 278

datastore of examples, and also to build a Socratic 279

prompt with information about the corresponding 280

image (e.g., information about the number of peo- 281

ple present in the image, places, objects, and gen- 282

eral classes associated to the image). The retrieved 283
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Figure 1: Overview on Text-only Training with Latents plus Language prompt-based Captioning (TTLLCap).

captions and the Socratic prompt are combined284

together, and used as input to a language model285

decoder. This decoder is extended with cross-286

attention layers, which consider single/individual287

key and value vectors derived from the input vec-288

tor representation that was also used to perform289

retrieval. The parameters of CLIP and of the lan-290

guage model decoder are kept frozen during train-291

ing, but we train the cross-attention layers and also292

Low-Rank Adaptation (LoRA) layers (Hu et al.,293

2021) added to the decoder. By using LoRA in-294

stead of full-parameter fine-tuning, besides reduc-295

ing computational costs, we hope to better retain296

the general knowledge captured in the pre-trained297

language model, mitigating catastrophic forgetting.298

At inference time, given an input image, CLIP299

is used to encode the visual contents into a vec-300

tor representation, which is used (a) as input to301

the cross-attention operations, (b) to build the So-302

cratic prompt, and (c) to find relevant captions in303

the datastore. The retrieved captions are used to304

complement the Socratic prompt, and this textual305

information is provided to the language model, in306

order to condition the generation of the caption.307

The main aspects of our approach are shown in308

Figure 1 and further detailed next.309

3.1 Building CLIP Representations310

We use a CLIP ViT-L/14 model2, whose parameters311

are kept frozen during training, to encode either312

textual captions (i.e., during training) or the input313

images (i.e., during inference) into vectors with314

768 dimensions. The vectors support the retrieval315

of relevant information for the input, and also the316

conditional generation of a caption.317

Following previous studies (Gu et al., 2022;318

2
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Nukrai et al., 2022; Qiu et al., 2024; Wang et al., 319

2024), we assume that there is a modality gap as- 320

sociated to the CLIP representations, and that the 321

visual embedding corresponding to a text embed- 322

ding lies somewhere within a ball of small radius ϵ 323

around the text embedding. We would like all text 324

embeddings in this ball to match the same caption, 325

which should also correspond to the visual content 326

mapped to this ball. To implement this intuition, 327

at the same time also improving generalization 328

through additional diversity in the training data, we 329

add zero-mean Gaussian noise multiplied by a ran- 330

dom scalar value (i.e., n ∼ Unif(0, 1)×N (0, 1)) 331

to the text embeddings produced by CLIP, which is 332

equivalent to a random Gaussian distribution with 333

random variances. This approach was introduced 334

by Gu et al. (2023) and, while being relatively sim- 335

ple, was shown to be more effective in closing the 336

modality gap than a simple Gaussian distribution. 337

The exploration of more advanced strategies (e.g, 338

methods like those from Liu et al. (2024a) or Wang 339

et al. (2024), e.g. involving tuning with a small set 340

of image-caption pairs), is left for future work. 341

3.2 Retrieval of Caption Exemplars 342

The CLIP ViT-L/14 model is also used for text-text 343

(i.e., during training) or image-text (i.e., during in- 344

ference) retrieval. Besides encoding the inputs, as 345

described in the previous section, this model is also 346

used to encode a large set of diverse caption exem- 347

plars from an external datastore, which is indexed 348

offline with the FAISS nearest-neighbor search li- 349

brary (Johnson et al., 2019), using the index named 350

IndexIVFFlat with parameters set to 32 probes at 351

query time, and 256 inverted lists. 352

Given the encoded data, for each input in- 353

stance, CLIP is used to retrieve the K most simi- 354
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lar captions from the datastore. Following Small-355

Cap (Ramos et al., 2023c) and LMCap (Ramos356

et al., 2023b), most of our experiments used K = 4357

retrieved captions. The retrieved captions will serve358

to guide a language model decoder as an exam-359

ple of what the predicted caption should resemble,360

through the use of a prompt and as described next.361

3.3 Building the Prompt362

The core aspect in our approach concerns prompt-363

ing the decoder with retrieved information. Specif-364

ically, the top-K retrieved captions are used to365

fill slots in a prompt template with the following366

form: Similar images show {caption1} ...367

{captionk}. This image shows ___.368

Extending the retrieval prompt, and taking in-369

spiration on the Socratic image captioning ap-370

proach (Zeng et al., 2022), we also experimented371

with a template taking the following form: Assume372

you are an intelligent image captioning373

system designed to produce accurate and374

concise image descriptions. The input375

image is perhaps showing a {place1},376

{place2}, or {place3}. The image likely377

features an {object1}, {object2}, or378

{object3}. Similar images show {caption1}379

... {captionk}. This image shows ___.380

In the Socratic case, CLIP representations (i.e.,381

obtained from the textual caption, during model382

training, or the input image, at the inference383

stage) are used to perform zero-shot detection from384

large pre-existing libraries of class names, and385

the template slots are filled with the top-K de-386

tected categories (i.e., the top-3 objects and the387

top-3 places, following the original procedure).388

The different place categories are collected from389

Places356 (Zhou et al., 2016) and the object cate-390

gories from Tencent ML-Images (Wu et al., 2019).391

3.4 Training the Language Model392

Most of our experiments use GPT2-base as the de-393

coder, connecting it to the CLIP encoder with multi-394

head cross-attention, through which each layer of395

the decoder attends to a single vector correspond-396

ing to the CLIP representation of the input. Fol-397

lowing SmallCap (Ramos et al., 2023c), we control398

the number of trainable parameters through the399

dimensionality of the projection matrices in the400

cross-attention layers, which we denote as d. For401

GPT2-base, whose hidden representations have a402

dimensionality of 768 and which involves h = 12403

cross-attention heads, d defaults to 64 (i.e., the di-404

mensionality of the hidden representations divided405

by the number of heads). In our experiments, we 406

scale this value down by a factor of four. 407

The decoder receives the textual prompt, de- 408

scribed in the previous section, as input tokens, and 409

it then generates a caption conditioned on the CLIP 410

representation and the prompt. During inference, 411

decoding uses the beam search algorithm with a 412

small beam size of 3 (Cohen and Beck, 2019). 413

During model training, the weights in the cross- 414

attention layers, and also Low-Rank Adaptation 415

(LoRA) layers added to the query, key and value 416

layers of each self-attention block of the de- 417

coder (Hu et al., 2021), are optimized by min- 418

imizing the cross-entropy loss towards predic- 419

tions for the correct tokens in the ground-truth 420

caption, considering the teacher-forcing strategy. 421

LoRA considers hyper-parameters equal to 32 for 422

both α and rank. Additionally, we use an up- 423

dated version of LoRA, named Rank-stabilized 424

LoRA (rsLoRA), where the adapters are scaled 425

by a factor of α√
r

instead of α
r , which stabilizes 426

the adapters (Kalajdzievski, 2023). We use the 427

AdamW optimizer (Kingma and Ba, 2014) with an 428

initial learning rate of 1e-4 and a batch size of 64. 429

Training runs for 10 epochs and we use the epoch 430

checkpoint with the best CIDEr score on a held-out 431

validation set. Training with GPT2-base takes up 432

to 9 hours on a single NVIDIA RTX A6000 GPU, 433

using 16 GB of the available memory. 434

4 Experimental Evaluation 435

We now describe the experimental evaluation of 436

the proposed approach. 437

4.1 Datasets and Metrics 438

Our experiments used two English datasets to as- 439

sess captioning quality, namely MSCOCO (Lin 440

et al., 2014) and NoCaps (Agrawal et al., 2019). 441

MSCOCO is a commonly used dataset for as- 442

sessing image captioning, object detection, and 443

segmentation. We used the Karpathy splits, with 444

113k/5k/5k images for training, validation, and test- 445

ing, respectively. Each image is annotated with at 446

least 5 human-generated captions, and we used the 447

textual captions from the training split to train our 448

model. In turn, NoCaps contains 15k images with 449

nearly 400 additional novel classes not represented 450

in MSCOCO, which can be used to evaluate novel 451

object captioning performance. 452

Similarly to SmallCap (Ramos et al., 2023c), 453

the retrieval datastore features captions from 454

MSCOCO, and from sources such as the Concep- 455
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tual (i.e., CC3M and CC12M) datasets (Sharma456

et al., 2018; Changpinyo et al., 2021) and SBU cap-457

tions (Ordonez et al., 2011), totaling approximately458

13 million image descriptions.459

For evaluation, we compute the standard met-460

rics of BLEU-1 (B@1), BLEU-4 (B@4) (Papineni461

et al., 2002), METEOR (M) (Denkowski and Lavie,462

2014), and CIDEr (C) (Vedantam et al., 2015), us-463

ing the MSCOCO evaluation package3.464

4.2 Captioning Results465

Table 1 presents experimental results on the466

MSCOCO and NoCaps datasets, comparing TTLL-467

Cap against previous approaches corresponding468

to training-free (i.e., top set of rows) and text-only469

training methods (i.e., the set of rows in the middle).470

The table also shows results for ablated versions471

of the complete TTLLCap method, respectively472

corresponding to the following configurations:473

• A version similar to the original LMCap474

method (Ramos et al., 2023b), where the de-475

coder is prompted with retrieved captions only,476

without any training. This experiment used477

the OPT-IML-1.3B4 decoder fine-tuned to fol-478

low instructions (Iyer et al., 2022), instead of479

the less capable GPT2-base model;480

• Versions that extend the previous LMCap set-481

ting, either by considering the combination of482

retrieved captions with a Socratic prompt, or483

by training the decoder using LoRA, in this484

last case using a GPT2-base model;485

• A version that involves training the GPT2 de-486

coder (using LoRA) with cross-attention to-487

wards the CLIP representations, using a sim-488

ple prompt (i.e., the phrase This image shows)489

that does not involve retrieved exemplars;490

• Versions that extend the previous setting, us-491

ing retrieved captions only or combining re-492

trieval with the Socratic prompt;493

• Versions featuring an optimized retrieval set-494

ting, without the Socratic prompt, in which495

K=6 or K=8 retrieved captions are re-ranked496

with basis on the similarity between them, pro-497

moting cohesiveness – see the additional ex-498

periments reported on Section 4.3;499

• A version that is similar to the previous opti-500

mized setting, but featuring the larger GPT2-501

medium decoder model.502
3
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The obtained results show that TTLLCap out- 503

performs all zero-shot approaches, including LM- 504

Cap (Ramos et al., 2023b) and the Socratic frame- 505

work (Zeng et al., 2022). Better results are ob- 506

tained when considering retrieval re-ranking with 507

basis on cohesiveness (see Section 4.3 for a deeper 508

discussion on this aspect), but using a larger de- 509

coder failed to significantly improve results. The 510

exploration of even larger decoders is left for fu- 511

ture work, although the overall results suggest that 512

higher gains can perhaps come from improved ap- 513

proaches for handling the CLIP modality gap, in 514

comparison to larger decoders. 515

Our reproduction of LMCap, which does not 516

involve any training, achieved lower results than 517

those reported by Ramos et al. (2023b), but this is 518

perhaps due to the smaller decoder and to the fact 519

that we do not include a final selection of the candi- 520

date caption with highest CLIP similarity towards 521

the input image, after beam search decoding. 522

When compared to other text-only training ap- 523

proaches, TTLLCap clearly surpasses well-known 524

methods like MAGIC (Su et al., 2022) and De- 525

Cap (Li et al., 2023c), performing similarly to 526

other recent approaches on the MSCOCO dataset, 527

but being outperformed by methods that involve 528

the use of synthetic images for training (Liu et al., 529

2024b), or more advanced strategies for addressing 530

the CLIP modality gap (e.g., using multi-variate 531

Gaussian distributions estimated from small sets 532

of image-caption pairs (Wang et al., 2024), instead 533

of our approach which does not adjust the param- 534

eters of a Gaussian distribution). Combining our 535

retrieval-augmented approach with a better method 536

for handling the CLIP modality gap would likely 537

further improve results. Still, in the NoCaps dataset 538

and particularly in the out-of-domain instances, 539

TTLLCap already significantly surpasses all previ- 540

ous approaches, with results showing that the use 541

of retrieved captions contributes significantly to 542

improved generalization capabilities. 543

The assessment of different configurations con- 544

firms that the use of retrieved captions is indeed 545

the component with the highest impact on perfor- 546

mance, with the Socratic prompt, or the use of 547

cross-attention towards the CLIP representations, 548

having only a small influence on the results. In 549

the case of the Socratic prompt, it is interesting 550

to note that it lead to improved results when no 551

training is involved, and to slightly worse results 552

otherwise. We noticed that the text-text retrieval 553

strategy, used during TTLLCap training to build 554

6
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MSCOCO NoCaps (CIDEr)
Method Encoder Decoder B@1 B@4 M C In Near Out Overall
ConZic (Zeng et al., 2023) ViT-B/32 BERT-base – 1.3 11.2 13.3 – – – –
ZeroCap (Tewel et al., 2022) ViT-B/32 GPT2-medium 49.8 7.0 15.4 34.5 – – – –
Socratic (Zeng et al., 2022) ViT-L/14 GPT-3 – 6.9 15.0 44.5 – – – –
MeaCapTF (Zeng et al., 2024) ViT-B/32 CBART – 9.1 20.6 56.9 35.3 39.0 45.1 40.2
LMCap (Ramos et al., 2023b) ViT-H-14 XGLM-2.9B – 19.9 22.0 75.9 – – – –
MAGIC (Su et al., 2022) ViT-B/32 GPT2-small 56.8 12.9 17.4 49.3 – – – –
DeCap (Li et al., 2023c) ViT-B/32 Transformer – 8.9 17.5 50.6 41.9 41.7 46.2 42.7
CLM (Wang et al., 2022) – GPT2 59.3 15.0 18.7 55.7 – – – –
MacCap (Qiu et al., 2024) ViT-B/32 OPT-1.3B 61.4 17.4 22.3 69.7 – – – –
WS-ClipCap (Tam et al., 2023) – GPT2 65.5 22.1 22.2 74.6 – – – –
MeaCapToT (Zeng et al., 2024) ViT-B/32 CBART – 17.7 24.3 84.8 38.5 43.6 50.0 45.1
CapDec (Nukrai et al., 2022) ResNet50 GPT2-large 69.2 26.4 25.1 91.8 60.1 50.2 28.7 45.9
CapDec+RLCF-S (Zhao et al., 2023) ViT-B/16 OPT-125M – – – – 68.3 58.5 35.3 –
ViECap (Fei et al., 2023) ViT-B/32 GPT2-base – 27.2 24.8 92.9 61.1 64.3 65.0 66.2
EntroCap (Yan et al., 2024) ViT-B/32 GPT2-base – 27.6 25.3 94.3 62.5 64.5 67.5 67.0
ViECap+ToCa (Zhou et al., 2024) ViT-B/32 GPT2-base – 27.1 25.4 95.0 64.6 69.1 70.5 70.9
MeaCapInvLM (Zeng et al., 2024) ViT-B/32 GPT2-base – 27.2 25.3 95.4 – – – –
ICSD (Ma et al., 2024) ViT-B/32 BERT-base – 29.9 25.4 96.6 42.9 44.3 35.6 42.7
CLOSE (Gu et al., 2022) ViT-L/14 T5-base – 29.5 25.7 97.8 – – – –
ArcSin (Liu et al., 2024a) ViT-L/14 T5-base – 30.3 – 99.6 – – – –
SynTIC (Liu et al., 2024b) ViT-B/32 Transformer – 29.9 25.8 101.1 – – – –
TipCap (Wang et al., 2024) ViT-L/14 GPT2-large 73.3 31.4 54.2 106.6 80.2 62.3 39.6 60.3
TTLLCap (no training, retrieval) ViT-L/14 OPT-IML-1.3B 55.6 15.2 20.6 61.8 52.4 51.1 60.1 53.1
TTLLCap (no training, retrieval + Socratic) ViT-L/14 OPT-IML-1.3B 55.5 17.0 19.5 64.5 53.7 51.6 57.9 53.2
TTLLCap (training with retrieval) ViT-L/14 GPT2-base 63.7 20.5 21.7 77.3 63.9 63.8 76.4 66.4
TTLLCap (embedding only) ViT-L/14 GPT2-base 66.2 24.7 21.3 73.4 41.5 25.6 10.3 24.8
TTLLCap (embedding + retrieval) ViT-L/14 GPT2-base 63.6 20.4 21.7 77.2 65.6 64.6 76.4 67.1
TTLLCap (embedding + retrieval + Socratic) ViT-L/14 GPT2-base 63.5 20.3 21.7 76.5 65.4 64.2 76.8 67.0
TTLLCap (K=6, re-ranking with λ=-0.5) ViT-L/14 GPT2-base 65.5 21.9 23.2 81.3 69.8 69.9 84.1 72.8
TTLLCap (K=8, re-ranking with λ=-0.5) ViT-L/14 GPT2-base 65.0 21.6 23.2 80.3 69.8 70.1 82.9 72.6
TTLLCap (K=6, re-ranking with λ=-0.5) ViT-L/14 GPT2-medium 66.7 22.6 23.1 83.1 70.6 71.2 83.4 73.6
TTLLCap (K=8, re-ranking with λ=-0.5) ViT-L/14 GPT2-medium 66.7 23.3 23.8 85.7 73.1 73.1 87.2 76.0

Table 1: Results for different captioning methods on MSCOCO and NoCaps.

the Socratic prompt, often fails to retrieve correct555

places and/or objects. Hence, the method likely556

fails to improve performance due to this noise.557

Appendix C complements the results in Table 1558

with some qualitative examples for the captions559

generated with TTLLCap.560

4.3 Impact of Retrieval Augmentation561

Besides assessing captioning quality, we also562

looked at the impact of different choices regard-563

ing the configuration of the retrieval-augmentation564

component. This was made with the TTLLCap565

model variant that only uses retrieved captions (i.e.,566

without the Socratic prompt) plus the CLIP embed-567

dings, leveraging the smaller and more efficient568

GPT2-base decoder.569

A first aspect that we analyzed concerns the op-570

timal number of retrieved captions to consider. Pre-571

vious work with SmallCap and LMCap has pointed572

to K = 4 as the best configuration, and we at-573

tempted to further validate this value through an574

experiment in which we compared TTLLCap with575

K=4, K=6, or K=8 retrieved captions. Results576

over the MSCOCO dataset are shown in Table 2,577

indicating that K = 4 is the optimal training con-578

figuration. However, results slightly increase when579

retrieving more captions during inference, even if580

the model was trained with K = 4. We speculate581

that access to more captions collected via text-text582

retrieval fails to better guide the model during train-583

Retrieved Captions B@1 B@4 M C
K=4 63.6 20.4 21.7 77.2
K=6 (training with K=4) 64.1 20.6 22.9 79.1
K=6 (training) 63.6 20.2 21.8 77.0
K=8 (training with K=4) 63.1 20.5 23.3 78.4

Table 2: Results on MSCOCO when varying the number
of retrieved captions from 4 to 8, either with or without
training the model to specifically use more captions.

ing, while more captions retrieved through image- 584

text retrieval is indeed helpful during inference. 585

We also looked at the relation between prop- 586

erties of the retrieved captions and result quality, 587

namely by analyzing (a) the average similarity of 588

the retrieved captions towards the input image, as 589

measured from the CLIP representations, and (b) 590

the diversity and complementarity of the K = 4 591

retrieved captions, also as measured by the aver- 592

age similarity between their CLIP representations. 593

Figure 2 presents these results for images in the 594

MSCOCO test split, plotting CIDEr values against 595

the similarity or diversity measurements (without 596

any normalization of the scores). The results show 597

that CIDEr generally increases with a higher simi- 598

larity between the retrieved captions and the input 599

image, while it decreases with more diverse sets of 600

retrieved captions (i.e., results are better when the 601

retrieved captions are more similar to each other). 602

Keeping K = 4 retrieved captions, we exper- 603

imented with the use of a re-ranking strategy to 604

adapt the retrieval results, assessing alternatives 605
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Figure 2: CIDEr values for instances in the MSCOCO
test split, versus average similarity between input im-
ages and generated captions (left), or diversity in the
retrieved captions (right), measured as one minus the
average pairwise similarity between the captions.

that either consider a more diverse set of retrieved606

captions, or instead a more cohesive set. The de-607

fault retrieval approach only considers similarity608

towards the input, not attempting to optimize the609

similarity between the retrieved exemplars them-610

selves. Nothing that an increased diversity on611

the retrieved captions, or in turn a increased co-612

hesiveness as suggested by Figure 2, can perhaps613

contribute to improved results, we experimented614

with a strategy based on the Maximum Marginal615

Relevance (MMR) approach (Carbonell and Gold-616

stein, 1998), which selects exemplars that are rel-617

evant while at the same time controlling for diver-618

sity/cohesiveness. If for a given input i we have619

already selected a set of exemplars T = {ci}, fol-620

lowing this strategy we will pick up the next exem-621

plar cj according to:622

argmax
cj

(sim(i, cj)− λmax
ci∈T

sim(cj , ci)), (1)623

where sim() denotes CLIP similarity (without any624

additional normalization), and λ is a parameter625

that controls the balance between relevance and626

diversity (which, when negative, promotes cohe-627

siveness). We rely on MMR to iteratively re-rank628

exemplars from the datastore, scoring the top 50629

instances obtained through an initial retrieval.630

Table 3 presents the obtained results on the631

MSCOCO test split, comparing models trained632

with different λ values in order to promote diversity633

or cohesiveness. Overall, quality improves when634

promoting cohesiveness, and the best scores are635

achieved when λ ≈ −0.50 (i.e., the same value636

that is used on the main results reported in Table 1).637

Note that using a negative λ during training and638

inference, besides promoting cohesiveness, also639

makes retrieval results depend more on text-text640

MMR Setting B@1 B@4 M C
MMR with λ = 0.15 63.4 19.8 21.7 75.3
MMR with λ = 0.00 63.6 20.4 21.7 77.2
MMR with λ = −0.15 64.8 21.0 22.1 78.4
MMR with λ = −0.30 65.1 21.5 22.2 79.5
MMR with λ = −0.60 65.7 21.9 22.4 80.7
MMR with λ = −1.20 65.0 21.2 22.1 79.0
MMR with λ = −0.50 65.8 22.2 22.6 81.3

Table 3: Results on MSCOCO when increasing the
diversity or the cohesiveness of the retrieved captions.

similarity. Making the training and inference stages 641

more similar can contribute to reducing the CLIP 642

modality gap, generally improving performance. 643

Appendices A and B further extend the analy- 644

sis reported in this section, specifically looking 645

at position biases associated to the ordering of 646

the retrieved captions, and looking and how the 647

CLIP modality impacts retrieval quality and, con- 648

sequently, the captioning results. 649

5 Conclusions and Future Work 650

This paper presented TTLLCap, i.e. an improved 651

text-only training method for image captioning 652

based on prompting a pre-trained language model 653

decoder with information derived from CLIP repre- 654

sentations of the inputs. Experimental results show 655

that TTLLCap is able to outperform several previ- 656

ous training-free and text-only training methods, 657

especially in terms of out-domain generalization. 658

Out of all the components involved in the proposed 659

approach, the use of retrieved captions is the one 660

that has the highest impact on result quality. 661

Despite the interesting results, there are also 662

many opportunities for future work. TTLLCap is 663

still outperformed by other similar approaches, e.g. 664

that use synthetic images generated from the tex- 665

tual captions available for training (Ma et al., 2024; 666

Liu et al., 2024b), as well as by fully supervised 667

approaches. We believe that text-only training can 668

be further improved up to the almost same quality 669

as fully supervised techniques, and that the use of 670

other approaches to address the CLIP modality gap 671

will have a fundamental role in this regard (Li et al., 672

2023c; Wang et al., 2023; Liu et al., 2024a). 673

In addition, note that our experiments only 674

used English corpora, and it would be important 675

to extend the study to other languages (Ramos 676

et al., 2023b, 2024), in particular considering low- 677

resource languages for which the collection of im- 678

ages paired to textual captions can be harder (i.e., 679

an important motivation for the development of 680

zero-shot or text-only captioning methods is indeed 681

the multilingual captioning scenario). 682
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Limitations and Ethical Considerations683

While our work does not raise new ethical issues684

within the domain of automatic image caption-685

ing (e.g., we conducted our experiments on public686

datasets, carefully designed for academic research687

and extensively used in previous studies), there are688

some general important concerns.689

For instance image captioning models are noto-690

rious for their internal biases, inherited from the691

training data itself or from the use of pre-trained692

models such as CLIP. We therefore recommend693

caution in the use of the approach proposed in this694

paper, and anticipate further research into model695

biases, before relying on our work beyond research696

environments. Still, we observe that balancing a697

text-only dataset can be easier than collecting bal-698

anced text-image pairs, and thus the proposed ap-699

proach can perhaps offer advantages in terms of700

mitigating known biases (e.g., if we consider the701

problem of a dataset containing significantly more702

images of women in a kitchen than men, collecting703

more images requires substantial effort, while re-704

placing woman with man, and their synonyms, in705

all the training captions is quite simple).706

Another important limitation in the work re-707

ported on this paper concerns the fact that eval-708

uation is only made on English datasets. Moreover,709

although the proposed approach can generate im-710

age captions without relying on any labeled image-711

caption training pairs, we still need the independent712

set of textual captions for model training, which713

may be difficult to collect in some scenarios (e.g.,714

for some low-resource languages). This might be715

alleviated in future work, by assessing the use of716

textual corpora from different sources and/or pro-717

duced automatically with language models.718

References719

Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen,720
Rishabh Jain, Mark Johnson, Dhruv Batra, Devi721
Parikh, Stefan Lee, and Peter Anderson. 2019. No-722
Caps: Novel object captioning at scale. In Proceed-723
ings of the IEEE/CVF International Conference on724
Computer Vision, pages 8948–8957.725

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,726
Antoine Miech, Iain Barr, Yana Hasson, Karel727
Lenc, Arthur Mensch, Katherine Millican, Malcolm728
Reynolds, et al. 2022. Flamingo: a visual language729
model for few-shot learning. In Proceedings of the730
Annual Meeting on Neural Information Processing731
Systems.732

Jaime Carbonell and Jade Goldstein. 1998. The use of 733
MMR, diversity-based reranking for reordering doc- 734
uments and producing summaries. In Proceedings of 735
the Annual International ACM SIGIR Conference on 736
Research and Development in Information Retrieval. 737

Soravit Changpinyo, Piyush Sharma, Nan Ding, and 738
Radu Soricut. 2021. Conceptual 12m: Pushing web- 739
scale image-text pre-training to recognize long-tail 740
visual concepts. In Proceedings of the IEEE/CVF 741
Conference on Computer Vision and Pattern Recog- 742
nition. 743

Eldan Cohen and Christopher Beck. 2019. Empirical 744
analysis of beam search performance degradation 745
in neural sequence models. In Proceedings of the 746
International Conference on Machine Learning. 747

Florin Cuconasu, Giovanni Trappolini, Federico Sicil- 748
iano, Simone Filice, Cesare Campagnano, Yoelle 749
Maarek, Nicola Tonellotto, and Fabrizio Silvestri. 750
2024. The power of noise: Redefining retrieval for 751
RAG systems. arXiv preprint arXiv:2401.14887. 752

Michael Denkowski and Alon Lavie. 2014. METEOR 753
Universal: Language specific translation evaluation 754
for any target language. In Proceedings of the Work- 755
shop on Statistical Machine Translation. 756

Junjie Fei, Teng Wang, Jinrui Zhang, Zhenyu He, 757
Chengjie Wang, and Feng Zheng. 2023. Transfer- 758
able decoding with visual entities for zero-shot im- 759
age captioning. In Proceedings of the IEEE/CVF 760
International Conference on Computer Vision. 761

Geonmo Gu, Sanghyuk Chun, Wonjae Kim, Yoohoon 762
Kang, and Sangdoo Yun. 2023. Language-only effi- 763
cient training of zero-shot composed image retrieval. 764
arXiv preprint arXiv:2312.01998. 765

Sophia Gu, Christopher Clark, and Aniruddha Kemb- 766
havi. 2022. I can’t believe there’s no images! learn- 767
ing visual tasks using only language supervision. 768
arXiv preprint arXiv:2211.09778. 769

Jennifer Hsia, Afreen Shaikh, Zhiruo Wang, and Gra- 770
ham Neubig. 2024. Ragged: Towards informed 771
design of retrieval augmented generation systems. 772
arXiv preprint arXiv:2403.09040. 773

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 774
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 775
and Weizhu Chen. 2021. LoRA: Low-rank adap- 776
tation of large language models. arXiv preprint 777
arXiv:2106.09685. 778

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, 779
Todor Mihaylov, Daniel Simig, Ping Yu, Kurt Shus- 780
ter, Tianlu Wang, Qing Liu, Punit Singh Koura, et al. 781
2022. OPT-IML: Scaling language model instruc- 782
tion meta learning through the lens of generalization. 783
arXiv preprint arXiv:2212.12017. 784

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. 785
Billion-scale similarity search with gpus. IEEE 786
Transactions on Big Data, 7(3). 787

9



Damjan Kalajdzievski. 2023. A rank stabilization scal-788
ing factor for fine-tuning with lora. arXiv preprint789
arXiv:2312.03732.790

Diederik P Kingma and Jimmy Ba. 2014. Adam: A791
method for stochastic optimization. arXiv preprint792
arXiv:1412.6980.793

Jiaxuan Li, Duc Minh Vo, Akihiro Sugimoto, and794
Hideki Nakayama. 2023a. EVCap: Retrieval-795
augmented image captioning with external visual-796
name memory for open-world comprehension. arXiv797
preprint arXiv:2311.15879.798

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.799
2023b. Blip-2: Bootstrapping language-image pre-800
training with frozen image encoders and large lan-801
guage models. In Proceedings of the International802
Conference on Machine Learning.803

Wei Li, Linchao Zhu, Longyin Wen, and Yi Yang.804
2023c. DeCap: Decoding clip latents for zero-shot805
captioning via text-only training. arXiv preprint806
arXiv:2303.03032.807

Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon,808
Serena Yeung, and James Y Zou. 2022. Mind the809
gap: Understanding the modality gap in multi-modal810
contrastive representation learning. In Proceedings811
of the Annual Meeting on Neural Information Pro-812
cessing Systems.813

Tsung-Yi Lin, Michael Maire, Serge Belongie, James814
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,815
and C Lawrence Zitnick. 2014. Microsoft COCO:816
Common objects in context. In Proceedings of the817
European Conference on Computer Vision.818

Yang Liu, Xiaomin Yu, Gongyu Zhang, Christos Berge-819
les, Prokar Dasgupta, Alejandro Granados, and Se-820
bastien Ourselin. 2024a. ArcSin: Adaptive ranged821
cosine similarity injected noise for language-driven822
visual tasks. arXiv preprint arXiv:2402.17298.823

Zhiyue Liu, Jinyuan Liu, and Fanrong Ma. 2024b. Im-824
proving cross-modal alignment with synthetic pairs825
for text-only image captioning. In Proceedings of the826
AAAI Conference on Artificial Intelligence.827

Feipeng Ma, Yizhou Zhou, Fengyun Rao, Yueyi Zhang,828
and Xiaoyan Sun. 2024. Image captioning with multi-829
context synthetic data. In Proceedings of the AAAI830
Conference on Artificial Intelligence.831

David Nukrai, Ron Mokady, and Amir Globerson. 2022.832
Text-only training for image captioning using noise-833
injected CLIP. arXiv preprint arXiv:2211.00575.834

Vicente Ordonez, Girish Kulkarni, and Tamara Berg.835
2011. Im2text: Describing images using 1 million836
captioned photographs. In Proceedings of the Annual837
Meeting on Neural Information Processing Systems.838

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-839
Jing Zhu. 2002. BLEU: a method for automatic eval-840
uation of machine translation. In Proceedings of the841

Annual Meeting of the Association for Computational 842
Linguistics, pages 311–318. 843

Yingzhe Peng, Xu Yang, Haoxuan Ma, Shuo Xu, 844
Chi Zhang, Yucheng Han, and Hanwang Zhang. 845
2023. Icd-lm: Configuring vision-language in- 846
context demonstrations by language modeling. arXiv 847
preprint arXiv:2312.10104. 848

Longtian Qiu, Shan Ning, and Xuming He. 2024. Min- 849
ing fine-grained image-text alignment for zero-shot 850
captioning via text-only training. arXiv preprint 851
arXiv:2401.02347. 852

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya 853
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas- 854
try, Amanda Askell, Pamela Mishkin, Jack Clark, 855
et al. 2021. Learning transferable visual models from 856
natural language supervision. In Proceedings of the 857
International Conference on Machine Learning. 858

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 859
Dario Amodei, Ilya Sutskever, et al. 2019. Language 860
models are unsupervised multitask learners. OpenAI 861
blog, 1(8):9. 862

Rita Ramos, Emanuele Bugliarello, Bruno Martins, 863
and Desmond Elliott. 2024. PAELLA: Parameter- 864
efficient lightweight language-agnostic captioning 865
model. In Findings of the Annual Conference of the 866
North American Chapter of the Association for Com- 867
putational Linguistics. 868

Rita Ramos, Desmond Elliott, and Bruno Martins. 869
2023a. Retrieval-augmented image captioning. 870
arXiv preprint arXiv:2302.08268. 871

Rita Ramos, Bruno Martins, and Desmond Elliott. 872
2023b. LMCap: Few-shot multilingual image 873
captioning by retrieval augmented language model 874
prompting. arXiv preprint arXiv:2305.19821. 875

Rita Ramos, Bruno Martins, Desmond Elliott, and Yova 876
Kementchedjhieva. 2023c. SmallCap: lightweight 877
image captioning prompted with retrieval augmenta- 878
tion. In Proceedings of the IEEE/CVF Conference 879
on Computer Vision and Pattern Recognition. 880

Sara Sarto, Marcella Cornia, Lorenzo Baraldi, and Rita 881
Cucchiara. 2022. Retrieval-augmented transformer 882
for image captioning. In Proceedings of the Inter- 883
national Conference on Content-Based Multimedia 884
Indexing. 885

Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Alessan- 886
dro Nicolosi, and Rita Cucchiara. 2024. Towards 887
retrieval-augmented architectures for image caption- 888
ing. ACM Transactions on Multimedia Computing, 889
Communications, and Applications. 890

Piyush Sharma, Nan Ding, Sebastian Goodman, and 891
Radu Soricut. 2018. Conceptual captions: A cleaned, 892
hypernymed, image alt-text dataset for automatic im- 893
age captioning. In Proceedings of the Annual Meet- 894
ing of the Association for Computational Linguistics. 895

10



Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani896
Yogatama, Yan Wang, Lingpeng Kong, and Nigel897
Collier. 2022. Language models can see: Plugging898
visual controls in text generation. arXiv preprint899
arXiv:2205.02655.900

Derek Tam, Colin Raffel, and Mohit Bansal. 2023. Sim-901
ple weakly-supervised image captioning via CLIP’s902
multimodal embeddings. In Proceedings of the AAAI903
Workshop on Creative AI Across Modalities.904

Yoad Tewel, Yoav Shalev, Idan Schwartz, and Lior Wolf.905
2022. ZeroCap: Zero-shot image-to-text generation906
for visual-semantic arithmetic. In Proceedings of907
the IEEE/CVF Conference on Computer Vision and908
Pattern Recognition, pages 17918–17928.909

Laurens Van der Maaten and Geoffrey Hinton. 2008.910
Visualizing data using t-SNE. Journal of machine911
learning research, 9(11).912

Ramakrishna Vedantam, C Lawrence Zitnick, and913
Devi Parikh. 2015. CIDEr: Consensus-based im-914
age description evaluation. In Proceedings of the915
IEEE/CVF Conference on Computer Vision and Pat-916
tern Recognition.917

Junyang Wang, Ming Yan, and Yi Zhang. 2023. From918
association to generation: Text-only captioning by919
unsupervised cross-modal mapping. arXiv preprint920
arXiv:2304.13273.921

Junyang Wang, Yi Zhang, Ming Yan, Ji Zhang, and Jitao922
Sang. 2022. Zero-shot image captioning by anchor-923
augmented vision-language space alignment. arXiv924
preprint arXiv:2211.07275.925

Yiyu Wang, Hao Luo, Jungang Xu, Yingfei Sun, and926
Fan Wang. 2024. Text data-centric image cap-927
tioning with interactive prompts. arXiv preprint928
arXiv:2403.19193.929

Baoyuan Wu, Weidong Chen, Yanbo Fan, Yong Zhang,930
Jinlong Hou, Jie Liu, and Tong Zhang. 2019. Ten-931
cent ML-images: A large-scale multi-label image932
database for visual representation learning. IEEE933
Access, 7.934

Jie Yan, Yuxiang Xie, Shiwei Zou, Yingmei Wei, and935
Xidao Luan. 2024. EntroCap: Zero-shot image cap-936
tioning with entropy-based retrieval. Social Science937
Research Network preprint SSRN:4737282.938

Xu Yang, Yongliang Wu, Mingzhuo Yang, Haokun939
Chen, and Xin Geng. 2024. Exploring diverse in-940
context configurations for image captioning. In Pro-941
ceedings of the Anual Meeting on Neural Information942
Processing Systems.943

Zhuolin Yang, Wei Ping, Zihan Liu, Vijay Kor-944
thikanti, Weili Nie, De-An Huang, Linxi Fan, Zhid-945
ing Yu, Shiyi Lan, Bo Li, et al. 2023. Re-vilm:946
Retrieval-augmented visual language model for zero947
and few-shot image captioning. arXiv preprint948
arXiv:2302.04858.949

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof 950
Choromanski, Adrian Wong, Stefan Welker, Fed- 951
erico Tombari, Aveek Purohit, Michael Ryoo, Vikas 952
Sindhwani, et al. 2022. Socratic models: Compos- 953
ing zero-shot multimodal reasoning with language. 954
arXiv preprint arXiv:2204.00598. 955

Zequn Zeng, Yan Xie, Hao Zhang, Chiyu Chen, 956
Zhengjue Wang, and Bo Chen. 2024. MeaCap: 957
Memory-augmented zero-shot image captioning. 958
arXiv preprint arXiv:2403.03715. 959

Zequn Zeng, Hao Zhang, Ruiying Lu, Dongsheng Wang, 960
Bo Chen, and Zhengjue Wang. 2023. ConZic: Con- 961
trollable zero-shot image captioning by sampling- 962
based polishing. In Proceedings of the IEEE/CVF 963
Conference on Computer Vision and Pattern Recog- 964
nition. 965

Shuai Zhao, Xiaohan Wang, Linchao Zhu, and Yi Yang. 966
2023. Test-time adaptation with CLIP reward for 967
zero-shot generalization in vision-language models. 968
arXiv preprint arXiv:2305.18010. 969

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Antonio 970
Torralba, and Aude Oliva. 2016. Places: An im- 971
age database for deep scene understanding. arXiv 972
preprint arXiv:1610.02055. 973

Qing Zhou, Junlin Huang, Qiang Li, Junyu Gao, and 974
Qi Wang. 2024. Text-only synthesis for image cap- 975
tioning. arXiv preprint arXiv:2405.18258. 976

A Analysis of Position Biases 977

Considering the TTLLCap model variant that only 978

uses retrieved captions (i.e., without the Socratic 979

prompt), and leveraging the smaller and more effi- 980

cient GPT2-base decoder, we analysed the potential 981

existence of position biases in association to the 982

order of the retrieved captions. 983

We first note that the GPT2 decoder can have a 984

position bias towards preferring information from 985

retrieved captions at the beginning or the ending 986

of the prompt, independently of the similarity of 987

the captions towards the input. We therefore exper- 988

imented with changing the ordering of the K = 4 989

captions, either keeping the decoder model trained 990

by default with retrieved captions in decreasing or- 991

der of similarity, or training the decoder in different 992

settings. Table 4 presents the obtained results on 993

the MSCOCO test split, showing that the order of 994

the captions in the prompt has little effect on the 995

final result. Still, using the retrieved captions in 996

a random order during training achieves slightly 997

better results, i.e. a fact that is perhaps also tied to 998

the CLIP modality gap and to approximating the 999

training and inference stages. 1000

We also looked at how the self-attention lay- 1001

ers of the decoder weight information from the 1002
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K = 4 retrieved captions, considering settings1003

that involve retrieved captions sorted in descend-1004

ing order, or retrieved captions in random order.1005

Figure 3 plots these results, showing the distribu-1006

tion of self-attention weights across all MSCOCO1007

testing instances, averaged (a) separately over the1008

lowest/highest 6 layers of the GPT2-base decoder,1009

and (b) over the tokens that constitute each of the1010

K = 4 retrieved captions.1011

The results show that, when captions are in de-1012

scending order and the model was trained in this1013

setting (i.e., the top pair of plots in Figure 3), more1014

attention is given to the first captions. The model1015

is giving priority to the captions that have more1016

similarity towards the input, and that are therefore1017

more likely to accurately describe the image. In-1018

stead, when captions are ordered randomly, every1019

caption is approximately given an equal amount of1020

attention. This happens independently of whether1021

the model was trained with captions in descend-1022

ing order (i.e., the pair of plots in the middle of1023

Figure 3), or with captions in random order.1024

B Impact of the CLIP Modality Gap1025

Our analyses that focused on the impact of different1026

configurations for the retrieval component point to1027

the fact that retrieval quality has a significant role in1028

improving the captioning performance. Moreover,1029

making the training and inference stages more simi-1030

lar, in terms of how they use retrieval results, seems1031

to contribute to improved results, which suggests1032

Caption Ordering. B@1 B@4 M C
Descending (default) 63.6 20.4 21.7 77.2
Ascending 63.9 20.8 21.8 78.0
Random 63.8 20.8 21.8 77.6
Descending (default) 63.6 20.4 21.7 77.2
Ascending (training) 63.9 19.9 21.8 75.8
Random (training) 64.4 20.9 22.0 78.3

Table 4: Results when varying the ranking order of the
retrieved captions, placing them in the prompt in de-
scending order of similarity (the standard configuration,
with the decoder model trained by default in this way),
in ascending order of similarity, or in a random order.

Retrieved Captions B@1 B@4 M C
T2T 63.6 20.4 21.7 77.2
T2T (with λ = −0.5) 65.8 22.2 22.6 81.3
I2T 75.1 32.7 26.2 108.5
I2T (with λ = −0.5) 74.2 31.8 25.8 107.7

Table 5: Results on MSCOCO considering text-text
(T2T) or image-text (I2T) similarity, with/without re-
ranking the retrieval results to promote cohesiveness.

Figure 3: Distribution of average self-attention weights
towards tokens associated to the four retrieved captions
(i.e., C1 to C4), across all MSCOCO testing instances
and separately over the lowest (i.e., the plots on the left)
and highest (i.e., the plots on the right) six layers of the
GPT2-base decoder. From top to bottom, the plots are
derived from models using captions (a) in descending
order during training and inference, (b) in descending
order during training and random order during inference,
and (c) in random order during training and inference.

that the CLIP modality gap can be a limiting factor 1033

for the results obtained with our method. 1034

In an attempt to further validate these ideas, we 1035

experimented with a setting in which model train- 1036

ing is still not directly relying on images, but in 1037

which retrieval is always made with basis on image- 1038

text similarity (instead of using text-text similar- 1039
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Figure 4: Two-dimensional t-SNE representations for CLIP embeddings of images (i.e., the blue dots) and captions
(i.e., the pink dots, corresponding to five captions per image) from the MSCOCO validation split. The plots compare
results before (left) and after (right) the addition of Gaussian noise to the caption embeddings.

ity during training, and image-text similarity dur-1040

ing inference). This setting thus corresponds to1041

a TTLLCap variant that only uses training with1042

the retrieved captions, without cross-attention to-1043

wards image representations and without the So-1044

cratic prompt, relying on the smaller and more1045

efficient GPT2-base decoder. The intuition for ex-1046

ploring this setting relates to the fact that it can1047

perhaps approximate an ideal scenario, in which1048

the CLIP modality gap problem is fully addressed.1049

Results over the MSCOCO dataset are shown1050

in Table 5, using K = 4 retrieved captions and1051

also considering settings that involve re-ranking1052

to promote cohesiveness. The values confirm that1053

image-text similarity indeed leads to a much higher1054

performance, with cohesiveness failing to improve1055

results on this setting. The CLIP modality gap in-1056

deed seems like an important limiting factor to our1057

approach, and future work should attempt to further1058

address this aspect, e.g. through the exploration1059

and extension of approaches proposed in previous1060

work (Wang et al., 2024), which nonetheless have1061

the limitation that they require the tuning of param-1062

eters with a small set of image-caption pairs.1063

Figure 4 illustrates the CLIP modality gap, us-1064

ing t-SNE projections (Van der Maaten and Hinton,1065

2008) to represent in two dimensions the embed-1066

dings for the images and captions corresponding1067

to instances in the MSCOCO validation split. The1068

plots show that while the addition of Gaussian noise1069

indeed contributes to reducing the modality gap,1070

there is still significant room for improvement.1071

C Qualitative Examples1072

Figure 5 presents several examples of captions gen-1073

erated with the proposed approach, considering1074

two different model configurations. Both of these1075

use cross-attention towards the CLIP embeddings,1076

retrieved captions, and GPT2-base as the decoder, 1077

the difference being that Method 2 uses a Socratic 1078

prompt, while Method 1 does not. All images were 1079

taken from the MSCOCO test split. 1080
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Figure 5: Examples of generated captions for images taken from the MSCOCO dataset.
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