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Abstract

Image captioning has drawn remarkable atten-
tion from the natural language processing and
computer vision fields. Aiming to reduce the re-
liance on curated data, several studies have ex-
plored image captioning without relying on any
humanly-annotated image-text pairs, although
existing methods are still outperformed by fully
supervised approaches. This paper proposes
TTLLCap, i.e. a text-only training method for
image captioning, based on prompting a pre-
trained language model decoder with informa-
tion obtained from CLIP representations of the
inputs. Specifically, we experimented with the
combined use of (a) retrieved examples of cap-
tions, (b) relevant concepts for the input, and (c)
latent vector representations. Through exten-
sive experiments, we show that TTLLCap out-
performs previous training-free methods, and
is also competitive with other text-only training
methods. We also analyze the impact of differ-
ent choices regarding the configuration of the
retrieval-augmentation component. The source
code supporting our experiments is available
from a public GitHub repository'.

1 Introduction

Image captioning concerns generating descriptions
for input images. The task has drawn remark-
able attention from the natural language process-
ing and computer vision fields, due to its wide
applications. Current captioning models based
on the encoder-decoder framework have achieved
tremendous progress in advancing the state-of-the-
art (Alayrac et al., 2022; Li et al., 2023b). These
models are usually trained with full supervision,
relying on large-scale humanly-annotated training
data (i.e., curated image-caption pairs) whose avail-
ability depends on expensive labeling work.
Aiming to improve data- and parameter-
efficiency, several studies have proposed the use of
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encoder-decoder models that re-use off-the-shelf
pre-trained vision encoders such as CLIP (Radford
et al., 2021) and language decoder models such as
GPT2 (Radford et al., 2019), keeping the parame-
ters of these components frozen and only training a
mapping between the two. In some cases, authors
have proposed to leverage retrieval-augmented gen-
eration to further improve efficiency, while allow-
ing for training-free domain transfer and the ex-
ploration of captioning data in a training-free fash-
ion (Ramos et al., 2023c). To further mitigate the
data needs and improve the generalization in real-
world scenarios, several studies have explored cap-
tioning without relying on any humanly-annotated
image-text pairs. These methods can be divided
into two groups, namely training-free and text-only
training methods. Training-free approaches realize
zero-shot captioning using pre-trained models with-
out fine-tuning (e.g., a pre-trained vision-language
model like CLIP is used to guide a pre-trained lan-
guage model such as GPT2, to generate sentences
that match the given image). In turn, text-only
training methods fine-tune the decoder based on
high-quality text data, without relying on corre-
sponding images during training. Despite signifi-
cant advances, existing training-free methods are
given to hallucination problems, and while text-
only training can achieve strong results, it is still
outperformed by fully supervised approaches.
This paper proposes Text-only Training with
Latents plus Language prompt-based Captioning
(TTLLCap), an improved text-only training method
that combines ideas from several previous studies,
namely retrieval-augmented generation as in Small-
Cap and LMCap (Ramos et al., 2023c,b), a prompt-
ing strategy similar to that of the Socratic models
framework (Zeng et al., 2022), and also the idea
of decoding latent representations from the CLIP
model (Gu et al., 2022; Nukrai et al., 2022; Qiu
et al., 2024; Wang et al., 2024). Instead of simply
using a corpus of textual captions to train a decoder
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model, we also rely on the text-only training cor-
pus as a retrieval datastore, and use efficient Low-
Rank Adaptation (LoRA) to fine-tune the decoder
towards generating captions conditioned on a com-
bination of (a) similar captions obtained through
retrieval, (b) relevant concepts for the input, and (c)
a latent representation of the input. The three afore-
mentioned elements are all obtained from CLIP
representations (either from textual captions, dur-
ing training, or from the input image, during infer-
ence), using a simple strategy to circumvent the
known CLIP modality gap (Gu et al., 2023). Com-
bining retrieval-augmentation with LoRA training
also mitigates the forgetting of the knowledge con-
tained in the pre-trained language model decoder.

Experiments with MSCOCO (Lin et al., 2014)
and NoCaps (Agrawal et al., 2019) show that
TTLLCap outperforms several previous training-
free and text-only training methods, particularly
in terms of the generalization capabilities in No-
Caps. The retrieval of similar captions is indeed the
most impactfull aspect in the proposed combina-
tion, and we also analyzed the impact of different
choices regarding the configuration of the retrieval-
augmentation component, including the number of
retrieval examples and trade-offs between retrieved
caption similarity and diversity.

2 Related Work

This section reviews relevant previous work related
to the proposed approach.

2.1 Zero-Shot Image Captioning

Several previous studies have proposed to re-
purpose text-image matching models, such as
CLIP (Radford et al., 2021), to generate image
captions without any task-specific training (Tewel
etal., 2022; Zeng et al., 2023; Ramos et al., 2023b).
For instance, ZeroCap (Tewel et al., 2022) uses
a pre-trained CLIP model together with a GPT2
language model, being truly zero-shot in the sense
that the only optimization that is considered is per-
formed ex post facto in the activation space during
decoding, without re-training or fine-tuning the
model parameters. In particular, ZeroCap uses a
customized decoding algorithm, in which the con-
text cache (i.e., all the key and value vectors in the
self-attention modules) is updated with the guid-
ance of CLIP and GPT?2, for every prediction step.

Other authors have instead proposed zero-shot
strategies that do not directly involve the use of
image data, instead relying on textual information

alone. For instance Zeng et al. (2022) proposed
the Socratic models framework, where different
pre-trained models communicate via zero-shot or
few-shot prompting, without any multimodal train-
ing. For the task of image captioning, the GPT-3
language model can be prompted with information
about the input image (e.g., information about the
number of people present in the image, places, ob-
jects, and general classes associated to the image),
as obtained with a pre-trained CLIP model. In turn,
Ramos et al. (2023b) proposed LMCap, building
on similar ideas to those of Socratic models (i.e.,
LMCap is an image-blind method that generates
captions only with basis on textual information pro-
vided as input). In this case, CLIP is first used to
retrieve captions from similar images, and these
captions are then combined into a prompt for a
GPT?2 language model decoder.

2.2 Text-Only Training for Image Captioning

Instead of zero-shot approaches, several authors
have instead explored text-only training for image
captioning, e.g. learning a decoder that generates
captions from a frozen CLIP text encoder, and us-
ing only textual information, unpaired to any im-
ages, for model training (Su et al., 2022; Nukrai
et al., 2022; Gu et al., 2022; Tam et al., 2023; Li
et al., 2023c; Wang et al., 2023; Qiu et al., 2024;
Liu et al., 2024a; Wang et al., 2024). The train-
ing objective is thus, for a given textual corpus,
the reconstruction of each input text from a textual
embedding vector produced with CLIP, whereas at
inference time we provide the model with a CLIP
embedding for an image and the decoder gener-
ates the corresponding caption. To rectify the gap
between the textual and visual CLIP embedding
spaces (i.e., previous studies have shown that the
text and image vectors from CLIP can be far apart
and for instance, on MSCOCO captions, the aver-
age cosine similarity between an image and paired
caption is only 0.26, while the average similarity
between two unrelated captions is 0.35 (Liang et al.,
2022)), most of these studies have explored some
form of noise injection during training (e.g., Gaus-
sian noise can be added to the text embeddings
produced by CLIP (Gu et al., 2022; Nukrai et al.,
2022; Qiu et al., 2024; Wang et al., 2024), in order
to define a ball, in the embedding space, that should
map to the same image).

Noting that the weak visual guidance in the
paradigm described in the previous paragraph can
often lead to a modality bias (i.e., the language



prior in the language model dominates the decod-
ing process, often leading to descriptions that are
unrelated to the corresponding images), some pre-
vious studies (Wang et al., 2022; Fei et al., 2023;
Zeng et al., 2024; Wang et al., 2024) have explored
methods that rely on initializing the decoder with
hard textual prompts that encode visual concepts
(e.g., nouns extracted from texts during training,
or entities retrieved from the input image during
inference). The idea is to better guide the language
model towards the visual entities, this way enabling
more coherent caption generation.

More recently, some authors have proposed ap-
proaches that address the modality gap through
synthetic image-text pairs (Ma et al., 2024; Liu
et al., 2024b). For instance Liu et al. (2024b) used
a pre-trained text-to-image model to generate im-
ages for a training set of textual captions. Each
generated image, corresponding to a training text,
is encoded in the CLIP embedding space, and a
lightweight decoder model is trained to generate
captions from the CLIP representations. Addition-
ally, salient objects in images are recognized with a
pre-trained detection model, and the corresponding
textual labels are used as hard prompts that enhance
the learning of the modality alignment.

2.3 Retrieval-Augmented Image Captioning

The idea of extending the information encoded
within language model parameters, through non-
parametric knowledge retrieved from datastores
(i.e., external memories), has been used extensively
in different NLP tasks. The success of retrieval-
augmented generation has also inspired some re-
cent studies in image captioning (Sarto et al., 2022;
Ramos et al., 2023a,c,b; Yang et al., 2023; Ramos
et al., 2024; Li et al., 2023a; Sarto et al., 2024).
For instance SmallCap (Ramos et al., 2023c) cor-
responds to an encoder-decoder model in which
a language decoder is prompted with captions re-
trieved from a datastore through the use of CLIP.
The model itself uses a frozen CLIP encoder, a
frozen GPT2 decoder, and a cross-attention layer
that is trained to map across modalities. The au-
thors of SmallCap also developed the aforemen-
tioned LMCap model (Ramos et al., 2023b), which
uses a similar strategy for prompting GPT2, but in
which only the textual information is used to gener-
ate the output captions (i.e., this approach does not
involve cross-attention towards the representations
produced with a vision encoder, corresponding to
an image-blind approach).

Despite its potential, the power of retrieval-
augmented generation is highly dependent on con-
figuration options. Considering general NLP appli-
cations, some previous studies have analyzed the
sensitivity of retrieval-augmented generation to as-
pects such as the number of retrieved instances, the
ordering of the retrieved instances, or the quality
and diversity of the retrieval results (Hsia et al.,
2024; Cuconasu et al., 2024). Still, within the
specific context of multimodal tasks like image
captioning, significantly less work has looked into
these issues (Peng et al., 2023; Yang et al., 2024).
Some authors have noted that retrieved examples
adequately describing the salient image objects,
with simpler language patterns, seem to improve
results. Retrieving examples with high similarity
towards the input seems to be more important than
the retrieval of diverse examples, while at the same
time excessive similarity can lead models to create
short-cut inferences from the retrieved instances,
potentially misleading generation with low-quality
captions. However, we believe that additional stud-
ies are needed in order to confirm these statements.

3 Proposed Method

The proposed approach, which we named Text-
only Training with Latents plus Language prompt-
based Captioning (TTLLCap), combines retrieval-
augmented generation as in SmallCap and LM-
Cap (Ramos et al., 2023c,b), together with a
prompting strategy similar to that of the Socratic
models framework (Zeng et al., 2022), and also the
idea of decoding latent representations from CLIP,
after noise injection to avoid the modality gap (Gu
et al., 2022; Nukrai et al., 2022; Qiu et al., 2024;
Wang et al., 2024). The method is based on the
use of textual information during training, whereas
during inference it uses a textual prompt together
with visual information encoded with CLIP.
Specifically, during training, examples of image
captions are first encoded with the CLIP text en-
coder into a vector representation, to which we add
Gaussian noise in order to close the CLIP modality
gap, spreading out the text vectors so that they bet-
ter overlap with what would be the corresponding
image vectors. The resulting vector representations
are used to search for other similar captions in a
datastore of examples, and also to build a Socratic
prompt with information about the corresponding
image (e.g., information about the number of peo-
ple present in the image, places, objects, and gen-
eral classes associated to the image). The retrieved
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captions and the Socratic prompt are combined
together, and used as input to a language model
decoder. This decoder is extended with cross-
attention layers, which consider single/individual
key and value vectors derived from the input vec-
tor representation that was also used to perform
retrieval. The parameters of CLIP and of the lan-
guage model decoder are kept frozen during train-
ing, but we train the cross-attention layers and also
Low-Rank Adaptation (LoRA) layers (Hu et al.,
2021) added to the decoder. By using LoRA in-
stead of full-parameter fine-tuning, besides reduc-
ing computational costs, we hope to better retain
the general knowledge captured in the pre-trained
language model, mitigating catastrophic forgetting.

At inference time, given an input image, CLIP
is used to encode the visual contents into a vec-
tor representation, which is used (a) as input to
the cross-attention operations, (b) to build the So-
cratic prompt, and (c) to find relevant captions in
the datastore. The retrieved captions are used to
complement the Socratic prompt, and this textual
information is provided to the language model, in
order to condition the generation of the caption.
The main aspects of our approach are shown in
Figure 1 and further detailed next.

3.1 Building CLIP Representations

We use a CLIP ViT-L/14 model?, whose parameters
are kept frozen during training, to encode either
textual captions (i.e., during training) or the input
images (i.e., during inference) into vectors with
768 dimensions. The vectors support the retrieval
of relevant information for the input, and also the
conditional generation of a caption.

Following previous studies (Gu et al., 2022;
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Nukrai et al., 2022; Qiu et al., 2024; Wang et al.,
2024), we assume that there is a modality gap as-
sociated to the CLIP representations, and that the
visual embedding corresponding to a text embed-
ding lies somewhere within a ball of small radius e
around the text embedding. We would like all text
embeddings in this ball to match the same caption,
which should also correspond to the visual content
mapped to this ball. To implement this intuition,
at the same time also improving generalization
through additional diversity in the training data, we
add zero-mean Gaussian noise multiplied by a ran-
dom scalar value (i.e., n ~ Unif(0,1) x N(0, 1))
to the text embeddings produced by CLIP, which is
equivalent to a random Gaussian distribution with
random variances. This approach was introduced
by Gu et al. (2023) and, while being relatively sim-
ple, was shown to be more effective in closing the
modality gap than a simple Gaussian distribution.
The exploration of more advanced strategies (e.g,
methods like those from Liu et al. (2024a) or Wang
et al. (2024), e.g. involving tuning with a small set
of image-caption pairs), is left for future work.

3.2 Retrieval of Caption Exemplars

The CLIP ViT-L/14 model is also used for text-text
(i.e., during training) or image-text (i.e., during in-
ference) retrieval. Besides encoding the inputs, as
described in the previous section, this model is also
used to encode a large set of diverse caption exem-
plars from an external datastore, which is indexed
offline with the FAISS nearest-neighbor search li-
brary (Johnson et al., 2019), using the index named
IndexIVFFlat with parameters set to 32 probes at
query time, and 256 inverted lists.

Given the encoded data, for each input in-
stance, CLIP is used to retrieve the K most simi-
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lar captions from the datastore. Following Small-
Cap (Ramos et al., 2023¢c) and LMCap (Ramos
et al., 2023b), most of our experiments used i = 4
retrieved captions. The retrieved captions will serve
to guide a language model decoder as an exam-
ple of what the predicted caption should resemble,
through the use of a prompt and as described next.

3.3 Building the Prompt

The core aspect in our approach concerns prompt-
ing the decoder with retrieved information. Specif-
ically, the top-K retrieved captions are used to
fill slots in a prompt template with the following
form: Similar images show {caption;}
{captiony}. This image shows ___.

Extending the retrieval prompt, and taking in-
spiration on the Socratic image captioning ap-
proach (Zeng et al., 2022), we also experimented
with a template taking the following form: Assume
you are an intelligent image captioning
system designed to produce accurate and
concise image descriptions. The input
image 1is perhaps showing a {place;},
{place,}, or {places3}. The image likely
features an {object;}, <{object,}, or
{objects}. Similar images show {caption;}
... {captionk}. This image shows ___

In the Socratic case, CLIP representations (i.e.,
obtained from the textual caption, during model
training, or the input image, at the inference
stage) are used to perform zero-shot detection from
large pre-existing libraries of class names, and
the template slots are filled with the top-K de-
tected categories (i.e., the top-3 objects and the
top-3 places, following the original procedure).
The different place categories are collected from
Places356 (Zhou et al., 2016) and the object cate-
gories from Tencent ML-Images (Wu et al., 2019).

3.4 Training the Language Model

Most of our experiments use GPT2-base as the de-
coder, connecting it to the CLIP encoder with multi-
head cross-attention, through which each layer of
the decoder attends to a single vector correspond-
ing to the CLIP representation of the input. Fol-
lowing SmallCap (Ramos et al., 2023c), we control
the number of trainable parameters through the
dimensionality of the projection matrices in the
cross-attention layers, which we denote as d. For
GPT2-base, whose hidden representations have a
dimensionality of 768 and which involves h = 12
cross-attention heads, d defaults to 64 (i.e., the di-
mensionality of the hidden representations divided

by the number of heads). In our experiments, we
scale this value down by a factor of four.

The decoder receives the textual prompt, de-
scribed in the previous section, as input tokens, and
it then generates a caption conditioned on the CLIP
representation and the prompt. During inference,
decoding uses the beam search algorithm with a
small beam size of 3 (Cohen and Beck, 2019).

During model training, the weights in the cross-
attention layers, and also Low-Rank Adaptation
(LoRA) layers added to the query, key and value
layers of each self-attention block of the de-
coder (Hu et al., 2021), are optimized by min-
imizing the cross-entropy loss towards predic-
tions for the correct tokens in the ground-truth
caption, considering the teacher-forcing strategy.
LoRA considers hyper-parameters equal to 32 for
both « and rank. Additionally, we use an up-
dated version of LoRA, named Rank-stabilized
LoRA (rsLoRA), where the adapters are scaled
by a factor of < instead of %, which stabilizes
the adapters (Kalajdzievski, 2023). We use the
AdamW optimizer (Kingma and Ba, 2014) with an
initial learning rate of 1e-4 and a batch size of 64.
Training runs for 10 epochs and we use the epoch
checkpoint with the best CIDEr score on a held-out
validation set. Training with GPT2-base takes up
to 9 hours on a single NVIDIA RTX A6000 GPU,
using 16 GB of the available memory.

4 Experimental Evaluation

We now describe the experimental evaluation of
the proposed approach.

4.1 Datasets and Metrics

Our experiments used two English datasets to as-
sess captioning quality, namely MSCOCO (Lin
et al., 2014) and NoCaps (Agrawal et al., 2019).

MSCOCO is a commonly used dataset for as-
sessing image captioning, object detection, and
segmentation. We used the Karpathy splits, with
113k/5k/5k images for training, validation, and test-
ing, respectively. Each image is annotated with at
least 5 human-generated captions, and we used the
textual captions from the training split to train our
model. In turn, NoCaps contains 15k images with
nearly 400 additional novel classes not represented
in MSCOCO, which can be used to evaluate novel
object captioning performance.

Similarly to SmallCap (Ramos et al., 2023c),
the retrieval datastore features captions from
MSCOCO, and from sources such as the Concep-



tual (i.e., CC3M and CC12M) datasets (Sharma
et al., 2018; Changpinyo et al., 2021) and SBU cap-
tions (Ordonez et al., 2011), totaling approximately
13 million image descriptions.

For evaluation, we compute the standard met-
rics of BLEU-1 (B@1), BLEU-4 (B@4) (Papineni
etal., 2002), METEOR (M) (Denkowski and Lavie,
2014), and CIDEr (C) (Vedantam et al., 2015), us-
ing the MSCOCO evaluation package?.

4.2 Captioning Results

Table 1 presents experimental results on the
MSCOCO and NoCaps datasets, comparing TTLL-
Cap against previous approaches corresponding
to training-free (i.e., top set of rows) and text-only
training methods (i.e., the set of rows in the middle).
The table also shows results for ablated versions
of the complete TTLLCap method, respectively
corresponding to the following configurations:

e A version similar to the original LMCap
method (Ramos et al., 2023b), where the de-
coder is prompted with retrieved captions only,
without any training. This experiment used
the OPT-IML-1.3B* decoder fine-tuned to fol-
low instructions (Iyer et al., 2022), instead of
the less capable GPT2-base model,

* Versions that extend the previous LMCap set-
ting, either by considering the combination of
retrieved captions with a Socratic prompt, or
by training the decoder using LoRA, in this
last case using a GPT2-base model;

* A version that involves training the GPT?2 de-
coder (using LoRA) with cross-attention to-
wards the CLIP representations, using a sim-
ple prompt (i.e., the phrase This image shows)
that does not involve retrieved exemplars;

* Versions that extend the previous setting, us-
ing retrieved captions only or combining re-
trieval with the Socratic prompt;

* Versions featuring an optimized retrieval set-
ting, without the Socratic prompt, in which
K=6 or K=8 retrieved captions are re-ranked
with basis on the similarity between them, pro-
moting cohesiveness — see the additional ex-
periments reported on Section 4.3;

* A version that is similar to the previous opti-
mized setting, but featuring the larger GPT2-
medium decoder model.
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The obtained results show that TTLLCap out-
performs all zero-shot approaches, including LM-
Cap (Ramos et al., 2023b) and the Socratic frame-
work (Zeng et al., 2022). Better results are ob-
tained when considering retrieval re-ranking with
basis on cohesiveness (see Section 4.3 for a deeper
discussion on this aspect), but using a larger de-
coder failed to significantly improve results. The
exploration of even larger decoders is left for fu-
ture work, although the overall results suggest that
higher gains can perhaps come from improved ap-
proaches for handling the CLIP modality gap, in
comparison to larger decoders.

Our reproduction of LMCap, which does not
involve any training, achieved lower results than
those reported by Ramos et al. (2023b), but this is
perhaps due to the smaller decoder and to the fact
that we do not include a final selection of the candi-
date caption with highest CLIP similarity towards
the input image, after beam search decoding.

When compared to other text-only training ap-
proaches, TTLLCap clearly surpasses well-known
methods like MAGIC (Su et al., 2022) and De-
Cap (Li et al., 2023c), performing similarly to
other recent approaches on the MSCOCO dataset,
but being outperformed by methods that involve
the use of synthetic images for training (Liu et al.,
2024b), or more advanced strategies for addressing
the CLIP modality gap (e.g., using multi-variate
Gaussian distributions estimated from small sets
of image-caption pairs (Wang et al., 2024), instead
of our approach which does not adjust the param-
eters of a Gaussian distribution). Combining our
retrieval-augmented approach with a better method
for handling the CLIP modality gap would likely
further improve results. Still, in the NoCaps dataset
and particularly in the out-of-domain instances,
TTLLCap already significantly surpasses all previ-
ous approaches, with results showing that the use
of retrieved captions contributes significantly to
improved generalization capabilities.

The assessment of different configurations con-
firms that the use of retrieved captions is indeed
the component with the highest impact on perfor-
mance, with the Socratic prompt, or the use of
cross-attention towards the CLIP representations,
having only a small influence on the results. In
the case of the Socratic prompt, it is interesting
to note that it lead to improved results when no
training is involved, and to slightly worse results
otherwise. We noticed that the text-text retrieval
strategy, used during TTLLCap training to build
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MSCOCO NoCaps (CIDEr)

Method Encoder Decoder B@1] B@4 M C In Near Out Overall
ConZic (Zeng et al., 2023) ViT-B/32 BERT-base - 1.3 11.2 13.3 - - - -
ZeroCap (Tewel et al., 2022) ViT-B/32 GPT2-medium 49.8 7.0 154 345 - - - -
Socratic (Zeng et al., 2022) ViT-L/14 GPT-3 - 6.9 15.0 445 - - - -
MeaCaprr (Zeng et al., 2024) ViT-B/32 CBART - 9.1 20.6 56.9 353 39.0 45.1 40.2
LMCap (Ramos et al., 2023b) ViT-H-14 XGLM-2.9B - 19.9 22.0 75.9 - - - -
MAGIC (Su et al., 2022) ViT-B/32 GPT2-small 56.8 12.9 17.4 49.3 - - - -
DeCap (Li et al., 2023c) ViT-B/32 Transformer - 8.9 17.5 50.6 419 417 46.2 427
CLM (Wang et al., 2022) - GPT2 59.3 15.0 18.7 55.7 - - - -
MacCap (Qiu et al., 2024) ViT-B/32 OPT-1.3B 61.4 17.4 22.3 69.7 - - - -
WS-ClipCap (Tam et al., 2023) - GPT2 65.5 22.1 222 74.6 - - - -
MeaCapror (Zeng et al., 2024) ViT-B/32 CBART - 17.7 24.3 84.8 38.5 43.6 500 45.1
CapDec (Nukrai et al., 2022) ResNet50 GPT2-large 69.2 26.4 25.1 91.8 60.1 502 287 459
CapDec+RLCF-S (Zhao et al., 2023) ViT-B/16 OPT-125M - - - - 68.3 58.5 353 -
ViECap (Fei et al., 2023) ViT-B/32 GPT2-base - 27.2 24.8 92.9 61.1 64.3 65.0 66.2
EntroCap (Yan et al., 2024) ViT-B/32 GPT2-base - 27.6 253 94.3 62.5 64.5 67.5 67.0
ViECap+ToCa (Zhou et al., 2024) ViT-B/32 GPT2-base - 27.1 25.4 95.0 64.6 69.1 70.5 70.9
MeaCapiywim (Zeng et al., 2024) ViT-B/32 GPT2-base - 27.2 253 95.4 - - - -
ICSD (Ma et al., 2024) ViT-B/32 BERT-base - 29.9 254 96.6 429 443 35.6 42.7
CLOSE (Gu et al., 2022) ViT-L/14 T5-base - 29.5 25.7 97.8 - - - -
ArcSin (Liu et al., 2024a) ViT-L/14 T5-base - 30.3 - 99.6 - - - -
SynTIC (Liu et al., 2024b) ViT-B/32 Transformer - 299 25.8 101.1 - - - -
TipCap (Wang et al., 2024) ViT-L/14 GPT2-large 73.3 31.4 542  106.6 80.2 62.3 39.6 60.3
TTLLCap (no training, retrieval) ViT-L/14 OPT-IML-1.3B 55.6 15.2 20.6 61.8 52.4 S51.1 60.1 53.1
TTLLCap (no training, retrieval + Socratic) ViT-L/14 OPT-IML-1.3B 55.5 17.0 19.5 64.5 537 51.6 579 532
TTLLCap (training with retrieval) ViT-L/14 GPT2-base 63.7 20.5 21.7 71.3 63.9 63.8 76.4 66.4
TTLLCap (embedding only) ViT-L/14 GPT2-base 66.2 24.7 213 73.4 41.5 25.6 10.3 24.8
TTLLCap (embedding + retrieval) ViT-L/14 GPT2-base 63.6 20.4 21.7 77.2 65.6 64.6 764 67.1
TTLLCap (embedding + retrieval + Socratic) ViT-L/14 GPT2-base 63.5 20.3 21.7 76.5 65.4 64.2 76.8 67.0
TTLLCap (K=6, re-ranking with A=-0.5) ViT-L/14 GPT2-base 65.5 21.9 232 81.3 69.8 69.9 84.1 72.8
TTLLCap (K=8, re-ranking with A=-0.5) ViT-L/14 GPT2-base 65.0 21.6 232 80.3 69.8 70.1 82.9 72.6
TTLLCap (K=6, re-ranking with A=-0.5) ViT-L/14 GPT2-medium 66.7 22.6 23.1 83.1 70.6 71.2 834 73.6
TTLLCap (K=8, re-ranking with A=-0.5) ViT-L/14 GPT2-medium 66.7 23.3 23.8 85.7 73.1 73.1 87.2 76.0

Table 1: Results for different captioning methods on MSCOCO and NoCaps.

the Socratic prompt, often fails to retrieve correct
places and/or objects. Hence, the method likely
fails to improve performance due to this noise.

Appendix C complements the results in Table 1
with some qualitative examples for the captions
generated with TTLLCap.

4.3 Impact of Retrieval Augmentation

Besides assessing captioning quality, we also
looked at the impact of different choices regard-
ing the configuration of the retrieval-augmentation
component. This was made with the TTLLCap
model variant that only uses retrieved captions (i.e.,
without the Socratic prompt) plus the CLIP embed-
dings, leveraging the smaller and more efficient
GPT2-base decoder.

A first aspect that we analyzed concerns the op-
timal number of retrieved captions to consider. Pre-
vious work with SmallCap and LMCap has pointed
to K = 4 as the best configuration, and we at-
tempted to further validate this value through an
experiment in which we compared TTLLCap with
K=4, K=6, or K=8 retrieved captions. Results
over the MSCOCO dataset are shown in Table 2,
indicating that K = 4 is the optimal training con-
figuration. However, results slightly increase when
retrieving more captions during inference, even if
the model was trained with K = 4. We speculate
that access to more captions collected via text-text
retrieval fails to better guide the model during train-

Retrieved Captions B@l B@4 M C

K=4 63.6 204 217 772
K=6 (training with K=4) 64.1  20.6 229 79.1
K=6 (training) 63.6 202 21.8 77.0
K=8 (training with K=4)  63.1 20.5 233 784

Table 2: Results on MSCOCO when varying the number
of retrieved captions from 4 to 8, either with or without
training the model to specifically use more captions.

ing, while more captions retrieved through image-
text retrieval is indeed helpful during inference.
We also looked at the relation between prop-
erties of the retrieved captions and result quality,
namely by analyzing (a) the average similarity of
the retrieved captions towards the input image, as
measured from the CLIP representations, and (b)
the diversity and complementarity of the K = 4
retrieved captions, also as measured by the aver-
age similarity between their CLIP representations.
Figure 2 presents these results for images in the
MSCOCO test split, plotting CIDEr values against
the similarity or diversity measurements (without
any normalization of the scores). The results show
that CIDEr generally increases with a higher simi-
larity between the retrieved captions and the input
image, while it decreases with more diverse sets of
retrieved captions (i.e., results are better when the
retrieved captions are more similar to each other).
Keeping K = 4 retrieved captions, we exper-
imented with the use of a re-ranking strategy to
adapt the retrieval results, assessing alternatives



MMR Setting B@l B@4 M C

400 400

300 300

CIDEr
CIDEr

0.00 014 028 042 056 070
Captions average dissimilarity

028 031 034 037 040 043
CLIP average similarity

Figure 2: CIDEr values for instances in the MSCOCO
test split, versus average similarity between input im-
ages and generated captions (left), or diversity in the
retrieved captions (right), measured as one minus the
average pairwise similarity between the captions.

that either consider a more diverse set of retrieved
captions, or instead a more cohesive set. The de-
fault retrieval approach only considers similarity
towards the input, not attempting to optimize the
similarity between the retrieved exemplars them-
selves. Nothing that an increased diversity on
the retrieved captions, or in turn a increased co-
hesiveness as suggested by Figure 2, can perhaps
contribute to improved results, we experimented
with a strategy based on the Maximum Marginal
Relevance (MMR) approach (Carbonell and Gold-
stein, 1998), which selects exemplars that are rel-
evant while at the same time controlling for diver-
sity/cohesiveness. If for a given input 7 we have
already selected a set of exemplars T' = {c¢; }, fol-
lowing this strategy we will pick up the next exem-
plar ¢; according to:

arg max(sim(7, ¢;) — Amaxsim(cj,¢;)), (1)
¢ c; €T

where sim() denotes CLIP similarity (without any
additional normalization), and A is a parameter
that controls the balance between relevance and
diversity (which, when negative, promotes cohe-
siveness). We rely on MMR to iteratively re-rank
exemplars from the datastore, scoring the top 50
instances obtained through an initial retrieval.
Table 3 presents the obtained results on the
MSCOCO test split, comparing models trained
with different A values in order to promote diversity
or cohesiveness. Overall, quality improves when
promoting cohesiveness, and the best scores are
achieved when A ~ —0.50 (i.e., the same value
that is used on the main results reported in Table 1).
Note that using a negative A\ during training and
inference, besides promoting cohesiveness, also
makes retrieval results depend more on text-text

MMR with A = 0.15 634 198 21.7 753
MMR with A = 0.00 63.6 204 217 772
MMR with A = —-0.15 648 21.0 22.1 784
MMR with A = —-0.30 65.1 215 222 795
MMR with A = —-0.60 657 219 224 80.7
MMR with A = —-1.20 65.0 212 221 79.0
MMR with A = —-0.50 65.8 222 22,6 &1.3

Table 3: Results on MSCOCO when increasing the
diversity or the cohesiveness of the retrieved captions.

similarity. Making the training and inference stages
more similar can contribute to reducing the CLIP
modality gap, generally improving performance.

Appendices A and B further extend the analy-
sis reported in this section, specifically looking
at position biases associated to the ordering of
the retrieved captions, and looking and how the
CLIP modality impacts retrieval quality and, con-
sequently, the captioning results.

5 Conclusions and Future Work

This paper presented TTLLCap, i.e. an improved
text-only training method for image captioning
based on prompting a pre-trained language model
decoder with information derived from CLIP repre-
sentations of the inputs. Experimental results show
that TTLLCap is able to outperform several previ-
ous training-free and text-only training methods,
especially in terms of out-domain generalization.
Out of all the components involved in the proposed
approach, the use of retrieved captions is the one
that has the highest impact on result quality.

Despite the interesting results, there are also
many opportunities for future work. TTLLCap is
still outperformed by other similar approaches, e.g.
that use synthetic images generated from the tex-
tual captions available for training (Ma et al., 2024;
Liu et al., 2024b), as well as by fully supervised
approaches. We believe that text-only training can
be further improved up to the almost same quality
as fully supervised techniques, and that the use of
other approaches to address the CLIP modality gap
will have a fundamental role in this regard (Li et al.,
2023c; Wang et al., 2023; Liu et al., 2024a).

In addition, note that our experiments only
used English corpora, and it would be important
to extend the study to other languages (Ramos
et al., 2023b, 2024), in particular considering low-
resource languages for which the collection of im-
ages paired to textual captions can be harder (i.e.,
an important motivation for the development of
zero-shot or text-only captioning methods is indeed
the multilingual captioning scenario).



Limitations and Ethical Considerations

While our work does not raise new ethical issues
within the domain of automatic image caption-
ing (e.g., we conducted our experiments on public
datasets, carefully designed for academic research
and extensively used in previous studies), there are
some general important concerns.

For instance image captioning models are noto-
rious for their internal biases, inherited from the
training data itself or from the use of pre-trained
models such as CLIP. We therefore recommend
caution in the use of the approach proposed in this
paper, and anticipate further research into model
biases, before relying on our work beyond research
environments. Still, we observe that balancing a
text-only dataset can be easier than collecting bal-
anced text-image pairs, and thus the proposed ap-
proach can perhaps offer advantages in terms of
mitigating known biases (e.g., if we consider the
problem of a dataset containing significantly more
images of women in a kitchen than men, collecting
more images requires substantial effort, while re-
placing woman with man, and their synonyms, in
all the training captions is quite simple).

Another important limitation in the work re-
ported on this paper concerns the fact that eval-
uation is only made on English datasets. Moreover,
although the proposed approach can generate im-
age captions without relying on any labeled image-
caption training pairs, we still need the independent
set of textual captions for model training, which
may be difficult to collect in some scenarios (e.g.,
for some low-resource languages). This might be
alleviated in future work, by assessing the use of
textual corpora from different sources and/or pro-
duced automatically with language models.
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A Analysis of Position Biases

Considering the TTLLCap model variant that only
uses retrieved captions (i.e., without the Socratic
prompt), and leveraging the smaller and more effi-
cient GPT2-base decoder, we analysed the potential
existence of position biases in association to the
order of the retrieved captions.

We first note that the GPT2 decoder can have a
position bias towards preferring information from
retrieved captions at the beginning or the ending
of the prompt, independently of the similarity of
the captions towards the input. We therefore exper-
imented with changing the ordering of the K = 4
captions, either keeping the decoder model trained
by default with retrieved captions in decreasing or-
der of similarity, or training the decoder in different
settings. Table 4 presents the obtained results on
the MSCOCO test split, showing that the order of
the captions in the prompt has little effect on the
final result. Still, using the retrieved captions in
a random order during training achieves slightly
better results, i.e. a fact that is perhaps also tied to
the CLIP modality gap and to approximating the
training and inference stages.

We also looked at how the self-attention lay-
ers of the decoder weight information from the



K = 4 retrieved captions, considering settings
that involve retrieved captions sorted in descend-
ing order, or retrieved captions in random order.
Figure 3 plots these results, showing the distribu-
tion of self-attention weights across all MSCOCO
testing instances, averaged (a) separately over the
lowest/highest 6 layers of the GPT2-base decoder,
and (b) over the tokens that constitute each of the
K = 4 retrieved captions.

The results show that, when captions are in de-
scending order and the model was trained in this
setting (i.e., the top pair of plots in Figure 3), more
attention is given to the first captions. The model
is giving priority to the captions that have more
similarity towards the input, and that are therefore
more likely to accurately describe the image. In-
stead, when captions are ordered randomly, every
caption is approximately given an equal amount of
attention. This happens independently of whether
the model was trained with captions in descend-
ing order (i.e., the pair of plots in the middle of
Figure 3), or with captions in random order.

B Impact of the CLIP Modality Gap

Our analyses that focused on the impact of different
configurations for the retrieval component point to
the fact that retrieval quality has a significant role in
improving the captioning performance. Moreover,
making the training and inference stages more simi-
lar, in terms of how they use retrieval results, seems
to contribute to improved results, which suggests

Caption Ordering. B@l B@4 M C

Descending (default)  63.6 204 217 772
Ascending 639 208 21.8 78.0
Random 63.8 208 218 776

Descending (default)  63.6 204 217 772
Ascending (training)  63.9 199 21.8 7538
Random (training) 644 209 220 783

Table 4: Results when varying the ranking order of the
retrieved captions, placing them in the prompt in de-
scending order of similarity (the standard configuration,
with the decoder model trained by default in this way),
in ascending order of similarity, or in a random order.

Retrieved Captions B@l B@4 M C

T2T 63.6 204 217 772
T2T (with A = —-0.5) 658 222 226 813
12T 75.1 327 262 1085
2T (with A = —0.5) 742 31.8 258 107.7

Table 5: Results on MSCOCO considering text-text
(T2T) or image-text (I2T) similarity, with/without re-
ranking the retrieval results to promote cohesiveness.
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Figure 3: Distribution of average self-attention weights
towards tokens associated to the four retrieved captions
(i.e., C1 to C4), across all MSCOCO testing instances
and separately over the lowest (i.e., the plots on the left)
and highest (i.e., the plots on the right) six layers of the
GPT2-base decoder. From top to bottom, the plots are
derived from models using captions (a) in descending
order during training and inference, (b) in descending
order during training and random order during inference,
and (c) in random order during training and inference.

that the CLIP modality gap can be a limiting factor
for the results obtained with our method.

In an attempt to further validate these ideas, we
experimented with a setting in which model train-
ing is still not directly relying on images, but in
which retrieval is always made with basis on image-
text similarity (instead of using text-text similar-
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Figure 4: Two-dimensional t-SNE representations for CLIP embeddings of images (i.e., the blue dots) and captions
(i.e., the pink dots, corresponding to five captions per image) from the MSCOCO validation split. The plots compare
results before (left) and after (right) the addition of Gaussian noise to the caption embeddings.

ity during training, and image-text similarity dur-
ing inference). This setting thus corresponds to
a TTLLCap variant that only uses training with
the retrieved captions, without cross-attention to-
wards image representations and without the So-
cratic prompt, relying on the smaller and more
efficient GPT2-base decoder. The intuition for ex-
ploring this setting relates to the fact that it can
perhaps approximate an ideal scenario, in which
the CLIP modality gap problem is fully addressed.
Results over the MSCOCO dataset are shown
in Table 5, using K = 4 retrieved captions and
also considering settings that involve re-ranking
to promote cohesiveness. The values confirm that
image-text similarity indeed leads to a much higher
performance, with cohesiveness failing to improve
results on this setting. The CLIP modality gap in-
deed seems like an important limiting factor to our
approach, and future work should attempt to further
address this aspect, e.g. through the exploration
and extension of approaches proposed in previous
work (Wang et al., 2024), which nonetheless have
the limitation that they require the tuning of param-
eters with a small set of image-caption pairs.
Figure 4 illustrates the CLIP modality gap, us-
ing t-SNE projections (Van der Maaten and Hinton,
2008) to represent in two dimensions the embed-
dings for the images and captions corresponding
to instances in the MSCOCO validation split. The
plots show that while the addition of Gaussian noise
indeed contributes to reducing the modality gap,
there is still significant room for improvement.

C Qualitative Examples

Figure 5 presents several examples of captions gen-
erated with the proposed approach, considering
two different model configurations. Both of these
use cross-attention towards the CLIP embeddings,
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retrieved captions, and GPT2-base as the decoder,
the difference being that Method 2 uses a Socratic
prompt, while Method 1 does not. All images were
taken from the MSCOCO test split.



Ground Truth:

Method 1:

Method 2:

Ground Truth:

Method 1:

Method 2:

A large long train on a steel track near a barn.

A very nice looking train set with some pretty
scenery.

A small house near the railway and plants
nearby.

A train set with a train and a red and white
barn.

A train set with a train and a red and white
barn.

A cat sitting on top of a green car.

A cat sitting on the roof of a parked car.

A cat sitting on top of a parked car.
An orange black and white cat sitting on a
blue car.

A brown and white cat sitting on the roof of
car.

An asian city is all lit up in the dark.

A city is lit up at night and cars are in the
sireet.

A variety of signs are shown on the side of the
road.

A city area with bus cars and people at night.

Many neon lights at night in the city.

A model train in the yard next to a tree.

A miniature model train in the yard nextto a
free.

A plate of sliced oranges with a fork.

A plate topped with orange slices and eating
utensil.

Sliced oranges are arranged in a line on a
plate.

Orange slices on a white plate sitting on a
table.

A plate with a fork on it and several orange
slices placed on a table.

There is a cat that is on top of a car.

There is a cat that is on top of a car.

Family posing on the ski slopes wearing skis.

A group of young and old are skiing on the
SNOW.

Three adult and two child skiers posing on a
slope.

A family of snow skiers lined up for a picture
before their run.

A family poses for a photo while skiing on a
snowy mountainside.

Hong street with neon signs and traffic.

Hong street with neon signs and traffic lights.

.’ ;}"y}
i)

A brown bear lounging on a gray rock.

A large brown bear laying on top of a giant
rock.

A brown bear is laying on a rock and some
trees.

A bear lying on a rock in its den looking
upward.

A bear lying down on a rock formation.

Black and white image of an orange on a
table.
Black and white image of an orange on a
table.

Five skiers are standing on a ski slope.

Five skiers are standing on a ski slope.

A bear is sleeping on a rock ledge.

A bear sleeps on a rock ledge in an exhibit.

Figure 5: Examples of generated captions for images taken from the MSCOCO dataset.
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