

# 000 001 002 003 004 005 DISENTANGLED REPRESENTATION LEARNING FOR 006 PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027

## ABSTRACT

028 Neural operators (NOs) excel at learning mappings between function spaces, serving  
029 as efficient forward solution approximators for PDE-governed systems. However,  
030 as black-box solvers, they offer limited insight into the underlying physical  
031 mechanism, due to the lack of interpretable representations of the physical parameters  
032 that drive the system. To tackle this challenge, we propose a new paradigm  
033 for learning disentangled representations from NO parameters, thereby effectively  
034 solving an inverse problem. Specifically, we introduce DisentangO, a novel hyper-  
035 neural operator architecture designed to unveil and disentangle latent physical factors  
036 of variation embedded within the black-box neural operator parameters. At  
037 the core of DisentangO is a multi-task NO architecture that distills the varying  
038 parameters of the governing PDE through a task-wise adaptive layer, alongside a  
039 variational autoencoder that disentangles these variations into identifiable latent  
040 factors. By learning these disentangled representations, DisentangO not only en-  
041 hances physical interpretability but also enables more robust generalization across  
042 diverse systems. Empirical evaluations across supervised, semi-supervised, and  
043 unsupervised learning contexts show that DisentangO effectively extracts mean-  
044 ingful and interpretable latent features, bridging the gap between predictive per-  
045 formance and physical understanding in neural operator frameworks.  
046

## 1 INTRODUCTION

047 Interpretability in machine learning (ML) refers to the ability to understand and explain how models  
048 make decisions (Rudin et al., 2022; Molnar, 2020). As ML systems grow complex, especially with  
049 the use of deep learning and ensemble methods (Sagi & Rokach, 2018), the reasoning behind their  
050 predictions can become opaque. Interpretability addresses this challenge by making the models more  
051 transparent, enabling users to trust the outcomes, detect biases, and identify potential flaws. It is a  
052 critical factor in applying AI responsibly, especially in fields where accountability and fairness are  
053 essential (Cooper et al., 2022). In physics, where models endeavor to capture the governing laws and  
054 physical principles, understanding how a model arrives at its predictions is vital for verifying that  
055 it aligns with known scientific theories. This transparency is key for advancing scientific discovery,  
056 validating results, and enhancing trust in models for complex physical systems.  
057

058 Discovering interpretable representations of physical parameters in learning physical systems is  
059 challenging due to the intricate nature of real-world phenomena and the often implicit relationships  
060 between variables. In physics, quantities like force, energy, and velocity are governed by well-  
061 established laws, and extracting them in a way that aligns with physical intuition requires models  
062 that go beyond mere pattern recognition. Traditional ML models may fit the data but fail to provide  
063 a physically interpretable way. To address this, recent developments include integrating physical  
064 constraints into the learning process (Raissi et al., 2019), such as embedding conservation laws (Liu  
065 et al., 2023; 2024a), symmetries (Mattheakis et al., 2019), or invariances (Cohen & Welling, 2016)  
066 directly into model architectures. Additionally, methods like symbolic regression (Biggio et al.,  
067 2021) and sparse modeling (Carroll et al., 2009) aim to discover simple, interpretable expressions  
068 that capture the underlying dynamics. However, balancing model expressivity with interpretability  
069 remains a significant challenge, as overly complex models may obscure the true physical relation-  
070 ships, while oversimplified models risk losing critical details of the system’s behavior.  
071

072 We introduce **DisentangO**, a novel variational hyper-neural operator architecture to disentangle  
073 physical factors of variation from black-box neural operator parameters for solving parametric  
074

PDEs. Neural operators (NOs) (Li et al., 2020a;c) learn mappings between infinite-dimensional function spaces in the form of integral operators, making them powerful tools for discovering continuum physical laws by manifesting the mappings between spatial and/or spatiotemporal data; see You et al. (2022a); Liu et al. (2024a;b; 2023); Ong et al. (2022); Cao (2021); Lu et al. (2019; 2021); Goswami et al. (2022); Gupta et al. (2021) and references therein. However, most NOs serve as efficient forward surrogates for the underlying physical system under a supervised learning setting. As a result, they act as black-box universal approximators for a single physical system governed by a fixed set of PDE parameters, and lack interpretability with respect to the underlying physical laws. In contrast, the key innovation of DisentangO lies in the use of a hypernetwork architecture that distills the varying physical parameters of the governing PDE from multiple physical systems through an unsupervised learning setting. The distilled variables are further disentangled into distinct physical factors to enhance physical understanding and promote robust generalization. Consequently, DisentangO effectively extracts meaningful and interpretable physical features, thereby simultaneously solving both the forward and inverse problems. **Our key contributions** are:

- We bridge the divide between predictive accuracy and physical interpretability, and introduce a new paradigm that simultaneously performs physics modeling (i.e., as a forward PDE solver) and governing physical mechanism discovery (i.e., as an inverse PDE solver).
- We propose a novel variational hyper-neural operator architecture, which we coin DisentangO. DisentangO extracts the key physical factors of variation from black-box neural operator parameters of multiple physical systems. These factors are then disentangled into distinct latent factors that enhance physical interpretation and [generalization across different physical systems](#).
- We provide theoretical analysis on the component-wise identifiability of the true generative factors in physics modeling: by learning from multiple physical systems, the variability of hidden physical states in these systems promotes identifiability.
- We explore the practical utility of disentanglement and perform experiments across a broad range of settings including supervised, semi-supervised, and unsupervised learning. Results show that DisentangO effectively extracts meaningful physical features.

## 2 BACKGROUND AND RELATED WORK

**Neural operators.** Learning complex physical systems from data is essential in many scientific applications (Carleo et al., 2019; Liu et al., 2024c; Karniadakis et al., 2021; Zhang et al., 2018; Cai et al., 2022; Pfau et al., 2020; He et al., 2021; Jafarzadeh et al., 2024). When governing laws are unknown, models must be both *resolution-invariant* for consistent performance across discretizations and *interpretable* for domain experts. Neural operators (NOs) achieve the former by learning mappings between infinite-dimensional function spaces (Li et al., 2020a;b;c; You et al., 2022a; Ong et al., 2022; Cao, 2021; Lu et al., 2019; 2021; Goswami et al., 2022; Gupta et al., 2021), enabling accurate and consistent predictions of continuum physical surrogates. However, NOs lack interpretable representations of physical states, limiting their ability to reveal underlying physical mechanisms.

**Hypernetworks.** Hypernetworks (Ha et al., 2016; Chauhan et al., 2024) are a class of neural network (NN) architectures that use one NN to generate weights for another NN, both trained in an end-to-end manner. This allows soft weight sharing across tasks, benefiting transfer learning and dynamic information sharing (Chauhan et al., 2023). Hypernetworks can also be employed as a versatile technique in existing NN architectures. For instance, in Nguyen et al.; Oh & Peng (2022), a hypernetwork is employed to generate parameters for a VAE model and enable multi-task learning. Similarly, Lee et al. (2023) integrates the hypernetwork architecture with neural operators. However, none of the existing work discusses the capability of hypernetworks in hidden physics discovery.

**Forward and inverse PDE learning.** Existing NOs serve as efficient surrogates for forward PDE solving but often act as black-box approximators, lacking interpretability. In contrast, deep learning methods for inverse PDE solving (Fan & Ying, 2023; Molinaro et al., 2023; Jiang et al., 2022; Chen et al., 2023) aim to reconstruct PDE parameters from solution data but face challenges due to ill-posedness. To address this, many NOs incorporate prior information via governing PDEs (Yang et al., 2021; Li et al., 2021), regularizers (Dittmer et al., 2020; Obmann et al., 2020; Ding et al., 2022; Chen et al., 2023), or structured operators (Lai et al., 2019; Yilmaz, 2001). However, these methods assume prior knowledge of the model form, which is often unrealistic. A recent approach (Yu et al., 2024) employs attention to construct a data-dependent kernel for inverse mapping but does not

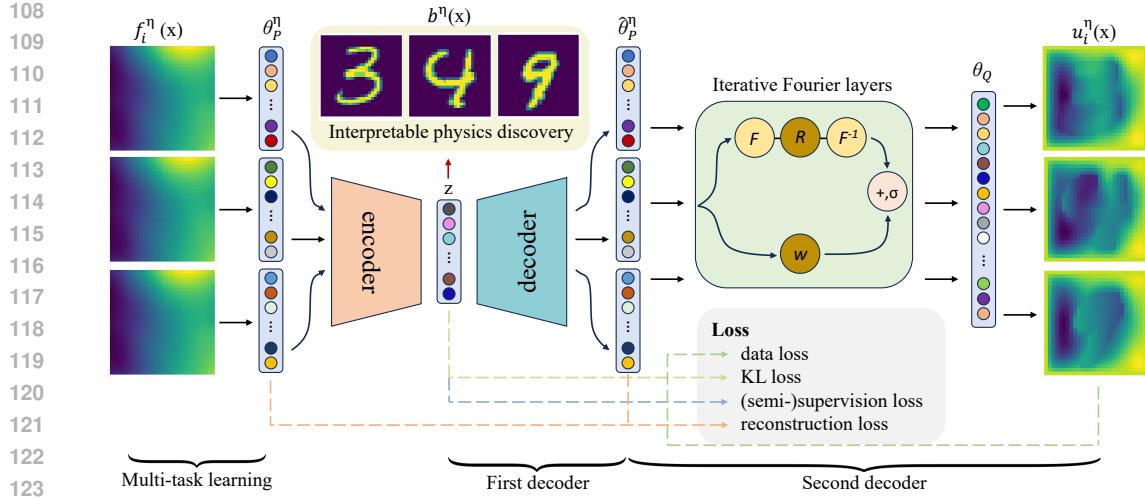


Figure 1: Overview of the DisentangO architecture. Each task correspond to a different (hidden) PDE parameter  $\mathbf{b}$ . For illustration, the same input function  $f_i^n$  is shown for multiple tasks to highlight that different parameter fields  $b^n$  can produce different output functions  $u_i^n$  under identical input  $f$ ; in practice,  $f$  may vary across tasks. The task-specific lifting parameters  $\theta_P^n$  are encoded and reconstructed through a VAE, and the reconstructed parameters  $\hat{\theta}_P^n$  are fed into the iterative Fourier layers to form the task-specific neural operator  $G^n$ . Loss components are overlaid to indicate where each term in the objective  $L_{loss}$  is computed.

disentangle the learned kernel or extract interpretable parameters. To our knowledge, DisentangO is the first to tackle both forward (physics prediction) and inverse (physics discovery) PDE learning while simultaneously identifying distinct physical parameters from the learned NO.

**Disentangled representation learning.** Disentangled representation learning separates data into distinct, interpretable factors, each capturing an independent variation. It has critical implications for transfer learning, generative modeling, and AI fairness, enabling models to generalize by leveraging isolated features. Key advances have been driven by models like  $\beta$ -VAE (Higgins et al., 2017), FactorVAE (Kim & Mnih, 2018), and InfoGAN (Chen et al., 2016), which promote disentanglement through latent regularization and mutual information constraints. While early work focused on supervised or semi-supervised methods (Ridgeway & Mozer, 2018; Shu et al., 2019; Mathieu et al., 2019), recent efforts target unsupervised learning (Duan et al., 2019), though challenges remain (Locatello et al., 2019), with ongoing efforts to improve metrics, robustness, and applicability to complex data. Most research has centered on computer vision and robotics, where latent factors have human-interpretable visual meanings, while its exploration in physical system learning remains limited (Lingsch et al., 2024; Tong et al., 2024; Fotiadis et al., 2023). Moreover, existing work disentangles from data, whereas our work is the first to disentangle from black-box NN parameters.

### 3 DISENTANGO

We consider a series of complex systems with different hidden physical parameters:

$$\mathcal{K}_b[\mathbf{u}](\mathbf{x}) = \mathbf{f}(\mathbf{x}), \quad \mathbf{x} \in \Omega. \quad (3.1)$$

Here,  $\Omega \subset \mathbb{R}^s$  is the domain of interest,  $\mathbf{f}(\mathbf{x})$  is a function representing the loading on  $\Omega$ ,  $\mathbf{u}(\mathbf{x})$  is the corresponding solution of this system.  $\mathcal{K}_b$  represents the unknown governing law, e.g., balance laws, determined by the (possibly unknown and high-dimensional) parameter field  $\mathbf{b}$ . For instance, in a material modeling problem,  $\mathcal{K}_b$  often stands for the constitutive law and  $\mathbf{b}$  can be a vector ( $\mathbf{b} \in \mathbb{R}^{d_b}$ ) representing the homogenized material parameter field or a vector-valued function ( $\mathbf{b} \in L^\infty(\Omega; \mathbb{R}^{d_b})$ ) representing the heterogeneous material properties. Both scenarios are considered in our empirical experiments in Section 4.

Many physical modeling tasks can be formulated as either a forward or an inverse PDE-solving problem. In a forward problem setting, one aims to find the PDE solution when given PDE information, including coefficient functions, boundary conditions, initial conditions, and loading sources. That means, given the governing operators  $\mathcal{K}$ , the parameter (field)  $\mathbf{b}$ , and loading field  $\mathbf{f}(\mathbf{x})$  in equation 3.1, the goal is to solve for the corresponding solution field  $\mathbf{u}(\mathbf{x})$ , through classical PDE solvers (Brenner & Scott, 2007) or data-driven approaches (Lu et al., 2019; Li et al., 2020c). As a

162 result, a forward map is constructed:

$$\mathcal{G} : (\mathbf{b}, \mathbf{f}) \rightarrow \mathbf{u}. \quad (3.2)$$

163 Here,  $\mathbf{b}$  and  $\mathbf{f}$  are input vectors/functions, and  $\mathbf{u}$  is the output function.

164 Conversely, solving an inverse PDE problem involves reconstructing the underlying full or partial  
165 PDE information from PDE solutions, where one seeks to construct an inverse map:

$$\mathcal{H} : (\mathbf{u}, \mathbf{f}) \rightarrow \mathbf{b}. \quad (3.3)$$

166 Unfortunately, solving an inverse problem is typically more challenging due to the ill-posed nature  
167 of the PDE model. In general, a small number of function pairs  $(\mathbf{u}, \mathbf{f})$  from a single system does  
168 not suffice in inferring the underlying parameter field  $\mathbf{b}$ , making the inverse problem generally non-  
169 identifiable (Molinaro et al., 2023).

170 Herein, we propose a novel neural architecture to alleviate the curse of ill-posedness *without access*  
171 to the exact governing partial differential equation (PDE). The key ingredients are: 1) the construc-  
172 tion of a multi-task NO architecture, which solves both the forward (physics prediction) problems  
173 simultaneously from multiple PDE systems with different hidden parameters; 2) a generative model  
174 to disentangle the key features from NO parameters that contain critical information of  $\mathbf{b}$ , as the  
175 inverse (physics discovery) problem solver.

### 176 3.1 VARIATIONAL HYPER-NEURAL OPERATOR AS A MULTI-TASK SOLVER

177 **Notation and data model assumptions.** We denote by  $\mathbf{f}(\mathbf{x})$  and  $\mathbf{u}(\mathbf{x})$  the input and output func-  
178 tions of the NO, respectively. Let  $p(\cdot)$  denote a probability density function,  $\mathbb{E}(\cdot)$  the expectation,  
179 and  $\|\cdot\|$  the  $l^2$ -norm. We assume (noisy) observations of both  $\mathbf{u}$  and  $\mathbf{f}$  are available on a common  
180 physical domain  $\Omega$ , where  $\mathbf{u} \in \mathcal{U} \subset L^2(\Omega; \mathbb{R}^{d_u})$  and  $\mathbf{f} \in \mathcal{F} \subset L^2(\Omega; \mathbb{R}^{d_f})$ . Here,  $\mathcal{U}$  and  $\mathcal{F}$  are the  
181 Banach spaces of solution fields and loading fields, respectively. Formally, we consider  $S$  training  
182 datasets  $\mathcal{D}^\eta$ ,  $\eta = 1, \dots, S$ , each corresponding to the same PDE equation 3.1 but with a different  
183 (hidden) physical parameter  $\mathbf{b}^\eta \in \mathcal{B}$ , with  $\mathcal{B}$  the parameter space. In our multi-task learning model,  
184 each dataset corresponds to one task. We assume the hidden parameter is generated according to:

$$\mathbf{b} \sim \mathbb{P}_b, \mathbf{z} \sim p(\mathbf{z}|\mathbf{b}), \quad (3.4)$$

185 where  $\mathbf{z} \in \mathcal{Z} \subset \mathbb{R}^{d_z}$  is the latent embedding of  $\mathbf{b}$ . Each dataset contains measurements from  
186  $n_{train}^\eta$  function pairs  $\{(\mathbf{u}_i^\eta(\mathbf{x}), \mathbf{f}_i^\eta(\mathbf{x}))\}_{i=1}^{n_{train}^\eta}$ . Although our method accommodates datasets with  
187 varying numbers of function pairs, we use the same number of function pairs in this work for sim-  
188 plicity and denote  $n_{train}^\eta = n_{train}$ . While actual observations are gathered on a discrete sensor  
189 set  $\chi = \{\mathbf{x}_j\}_{j=1}^{\#\chi}$  and inevitably contain observational noise of the solution, we adopt the standard  
190 assumption that this noise is additive and i.i.d. Letting  $\mathcal{G}^\dagger[\mathbf{f}; \mathbf{b}]$  denote the true forward operator of  
191 equation 3.1, we write the data model associated with multi-task learning as:

$$\mathcal{D}^\eta = \{(\mathbf{u}_{i,j}^\eta, \mathbf{f}_{i,j}^\eta)\}_{j=1}^{\#\chi}, \mathcal{D} = \bigcup_\eta \mathcal{D}^\eta \quad (3.5)$$

192 with

$$\mathbf{f} \sim \mathbb{P}_f, \mathbf{f}_{i,j}^\eta = \mathbf{f}_i^\eta(\mathbf{x}_j), \mathbf{u}_{i,j}^\eta = \mathbf{u}_i^\eta(\mathbf{x}_j) + \epsilon_{\eta,i,j} = \mathcal{G}^\dagger[\mathbf{f}_i^\eta; \mathbf{b}^\eta](\mathbf{x}_j) + \epsilon_{\eta,i,j}, \epsilon_{\eta,i,j} \sim \mathcal{N}(0, \varpi^2). \quad (3.6)$$

193 The forward modeling objective is to learn a surrogate solution operator  $\mathcal{G}[\cdot; \theta^\eta]$  for  $\mathcal{G}^\dagger$ , where  
194  $\theta^\eta$  denotes the task-specific NO parameters for the forward surrogate operator in the  $\eta$ -th task,  
195 associated with  $\mathbf{b}^\eta$ . Note that all tasks share the same NO architecture,  $\mathcal{G}$ , and the surrogate operator  
196 for each task depends on the physical system  $\eta$  through the task-specific parameter  $\theta^\eta$ .

197 For inverse modeling, let  $\mathcal{H}^\dagger$  denote the (unknown) inverse operator that maps function pairs  $(\mathbf{u}, \mathbf{f})$   
198 to the underlying PDE parameter  $\mathbf{b}$ . In practice, identifying  $\mathcal{H}^\dagger$  is often impossible, as the available  
199 data of  $(\mathbf{u}, \mathbf{f})$  may not contain sufficient information to identify all features of  $\mathbf{b}$ . For instance,  
200 in a Dirichlet boundary condition problem,  $\mathbf{u}_i^\eta(\mathbf{x}) = 0$  for all  $\mathbf{x} \in \partial\Omega$ , making  $\mathbf{b}^\eta$  not learnable  
201 on  $\partial\Omega$ . A more realistic goal is therefore to recover the underlying mechanism of  $\mathbf{b}$  in the space  
202 of identifiability, i.e.,  $\mathbf{z}$ . Thus, our second objective is to construct an inverse map by estimating  
203 embedding  $\tilde{\mathbf{z}}^\eta$  of the hidden parameter  $\mathbf{b}^\eta$  from  $\theta^\eta$ :

$$\mathcal{H}(\theta^\eta; \Theta_H) \approx \tilde{\mathbf{z}}^\eta, \quad (3.7)$$

204 where  $\Theta_H$  are trainable parameters of  $\mathcal{H}$ , and  $\tilde{\mathbf{z}}^\eta \in \mathbb{R}^{d_z}$  denotes the learned latent variables that  
205 can be transformed to the ground-truth latent variable  $\mathbf{z}^\eta$  via an invertible function  $h$ . The goal of  
206 disentanglement is to discover  $\tilde{\mathbf{z}}$ , together with the solution operator  $\mathcal{G}$ .

The first objective learns the forward operator  $\mathcal{G}[\cdot; \theta^\eta]$  in a supervised fashion, in the form of function-to-function mappings, for all (hidden) parameters  $b^\eta$  in the range of interest; while the second objective learns the vector-to-vector mapping from  $\theta^\eta$  to  $\tilde{z}^\eta$ , which is unsupervised due to the hidden physics nature. We propose to employ a variational autoencoder (VAE) (Kingma & Welling, 2013) as the representation learning approach for the second objective, and a meta-learned NO architecture as a universal solution operator for the first objective\*. The key is to pair these architectures as a hyper-neural operator, which simultaneously solves both forward and inverse problems. Although the proposed strategy is generic and thus applicable to other multi-task neural operator architectures, to provide a universal architecture of  $\mathcal{G}$  for different tasks, we adopt a meta-learning strategy following the meta-learned neural operator (MetaNO) (Zhang et al., 2023). MetaNO is developed based on the implicit Fourier neural operator (IFNO), a PDE solution operator with a relatively small number of trainable parameters (You et al., 2022b). In MetaNO, task-wise adaptation is applied only to the trainable parameters in the first layer of the NO, whereas all other parameters are shared across tasks. For an  $L$ -layer MetaNO, we write:

$$\mathcal{G}[\mathbf{f}; \theta^\eta](\mathbf{x}) = \mathcal{G}[\mathbf{f}; \theta_P^\eta, \theta_J, \theta_Q](\mathbf{x}) := \mathcal{Q}_{\theta_Q} \circ (\mathcal{J}_{\theta_J})^L \circ \mathcal{P}_{\theta_P^\eta}[\mathbf{f}](\mathbf{x}), \quad (3.8)$$

where  $\mathcal{P}, \mathcal{Q}$  are shallow-layer MLPs that map a low-dimensional vector to a high-dimensional vector and vice versa, parameterized by  $\theta_P^\eta$  and  $\theta_Q$ , respectively. Each intermediate layer,  $\mathcal{J}$ , is constructed as a mimetic of a fixed-point iteration step and parameterized by  $\theta_J$ . Supported by the universal approximator analysis (Zhang et al., 2023), different PDEs share common iterative ( $\theta_J$ ) and projection ( $\theta_Q$ ) parameters, with all the information about parameter  $\mathbf{b}$  encoded in the task-wise lifting parameters  $\theta_P^\eta$ . Hence, to provide an inverse map from the task-wise NO parameter  $\theta^\eta$  to the key features of the PDE parameters,  $\tilde{z}^\eta$ , one can construct  $\mathcal{H}$  as the mapping from  $\theta_P^\eta$  to  $\tilde{z}^\eta$  using a neural network architecture. In this work, we employ a standard MLP:

$$\mathcal{H}(\theta^\eta; \Theta) := \text{MLP}(\theta_P^\eta), \quad (3.9)$$

since all other NO parameters are invariant to the change of  $\mathbf{b}$ . This construction substantially reduces the degrees of freedom in  $\theta^\eta$ , making the invertibility assumption in the next section feasible. To simplify notation, we use  $\theta^\eta$  to denote  $\theta_P^\eta$  in the subsequent discussion. An overview of the forward and inverse operator architecture is provided in Figure 1.

We now define the learning objective. The overall objective is to maximize the log data likelihood:

$$\max \mathbb{E}(\log p(\theta, \mathcal{D})) = \max \left[ \mathbb{E}(\log p(\mathbf{u}|\mathbf{f}, \theta) + \log p(\theta|\mathbf{f}) + \log p(\mathbf{f})) \right].$$

Note that  $p(\mathbf{f})$  remains constant over different NO parameter  $\theta$ , and the assumption in eq. 3.6 yields  $\log(p(\theta|\mathbf{f})) = \log(p(\theta))$ . Additionally, the assumption in eq. 3.4 guarantees that  $\theta$  is generated from the latent space over  $\mathbf{z}$ , hence  $\log(p(\theta)) = \log \int_{\mathbf{z}} p(\theta|\mathbf{z})p(\mathbf{z})d\mathbf{z}$ . The overall objective then becomes:

$$\max \mathbb{E}(\log(p(\theta, \mathcal{D}))) = \max \left[ \mathbb{E}(\log(p(\mathbf{u}|\mathbf{f}, \theta))) + \mathbb{E} \left( \log \int_{\mathbf{z}} p(\theta|\mathbf{z})p(\mathbf{z})d\mathbf{z} \right) \right]. \quad (3.10)$$

However, the second term in this formulation is generally intractable. We use a variational posterior  $q(\theta|\mathbf{z})$  to approximate the actual posterior  $p(\theta|\mathbf{z})$  and maximize the evidence lower bound (ELBO):

$$LELBO = \frac{1}{S} \sum_{\eta=1}^S \left[ \mathbb{E}_{q(\mathbf{z}^\eta|\theta^\eta)} \log p(\theta^\eta|\mathbf{z}^\eta) - D_{KL}(q(\mathbf{z}^\eta|\theta^\eta) || p(\mathbf{z}^\eta)) \right],$$

with  $D_{KL}(\cdot || \cdot)$  denoting the KL divergence between two distributions. Putting everything together, we obtain the loss functional:

$$L_{loss} = \frac{1}{S} \sum_{\eta=1}^S \left[ -\mathbb{E}(\log(p(\mathbf{u}|\mathbf{f}, \theta^\eta))) - \mathbb{E}_{q(\mathbf{z}^\eta|\theta^\eta)} \log p(\theta^\eta|\mathbf{z}^\eta) + D_{KL}(q(\mathbf{z}^\eta|\theta^\eta) || p(\mathbf{z}^\eta)) \right]. \quad (3.11)$$

The above formulation naturally lends itself to a hierarchical variational autoencoder (HVAE) architecture (Vahdat & Kautz, 2020). The encoder aims to obtain the posterior  $q_{\mu_z, \Sigma_z}(\mathbf{z}^\eta|\theta^\eta)$  and provide the inverse map  $\mathcal{H}$ :

$$\hat{\mathbf{z}} \sim q_{\mu_z, \Sigma_z}(\hat{\mathbf{z}}^\eta|\theta^\eta). \quad (3.12)$$

\*Note that tasks differ in the PDE coefficients (the physical parameters  $b^\eta$ ) and correspondingly the NO parameter  $\theta^\eta$ , not in the NO architecture or its input-output structure.

270 Note that although  $\mathcal{H}$  represents a deterministic inverse mapping from the NO parameters to the  
 271 latent variables, in equation 3.12 we approximate this mapping using a probabilistic encoder to  
 272 account for uncertainty and enable variational inference. This follows standard practice in the VAE  
 273 literature, where deterministic relationships are modeled probabilistically for tractable inference.

274 Then, the first decoder  $\hat{g}$  processes the estimated latent variable  $\hat{z}$  and reconstructs the corresponding  
 275 NO parameter  $\hat{\theta}$ :

$$\hat{\theta} = \hat{g}(\hat{z}). \quad (3.13)$$

276 Lastly, the second decoder reconstructs the forward map  $\mathcal{G}$ , by further taking the estimated  $\hat{\theta}$  and the  
 277 loading function  $f$  and estimating the output function  $u$ :

$$\hat{u} = \hat{\mathcal{G}}[f; \hat{\theta}]. \quad (3.14)$$

### 281 3.2 DISENTANGLING THE UNDERLYING MECHANISM

282 DisentangO aims to identify and disentangle the components of the latent representation  $z$ , which  
 283 serves as an inverse PDE solver. However, to capture the true physical mechanism, a natural ques-  
 284 tion arises: is it really possible to identify the latent variables of interest (i.e.,  $z$ ) with only observa-  
 285 tional data  $\{\mathcal{D}^\eta\}_{\eta=1}^S$ ? We now show that, by learning the model  $(p_z, \hat{g}, \hat{\mathcal{H}}, \hat{\mathcal{G}})$  that matches the true  
 286 marginal data distribution in all domains, we can indeed achieve this identifiability for the generat-  
 287 ing process proposed in equation 3.4 and equation 3.6. Before the formal theorem, we first state our  
 288 assumptions:

289 **Assumption 1.** (Density Smoothness and Positivity) The probability density functions for  $\theta$  and  $z$ ,  
 290 which we denote as  $p_\theta$  and  $p_z$ , are both smooth and positive.

291 **Assumption 2.** (Invertibility) The task-wise parameter  $\theta$  can be generated by  $z$  through an invertible  
 292 and smooth function  $\mathcal{H}^{-1}$ . Moreover, for each given  $f$ , we denote  $\mathcal{G}_f(\theta) := \mathcal{G}[f; \theta](x)$  as the  
 293 operator mapping from  $\mathbb{R}^{d_\theta}$  to  $\mathcal{U}$ .  $\mathcal{G}_f$  is also one-to-one with respect to  $\theta$ .

294 **Assumption 3.** (Conditional Independence) Conditioned on  $b$ , each component of  $z$  is independent  
 295 of each other:  $\log p_{z|b}(z|b) = \sum_{i=1}^{d_z} \log p_{z_i|b}(z_i|b)$ .

296 **Assumption 4.** (Linear independence) There exists  $2d_z + 1$  values of  $b$ , such that the  $2d_z$  vectors  
 297  $w(z, b^j) - w(z, b^0)$  with  $j = 1, \dots, 2d_z$  are linearly independent. Here,

$$299 w(z, b^j) := \left( \frac{\partial q_1(z_1, b^j)}{\partial z_1}, \dots, \frac{\partial q_{d_z}(z_{d_z}, b^j)}{\partial z_{d_z}}, \frac{\partial^2 q_1(z_1, b^j)}{\partial z_1^2}, \dots, \frac{\partial^2 q_{d_z}(z_{d_z}, b^j)}{\partial z_{d_z}^2} \right), \quad (3.15)$$

301 with  $q_i(z_i, b) := \log p_{z_i|b}$ .

302 First, we show that the latent variable  $z$  can be identified up to an invertible component-wise trans-  
 303 formation: for the true latent variable  $z \in \mathbb{R}^{d_z}$ , there exists an invertible function  $h : \mathbb{R}^{d_z} \rightarrow \mathbb{R}^{d_z}$ ,  
 304 such that  $\hat{z} = h(z)$ .

305 **Theorem 1.** We follow the data-generating process in equation 3.4 and equation 3.6, and Assump-  
 306 tions 1-2. Then, by learning  $(p_z, \hat{g}, \hat{\mathcal{H}}, \hat{\mathcal{G}})$  to achieve:

$$307 p_{\hat{u}|f} = p_{u|f}, \quad (3.16)$$

308 where  $u$  and  $\hat{u}$  are generated from the true process and the estimated model, respectively,  $z$  is  
 309 identifiable up to an invertible function  $h$ .

310 **Proof:** Please see Appendix A.

311 Additionally, with additional assumptions on conditional independence and datum variability, we  
 312 can further obtain the following theoretical results on component-wise identifiability: for each true  
 313 component  $z_i$ , there exists a corresponding estimated component  $\hat{z}_j$  and an invertible function  $h_i : \mathbb{R} \rightarrow \mathbb{R}$ , such that  $z_i = h_i(\hat{z}_j)$ .

315 **Theorem 2.** We follow the data-generating process in equation 3.4 and equation 3.6 and Assump-  
 316 tions 1-4. Then, by learning  $(p_z, \hat{g}, \hat{\mathcal{H}}, \hat{\mathcal{G}})$  to achieve equation 3.16,  $z$  is component-wise identifiable.

317 **Proof:** Please see Appendix A.

319 **Discussion on assumptions.** Intuitively, Assumptions 1-2 are required to guarantee that there exists  
 320 a smooth and injective mapping between the ground-truth latent embedding  $z$  and the learned em-  
 321 bedding  $\hat{z}$ . Assumption 4 indicates sufficient variability across physical systems. This is a common  
 322 assumption in the nonlinear ICA literature for domain adaptation (Hyvärinen et al., 2019; Khe-  
 323 makhem et al., 2020; Kong et al., 2023). Further discussions and validation on the assumptions are  
 324 provided in Appendix A. To our best knowledge, it is the first time the component-wise identifiabil-  
 325 ity is discussed in the context of multi-task neural operator learning.

324 3.3 A GENERIC ALGORITHM FOR VARIOUS SUPERVISION CASES  
325

326 Although DisentangO is primarily designed for the challenging scenario of learning without super-  
327 vision on  $\mathbf{b}$  nor prior knowledge on the PDE model form in equation 3.1, its methodology is generic  
328 and readily can be extended to handle the scenarios with partial or full measurements of  $\mathbf{b}$ , which  
329 are common in classical inverse PDE benchmark problems. In this section, we discuss the practical  
330 utility of DisentangO under three scenarios:

- 331 • (SC1: Supervised) The value of  $\mathbf{b}^\eta$  is given.
- 332 • (SC2: Semi-supervised) The value of  $\mathbf{b}^\eta$  is not given, but a label  $c(\mathbf{b}^\eta)$  (e.g., a classification  
333 of  $\mathbf{b}^\eta$ ) is given.
- 334 • (SC3: Unsupervised) No value or label is given for  $\mathbf{b}^\eta$  for each task.

335 A pseudo Algorithm 1 is provided in the Appendix.

336 To obtain the posterior  $q$  in equation 3.12, we assume that each latent variable satisfies a Gaussian  
337 distribution of distinct means and diagonal covariance, i.e.,  $q_{\mu_z, \Sigma_z}(\hat{\mathbf{z}}|\theta) := \mathcal{N}(\mu_z(\theta), \Sigma_z^2(\theta))$ , then  
338 estimate its mean and covariance using an MLP. As a result, the KL-divergence term in the ELBO  
339 admits a closed form:

$$340 \quad \text{SC2/SC3: } D_{KL}(q(\hat{\mathbf{z}}|\theta) \parallel p(\mathbf{z})) = \frac{1}{2} \sum_{i=1}^{d_z} \left( (\Sigma_z)_i^2 + (\mu_z)_i^2 - 2 \log((\Sigma_z)_i) - 1 \right). \quad (3.17)$$

343 In the supervised setting, we take  $\mu_z(\theta_P^\eta) = \mathbf{b}^\eta$ , and then the KL divergence term writes:

$$344 \quad \text{SC1: } D_{KL}(q(\hat{\mathbf{z}}|\theta) \parallel p(\mathbf{z})) = \frac{1}{2} \sum_{i=1}^{d_z} \left( (\Sigma_z)_i^2 + (\mu_z - \mathbf{b})_i^2 - 2 \log((\Sigma_z)_i) - 1 \right). \quad (3.18)$$

347 For the first decoder, the likelihood  $p(\theta^\eta|\mathbf{z}^\eta)$  is a factorized Gaussian with mean  $\mu_\theta$  and covariance  
348  $\Sigma_\theta$ , computed from another MLP. By taking as input Monte Carlo samples once for each  $\mathbf{z}$ , the  
349 reconstruction accuracy term can be approximated as:

$$351 \quad E_{q(\mathbf{z}|\theta)} \log p(\theta|\mathbf{z}) \approx - \sum_{i=1}^{d_\theta} \left( \frac{((\theta)_i - (\mu_\theta)_i)^2}{2(\Sigma_\theta)_i^2} \right) - \sum_{i=1}^{d_\theta} (\log(\Sigma_\theta)_i + c),$$

354 where  $d_\theta$  is the dimension of  $\theta$ , and  $c$  is a constant.

355 For the second decoder, we parameterize it as a multi-task NO in equation 3.8, and model the  
356 discrepancy between  $\hat{\mathcal{G}}[\mathbf{f}_j^\eta; \hat{\theta}^\eta](\mathbf{x}_k)$  and the ground truth  $\mathbf{u}(\mathbf{x}_k)$  as an additive independent unbiased  
357 Gaussian random noise  $\epsilon$ , with

$$359 \quad \hat{\mathcal{G}}[\mathbf{f}_j^\eta; \hat{\theta}^\eta](\mathbf{x}_k) = \mathbf{u}_j^\eta(\mathbf{x}_k) + \epsilon_{\eta, j, k}, \quad \epsilon_{\eta, j, k} \sim \mathcal{N}(0, \varpi^2),$$

360 where  $\varpi$  is the standard deviation of the additive noise as defined in the data model. In practice, the  
361 observational noise is unknown, and we treat  $\varpi$  as a tunable hyperparameter. Then, with a uniform  
362 spatial discretization of size  $\Delta x$  in a domain  $\Omega \subset \mathbb{R}^{d_u}$ , the log likelihood after eliminating the  
363 constant terms can be written as:

$$364 \quad \frac{1}{2\varpi^2 \Delta x^{2d_u}} \sum_{\eta=1}^S \sum_{j=1}^{n_{train}} \left\| \hat{\mathcal{G}}[\mathbf{f}_j^\eta; \hat{\theta}^\eta](\mathbf{x}_k) - \mathbf{u}_j^\eta(\mathbf{x}_k) \right\|_{L^2(\Omega)}^2. \quad (3.19)$$

367 In our empirical tests in Section 4, for the unsupervised and semi-supervised scenarios, we choose  
368  $q$  as a standard Gaussian distribution following the independence assumption of Theorem 2. Addi-  
369 tionally, to avoid overparameterization, we take  $\Sigma_\theta = \sigma_\theta^2 \mathbf{I}$ , with  $\sigma_\theta$  being a tunable hyperparameter.  
370 In this case, the total objective can be further simplified as:

$$371 \quad L_{loss} = \frac{1}{S} \sum_{\eta=1}^S \left( \beta_d \sum_{j=1}^{n_{train}} \left\| \hat{\mathcal{G}}[\mathbf{f}_j^\eta; \hat{\theta}^\eta] - \mathbf{u}_j^\eta \right\|_{L^2(\Omega)}^2 + \left\| \hat{\theta}^\eta - \mu_\theta^\eta \right\|^2 + \beta_{KL} \|\mu_z^\eta\|^2 \right)$$

374 for the unsupervised scenario, and

$$376 \quad L_{loss} = \frac{1}{S} \sum_{\eta=1}^S \left( \beta_d \sum_{j=1}^{n_{train}} \left\| \hat{\mathcal{G}}[\mathbf{f}_j^\eta; \hat{\theta}^\eta] - \mathbf{u}_j^\eta \right\|_{L^2(\Omega)}^2 + \left\| \hat{\theta}^\eta - \mu_\theta^\eta \right\|^2 + \beta_{KL} \|\mu_z^\eta - \mathbf{b}^\eta\|^2 \right).$$

378 for the fully supervised scenario. Here,  $\beta_d := \frac{\sigma_\theta^2}{\varpi^2 \Delta x^{2d_u}}$  and  $\beta_{KL} := \sigma_\theta^2$  are treated as tunable  
 379 hyperparameters. In the semi-supervised scenario, we incorporate partial supervision by equipping  
 380 the above loss with a constraint following Locatello et al. (2020):  
 381

$$382 \quad L_{loss} = \frac{1}{S} \sum_{\eta=1}^S \left( \beta_d \sum_{j=1}^{n_{train}} \left\| \hat{\mathcal{G}}[\mathbf{f}_j^\eta; \hat{\theta}^\eta] - \mathbf{u}_j^\eta \right\|_{L^2(\Omega)}^2 + \left\| \hat{\theta}^\eta - \mu_\theta^\eta \right\|^2 + \beta_{KL} \|\mu_z^\eta\|^2 + \beta_{cls} L_c(\mathbf{z}^\eta, c(\beta^\eta)) \right)$$

385 with  $\beta_{cls}$  a tunable parameter and  $L_c(\mathbf{z}^\eta, c(\beta^\eta))$  the corresponding loss term based on provided  
 386 information (e.g.,  $L_c$  is the cross-entropy loss when taking  $c$  as the classification label of  $\beta^\eta$ ).  
 387

388 Note that  $\beta_{KL}$  is closely connected to the adjustable hyperparameter in  $\beta$ -VAE (Higgins et al.,  
 389 2017). Taking a larger  $\beta_{KL}$  encourages disentanglement (Locatello et al., 2019), while it also adds  
 390 additional constraint on the implicit capacity of the latent bottleneck resulting in information loss  
 391 (Burgess et al., 2018). On the other hand, the data reconstruction term forces the latent factors to  
 392 contribute to the “reconstruction” of the more complicated solution field in a global perspective,  
 393 and hence increasing  $\beta_d$  is anticipated to alleviate information loss. In our empirical study, we  
 394 demonstrate the interplay between these two tunable hyperparameters.  
 395

## 4 EXPERIMENTS

396 We assess DisentangO across various physics modeling and discovery datasets, denoting a model  
 397 with latent dimension  $n$  as DisentangO- $n$ . Our evaluation focuses on several key aspects. Firstly, we  
 398 demonstrate the capability of DisentangO in forward PDE learning, and compare its performance  
 399 with a total of 14 relevant baselines. In particular, we select 8 NO baselines, i.e., FNO (Li et al.,  
 400 2020c), UFNO (Wen et al., 2022), NIO (Molinaro et al., 2023), WNO (Tripura & Chakraborty,  
 401 2022), PIANO (Zhang et al., 2024), MetaNO (Zhang et al., 2023), FUSE (Lingsch et al., 2024) and  
 402 its extension, as well as six non-NO baselines, i.e., CAMEL (Blanke & Lelarge, 2023), InVAErt  
 403 (Tong et al., 2024), SMDP (Holzschuh et al., 2023), two VAE variants (Kingma & Welling, 2013)  
 404 and  $\beta$ -VAE (Higgins et al., 2017). Secondly, we showcase the merits of DisentangO in inverse  
 405 modeling for interpretable physics discovery. We perform parametric studies on the associated  
 406 disentanglement parameters. Lastly, we provide interpretations of the disentangled parameters. Further  
 407 details and an additional experiment for identifiability demonstration are provided in Appendices B  
 408 and C.4, respectively.  
 409

### 4.1 SUPERVISED FORWARD AND INVERSE PDE LEARNING

410 We start by investigating DisentangO’s  
 411 capability in solving both forward  
 412 and inverse PDE problems in a fully  
 413 supervised setting. Specifically, we  
 414 consider the constitutive modeling  
 415 of anisotropic fiber-reinforced hy-  
 416 perelastic materials governed by the  
 417 Holzapfel–Gasser–Ogden (HGO)  
 418 model, where the data-generating  
 419 process is controlled by sampling  
 420 the governing material parameter set  
 421  $\{E, \nu, k_1, k_2, \alpha\}$  and the latent factors  
 422 can be learned consequently in a super-  
 423 vised fashion. In this setting, the model  
 424 takes as input the padded traction field  
 425 and learns to predict the displacement.  
 426

427 As the number of latent factors is fixed  
 428 for supervised learning in this experi-  
 429 ment, we defer our ablation study to the second experiment. We report in Table 1 our experimen-  
 430 tal results. Note that only FNO, PIANO, FUSE-f, VAE and its variations are able to handle both  
 431 forward and inverse problems, whereas MetaNO can only solve the forward problem, and NIO, In-  
 432 VAErt, and FUSE can only solve the inverse problem. With this caveat in mind, MetaNO achieves  
 433 the best performance in forward PDE learning, with DisentangO performing comparably well and  
 434 beating the third best model by 32.7% in accuracy. In terms of inverse modeling with full latent

Table 1: Test errors and the number of trainable parameters in experiment 1. Bold number highlights the best method.

| Models       | #param      | per-epoch<br>time (s) | Test errors  |               |
|--------------|-------------|-----------------------|--------------|---------------|
|              |             |                       | data         | $z$ (SC1)     |
| DisentangO   | 697k        | 12.2                  | 1.65%        | <b>4.63%</b>  |
| MetaNO       | 296k        | 9.8                   | <b>1.59%</b> | -             |
| NIO          | 709k        | 5.6                   | -            | 15.16%        |
| FNO          | 698k        | 9.1                   | 2.45%        | 14.55%        |
| UFNO         | 720k        | 21.2                  | 7.61%        | 11.23%        |
| WNO          | 672k        | 183.5                 | 8.09%        | 9.95%         |
| PIANO        | <b>699k</b> | 16.9                  | <b>7.99%</b> | <b>15.35%</b> |
| CAMEL        | 654k        | 5.53                  | 112.28%      | -             |
| SMDP         | 671k        | 5.12                  | -            | 17.76%        |
| InVAErt      | 707k        | 0.1                   | -            | 5.16%         |
| FUSE         | 706k        | 2.2                   | -            | 4.99%         |
| FUSE-f       | 707k        | 11.4                  | 16.33%       | 6.19%         |
| VAE          | 698k        | 2.8                   | 49.97%       | 16.34%        |
| convVAE      | 664k        | 2.8                   | 81.11%       | 16.27%        |
| $\beta$ -VAE | 698k        | 2.8                   | 51.16%       | 16.47%        |

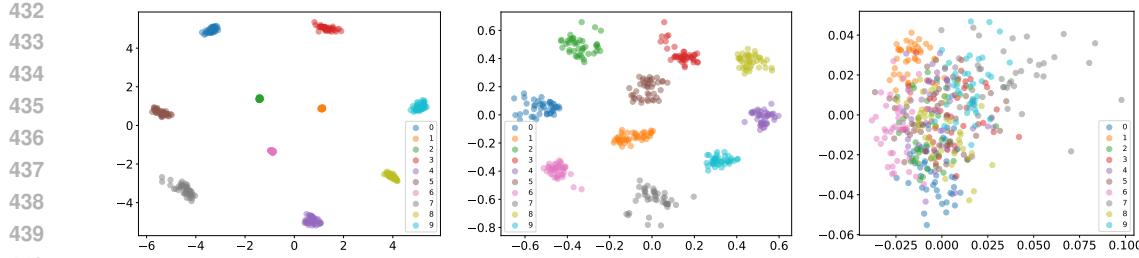


Figure 2: MMNIST scatterplot with DisentangO-2 and  $\beta_d = 1$ : left:  $(\beta_{kl} = 1, \beta_{cls} = 100$ , data error 18.81%), middle:  $(\beta_{kl} = 10, \beta_{cls} = 10$ , data error 16.94%), right: fully unsupervised DisentangO-2 without classification loss ( $\beta_{kl} = 100$ , data error 12.65%).

supervision (SC1), DisentangO is the only method that can hold the error well below 5%, outperforming the second best method by 7.2% and the second best joint (i.e., simultaneous forward and inverse) solver by 25.2%.

#### 4.2 SEMI-SUPERVISED MECHANICAL MNIST BENCHMARK

We consider semi-supervised learning and apply DisentangO to the Mechanical MNIST (MMNIST) benchmark (Lejeune, 2020). MMNIST comprises 70,000 heterogeneous material specimens undergoing large deformation, each governed by a material model of the Neo-Hookean type with a varying modulus converted from the MNIST bitmap images. In our experiment, we take 500 images (with a 420/40/40 split for training/validation/test) and generate 200 loading/response data pairs per sample on a  $29 \times 29$  structured grid, simulating uniaxial extension, shear, equibiaxial extension, and confined compression load scenarios. Since only partial knowledge is available for each image (i.e., the corresponding digit), we apply semi-supervised learning to the latent factors to classify the digits.

Table 2: Test errors and number of trainable parameters in experiment 2. DisentangO is abbreviated as DNO due to space limit. Bold number highlights the best method that can handle both forward and inverse settings.

| Models           | DNO-2  | DNO-5 | DNO-10 | DNO-15       | VAE    | $\beta$ -VAE | MetaNO | PIANO         |
|------------------|--------|-------|--------|--------------|--------|--------------|--------|---------------|
| #param (M)       | 0.66   | 0.97  | 1.49   | 2.02         | 2.02   | 2.02         | 0.35   | <b>2.05</b>   |
| $\beta_d = 1$    | 12.82% | 9.56% | 7.36%  | 6.29%        | 16.34% | 17.13%       | 2.68%  | <b>13.73%</b> |
| $\beta_d = 10$   | 11.51% | 9.16% | 6.62%  | 5.95%        | -      | -            | -      | -             |
| $\beta_d = 100$  | 11.49% | 8.43% | 6.65%  | <b>5.48%</b> | -      | -            | -      | -             |
| $\beta_d = 1000$ | 11.62% | 8.22% | 6.50%  | 5.80%        | -      | -            | -      | -             |

**Ablation study.** Firstly, we investigate DisentangO’s predictability in forward PDE learning by comparing its performance to MetaNO (i.e., the base meta-learned NO model without the hyper-network structure). As seen in Table 2, MetaNO achieves a forward prediction error of 2.68%, which serves as the optimal bound for DisentangO. As we increase the latent dimension in DisentangO from 2 to 15, the prediction error drops from 11.49% to 5.48% and converges to the optimal bound. Next, we study the role of the data loss term in disentanglement by gradually varying  $\beta_d$  from  $\beta_d = 1$  to  $\beta_d = 1000$ . In Table 2 we observe a consistent improvement in accuracy with the increase in  $\beta_d$ , where the boost in accuracy becomes marginal or slightly deteriorates beyond  $\beta_d = 100$ . We thus choose  $\beta_d = 100$  as the best DisentangO model in this case. Besides offering an increased accuracy in forward modeling, the data loss term also enhances disentanglement as discussed in Section 3.2. This is evidenced by the illustration in Figure 3, where the unsupervised mutual information (MI) score that measures the amount of MI across latent factors consistently decreases in both DisentangO-2 and DisentangO-15 as we increase  $\beta_d$  from  $\beta_d = 1$  (solid lines) to  $\beta_d = 100$  (dashed lines). On the contrary, the classification term poses a negative effect on disentanglement, as indicated by the increase in  $\beta_{cls}$  leading to an increase in MI scores. This is reasonable because the classifier linearly combines all the latent factors to make a classification. The more accurate the classification, the stronger the correlation across latent factors. We then move on to study the effect of semi-supervised learning by comparing the model’s performance with and without latent partial supervision. While the models without semi-supervised learning is slightly more accurate in that the forward prediction accuracy with  $\beta_d = 1$  reaches 12.60% and 6.16% in DisentangO-2 and DisentangO-15, respectively, the latent scatterplot in Figure 2 reveals the inability of the DisentangO model without latent semi-supervised learning to acquire the partial knowledge of the embedded digits from data. In contrast, although the accuracy of DisentangO with latent semi-supervised learning slightly deteriorates due to the additional regularization effect from the classification loss term, it is able to correctly recognize the embedded digits and leverage this partial knowledge in disentangling meaningful latent factors.

486 **Comparison with additional baselines.** We compare DisentangO with additional baselines, i.e.,  
 487 VAE and  $\beta$ -VAE. We abandon the three NO-related baselines in this and the following experiments  
 488 as they are black-box approximators and do not possess any mechanism to extract meaningful infor-  
 489 mation without supervision. In this context, even the least accurate DisentangO-2 model (i.e., with  
 490  $\beta_d = 1$ ) with significantly fewer parameters outperforms the selected baselines in Table 2 by 21.5%  
 491 and 25.2%, respectively, with the best performing DisentangO-15 model beating the baselines by  
 492 66.5% and 68.0% in accuracy, respectively. We do not proceed to compare the physics discovery  
 493 capability between them as the baseline models are considerably inaccurate in forward prediction.

494 **Interpretable physics discovery.** To showcase the interpretability of DisentangO, we visualize  
 495 its latent variables through latent traversal based on a randomly picked loading field as input in  
 496 DisentangO-2, as displayed in Figure 6 of Appendix B.3. One can clearly see that the digit changes  
 497 from “6” to “0” and then “2” from the top left moving down, and from “6” to “1” and then “7”  
 498 moving to the right. Other digits are visible as well such as “7”, “9”, “4” and “8” in the right-most  
 499 column. This corresponds well to the distribution of the latent clustering in Figure 2. More discus-  
 500 sions on the interpretability of DisentangO-15 can be found in Figures 7 and 8 in Appendix B.3.

### 501 4.3 UNSUPERVISED HETEROGENEOUS MATERIAL LEARNING

502 We demonstrate DisentangO in unsupervised  
 503 learning in the context of learning synthetic tis-  
 504 sues that exhibit highly organized structures,  
 505 with collagen fiber arrangements varying spa-  
 506 tially. In this case, it is critical to understand the  
 507 underlying low-dimensional disentangled prop-  
 508 erties in the hidden latent space of complex,  
 509 high-dimensional microstructure, as inferred  
 510 from experimental mechanical measurements.  
 511 We generate two datasets, each containing 500  
 512 specimens and 100 loading/displacement pairs.  
 513 The first dataset features variations in fiber ori-  
 514 entation distributions using a Gaussian Random  
 515 Field (GRF) and the second differs fiber angles  
 516 in two segmented regions, separated by a center-  
 517 line with a randomly rotated orientation.

518 We report in Table 3 our experimental results of DisentangO with different latent dimensions and  
 519 data loss strength  $\beta_d$ , along with comparisons with the baseline model results. Consistent with the  
 520 findings in the second experiment, increasing  $\beta_d$  results in a boost in accuracy by comparing the rows  
 521 in the table. The model’s predictive performance also converges to the optimal bound of MetaNO  
 522 as we increase the latent dimension from 2 to 30, where the model’s prediction error improves from  
 523 25.18% to 5.28%. This significantly outperforms the best baseline model by 90.7%. On the other  
 524 hand, the effect of the data loss term on disentanglement is further proved in Figure 4, where in-  
 525 creasing  $\beta_d$  leads to a decrease in MI between the latent factors, thus encouraging disentanglement.  
 526 Lastly, we interpret the mechanism of the learned latent factors in DisentangO-3 via learning a map-  
 527 ping between the learned latent factors and the underlying material microstructure and subsequently  
 528 performing latent traversal in each dimension. The results are shown in Figure 5, where the three  
 529 latent factors manifest control on the border rotation between the two segments, the relative fiber  
 530 orientation between the two segments, and the fiber orientation of the top segment, respectively.

## 531 5 CONCLUSION

532 We present DisentangO for disentangling latent physical factors embedded within black-box NO  
 533 parameters. DisentangO leverages a hypernetwork-type NO architecture that extracts varying  
 534 parameters of the governing PDE through a task-wise adaptive layer, and further disentangles these  
 535 variations into distinct latent factors. By learning disentangled representations, DisentangO not only  
 536 enhances physical interpretability but also enables robust generalization across diverse physical sys-  
 537 tems under different learning contexts. **Limitations:** Since the scalability of DisentangO is gov-  
 538 erned by the scalability of the NO backbone used for forward modeling, which has been extensively  
 539 discussed in previous works, this study focuses on experiments involving high latent dimensions.  
 Demonstrations on high-dimensional PDEs are beyond the scope of the current work.

Table 3: Test errors and number of trainable parameters in experiment 3. DisentangO is abbreviated as DNO due to space limit. Bold number highlights the best method for both forward and inverse settings.

| Models       | #param (M) | Test error    |                 |
|--------------|------------|---------------|-----------------|
|              |            | $\beta_d = 1$ | $\beta_d = 100$ |
| DNO-2        | 0.63       | 26.33%        | 25.18%          |
| DNO-5        | 0.94       | 17.51%        | 15.75%          |
| DNO-10       | 1.46       | 10.76%        | 10.01%          |
| DNO-15       | 1.98       | 7.11%         | 7.02%           |
| DNO-30       | 3.55       | 5.33%         | <b>5.28%</b>    |
| VAE          | 3.55       | 61.10%        | -               |
| $\beta$ -VAE | 3.55       | 57.04%        | -               |
| MetaNO       | 0.32       | 2.67%         | -               |
| <b>PIANO</b> | 3.42       | <b>50.71%</b> | -               |

540 REFERENCES  
541

542 Martin Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg, Chris  
543 Richardson, Johannes Ring, Marie E Rognes, and Garth N Wells. The fenics project version 1.5.  
544 *Archive of Numerical Software*, 3(100), 2015.

545 Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.  
546 Neural symbolic regression that scales. In *International Conference on Machine Learning*,  
547 pp. 936–945. Pmlr, 2021.

548 Matthieu Blanke and Marc Lelarge. Interpretable meta-learning of physical systems. *arXiv preprint*  
549 *arXiv:2312.00477*, 2023.

551 Susanne Brenner and Ridgway Scott. *The mathematical theory of finite element methods*, volume 15.  
552 Springer Science & Business Media, 2007.

553 Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-  
554 jardins, and Alexander Lerchner. Understanding disentangling in beta-vae. *arXiv preprint*  
555 *arXiv:1804.03599*, 2018.

557 Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-  
558 informed neural networks (PINNs) for fluid mechanics: A review. *Acta Mechanica Sinica*, pp.  
559 1–12, 2022.

561 Shuhao Cao. Choose a transformer: Fourier or galerkin. *Advances in neural information processing*  
562 *systems*, 34:24924–24940, 2021.

563 Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby,  
564 Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning and the physical sciences. *Re-  
565 views of Modern Physics*, 91(4):045002, 2019.

567 Melissa K Carroll, Guillermo A Cecchi, Irina Rish, Rahul Garg, and A Ravishankar Rao. Prediction  
568 and interpretation of distributed neural activity with sparse models. *NeuroImage*, 44(1):112–122,  
569 2009.

570 Vinod Kumar Chauhan, Jiandong Zhou, Soheila Molaei, Ghadeer Ghosheh, and David A Clifton.  
571 Dynamic inter-treatment information sharing for heterogeneous treatment effects estimation.  
572 *arXiv preprint arXiv:2305.15984*, 2023.

574 Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, Soheila Molaei, and David A Clifton. A brief  
575 review of hypernetworks in deep learning. *Artificial Intelligence Review*, 57(9):250, 2024.

577 Ke Chen, Chunmei Wang, and Haizhao Yang. let data talk: data-regularized operator learning theory  
578 for inverse problems. *arXiv preprint arXiv:2310.09854*, 2023.

580 Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Info-  
581 gan: Interpretable representation learning by information maximizing generative adversarial nets.  
582 *Advances in neural information processing systems*, 29, 2016.

584 Taco Cohen and Max Welling. Group equivariant convolutional networks. In *International confer-  
585 ence on machine learning*, pp. 2990–2999. PMLR, 2016.

588 A Feder Cooper, Emanuel Moss, Benjamin Laufer, and Helen Nissenbaum. Accountability in an  
589 algorithmic society: relationality, responsibility, and robustness in machine learning. In *Proceed-  
590 ings of the 2022 ACM Conference on Fairness, Accountability, and Transparency*, pp. 864–876,  
591 2022.

594 Wen Ding, Kui Ren, and Lu Zhang. Coupling deep learning with full waveform inversion. *arXiv*  
595 *preprint arXiv:2203.01799*, 2022.

598 Sören Dittmer, Tobias Kluth, Peter Maass, and Daniel Otero Baguer. Regularization by architecture:  
599 A deep prior approach for inverse problems. *Journal of Mathematical Imaging and Vision*, 62:  
600 456–470, 2020.

594 Sunny Duan, Loic Matthey, Andre Saraiva, Nicholas Watters, Christopher P Burgess, Alexander  
 595 Lerchner, and Irina Higgins. Unsupervised model selection for variational disentangled represen-  
 596 tation learning. *arXiv preprint arXiv:1905.12614*, 2019.

597

598 Yuwei Fan and Lexing Ying. Solving traveltime tomography with deep learning. *Communications  
 599 in Mathematics and Statistics*, 11(1):3–19, 2023.

600 Stathi Fotiadis, Mario Lino Valencia, Shunlong Hu, Stef Garasto, Chris D Cantwell, and Anil An-  
 601 thony Bharath. Disentangled generative models for robust prediction of system dynamics. In  
 602 *International Conference on Machine Learning*, pp. 10222–10248. PMLR, 2023.

603

604 Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed neu-  
 605 ral operators. *2022 arXiv preprint arXiv:2207.05748*, 2022.

606

607 Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differen-  
 608 tial equations. *Advances in neural information processing systems*, 34:24048–24062, 2021.

609 David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. *arXiv preprint arXiv:1609.09106*, 2016.

610

611 Qizhi He, Devin W Laurence, Chung-Hao Lee, and Jiun-Shyan Chen. Manifold learning based  
 612 data-driven modeling for soft biological tissues. *Journal of Biomechanics*, 117:110124, 2021.

613

614 Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,  
 615 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a  
 616 constrained variational framework. *ICLR (Poster)*, 3, 2017.

617

618 Benjamin Holzschuh, Simona Vegetti, and Nils Thuerey. Solving inverse physics problems with  
 619 score matching. *Advances in Neural Information Processing Systems*, 36, 2023.

620

621 Aapo Hyvärinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and  
 622 generalized contrastive learning. In *The 22nd International Conference on Artificial Intelligence  
 623 and Statistics*, pp. 859–868. PMLR, 2019.

624

625 Siavash Jafarzadeh, Stewart Silling, Ning Liu, Zhongqiang Zhang, and Yue Yu. Peridynamic neural  
 626 operators: A data-driven nonlocal constitutive model for complex material responses. *Computer  
 627 Methods in Applied Mechanics and Engineering*, 425:116914, 2024.

628

629 Hanyang Jiang, Yuehaw Khoo, and Haizhao Yang. Reinforced inverse scattering. *arXiv preprint  
 630 arXiv:2206.04186*, 2022.

631

632 George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.  
 633 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.

634

635 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvärinen. Variational autoen-  
 636 coders and nonlinear ica: A unifying framework. In *International conference on artificial intelli-  
 637 gence and statistics*, pp. 2207–2217. PMLR, 2020.

638

639 Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In *International Conference on  
 640 Machine Learning*, pp. 2649–2658. PMLR, 2018.

641

642 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint  
 643 arXiv:1312.6114*, 2013.

644

645 Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor  
 646 Akinwande, and Kun Zhang. Partial identifiability for domain adaptation. *arXiv preprint  
 647 arXiv:2306.06510*, 2023.

648

649 Ru-Yu Lai, Qin Li, and Gunther Uhlmann. Inverse problems for the stationary transport equation in  
 650 the diffusion scaling. *SIAM Journal on Applied Mathematics*, 79(6):2340–2358, 2019.

651

652 Annika Lang and Jürgen Potthoff. Fast simulation of gaussian random fields. *Monte Carlo Methods  
 653 & Applications*, 17(3), 2011a.

648 Annika Lang and Jürgen Potthoff. Fast simulation of gaussian random fields. *Monte Carlo Methods*  
 649 and *Applications*, 17(3):195–214, 2011b. doi: doi:10.1515/mcma.2011.009. URL <https://doi.org/10.1515/mcma.2011.009>.

651

652 Doksoo Lee, Lu Zhang, Yue Yu, and Wei Chen. Deep neural operator enabled concurrent mul-  
 653 titask design for multifunctional metamaterials under heterogeneous fields. *Advanced Optical*  
 654 *Materials*, pp. 2303087, 2024.

655

656 Jae Yong Lee, Sung Woong Cho, and Hyung Ju Hwang. Hyperdeeponet: learning operator with  
 657 complex target function space using the limited resources via hypernetwork. *arXiv preprint*  
 658 *arXiv:2312.15949*, 2023.

659

660 Emma Lejeune. Mechanical mnist: A benchmark dataset for mechanical metamodels. *Extreme*  
 661 *Mechanics Letters*, 36:100659, 2020.

662

663 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-  
 664 drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-  
 665 ential equations. *arXiv preprint arXiv:2003.03485*, 2020a.

666

667 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-  
 668 tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-  
 669 ential equations. *Advances in Neural Information Processing Systems*, 33:NeurIPS 2020, 2020b.

670

671 Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew  
 672 Stuart, and Anima Anandkumar. Fourier NeuralOperator for Parametric Partial Differential Equa-  
 673 tions. In *International Conference on Learning Representations*, 2020c.

674

675 Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar  
 676 Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial  
 677 differential equations. *2021 arXiv preprint arXiv:2111.03794*, 2021.

678

679 Levi E Lingsch, Dana Grund, Siddhartha Mishra, and Georgios Kissas. Fuse: Fast unified simulation  
 680 and estimation for pdes. *arXiv preprint arXiv:2405.14558*, 2024.

681

682 Ning Liu, Yue Yu, Huaiqian You, and Neeraj Tatikola. Ino: Invariant neural operators for learning  
 683 complex physical systems with momentum conservation. In *International Conference on Artifi-  
 684 cial Intelligence and Statistics*, pp. 6822–6838. PMLR, 2023.

685

686 Ning Liu, Yiming Fan, Xianyi Zeng, Milan Klöwer, Lu Zhang, and Yue Yu. Harnessing the power  
 687 of neural operators with automatically encoded conservation laws. In *Forty-first International*  
 688 *Conference on Machine Learning*, 2024a.

689

690 Ning Liu, Siavash Jafarzadeh, and Yue Yu. Domain agnostic fourier neural operators. *Advances in*  
 691 *Neural Information Processing Systems*, 36, 2024b.

692

693 Ning Liu, Xuxiao Li, Manoj R Rajanna, Edward W Reutzel, Brady Sawyer, Prahalada Rao, Jim  
 694 Lua, Nam Phan, and Yue Yu. Deep neural operator enabled digital twin modeling for additive  
 695 manufacturing. *arXiv preprint arXiv:2405.09572*, 2024c.

696

697 Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard  
 698 Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning  
 699 of disentangled representations. In *international conference on machine learning*, pp. 4114–4124.  
 PMLR, 2019.

700

701 Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, and  
 702 Oliver Bachem. Disentangling factors of variations using few labels. In *Eighth International*  
 703 *Conference on Learning Representations*. OpenReview. net, 2020.

704

705 Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-  
 706 tifying differential equations based on the universal approximation theorem of operators. *arXiv*  
 707 *preprint arXiv:1910.03193*, 2019.

702 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning  
 703 nonlinear operators via DeepONet based on the universal approximation theorem of operators.  
 704 *Nature Machine Intelligence*, 3(3):218–229, 2021.

705 Emile Mathieu, Tom Rainforth, Nana Siddharth, and Yee Whye Teh. Disentangling disentanglement  
 706 in variational autoencoders. In *International conference on machine learning*, pp. 4402–4412.  
 707 PMLR, 2019.

708 Marios Matheakis, Pavlos Protopapas, David Sondak, Marco Di Giovanni, and Efthimios Kaxiras.  
 709 Physical symmetries embedded in neural networks. *arXiv preprint arXiv:1904.08991*, 2019.

710 Roberto Molinaro, Yunan Yang, Björn Engquist, and Siddhartha Mishra. Neural inverse operators  
 711 for solving pde inverse problems. *arXiv preprint arXiv:2301.11167*, 2023.

712 Christoph Molnar. *Interpretable machine learning*. 2020.

713 Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Hieu-Chi Dam, and Svetha Venkatesh. Hy-  
 714 pervae: Variational hyper-encoding network.

715 Daniel Obmann, Johannes Schwab, and Markus Haltmeier. Deep synthesis regularization of inverse  
 716 problems. *arXiv preprint arXiv:2002.00155*, 2020.

717 Geunseob Oh and Huei Peng. Cvae-h: Conditionalizing variational autoencoders via hypernetworks  
 718 and trajectory forecasting for autonomous driving. *arXiv preprint arXiv:2201.09874*, 2022.

719 Yong Zheng Ong, Zuowei Shen, and Haizhao Yang. IAE-Net: integral autoencoders for  
 720 discretization-invariant learning. *arXiv preprint arXiv:2203.05142*, 2022.

721 David Pfau, James S Spencer, Alexander GDG Matthews, and W Matthew C Foulkes. Ab initio  
 722 solution of the many-electron schrödinger equation with deep neural networks. *Physical Review  
 723 Research*, 2(3):033429, 2020.

724 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A  
 725 deep learning framework for solving forward and inverse problems involving nonlinear partial  
 726 differential equations. *Journal of Computational Physics*, 378:686–707, 2019.

727 Karl Ridgeway and Michael C Mozer. Learning deep disentangled embeddings with the f-statistic  
 728 loss. *Advances in neural information processing systems*, 31, 2018.

729 Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi Zhong. Interpretable  
 730 machine learning: Fundamental principles and 10 grand challenges. *Statistic Surveys*,  
 731 16:1–85, 2022.

732 Omer Sagi and Lior Rokach. Ensemble learning: A survey. *Wiley interdisciplinary reviews: data  
 733 mining and knowledge discovery*, 8(4):e1249, 2018.

734 Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, and Ben Poole. Weakly supervised disen-  
 735 tanglement with guarantees. *arXiv preprint arXiv:1910.09772*, 2019.

736 Guoxiang Grayson Tong, Carlos A Sing Long, and Daniele E Schiavazzi. Invaert networks: A data-  
 737 driven framework for model synthesis and identifiability analysis. *Computer Methods in Applied  
 738 Mechanics and Engineering*, 423:116846, 2024.

739 Tapas Tripura and Souvik Chakraborty. Wavelet neural operator: a neural operator for parametric  
 740 partial differential equations. *arXiv preprint arXiv:2205.02191*, 2022.

741 Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. *Advances in neural  
 742 information processing systems*, 33:19667–19679, 2020.

743 Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-  
 744 fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. *Ad-  
 745 vances in Water Resources*, 163:104180, 2022.

756 Liu Yang, Xuhui Meng, and George Em Karniadakis. B-pinns: Bayesian physics-informed neu-  
 757 ral networks for forward and inverse pde problems with noisy data. *Journal of Computational*  
 758 *Physics*, 425:109913, 2021.

759  
 760 Özdoğan Yilmaz. *Seismic data analysis*, volume 1. Society of exploration geophysicists Tulsa,  
 761 2001.

762  
 763 Minglang Yin, Enrui Zhang, Yue Yu, and George Em Karniadakis. Interfacing finite elements with  
 764 deep neural operators for fast multiscale modeling of mechanics problems. *Computer Methods in*  
 765 *Applied Mechanics and Engineering*, *in press*, pp. 115027, 2022.

766  
 767 Huaiqian You, Yue Yu, Marta D’Elia, Tian Gao, and Stewart Silling. Nonlocal kernel network  
 768 (NKN): A stable and resolution-independent deep neural network. *Journal of Computational*  
 769 *Physics*, pp. arXiv preprint arXiv:2201.02217, 2022a.

770  
 771 Huaiqian You, Quinn Zhang, Colton J Ross, Chung-Hao Lee, and Yue Yu. Learning deep implicit  
 772 fourier neural operators (IFNOs) with applications to heterogeneous material modeling. *Computer*  
 773 *Methods in Applied Mechanics and Engineering*, 398:115296, 2022b. doi: <https://doi.org/10.1016/j.cma.2022.115296>.

774  
 775 Yue Yu, Ning Liu, Fei Lu, Tian Gao, Siavash Jafarzadeh, and Stewart Silling. Nonlocal attention  
 776 operator: Materializing hidden knowledge towards interpretable physics discovery. *arXiv preprint*  
 777 *arXiv:2408.07307*, 2024.

778  
 779 Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and E Weinan. Deep potential molecular  
 780 dynamics: a scalable model with the accuracy of quantum mechanics. *Physical Review Letters*,  
 781 120(14):143001, 2018.

782  
 783 Lu Zhang, Huaiqian You, Tian Gao, Mo Yu, Chung-Hao Lee, and Yue Yu. Metano: How to trans-  
 784 fer your knowledge on learning hidden physics. *Computer Methods in Applied Mechanics and*  
 785 *Engineering*, 417:116280, 2023.

786  
 787 Rui Zhang, Qi Meng, and Zhi-Ming Ma. Deciphering and integrating invariants for neural operator  
 788 learning with various physical mechanisms. *National Science Review*, 11(4):nwad336, 2024.

789  
 790  
 791  
 792  
 793  
 794  
 795  
 796  
 797  
 798  
 799  
 800  
 801  
 802  
 803  
 804  
 805  
 806  
 807  
 808  
 809

810 A IDENTIFIABILITY ANALYSIS  
811  
812  
813814 A.1 PROOF OF THE MAIN THEOREMS  
815  
816817 We first provide the proof of Theorem 1:  
818819 **Proof:** With equation 3.16, we have:

820 
$$p_{\mathcal{G}[\mathbf{f};\theta]}|\mathbf{f} = p_{\hat{\mathcal{G}}[\mathbf{f};\hat{\theta}]}|\mathbf{f} \Leftrightarrow p_{\mathcal{G}_f(\theta)}|\mathbf{f} = p_{\hat{\mathcal{G}}_f(\hat{\theta})}|\mathbf{f} \Leftrightarrow p_{\theta}|\mathbf{f} = p_{\mathcal{G}_f^{-1}\circ\hat{\mathcal{G}}_f(\hat{\theta})}|\mathbf{f}.$$
  
821

822 Note that the parameter  $\theta$  varies with the change of  $\mathbf{b}$ . Per the data generating process in equation 3.6,  
823 the distribution of  $\mathbf{b}$  is invariant to  $\mathbf{f}$ . Therefore, the distribution of  $\theta$  is also invariant to  $\mathbf{f}$ :

824 
$$p_{\theta} = p_{\theta}|\mathbf{f} = p_{\mathcal{G}_f^{-1}\circ\hat{\mathcal{G}}_f(\hat{\theta})}|\mathbf{f} = p_{\mathcal{G}_f^{-1}\circ\hat{\mathcal{G}}_f(\hat{\theta})}, \forall \mathbf{f} \in \mathcal{F}.$$
  
825

826 Denoting  $r := \mathcal{G}_f \circ \hat{\mathcal{G}}_f^{-1}$ , it is the transformation between the true  $\theta$  and the estimated one, and it is  
827 invertible and invariant with respect to  $\mathbf{f}$ .828 We proceed to derive the relation between  $\mathbf{z}$  and  $\hat{\mathbf{z}}$ : since  $\theta = r(\hat{\theta})$ , with the invertibility assumption  
829  $\theta = \mathcal{H}^{-1}(\mathbf{z})$  and  $\hat{\theta} = \hat{\mathcal{H}}^{-1}(\hat{\mathbf{z}})$ , we obtain:

830 
$$\mathbf{z} = \mathcal{H}(\theta) = \mathcal{H} \circ r(\hat{\theta}) = \mathcal{H} \circ r \circ \hat{\mathcal{H}}^{-1}(\hat{\mathbf{z}}).$$

831 Denoting  $h := \mathcal{H} \circ r \circ \hat{\mathcal{H}}^{-1}$ , it is the transformation between the true latent variable and the estimated  
832 one, and it is invertible because  $r$ ,  $\mathcal{H}$  and  $\hat{\mathcal{H}}$  are all invertible.  $\square$ 

833 We now show the proof of Theorem 2.

834 **Proof:** With the independence relation assumption, we have

835 
$$p_{\mathbf{z}|\mathbf{b}}(\mathbf{z}|\mathbf{b}) = \prod_i p_{z_i|\mathbf{b}}(z_i), p_{\hat{\mathbf{z}}|\mathbf{b}}(\hat{\mathbf{z}}|\mathbf{b}) = \prod_i p_{\hat{z}_i|\mathbf{b}}(\hat{z}_i).$$
  
836

837 Denoting  $\hat{q}_i := \log p_{\hat{z}_i|\mathbf{b}}$ , it yields:

838 
$$\log p_{\mathbf{z}|\mathbf{b}}(\mathbf{z}|\mathbf{b}) = \sum_i q_i(z_i, \mathbf{b}), \log p_{\hat{\mathbf{z}}|\mathbf{b}}(\hat{\mathbf{z}}|\mathbf{b}) = \sum_i \hat{q}_i(\hat{z}_i, \mathbf{b}).$$

839 With the change of variables we have

840 
$$p_{\mathbf{z}|\mathbf{b}} = p_{h(\hat{\mathbf{z}})|\mathbf{b}} = p_{\hat{\mathbf{z}}|\mathbf{b}} \cdot |J_{h^{-1}}| \Leftrightarrow \sum_i q_i(z_i, \mathbf{b}) + \log |J_h| = \sum_i \hat{q}_i(\hat{z}_i, \mathbf{b}),$$
  
841

842 where  $|J_{h^{-1}}|$  stands for the absolute value of the Jacobian matrix determinant of  $h^{-1}$ . Differentiating  
843 the above equation twice with respect to  $\hat{z}_k$  and  $\hat{z}_q$ ,  $k \neq q$ , yields

844 
$$\sum_i \left( \frac{\partial^2 q_i(z_i, \mathbf{b})}{\partial z_i^2} \frac{\partial z_i}{\partial \hat{z}_k} \frac{\partial z_i}{\partial \hat{z}_q} + \frac{\partial q_i(z_i, \mathbf{b})}{\partial z_i} \frac{\partial^2 z_i}{\partial \hat{z}_k \partial \hat{z}_q} \right) + \frac{\partial^2 \log |J_h|}{\partial \hat{z}_k \partial \hat{z}_q} = 0. \quad (\text{A.1})$$
  
845

846 To show the identifiability, one can rewrite the Jacobian  $J_h$  as:

847 
$$J_h = \begin{bmatrix} \frac{\partial \mathbf{z}}{\partial \hat{\mathbf{z}}} \end{bmatrix}.$$
  
848

849 The invertibility results shown in Theorem 1 indicates that it is full rank. Next, we will use the linear  
850 independence assumption to show that there exists one and only one non-zero component in each  
851 row of  $\frac{\partial \mathbf{z}}{\partial \hat{\mathbf{z}}}$ .852 Taking  $\mathbf{b} = \mathbf{b}^0, \dots, \mathbf{b}^{2d_z}$  in equation A.1 and subtracting them from each other, we have

853 
$$\sum_{i=1}^{d_z} \left( \left( \frac{\partial^2 q_i(z_i, \mathbf{b}^j)}{\partial z_i^2} - \frac{\partial^2 q_i(z_i, \mathbf{b}^0)}{\partial z_i^2} \right) \frac{\partial z_i}{\partial \hat{z}_k} \frac{\partial z_i}{\partial \hat{z}_q} + \left( \frac{\partial q_i(z_i, \mathbf{b}^j)}{\partial z_i} - \frac{\partial q_i(z_i, \mathbf{b}^0)}{\partial z_i} \right) \frac{\partial^2 z_i}{\partial \hat{z}_k \partial \hat{z}_q} \right) = 0,$$
  
854

855 where  $j = 1, \dots, 2d_z$ . With the linear independence condition for  $w$ , this is a  $2d_z \times 2d_z$  linear  
856 system, and therefore the only solution is

857 
$$\frac{\partial z_i}{\partial \hat{z}_k} \frac{\partial z_i}{\partial \hat{z}_q} = 0, \quad \frac{\partial^2 z_i}{\partial \hat{z}_k \partial \hat{z}_q} = 0,$$
  
858

864 for  $i = 1, \dots, d_z$ . The first part implies that, for the  $i$ -th row of the Jacobian matrix  $J_h$ , we have  
 865  $\frac{\partial z_i}{\partial \hat{z}_k} \neq 0$  for at most one element  $k \in \{1, \dots, d_z\}$ , hence  $z$  is identifiable up to permutation and  
 866 component-wise invertible transformation.  $\square$   
 867

868  
 869 **A.2 FURTHER DISCUSSION ON THE ASSUMPTIONS**  
 870

871 Herein, we provide additional discussion on the validity and empirical validation for Assumptions  
 872 1-4.

873 As seen in the proof above, Assumptions 1 (Density Smoothness and Positivity) and 2 (Invertibility)  
 874 are required to guarantee that there exists a smooth and injective mapping  $h := \mathcal{H} \circ r \circ \hat{\mathcal{H}}^{-1}$ ,  
 875 from the ground-truth latent embedding  $z$  to the learned embedding  $\hat{z}$ . Furthermore, the smoothness  
 876 assumption further makes it feasible to take derivatives of  $z$  with respect to  $\hat{z}$ , which supports the  
 877 permutation-wise identifiability proof for Theorem 2. Here, we note that the smoothness assumption  
 878 may possibly be relaxed to  $C^2$ . Assumptions 3 (Conditional Independence) and 4 (Linear Independ-  
 879 ence) are needed to show that the Jacobian of  $h$  has one and only one non-zero component for each  
 880 column. Without these assumptions, it is possible that the data from different  $b$  lack variability.  
 881

882 While the first three assumptions are common in many VAE architectures, the last assumption is  
 883 plausible for many real-world data distributions. For instance, when the prior on the latent vari-  
 884 ables  $p(z|b)$  is conditionally factorial, where each element  $z_i$  has a univariate exponential family  
 885 distribution given conditioning variable  $b$ :

$$886 \quad p(z|b) = \prod_i \frac{Q_i(z_i)}{Z_i(b)} \exp \left[ \sum_{j=1}^k T_{i,j}(z_i) \lambda_{i,j}(b) \right],$$

887 where  $Q_i$  is the base measure,  $Z_i(b)$  is the normalizing constant,  $T_{i,j}$  are the sufficient statistics,  
 888 and  $\lambda_{i,j}$  are the corresponding parameters depending on  $b$ . This exponential family has universal  
 889 approximation capabilities. Additionally, we note that this distribution is conditionally independent  
 890 with

$$891 \quad q_i = \log(Q_i(z_i)) - \log(Z_i(b)) + \left[ \sum_{j=1}^k T_{i,j}(z_i) \lambda_{i,j}(b) \right],$$

892 and the linear independence indicates that the matrix formed by

$$893 \quad \omega(z, b^\eta) - \omega(z, b^0) = (\mathbf{T}'(\lambda(b^\eta) - \lambda(b^0)), \mathbf{T}''(\lambda(b^\eta) - \lambda(b^0))), \eta = 1, \dots, S$$

894 has full rank  $2d_z$ .

895 In the fully supervised case, the conditional independence and linear independence assumptions are  
 896 automatically guaranteed by picking proper distributions  $p(z|b)$  when designing the VAE architec-  
 897 ture. In the semi-supervised and unsupervised cases, one can also validate these assumptions when  
 898 the true values of  $b$  is given on some tasks, by inferring an empirical distribution of  $p(z|b)$  from  
 899 these tasks. To investigate such a capability, in the additional synthetic experiment in Appendix C.4,  
 900 we consider an unsupervised setting, estimate  $p(z|b)$  from the trained model, and check the linear  
 901 independence condition by calculating the vector in equation 3.15 for each task  $b^\eta$  and forming an  
 902  $S \times 2d_z$  matrix from all tasks. When the rank of this matrix is  $2d_z$ , it means that we can select  $2d_z + 1$   
 903 tasks from them with sufficient variability, such that the linear independence condition is satisfied.  
 904 As a demonstration, in Appendix C.4 we validate this assumption on a synthetic dataset and show  
 905 that the identifiability can be largely achieved with Gaussian distributions of distinct means and  
 906 variances.

907  
 908 **B ADDITIONAL EXPERIMENTAL DETAILS, RESULTS AND DISCUSSION**  
 909

910 We provide additional details in training and baseline models, as well as more results as a supplement  
 911 of Section 4.

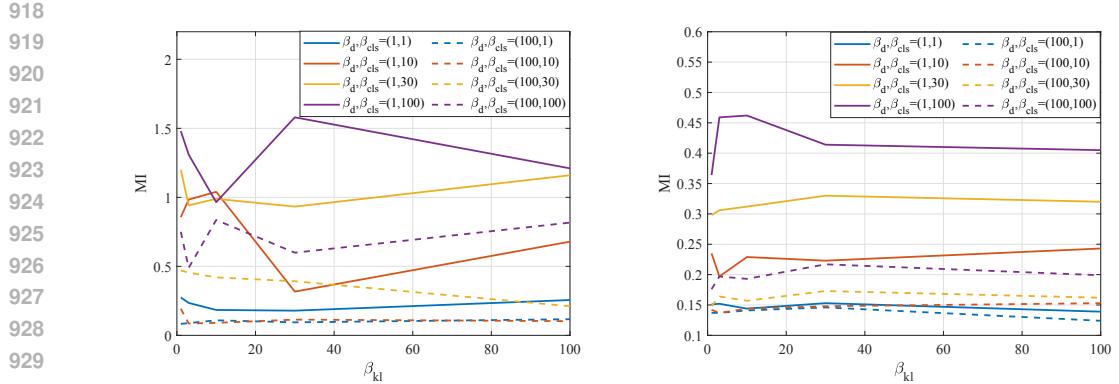


Figure 3: MNIST unsupervised scores against  $\beta_d$  with DisentangO-2 (left) and DisentangO-15 (right). By comparing  $\beta_d = 1$  (solid lines) with  $\beta_d = 100$  (dashed lines), increasing  $\beta_d$  forces the latent factors to maximize the contained information and in turn decreases MI, thus encouraging disentanglement.

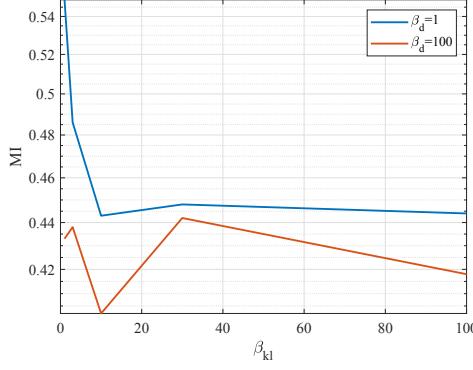


Figure 4: Unsupervised MI score against  $\beta_{kl}$  with DisentangO-2 in heterogeneous material learning.

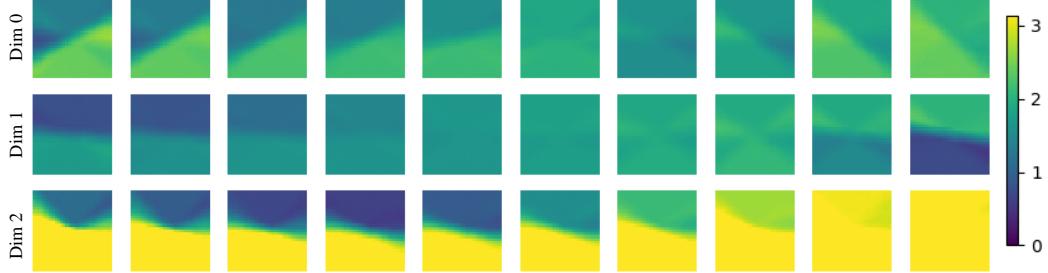


Figure 5: Latent traversal of DisentangO-3 in unsupervised heterogeneous material learning, where the three latent dimensions control the border rotation between the two segments (top), the relative fiber orientation between the two segments (middle), and the fiber orientation of the top segment (bottom), respectively. Legend indicates fiber orientation ranging from 0 to  $\pi$ .

## B.1 TRAINING DETAILS

In all experiments, we adopt the Adam optimizer for optimization and use a  $n$ -layer DisentangO model, where  $n = 8$  in the first experiment and  $n = 16$  in the second and third experiments due to increased complexity. For fair comparison across different models, we tune the hyperparameters, including the learning rates, the decay rates, and the regularization parameters, to minimize the validation loss. Experiments are conducted on a single NVIDIA Tesla A100 GPU with 40 GB memory. A pseudo algorithm of all three scenarios is summarized in Algorithm 1.

---

972 **Algorithm 1** A pseudo algorithm of DisentangO.

---

973 1: Denote data reconstruction loss  $L_{data}$ , task-wise NO parameter reconstruction loss  $L_{recon}$ , KL  
 974 loss  $L_{KL}$  and semi-supervision loss  $L_{semi}$  as:  
 975 
$$L_{data} = \frac{1}{S} \sum_{\eta=1}^S [-E(\log(p(\mathbf{u}|\mathbf{f}, \theta^\eta)))], \quad L_{recon} = \frac{1}{S} \sum_{\eta=1}^S [-E_{q(\mathbf{z}^\eta|\theta^\eta)} \log p(\theta^\eta|\mathbf{z}^\eta)],$$
  
 976 
$$L_{KL} = \frac{1}{S} \sum_{\eta=1}^S [D_{KL}(q(\mathbf{z}^\eta|\theta^\eta)||p(\mathbf{z}^\eta))], \quad L_{semi} = L_c(\mathbf{z}^\eta, c(\mathbf{b}^\eta)).$$
  
 977

978 2: **SC1: Supervised/SC3: Unsupervised**  
 979 3: The total loss is comprised of the data loss, the NO parameter reconstruction loss, and the KL  
 980 loss:  $L_{loss} = \beta_d L_{data} + L_{recon} + \beta_{KL} L_{KL}$ .  
 981 4: **SC2: Semi-supervised**  
 982 5: The total loss is comprised of the data loss, the NO parameter reconstruction loss, the KL loss,  
 983 and a semi-supervised loss:  $L_{loss} = \beta_d L_{data} + L_{recon} + \beta_{KL} L_{KL} + \beta_{cls} L_{semi}$ .

---

987 **B.2 SUPERVISED FORWARD AND INVERSE PDE LEARNING**

---

988 The parameter of each baseline is given in the following, where the parameter choice of each model  
 989 is selected by tuning the number of layers and the width (channel dimension), keeping the total  
 990 number of parameters on the same magnitude.

991 • MetaNO: We use a 8-layer IFNO model with the lifting layer as the adaptive layer. We keep  
 992 the total number of parameters in MetaNO the same as the number of parameters used in  
 993 forward PDE learning in DisentangO.  
 994 • NIO: We closely follow the setup in Molinaro et al. (2023), where two neural operators  
 995 (DeepONet and FNO) are stacked together to realize the operator-to-function intuition. The  
 996 first operator maps multiple solution functions to a set of representations (which can be seen  
 997 as an analog of eigenfunctions), and the second operator infers the underlying parameter  
 998 field from the mixed representations. As NIO requires the solution field as input, it cannot  
 999 be used as a forward solver. Hence, NIO only solves the inverse PDE problem, and it can  
 1000 only be applied to the fully supervised setting. Specifically, we use four convolution blocks  
 1001 as the encoder for the branch net and a fully connected neural network with two hidden  
 1002 layers of 256 neurons as the trunk net, with the number of basis functions set to 50. For the  
 1003 FNO part, we use one Fourier layer with width 32 and modes 8, as suggested in Molinaro  
 1004 et al. (2023).  
 1005 • FNO: Since FNO is originally designed as a function-to-function mapping, we consider the  
 1006 inverse optimization procedure following Lee et al. (2024), and develop a two-phase pro-  
 1007 cess to solve the forward and inverse problems sequentially. In the first phase, we construct  
 1008 the forward mapping from the loading field  $\mathbf{f}$  and the ground-truth material parameter  $\mathbf{b}$  to  
 1009 the corresponding solution  $\mathbf{u}$  as:  $\mathcal{G}^{FNO}[\mathbf{f}, \mathbf{b}; \theta^{FNO}](\mathbf{x}) = \mathbf{u}(\mathbf{x})$ . This can be seen as an  
 1010 analog of the forward solution operator  $\mathcal{G}$  in our setting. Then, with the trained FNO as a  
 1011 surrogate for the forward solution operator, we fix its NN parameters  $\theta^{FNO}$ , and use it to-  
 1012 gether with gradient-based optimization to solve for the optimal material parameters as an  
 1013 inverse solver. Specifically, given a set of loading/solution data pairs  $\{(f_i, u_i)\}_{i=1}^N$ , we start  
 1014 from a random guess of the underlying material parameters (typically chosen as the aver-  
 1015 age of all available instances of material parameters for fast convergence), and minimize  
 1016 the difference between the predicted displacement field from FNO and the ground-truth  
 1017 one:  
 1018

$$b^* = \operatorname{argmin}_b \sum_{i=1}^N \|u_i - \mathcal{G}^{FNO}[f_i, b; \theta^{FNO}]\|^2.$$

1019 As the FNO parameters are fixed, we can back propagate this loss and optimize the input  
 1020 material parameters in an iterative fashion. We adopt a 4-layer FNO with width 26 and  
 1021 modes 8. For the forward model, in addition to the loading field and the coordinates as  
 1022 input, we also concatenate the ground-truth material properties to form the final input.  
 1023 For the inverse model, we employ an iterative gradient-based optimization to solve for  
 1024

1026 the optimal material parameters for physics discovery. For fair comparison, in terms of the  
 1027 averaged per-epoch runtime, we report the sum of both the forward and inverse solvers. The  
 1028 averaged per-epoch runtimes for the forward solver and the inverse solver are 6.2 seconds  
 1029 and 2.9 seconds, respectively, accounting for the total per-epoch runtime of 9.1 seconds in  
 1030 Table 1.

1031 • UFNO: The 2D U-FNO model extends the Fourier Neural Operator (FNO) architecture by  
 1032 incorporating U-Net-style skip connections. The network consists of six spectral convolution  
 1033 blocks, each combining a global Fourier operator and a local  $1 \times 1$  convolution. In the  
 1034 later three layers, additional skip-enhanced feature extraction is provided by U-Net blocks.  
 1035 The input consists of spatial features  $f(x, y)$ , concatenated with coordinate embeddings  
 1036  $(x, y)$  and 5 material parameters. The input is lifted to a higher-dimensional latent space  
 1037 via a linear layer of size [8, 20]. Each of the six layers performs the following composite  
 1038 operation:

$$v_{j+1} = \text{ReLU}(\mathcal{F}_j(v_j) + \mathcal{W}_j(v_j) + \mathcal{U}_j(v_j)),$$

1039 where  $\mathcal{F}_j$  is a spectral convolution layer (2D Fourier transform, mode truncation, linear  
 1040 transformation, and inverse transform),  $\mathcal{W}_j$  is a  $1 \times 1$  convolution, and  $\mathcal{U}_j$  is a U-Net block  
 1041 (included only in layers 4 to 6). After all six layers, the output is projected through two  
 1042 fully connected layers of sizes [20, 128] and [128, 2] to produce the final 2-channel output.

1043 • WNO: The Wavelet Neural Operator (WNO) consists of 4 stacked wavelet kernel integral  
 1044 layers. The input is first lifted to a high-dimensional representation using a fully connected  
 1045 layer of size [8, 27]. Each of the 4 layers combines a learned local operator  $W$   
 1046 (implemented as  $1 \times 1$  convolution) with a non-local wavelet-based integral operator  $K$   
 1047 (via continuous wavelet transform). The architecture follows: The input  $f(x, y)$  is first  
 1048 augmented by concatenating it with the positional grid coordinates  $(x, y)$  and additional 5  
 1049 material parameters. This augmented input is then lifted into a higher-dimensional space  
 1050 via a fully connected layer that maps the input to a hidden width of `width`. The core  
 1051 of the architecture consists of 4 wavelet-based layers, the output is projected back to the  
 1052 desired output space using two linear layers of sizes [27, 128] and [128, 41 \* 41 \* 2]. Mish  
 1053 activations are applied after each intermediate layer except the last projection layer.

1054 • CAMEL: The architecture consists of two networks, V-Net and C-Net

$$G(f(x); \theta, w) = c((f(x); \theta) + w^\top v(f(x); \theta)). \quad (\text{B.1})$$

1055 The score network  $V_\phi$  is a 5-layer MLP with width 320 and Tanh activations, with layer  
 1056 sizes  $[d, 320, 320, 320, 320, r]$ . The coefficient network  $c_\theta$  is a 3-layer MLP with width 128  
 1057 and Tanh activations, with layer sizes  $[d, 128, 128, 1]$ , where  $d$  is the size of the flatten  
 1058  $f(x)$ , and  $r = 5$ .

1059 • SMDP: Since we do not have an explicit physical operator to evaluate  $P^{-1}(z, f(x))$ ,  
 1060 we use only the score network, implemented as a 6-layer MLP with layer sizes  
 1061 [128, 512, 256, 128, 64, 32,  $d_z$ ], where  $d_z$  denotes the dimension of the latent space.

1062 • PIANO: We use the ground-truth material properties as the physical-invariant embedding.  
 1063 The loading field is first processed by a lifting layer, while the material parameters are  
 1064 passed through an attention module implemented as a 3-layer MLP with hidden dimension  
 1065 32. The outputs of the lifting layer and the attention module are then concatenated and fed  
 1066 into a convolutional layer with width 26, followed by a 3-layer IFNO with width 26 and  
 1067 modes 8. For both the forward and inverse solution procedures, we adopt the same settings  
 1068 as in the FNO baseline.

1069 • InVAErt: We directly take the InVAErt implementation from Lingsch et al. (2024) and de-  
 1070 fine the encoder, the VAE encoder and the decoder as 4-layer MLPs with hidden dimension  
 1071 96 and silu activation function.

1072 • FUSE: For the forward model, we take three Fourier layers in addition to the first band-  
 1073 limited lifting layer that increases the dimension of the parameters and performs an in-  
 1074 verse Fourier transform. On the other hand, the inverse model maps the functional input  
 1075 to the parameter space by employing a concatenation of two Fourier layers and a band-  
 1076 limited forward Fourier transform that generates a fixed-size latent representation of the  
 1077 input function, followed by a flow-matching posterior estimation (FMPE) that maps to the  
 1078 final parameter output. All Fourier layers have a latent width of 32 and 8 modes, while the  
 1079 FMPE flow has 4 layers of width 360.

- FUSE-f: Since the original FUSE model assumes a constant loading field, it cannot handle situations where the input loading field changes that create multiple instances of a PDE system. We therefore create a FUSE variation (denoted as “FUSE-f”) that takes a concatenation of both the displacement field and the loading field as input to the inverse model. For the forward model, we concatenate the loading field to the output of the first band-limited lifting layer and subsequently use a one-layer MLP to map it back to the original dimension. All other settings are the same as the original FUSE baseline.
- VAE: We use a 2-layer MLP of size [1681, 136, 30] as the encoder, and another 2-layer MLP of size [30, 136, 1681] as the decoder, with the size of the bottleneck layer being 30.
- convVAE: We use a convolutional layer with 136 kernels of size  $3 \times 3$  with a stride of 2 pixels and a fully connected layer of size [59976, 5] as the encoder, and a fully connected layer of size [5, 59976] and a transposed convolutional layer with 2 kernels of size  $3 \times 3$  as the decoder.
- $\beta$ -VAE: The parameter choice of the  $\beta$ -VAE baseline is the same as the VAE baseline, except that we tune the  $\beta$  hyperparameter.

**Model-agnostic architecture.** The proposed DisentangO architecture is model-agnostic and can incorporate any neural operator as the forward solver, including FNO, UFNO, and WNO. This flexibility stems from DisentangO’s design, which only requires designating the lifting layer as the task-wise adaptation layer and adding the VAE structure for latent disentanglement (i.e., the encoder and the first decoder in Figure 1). DisentangO’s overall performance scales directly with the underlying neural operator’s capabilities. As long as the chosen NO achieves comparable forward prediction accuracy to IFNO, DisentangO will maintain similar performance, since (1) the upper bound of forward prediction accuracy depends on the base neural operator, and (2) the inverse prediction accuracy depends on how well the latent factors are encoded in the task-wise lifting layer parameters. We select IFNO for three key advantages: (1) parameter efficiency: the layer-independent parameter setting significantly reduces trainable parameters compared to alternatives, (2) theoretical guarantees: IFNO is a provably universal approximator as PDE solution operators, and (3) natural integration: seamless compatibility with MetaNO’s lifting layer approach for task-wise adaptation. If the IFNO part is replaced with other neural operators such as the considered baselines of FNO, UFNO, and WNO as in Table 1, the forward prediction accuracy will decrease (cf. the data test errors in Table 1), meaning that the upper bound of DisentangO’s forward prediction accuracy will decrease. Additionally, the inverse prediction accuracy (i.e., the  $z$  test error in Table 1) will likely drop as well, because the degraded forward prediction accuracy typically indicates degraded encoding of latent information in the lifting layer, which will negatively impact the inverse modeling even if the VAE part can reconstruct the lifting layer parameters perfectly. As IFNO performs the best in forward prediction and requires the least amount of trainable parameters, we choose IFNO as the forward prediction backbone in DisentangO.

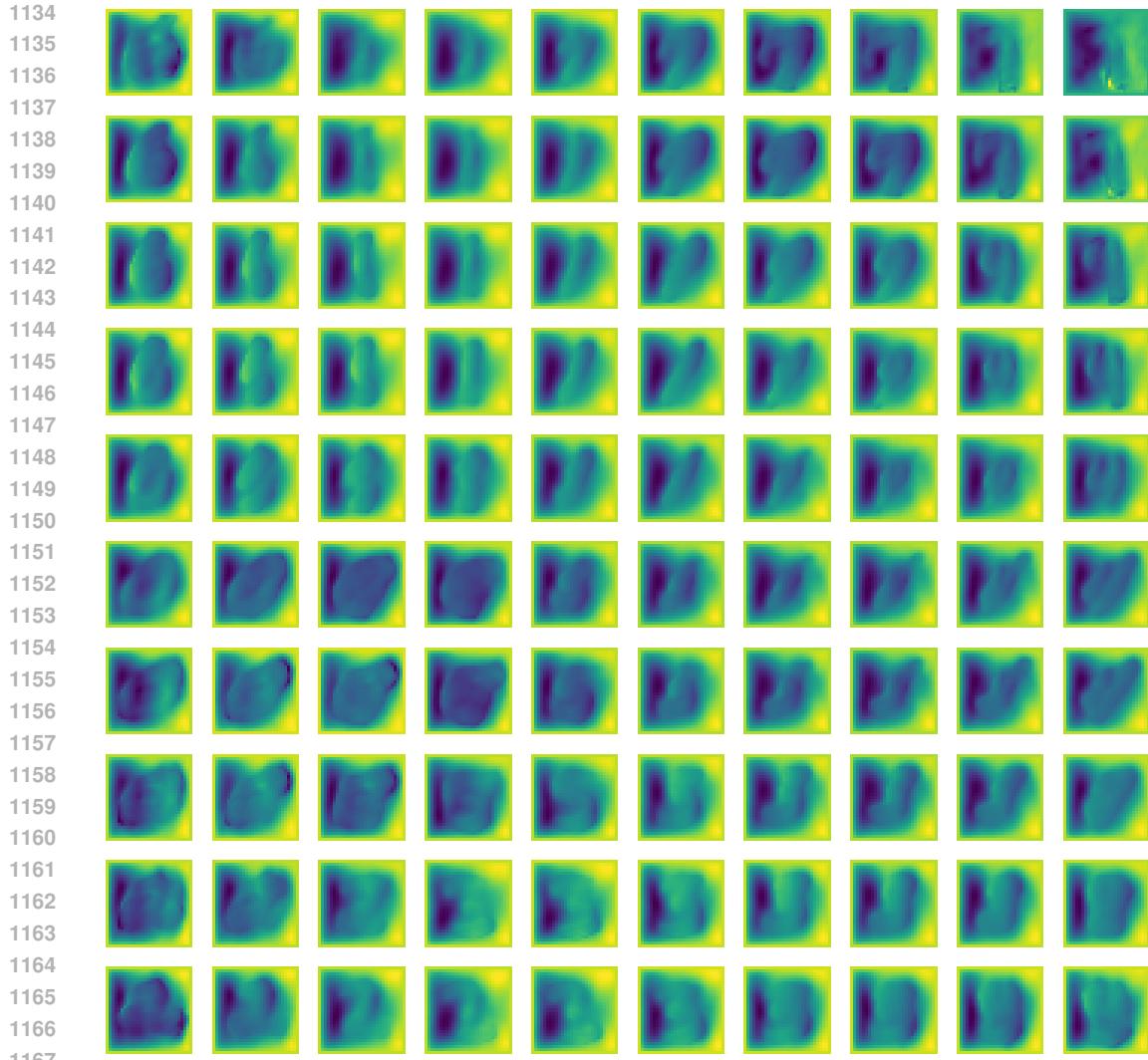
To demonstrate DisentangO’s compatibility with alternative neural operators, we replace IFNO with UFNO in the DisentangO architecture. The performance comparison is presented in Table 4.

Table 4: Test errors and the number of trainable parameters in experiment 1. Bold number highlights the best method.

| Models          | #param | per-epoch time (s) | Test errors  |              |
|-----------------|--------|--------------------|--------------|--------------|
|                 |        |                    | data         | $z$ (SC1)    |
| DisentangO      | 697k   | 12.2               | 1.65%        | <b>4.63%</b> |
| MetaNO          | 296k   | 9.8                | <b>1.59%</b> | -            |
| MetaUFNO        | 304k   | 11.4               | 3.55%        | -            |
| DisentangO-UFNO | 688k   | 14.2               | 6.61%        | 9.85%        |
| UFNO            | 720k   | 21.2               | 7.61%        | 11.23%       |

### B.3 MECHANICAL MNIST BENCHMARK

We demonstrate the latent traversal based on a randomly picked loading field as DisentangO-2 input. One can clearly see that the digit changes from “6” to “0” and then “2” from the top left moving down, and from “6” to “1” and then “7” moving to the right. Other digits are visible as well such as “7”, “9”, “4” and “8” in the right-most column. This corresponds well to the distribution of the



1168 Figure 6: MNIST latent traversal based on a randomly picked loading field as DisentangO-2 input.  
 1169  
 1170

1171 latent clustering in Figure 2. We also provide two exemplary MNIST latent interpretations of the  
 1172 learned DisentangO-15 in Figures 7 and 8.  
 1173

1174  
 1175 **B.4 LATENT VISUALIZATION AND PHYSICAL INTERPRETATION**  
 1176

1177 As the hidden parameter field  $b^\eta$  of the PDE is generally not accessible, especially in the semi-  
 1178 supervised or unsupervised settings, one cannot directly reconstruct  $b^\eta$  from the learned latent vari-  
 1179 ables  $z$ . Through disentangled representation learning, the latent variables  $z$  are anticipated to  
 1180 contain critical information of  $b^\eta$ , but there does not exist a direct and explicit mapping from  $z$  to  $b^\eta$ . As  
 1181 a result, one cannot directly reconstruct  $b^\eta$  from  $z$ . However, there are several tricks one can play  
 1182 with to obtain meaningful interpretations from the learned  $z$ . On one hand, one can feed a randomly  
 1183 selected input into DisentangO and manually define a desired  $z$  in the latent space and perform a for-  
 1184 ward pass using the trained DisentangO.  $b^\eta$  can then be visualized from the output, as demon-  
 1185 strated in Figure 6 in the MNIST experiment. On the other hand, one can also train a simple MLP and  
 1186 construct a mapping from  $z$  to  $b^\eta$ , provided that  $b^\eta$  is available. With this mapping at hand, one can  
 1187 then traverse  $z$  and visualize what each dimension of  $z$  controls. This is demonstrated in Figure 5 in  
 1188 the third experiment.  
 1189

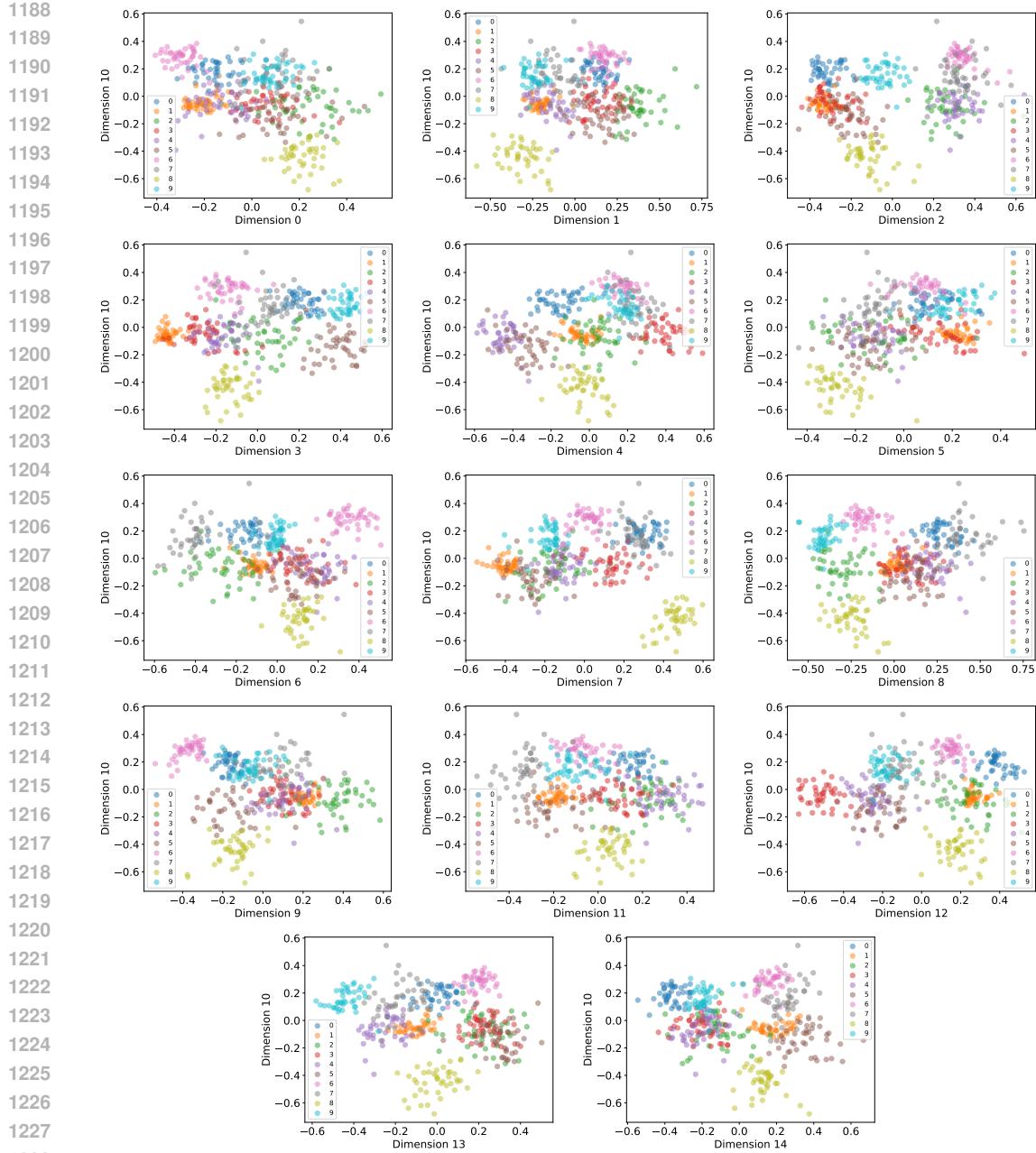


Figure 7: Exemplary MMNIST latent interpretation of DisentangO-15: dimension 10 encodes the information for digit ‘8’, as is evidenced by the fact that all  $y < -0.4$  regions on the scatterplots contain only digit ‘8’.

## B.5 FURTHER DISCUSSION

**Probabilistic latent space.** We use a variational (probabilistic) encoder rather than a deterministic map for two reasons:

- **Regularization and stability of the inverse map.** The inverse operator in ill-posed PDE settings is highly sensitive: small perturbations in the solution  $u$  can correspond to large changes in the inferred parameters. The VAE’s KL term imposes a distributional prior on the latent variables, preventing the encoder from collapsing to arbitrarily sharp or unstable mappings. This yields a smoother, more stable inverse that generalizes better under noise and limited data.

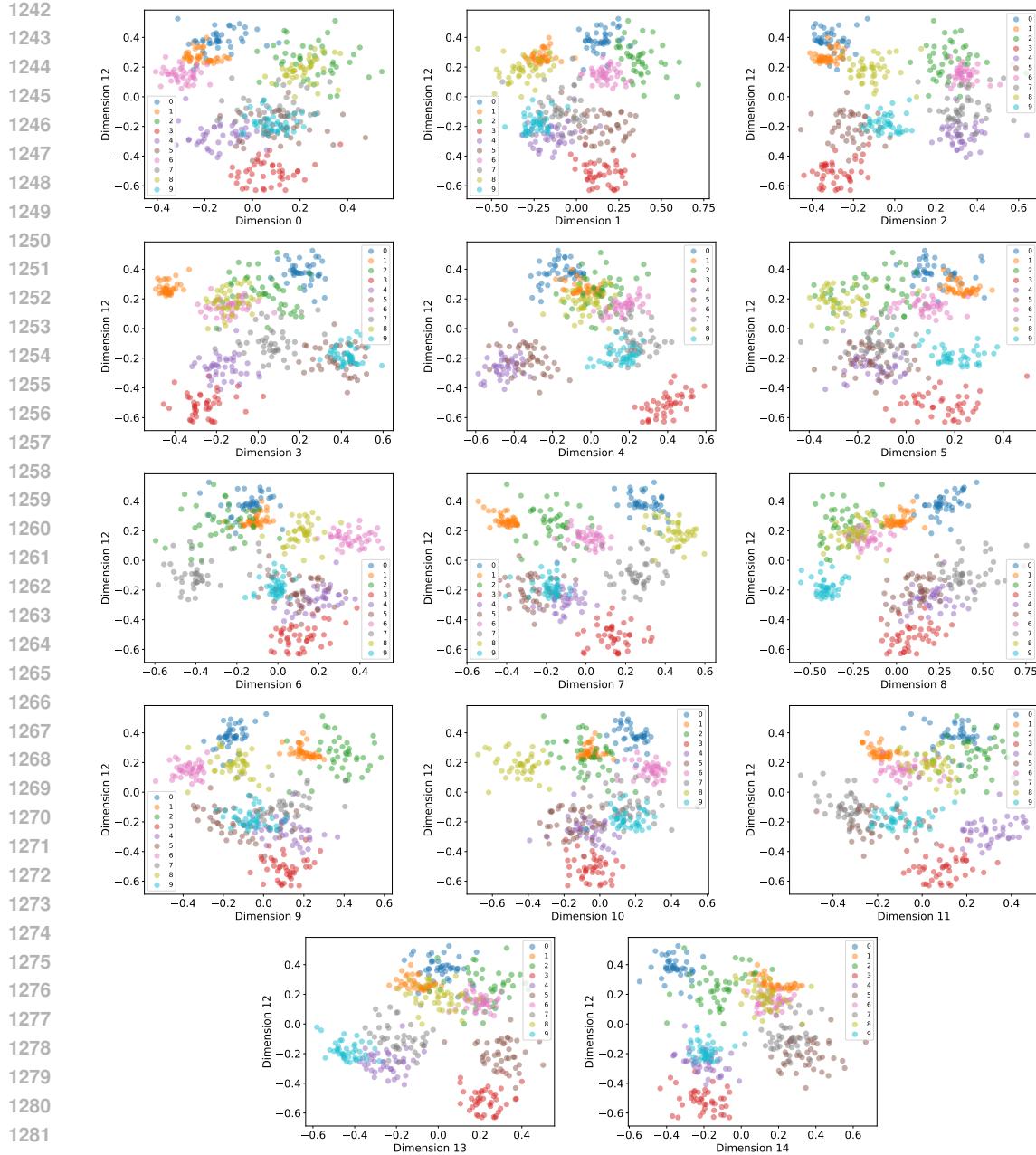


Figure 8: Exemplary MMNIST latent interpretation of DisentangO-15: dimension 12 encodes the information for digit ‘3’, as is evidenced by the fact that all  $y < -0.45$  regions on the scatterplots contain only digit ‘3’.

- **Identifiability and disentanglement.** The identifiability results we reference (e.g., up to component-wise invertible transformations) rely on the latent distribution having a simple, factorized prior. The VAE provides exactly this structure: a normalized, independent latent prior that constrains the representation and supports the theoretical guarantees.

**Scalability.** Scaling interpretable neural operators to complex, high-dimensional PDEs is critical for broader impact. Our work is structured to first establish the foundational capabilities of DisentangO in controlled settings where disentanglement and representation quality can be rigorously verified. Notably, our work tackles scenarios with partially or fully unknown physics: the second experiment demonstrates DisentangO’s ability to disentangle and identify latent codes when only partial knowledge is available, and the third experiment aims to mimic a real-world fully unsupervised scenario

1296 where the physical parameters are entirely unknown, yet DisentangO successfully extracts interpretable latent factors. DisentangO is designed to be inherently scalable for several key reasons:  
 1297 (1) Modular architecture: DisentangO inherits the computational efficiency of the underlying neural  
 1298 operator backbone (IFNO in our implementation), which supports batched, GPU-accelerated inference  
 1299 in high dimensions. (2) Constant latent dimension: the latent code dimensionality remains low  
 1300 regardless of spatial resolution or system complexity, enabling practical inverse inference even for  
 1301 complex systems. (3) Linear scaling: the latent inference network scales linearly with the number  
 1302 of PDE instances, independent of spatial dimensionality. (4) Plug-and-play design: DisentangO can  
 1303 incorporate any state-of-the-art neural operator as its backbone, inheriting its scalability properties.  
 1304 In essence, the scalability of DisentangO is governed by the scalability of the neural operator used  
 1305 for forward modeling. As long as the NO component performs well and the training data spans  
 1306 sufficient variability in physical system parameters, DisentangO remains applicable.  
 1307

1308 **Encoding  $b$  in lifting layers.** Our choice to encode the parameters  $b$  in the lifting layers  $\theta_P$  is jus-  
 1309 tified through three complementary perspectives. (1) Theoretical expressivity: as demonstrated in  
 1310 MetaNO (Zhang et al., 2023), varying only the lifting layer across tasks is sufficient to universally  
 1311 approximate a wide class of parametric operators. DisentangO inherits this universal approximation  
 1312 property while maintaining a meta-learning framework where the core iterative Fourier layers serve  
 1313 as a shared meta-operator across tasks. (2) Representation identifiability: restricting adaptation to  
 1314 the lifting layer significantly enhances the identifiability of latent representations, a critical require-  
 1315 ment for disentangled inverse learning. When adaptation is allowed in deeper layers, the mapping  
 1316 between latent codes and operators becomes more diffuse and less interpretable. (3) Empirical  
 1317 validation: our experiments across diverse PDE types confirm that this design choice enables Dis-  
 1318 entangO to: (a) accurately model task-specific operators, (b) recover interpretable physical factors,  
 1319 and (c) generalize to unseen parameter combinations and interpolation tasks.

1320 **Interpretability beyond parameter reconstruction.** Our approach provides interpretability at the  
 1321 level of identifiable physical factors, which is often more meaningful than raw parameter recon-  
 1322 struction. Many physical parameters are inherently non-identifiable from observational data alone  
 1323 (e.g., material properties in regions with zero stress). Our method identifies the factors that actu-  
 1324 ally govern system behaviors. Moreover, our experiments demonstrate clear interpretable patterns:  
 1325 (1) MNIST (Figure 6): latent traversal reveals smooth transitions between digit patterns, show-  
 1326 ing the method captures meaningful morphological variations, (2) Heterogeneous materials (Fig-  
 1327 ure 5): each latent dimension controls specific physical aspects: border rotation, relative fiber ori-  
 1328 entation, and segment-wise fiber orientation, (3) Semi-supervised results (Figure 2): latent factors  
 1329 successfully cluster different digit classes without explicit supervision. Our theoretical results on  
 1330 component-wise identifiability (Theorems 1 and 2) guarantee that the learned factors  $\hat{z}$  correspond  
 1331 to true generative factors  $z$  up to invertible transformations. This provides theoretical grounding  
 1332 for interpretability claims. In terms of practical utility, even without exact  $b$  reconstruction, the  
 1333 disentangled factors can enable system classification and similarity assessment, design space explo-  
 1334 ration through latent traversal, transfer learning to new parameter regimes, and anomaly detection  
 1335 in physical systems.

1336 **Quantitative interpretability metric.** The evaluation of interpretability depends critically on the  
 1337 availability of ground truth, which varies across our three practical scenarios, i.e., supervised,  
 1338 semi-supervised, and unsupervised. In the fully supervised setting corresponding to experiment 1, When  
 1339 true generative factors are available, we use quantitative metrics. The interpretability metric is the  
 1340 latent supervision test error (cf. Table 1), which directly measures how well the learned latent  
 1341 variables  $z$  recover the true physical parameters  $b$ . In the semi-supervised setting corresponding  
 1342 to experiment 2, the goal of interpreting physics is to discover the underlying microstructure gov-  
 1343 erning the deformation. Under this setting, since the true generative factors are not available, one  
 1344 cannot use any closed-form metric to evaluate interpretability. However, since the ground-truth mi-  
 1345 crostructure generation is controlled by MNIST digits, successful disentanglement should reveal this  
 1346 digit information. We thus follow the standard evaluation methods in disentangled representation  
 1347 learning and investigate if the learned latent variables indeed contain the digit information via latent  
 1348 traversal, and Figure 6 confirms that our learned latent variables capture the underlying digit struc-  
 1349 ture, demonstrating physical interpretability through microstructure discovery. In the third setting  
 of unsupervised learning, without ground truth labels, we evaluate interpretability through latent  
 traversal analysis. Figure 5 demonstrates that our method discovers meaningful physical factors:  
 border rotation between segments, relative fiber orientation between segments, and fiber orientation

1350 of individual segments—all physically meaningful properties for understanding the microstructure  
 1351 mechanism.

1352 **Physical insights across different PDE types.** Our method is designed for parametric PDE families—scenarios where underlying physics follows the same governing equations with varying parameters. This represents a very common and scientifically important class of problems in computational physics and engineering. While our current framework focuses on parametric variation within PDE families, the core architectural principles can extend to different PDE types. For example, in multi-physics systems, our approach could handle different but related physics (e.g., heat conduction vs. diffusion-reaction) by learning shared latent factors capturing common physical principles while using task-specific decoders. Extending to heterogeneous PDE types represents an exciting research frontier that would require modular architectures for different equation types, shared representation learning across physics domains, and physics-informed constraints for cross-domain transfer.

1362 **Accuracy-interpretability trade-off.** As discussed, MetaNO represents the forward prediction  
 1363 upper-bound for Disentango. The accuracy gap between the two is primarily due to insufficient  
 1364 latent dimensions relative to data complexity. Taking experiment 3 for instance, the data generation  
 1365 process may involve more than 30 true generative factors due to numerical solver noise and system  
 1366 complexity. Table 3 clearly shows the error decreases from 25.18% to 5.28% as we increase latent  
 1367 dimensions from 2 to 30—a trend that would continue with higher dimensions. We stopped at 30  
 1368 dimensions because: (1) 5.28% error is reasonably accurate for practical use, and (2) limited  
 1369 computational resource. In practice, users should gradually increase latent dimensions until convergence  
 1370 to MetaNO’s performance, ensuring the model capacity matches the true generative factors. Disen-  
 1371 tangO prioritizes joint modeling with interpretability over pure forward accuracy. For applications  
 1372 requiring only forward prediction, specialized NOs remain more accurate. However, for scientific  
 1373 discovery where understanding mechanisms is essential, the slightly degraded accuracy with full  
 1374 interpretability represents a favorable trade-off.

## C DATA GENERATION

### C.1 EXPERIMENT 1 - SUPERVISED FORWARD AND INVERSE PDE LEARNING

1380 we consider the constitutive modeling of anisotropic fiber-reinforced hyperelastic materials gov-  
 1381 erned by the Holzapfel–Gasser–Ogden (HGO) model, whose strain energy density function can be  
 1382 written as:

$$\begin{aligned} \eta &= \frac{E}{4(1+\nu)}(\bar{I}_1 - 2) - \frac{E}{2(1+\nu)} \ln J \\ &+ \frac{k_1}{2k_2}(e^{k_2\langle S(\alpha) \rangle^2} + e^{k_2\langle S(-\alpha) \rangle^2} - 2) + \frac{E}{6(1-2\nu)}\left(\frac{J^2 - 1}{2} - \ln J\right), \end{aligned} \quad (C.1)$$

1383 where  $\langle \cdot \rangle$  indicates the Macaulay bracket,  $\alpha$ ,  $k_1$  and  $k_2$  are the fiber angle, modulus and ex-  
 1384ponential coefficient, respectively,  $E$  denotes the Young’s modulus of the matrix,  $\nu$  is Poisson’s ra-  
 1385tio, and  $S(\alpha)$  describes the fiber strain of the two fiber groups,  $S(\alpha) = \frac{\bar{I}_4(\alpha)-1+|\bar{I}_4(\alpha)-1|}{2}$ .  $\bar{I}_i$  is  
 1386 the  $i^{\text{th}}$  invariant of the right Cauchy-Green tensor  $C$ ,  $\bar{I}_1 = \text{tr}(C)$  and  $\bar{I}_4 = \mathbf{n}^T(\alpha)C\mathbf{n}(\alpha)$ , with  
 1387  $\mathbf{n}(\alpha) = [\cos(\alpha), \sin(\alpha)]^T$ . In this context, the data generation process is controlled by sampling  
 1388 the material set  $\{E, \nu, k_1, k_2, \alpha\}$ , and the latent factors can be learned consequently in a supervised  
 1389 fashion. The physical parameters are sampled from  $\frac{k_1}{k_2} \sim \mathcal{U}[90, 100]$ ,  $k_2 \sim \mathcal{U}[0.001, 0.1]$ ,  $E \sim$   
 1390  $\mathcal{U}[0.5001, 0.6001]$ ,  $\nu \sim \mathcal{U}[0.2, 0.3]$ , and  $\alpha \sim \mathcal{U}[\pi/10, \pi/2]$ . To generate the high-fidelity (ground-  
 1391 truth) dataset, we sample 220 material sets, which are split into 200/10/10 for training/validation/test,  
 1392 respectively. For each material set, we sample 50 different vertical traction conditions  $T_y(\mathbf{x})$  on the  
 1393 top edge from a random field, following the algorithm in Lang & Pothoff (2011b); Yin et al. (2022).  
 1394  $T_y(\mathbf{x})$  is taken as the restriction of a 2D random field,  $\phi(\mathbf{x}) = \mathcal{F}^{-1}(\gamma^{1/2}\mathcal{F}(\Gamma))(\mathbf{x})$ , on the top  
 1395 edge. Here,  $\Gamma(\mathbf{x})$  is a Gaussian white noise random field on  $\mathbb{R}^2$ ,  $\gamma = (w_1^2 + w_2^2)^{-\frac{1}{4}}$  represents a  
 1396 correlation function, and  $w_1, w_2$  are the wave numbers on  $x$  and  $y$  directions, respectively. Then, for  
 1397 each sampled traction loading, we solve the displacement field on the entire domain by minimizing  
 1398 the potential energy using the finite element method implemented in FEniCS (Alnæs et al., 2015).  
 1399 Sample data of the obtained dataset is illustrated in Figure 9. In this setting, the model takes as input  
 1400 the padded traction field and learns to predict the resulting displacement field.

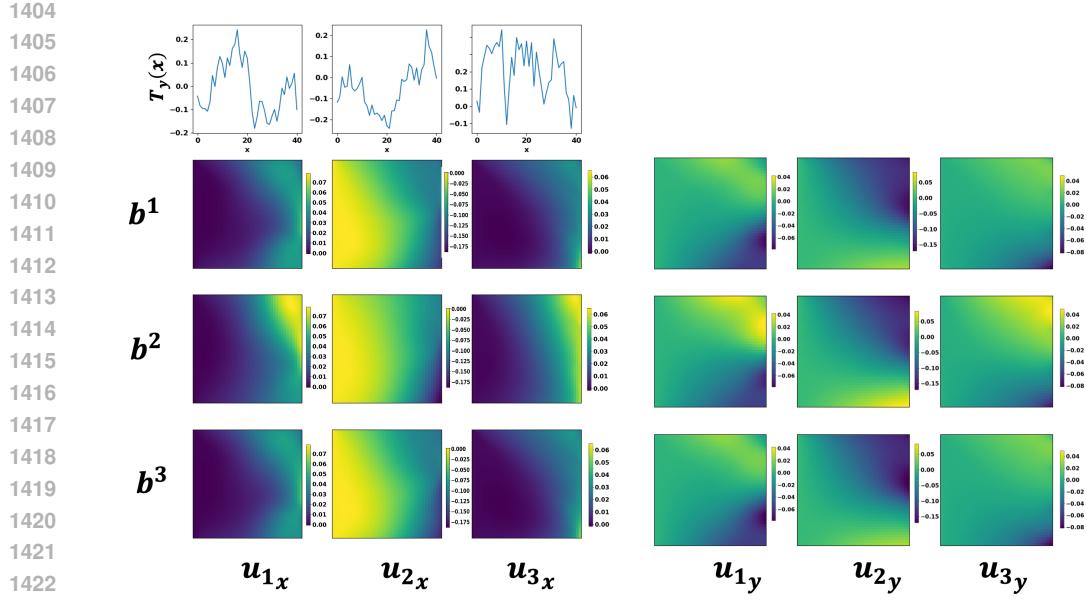


Figure 9: Illustration of the HGO data, loading and displacement pairs of three materials  $b^\eta$ ,  $\eta = 1, 2, 3$ . Top: three instances of different loadings  $T_y(x)$ , which corresponds to different  $f_i$ . Bottom: corresponding displacement solutions  $u_i^\eta$ , illustrating the impacts of system  $(b^\eta)$  variability in solution operators.

## C.2 EXPERIMENT 2 - MECHANICAL MNIST BENCHMARK

Mechanical MNIST is a benchmark dataset of heterogeneous material undergoing large deformation, modeled by the Neo-Hookean material with a varying modulus converted from the MNIST bitmap images (Lejeune, 2020). It contains 70,000 heterogeneous material specimens, and each specimen is governed by the Neo-Hookean material with a varying modulus converted from the MNIST bitmap images. We illustrate samples from the MMNIST dataset in Figure 10, including the underlying microstructure, two randomly picked loading fields, and the corresponding displacement fields.

## C.3 EXPERIMENT 3 - UNSUPERVISED HETEROGENEOUS MATERIAL LEARNING

We generate two sets of datasets in this case, varying the material microstructure in the following two ways.

**Varying fiber orientation distribution.** We generate the samples by controlling the predefined parameters of Gaussian Random Field (GRF). With the GRF sharpened by the thresholding, the values to binary field represent two distinct fiber orientations. The binary field is smoothed using a windowed convolution. To address boundary conditions, the matrix is padded with replicated edge values, ensuring that the convolution works uniformly across the entire grid. After the smoothing process, the padded sections are removed, and the remaining field is used to construct the fiber field. We use two fixed fiber angles  $\frac{\pi}{3}, \frac{2\pi}{3}$  for the corresponding binary field. We generate 300 material sets, each with 500 loading/displacement pairs, and divide these into training, validation, and test sets in a 200/50/50 split. Exemplar samples from this dataset are illustrated in Figure 11. These samples demonstrate the variability of  $b$ , which is critical for the latent variable identifiability in unsupervised learning settings, as proved in Theorem 2.

**Varying fiber orientation magnitude and segmentation line rotation.** Instead of controlling the fiber orientation angles on the binary field as two constant values, we sample the orientation distribution consisting of two segments with orientations  $\alpha_1$  and  $\alpha_2$  on each side, respectively, separated by a line passing through the center. The values of  $\alpha_1$  and  $\alpha_2$  are independently sampled from a uniform distribution over  $[0, 2\pi]$ , and the centerline's rotation is sampled from  $[0, \pi]$ . We generate 300 material sets, each with 500 loading/displacement pairs, and divide these into training, validation, and test sets in a 200/50/50 split.

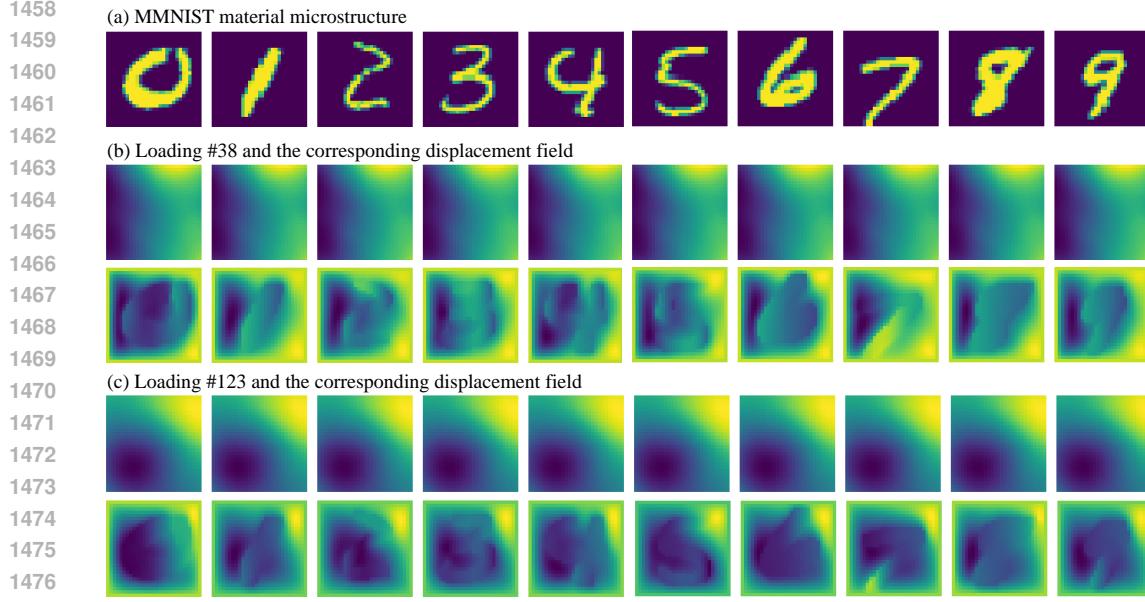


Figure 10: Illustration of exemplar MNIST samples in the semi-supervised scenario. (a): material parameter field corresponding to different  $b^\eta$ . (b): displacement fields (second row)  $u_{38}^\eta$  corresponding to the same loading field (first row)  $f_{38}$ . (c): displacement fields (second row)  $u_{123}^\eta$  corresponding to the same loading field (first row)  $f_{123}$ .

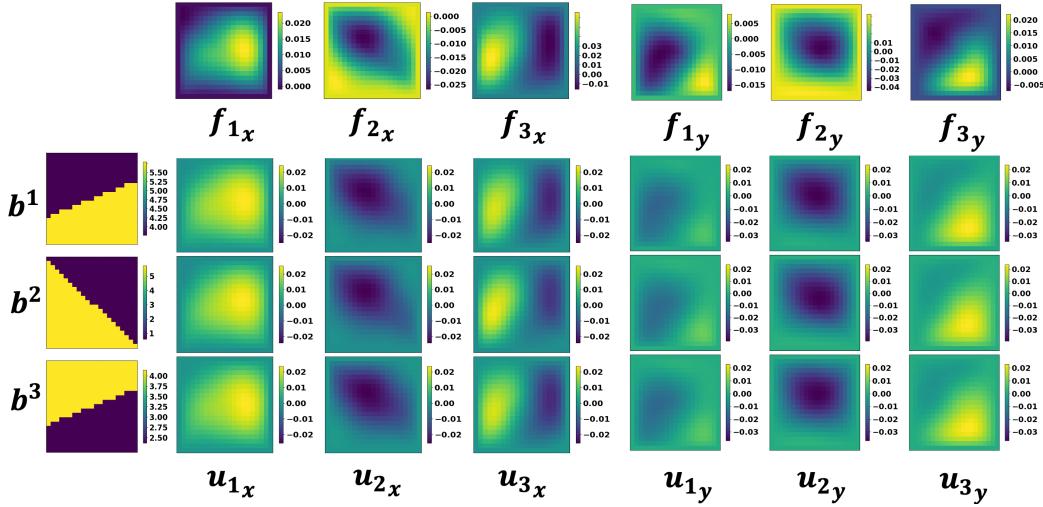


Figure 11: Illustration of fiber orientation magnitude and segmentation line rotation. Upper: three different loading instances of  $f_i$ . Bottom left: three different microstructure instances of  $b^\eta$ . Bottom right: corresponding solution fields  $u_i^\eta$ .

**Loading and displacement pairs for one microstructure.** After generating the specimens with varying fiber orientations, we feed the  $b^\eta(x)$  as the  $\alpha(x)$  to the HGO model, and keep the material property set  $\{E, \nu, k_1, k_2\}$  as constant. For each microstructure, we randomly sample loading and displacement pairs for each microstructure from the previous step.

The loading in this example is taken as the body load,  $f(x)$ . Each instance is generated as the restriction of a 2D random field,  $\phi(x) = \mathcal{F}^{-1}(\gamma^{1/2}\mathcal{F}(\Gamma))(x)$ . Here,  $\Gamma(x)$  is a Gaussian white

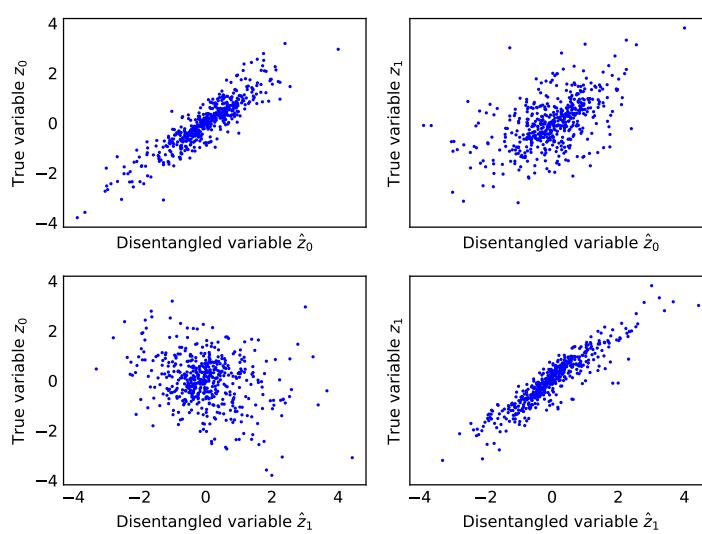


Figure 12: The scatter plot of the true generative variables  $z$  and the disentangled latent variables  $\hat{z}$  from the synthetic dataset with  $d = 9$  in experiment 4.

noise random field on  $\mathbb{R}^2$ ,  $\gamma = (w_1^2 + w_2^2)^{-\frac{5}{4}}$  represents a correlation function,  $w_1$  and  $w_2$  are the wave numbers on  $x$  and  $y$  directions, respectively, and  $\mathcal{F}$  and  $\mathcal{F}^{-1}$  denote the Fourier transform and its inverse, respectively. This random field is anticipated to have a zero mean and covariance operator  $C = (-\Delta)^{-2.5}$ , with  $\Delta$  being the Laplacian with periodic boundary conditions on  $[0, 2]^2$ , and we then further restrict it to  $\Omega$ . For the detailed implementation of Gaussian random field sample generation, we refer interested readers to Lang & Potthoff (2011a). Then, for each sampled loading field  $f_i(x)$  and microstructure field  $b^\eta(x)$ , we solve for the displacement field  $u_i^\eta(x)$  on the entire domain.

#### C.4 EXPERIMENT 4 - SYNTHETIC DATASET FOR IDENTIFIABILITY DEMONSTRATION

We demonstrate using experiment 4 that the disentangled latent factors from DisentangO correspond to the true generative factors. We generate synthetic data following the process in equation C.2. We work with latent variables  $z$  of dimension 2 and sample from  $z \sim \mathcal{N}(\mu_b, \sigma_b^2 \mathbf{I}) \in \mathbb{R}^2$  where for each microstructure  $b$ , we sample  $\mu_b \sim \mathcal{U}[-4, 4]$  and  $\sigma_b \sim \mathcal{U}[1, 10]$  and  $f \sim \mathcal{U}[0, 1] \in \mathbb{R}^3$ ,  $M \sim \mathcal{U}[0, 1] \in \mathbb{R}^{2 \times 2}$ ,  $A = [I, 2I, 3I, 4I]^T$ ,  $M \in \mathbb{R}^{8 \times 2}$ ,  $b \sim \mathcal{U}[0, 1] \in \mathbb{R}^8$ ,  $W \sim \mathcal{U}[0, 1] \in \mathbb{R}^{4 \times 1}$ ,  $l \sim \mathcal{U}[0, 1] \in \mathbb{R}$ ,

$$\theta = Az, \quad (C.2)$$

$$u = W\sigma(\theta_1 f + \theta_2) + l. \quad (C.3)$$

We generate 700 data pairs of  $(z, \theta)$  corresponding to 700 tasks, and for each task, we generate 200 samples of  $(f, u)$  pairs.

| $d$         | 3      | 5      | 7      | 9      |
|-------------|--------|--------|--------|--------|
| MCC         | 0.7836 | 0.8013 | 0.8237 | 0.9121 |
| $R^2$       | 0.5673 | 0.6026 | 0.6473 | 0.8242 |
| Rank( $w$ ) | 3      | 4      | 4      | 4      |

Table 5: The MCC and  $R^2$  scores to evaluate identifiability on the synthetic dataset in experiment 4.

We conduct experiments on the synthetic dataset and split the tasks into  $d/100/500$  for training, validation and test, respectively, with  $d$  chosen from the set of  $(3, 5, 7, 9)$  to investigate the effect of the number of training tasks on the identifiability. In particular, we measure the component-wise identifiability of the latent variables  $z$  by computing the Mean Correlation Coefficient (MCC) and the coefficient of determination  $R^2$  scores on the test dataset, and report the results in Table 5, where we observe a monotonic growth on both MCC and  $R^2$  with the increase of the number of training

1566 tasks  $d$ . Figure 12 illustrates the alignment on the test dataset between the true generative factors  
1567  $z$  and the disentangled factors  $\hat{z}$  from DisentangO in the case of  $d = 9$ . To verify Assumption 4,  
1568 we calculate the rank of the matrix  $w(z, b)$ . Specifically, for each  $\theta$ , with the VAE encoder, we  
1569 calculate the  $\mu_b$  and  $\sigma_b$ , sample  $z$ , and calculate the corresponding  $\frac{\partial q_i(z_i, b^j)}{\partial z_i}$  and  $\frac{\partial^2 q_i(z_i, b^j)}{\partial z_i^2}$ ,  
1570 where  $i = 1, \dots, d_z, j = 1 \dots d$ .  
1571

1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619