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ABSTRACT

Neural operators (NOs) excel at learning mappings between function spaces, serv-
ing as efficient forward solution approximators for PDE-governed systems. How-
ever, as black-box solvers, they offer limited insight into the underlying physical
mechanism, due to the lack of interpretable representations of the physical param-
eters that drive the system. To tackle this challenge, we propose a new paradigm
for learning disentangled representations from NO parameters, thereby effectively
solving an inverse problem. Specifically, we introduce DisentangO, a novel hyper-
neural operator architecture designed to unveil and disentangle latent physical fac-
tors of variation embedded within the black-box neural operator parameters. At
the core of DisentangO is a multi-task NO architecture that distills the varying
parameters of the governing PDE through a task-wise adaptive layer, alongside a
variational autoencoder that disentangles these variations into identifiable latent
factors. By learning these disentangled representations, DisentangO not only en-
hances physical interpretability but also enables more robust generalization across
diverse systems. Empirical evaluations across supervised, semi-supervised, and
unsupervised learning contexts show that DisentangO effectively extracts mean-
ingful and interpretable latent features, bridging the gap between predictive per-
formance and physical understanding in neural operator frameworks.

1 INTRODUCTION

Interpretability in machine learning (ML) refers to the ability to understand and explain how models
make decisions (Rudin et al., [2022; Molnar, [2020). As ML systems grow complex, especially with
the use of deep learning and ensemble methods (Sagi & Rokachl 2018)), the reasoning behind their
predictions can become opaque. Interpretability addresses this challenge by making the models more
transparent, enabling users to trust the outcomes, detect biases, and identify potential flaws. It is a
critical factor in applying Al responsibly, especially in fields where accountability and fairness are
essential (Cooper et al.,[2022)). In physics, where models endeavor to capture the governing laws and
physical principles, understanding how a model arrives at its predictions is vital for verifying that
it aligns with known scientific theories. This transparency is key for advancing scientific discovery,
validating results, and enhancing trust in models for complex physical systems.

Discovering interpretable representations of physical parameters in learning physical systems is
challenging due to the intricate nature of real-world phenomena and the often implicit relationships
between variables. In physics, quantities like force, energy, and velocity are governed by well-
established laws, and extracting them in a way that aligns with physical intuition requires models
that go beyond mere pattern recognition. Traditional ML models may fit the data but fail to provide
a physically interpretable way. To address this, recent developments include integrating physical
constraints into the learning process (Raissi et al., 2019), such as embedding conservation laws (Liu
et al.} 2023} 2024a), symmetries (Mattheakis et al.l 2019)), or invariances (Cohen & Welling, [2016)
directly into model architectures. Additionally, methods like symbolic regression (Biggio et al.,
2021) and sparse modeling (Carroll et al., |2009) aim to discover simple, interpretable expressions
that capture the underlying dynamics. However, balancing model expressivity with interpretability
remains a significant challenge, as overly complex models may obscure the true physical relation-
ships, while oversimplified models risk losing critical details of the system’s behavior.

We introduce DisentangO, a novel variational hyper-neural operator architecture to disentangle
physical factors of variation from black-box neural operator parameters for solving parametric
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PDEs. Neural operators (NOs) (Li et al.| 2020aic) learn mappings between infinite-dimensional
function spaces in the form of integral operators, making them powerful tools for discovering con-
tinuum physical laws by manifesting the mappings between spatial and/or spatiotemporal data; see
You et al.|(2022a); Liu et al.|(2024afb; [2023); |Ong et al.| (2022)); |Cao|(2021)); Lu et al.| (2019} [2021);
Goswami et al.| (2022); |Gupta et al.[ (2021) and references therein. However, most NOs serve as
efficient forward surrogates for the underlying physical system under a supervised learning setting.
As aresult, they act as black-box universal approximators for a single physical system governed by a
fixed set of PDE parameters, and lack interpretability with respect to the underlying physical laws. In
contrast, the key innovation of DisentangO lies in the use of a hypernetwork architecture that distills
the varying physical parameters of the governing PDE from multiple physical systems through an
unsupervised learning setting. The distilled variables are further disentangled into distinct physical
factors to enhance physical understanding and promote robust generalization. Consequently, Dis-
entangO effectively extracts meaningful and interpretable physical features, thereby simultaneously
solving both the forward and inverse problems. Our key contributions are:

* We bridge the divide between predictive accuracy and physical interpretability, and intro-
duce a new paradigm that simultaneously performs physics modeling (i.e., as a forward
PDE solver) and governing physical mechanism discovery (i.e., as an inverse PDE solver).

* We propose a novel variational hyper-neural operator architecture, which we coin Disen-
tangO. DisentangO extracts the key physical factors of variation from black-box neural
operator parameters of multiple physical systems. These factors are then disentangled into
distinct latent factors that enhance physical interpretation and generalization across differ-
ent physical systems.

* We provide theoretical analysis on the component-wise identifiability of the true generative
factors in physics modeling: by learning from multiple physical systems, the variability of
hidden physical states in these systems promotes identifiability.

* We explore the practical utility of disentanglement and perform experiments across a broad
range of settings including supervised, semi-supervised, and unsupervised learning. Re-
sults show that DisentangO effectively extracts meaningful physical features.

2 BACKGROUND AND RELATED WORK

Neural operators. Learning complex physical systems from data is essential in many scientific
applications (Carleo et al.,|2019; [Liu et al.} 2024c; |[Karniadakis et al., 2021; Zhang et al., [2018}; |Cai
et al., [2022; |Pfau et al.l [2020; He et al., [2021; Jafarzadeh et al., 2024). When governing laws are
unknown, models must be both resolution-invariant for consistent performance across discretiza-
tions and interpretable for domain experts. Neural operators (NOs) achieve the former by learning
mappings between infinite-dimensional function spaces (L1 et al.,|2020azbic; |You et al., 2022a;|Ong
et al., 2022} |Caol [2021;|Lu et al.,[2019;[2021; |Goswami et al., 2022} \Gupta et al.|[2021), enabling ac-
curate and consistent predictions of continuum physical surrogates. However, NOs lack interpretable
representations of physical states, limiting their ability to reveal underlying physical mechanisms.

Hypernetworks. Hypernetworks (Ha et al., 2016} |Chauhan et al.| 2024)) are a class of neural net-
work (NN) architectures that use one NN to generate weights for another NN, both trained in an
end-to-end manner. This allows soft weight sharing across tasks, benefiting transfer learning and
dynamic information sharing (Chauhan et al., 2023)). Hypernetworks can also be employed as a ver-
satile technique in existing NN architectures. For instance, in Nguyen et al.; |Oh & Peng|(2022), a
hypernetwork is employed to generate parameters for a VAE model and enable multi-task learning.
Similarly, Lee et al.|(2023) integrates the hypernetwork architecture with neural operators. However,
none of the existing work discusses the capability of hypernetworks in hidden physics discovery.

Forward and inverse PDE learning. Existing NOs serve as efficient surrogates for forward PDE
solving but often act as black-box approximators, lacking interpretability. In contrast, deep learning
methods for inverse PDE solving (Fan & Ying, 2023; [Molinaro et al., 2023 Jiang et al.| 2022;
Chen et al.,|2023) aim to reconstruct PDE parameters from solution data but face challenges due to
ill-posedness. To address this, many NOs incorporate prior information via governing PDEs (Yang
etal.l|2021;|Li et al.,2021), regularizers (Dittmer et al.,|2020; Obmann et al.,[2020; |Ding et al., 2022;
Chen et al.;[2023)), or structured operators (Lai et al., 2019} |Yilmaz, 2001)). However, these methods
assume prior knowledge of the model form, which is often unrealistic. A recent approach (Yu et al.,
2024) employs attention to construct a data-dependent kernel for inverse mapping but does not
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Figure 1: Overview of the DisentangO architecture. Each task correspond to a different (hidden) PDE parameter
b. For illustration, the same input function f; is shown for multiple tasks to highlight that different parameter
fields b" can produce different output functions ;] under identical input f; in practice, f may vary across tasks.
The task-specific lifting parameters 67, are encoded and reconstructed through a VAE, and the reconstructed
parameters 672 are fed into the iterative Fourier layers to form the task-specific neural operator G"”. Loss
components are overlaid to indicate where each term in the objective L;,ss is computed.

disentangle the learned kernel or extract interpretable parameters. To our knowledge, DisentangO
is the first to tackle both forward (physics prediction) and inverse (physics discovery) PDE learning
while simultaneously identifying distinct physical parameters from the learned NO.

Disentangled representation learning. Disentangled representation learning separates data into
distinct, interpretable factors, each capturing an independent variation. It has critical implications for
transfer learning, generative modeling, and Al fairness, enabling models to generalize by leveraging
isolated features. Key advances have been driven by models like 3-VAE (Higgins et al, [2017),
FactorVAE (Kim & Mnih, 2018)), and InfoGAN 2016), which promote disentanglement
through latent regularization and mutual information constraints. While early work focused on
supervised or semi-supervised methods (Ridgeway & Mozer, 2018}, [Shu et al., 2019; [Mathieu et al.,
2019), recent efforts target unsupervised learning (Duan et al. 2019), though challenges remain
(Locatello et all, [2019), with ongoing efforts to improve metrics, robustness, and applicability to
complex data. Most research has centered on computer vision and robotics, where latent factors
have human-interpretable visual meanings, while its exploration in physical system learning remains
limited (Cingsch et all, 2024} [Tong et all, 2024} [Fotiadis et al [2023). Moreover, existing work
disentangles from data, whereas our work is the first to disentangle from black-box NN parameters.

3 DISENTANGO
We consider a series of complex systems with different hidden physical parameters:
Kolu)(@) = f(a). zeQ. 3.1

Here, 2 C R® is the domain of interest, f(x) is a function representing the loading on 2, u(x) is
the corresponding solution of this system. Ky represents the unknown governing law, e.g., balance
laws, determined by the (possibly unknown and high-dimensional) parameter field b. For instance,
in a material modeling problem, K often stands for the constitutive law and b can be a vector
(b € R%) representing the homogenized material parameter field or a vector-valued function (b €
L>(Q; R%)) representing the heterogeneous material properties. Both scenarios are considered in
our empirical experiments in Section 4]

Many physical modeling tasks can be formulated as either a forward or an inverse PDE-solving
problem. In a forward problem setting, one aims to find the PDE solution when given PDE informa-
tion, including coefficient functions, boundary conditions, initial conditions, and loading sources.
That means, given the governing operators /C, the parameter (field) b, and loading field f(x) in
equation . the goal is to solve for the corresponding solution field u(x), through classical PDE
solvers (Brenner & Scott, 2007)) or data-driven approaches (Lu et al 2019} [Li et al, 2020c). As a
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result, a forward map is constructed:
G:(b,f)—u. (3.2)

Here, b and f are input vectors/functions, and u is the output function.

Conversely, solving an inverse PDE problem involves reconstructing the underlying full or partial
PDE information from PDE solutions, where one seeks to construct an inverse map:
H:(u,f)—b. (3.3)
Unfortunately, solving an inverse problem is typically more challenging due to the ill-posed nature
of the PDE model. In general, a small number of function pairs (u, f) from a single system does
not suffice in inferring the underlying parameter field b, making the inverse problem generally non-

identifiable (Molinaro et al.| 2023).

Herein, we propose a novel neural architecture to alleviate the curse of ill-posedness without access
to the exact governing partial differential equation (PDE). The key ingredients are: 1) the construc-
tion of a multi-task NO architecture, which solves both the forward (physics prediction) problems
simultaneously from multiple PDE systems with different hidden parameters; 2) a generative model
to disentangle the key features from NO parameters that contain critical information of b, as the
inverse (physics discovery) problem solver.

3.1 VARIATIONAL HYPER-NEURAL OPERATOR AS A MULTI-TASK SOLVER

Notation and data model assumptions. We denote by f(x) and u(x) the input and output func-
tions of the NO, respectively. Let p(-) denote a probability density function, E(-) the expectation,
and ||-|| the /2-norm. We assume (noisy) observations of both w and f are available on a common
physical domain €, where uw € U C L?*(Q;R%) and f € F C L?(2;R%). Here, U and F are the
Banach spaces of solution fields and loading fields, respectively. Formally, we consider S' training
datasets D", ) = 1,..., S, each corresponding to the same PDE equation [3.1] but with a different
(hidden) physical parameter b" € 3, with B the parameter space. In our multi-task learning model,
each dataset corresponds to one task. We assume the hidden parameter is generated according to:

b~Py,z~p(z|b), (3.4)
where z € Z C R% is the latent embedding of b. Each dataset contains measurements from

n
My ain function pairs {(u](x), f;' (x))} . Although our method accommodates datasets with
varying numbers of function pairs, we use the same number of function pairs in this work for sim-
plicity and denote n;. ... = nrqin. While actual observations are gathered on a discrete sensor
set x = {x; };‘i"l and inevitably contain observational noise of the solution, we adopt the standard
assumption that this noise is additive and i.i.d. Letting G'[£; b] denote the true forward operator of
equation 3.1} we write the data model associated with multi-task learning as:

D" = {{(uf,, £V i D= D" 3.5)
with 1
F Py £ = Fl (@), ul = ul (@) + ey = G0 (®5) + €y €nig ™~ /\/(0,“@'6)

The forward modeling objective is to learn a surrogate solution operator G[-;6"] for G', where
0" denotes the task-specific NO parameters for the forward surrogate operator in the 7-th task,
associated with b". Note that all tasks share the same NO architecture, G, and the surrogate operator
for each task depends on the physical system 7 through the task-specific parameter 6".

For inverse modeling, let 7T denote the (unknown) inverse operator that maps function pairs (u, f)
to the underlying PDE parameter b. In practice, identifying G is often impossible, as the available
data of (u, f) may not contain sufficient information to identify all features of b. For instance,
in a Dirichlet boundary condition problem, u; () = 0 for all & € 952, making b7 not learnable
on 0f2. A more realistic goal is therefore to recover the underlying mechanism of b in the space
of identifiability, i.e., z. Thus, our second objective is to construct an inverse map by estimating

embedding 2" of the hidden parameter b" from 67:
H(O";0y) ~ 2", 3.7)

where Oy are trainable parameters of H, and 27 € R4 denotes the learned latent variables that
can be transformed to the ground-truth latent variable 2" via an invertible function h. The goal of
disentanglement is to discover z, together with the solution operator G.
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The first objective learns the forward operator G[-;6"] in a supervised fashion, in the form of
function-to-function mappings, for all (hidden) parameters b in the range of interest; while the
second objective learns the vector-to-vector mapping from 6" to z”, which is unsupervised due
to the hidden physics nature. We propose to employ a variational autoencoder (VAE)
as the representation learning approach for the second objective, and a meta-learned
NO architecture as a universal solution operator for the first objective[] The key is to pair these archi-
tectures as a hyper-neural operator, which simultaneously solves both forward and inverse problems.
Although the proposed strategy is generic and thus applicable to other multi-task neural operator ar-
chitectures, to provide a universal architecture of G for different tasks, we adopt a meta-learning
strategy following the meta-learned neural operator (MetaNO) (Zhang et all 2023). MetaNO is
developed based on the implicit Fourier neural operator (IFNO), a PDE solution operator with a rel-
atively small number of trainable parameters 2022b). In MetaNO, task-wise adaptation
is applied only to the trainable parameters in the first layer of the NO, whereas all other parameters
are shared across tasks. For an L-layer MetaNO, we write:

GIf;0")(z) = Gf;0%,0.,00)(x) := Qo, © (Ja,)" o Pon[fl(2) , (3.8)

where P, Q are shallow-layer MLPs that map a low-dimensional vector to a high-dimensional vector
and vice versa, parameterized by 7, and 6, respectively. Each intermediate layer, 7, is constructed
as a mimetic of a fixed-point iteration step and parameterized by 6 ;. Supported by the universal ap-
proximator analysis (Zhang et al}[2023)), different PDEs share common iterative (6 ;) and projection
(0q) parameters, with all the information about parameter b encoded in the task-wise lifting parame-
ters 0. Hence, to provide an inverse map from the task-wise NO parameter 0" to the key features of
the PDE parameters, 2", one can construct  as the mapping from 67, to 2" using a neural network
architecture. In this work, we employ a standard MLP:

H(67;0) := MLP(A7}) , (3.9)
since all other NO parameters are invariant to the change of b. This construction substantially
reduces the degrees of freedom in 67, making the invertibility assumption in the next section feasible.

To simplify notation, we use " to denote 07, in the subsequent discussion. An overview of the
forward and inverse operator architecture is provided in Figure|[I}

We now define the learning objective. The overall objective is to maximize the log data likelihood:

max E(log p(6, D)) = max [E(logp(u|f, 0) + logp(0]f) + logp(f))]

Note that p( f) remains constant over different NO parameter 0, and the assumption in eq. yields
log(p(0|f)) = log(p(#)). Additionally, the assumption in eq. guarantees that 0 is generated
from the latent space over z, hence log(p(6)) = log [_ p(f|z)p(z)dz. The overall objective then
becomes:

max E(log(p(8, D)) = max []E(log(p(u £.0)) +E(1og / p(@z)p(z)dz)} (3.10)

However, the second term in this formulation is generally intractable. We use a variational posterior
q(0]z) to approximate the actual posterior p(f|z) and maximize the evidence lower bound (ELBO):

S

1

LeLpo = g > lEqun) log p(6"|2") — Dk (q(z"IG")IIp(zn))] ,
n=1

with Dy, (+]|-) denoting the KL divergence between two distributions. Putting everything together,
we obtain the loss functional:

S
i = 5 3 |~ E08(p(u1.07) ~ Byoron 1op(0") + D (=07 |

(3.11)

The above formulation naturally lends itself to a hierarchical variational autoencoder (HVAE) archi-
tecture (Vahdat & Kautz, 2020). The encoder aims to obtain the posterior ¢,,_ 5. (2"]6") and provide
the inverse map H:

Z~qu x. (2707 . (3.12)

“Note that tasks differ in the PDE coefficients (the physical parameters b") and correspondingly the NO
parameter 6", not in the NO architecture or its input-output structure.
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Note that although H represents a deterministic inverse mapping from the NO parameters to the
latent variables, in equation [3.12] we approximate this mapping using a probabilistic encoder to
account for uncertainty and enable variational inference. This follows standard practice in the VAE
literature, where deterministic relationships are modeled probabilistically for tractable inference.

Then, the first decoder g processes the estimated latent variable 2 and reconstructs the corresponding
NO parameter 6: 6 — i(3). 3.13)

Lastly, the second decoder reconstructs the forward map G, by further taking the estimated 6 and the
loading function f and estimating the output function w:

@ =G[f:0]. (3.14)
3.2 DISENTANGLING THE UNDERLYING MECHANISM

DisentangO aims to identify and disentangle the components of the latent representation z, which
serves as an inverse PDE solver. However, to capture the true physical mechanism, a natural ques-
tion arises: is it really possible to identify the latent variables of interest (i.e., z) with only observa-
tional data {D"}f;:l? We now show that, by learning the model (pz, §, H, G) that matches the true
marginal data distribution in all domains, we can indeed achieve this identifiability for the generat-
ing process proposed in equation[3.4]and equation 3.6 Before the formal theorem, we first state our
assumptions:

Assumption 1. (Density Smoothness and Positivity) The probability density functions for # and z,
which we denote as py and p, are both smooth and positive.

Assumption 2. (Invertibility) The task-wise parameter € can be generated by z through an invertible
and smooth function H~'. Moreover, for each given f, we denote G;(0) := G[f;0](x) as the
operator mapping from R?% to U. G is also one-to-one with respect to 6.

Assumption 3. (Conditional Independence) Conditioned on b, each component of z is independent
of each other: log p|5(2]b) = Zf;l log p.,b(2i|b).

Assumption 4. (Linear independence) There exists 2d, + 1 values of b, such that the 2d, vectors

w(z,b’) —w(z,b%) with j = 1,--- , 2d, are linearly independent. Here,
; 0q1(z1,b7) 9qa. (2a.,b") 9qu(z1,b) 9°qa, (za., V)
JY\ . — e z z cen z z
w(zvb ) T < 621 b I 8Zdz b 82% ) I 8232 ’ (315)

with g;(2;, b) 1= log p_, b

First, we show that the latent variable z can be identified up to an invertible component-wise trans-
formation: for the true latent variable z € R% there exists an invertible function A : R% — R%
such that 2 = h(z).

Theorem 1. We follow the data-generating process in equation [3.4]and equation [3.6] and Assump-
tions Then, by learning (pz, g, 7:[, C;) to achieve:

Pa|f = Pu|f » (3.16)
where v and w are generated from the true process and the estimated model, respectively, z is
identifiable up to an invertible function h.

Proof: Please see Appendix [A]

Additionally, with additional assumptions on conditional independence and datum variability, we
can further obtain the following theoretical results on component-wise identifiability: for each true
component z;, there exists a corresponding estimated component Z; and an invertible function h; :
R — R, such that z; = h;(Z;).

Theorem 2. We follow the data-generating process in equation [3.4] and equation [3.6| and Assump-
tions ﬂ Then, by learning (ps, 9, H,G ) to achieve equationis component-wise identifiable.

Proof: Please see Appendix

Discussion on assumptions. Intuitively, Assumptions|T}2]are required to guarantee that there exists
a smooth and injective mapping between the ground-truth latent embedding z and the learned em-
bedding 2. Assumption[d]indicates sufficient variability across physical systems. This is a common
assumption in the nonlinear ICA literature for domain adaptation (Hyvarinen et al., 2019; |Khe-
makhem et al.,2020; Kong et al.,2023)). Further discussions and validation on the assumptions are
provided in Appendix [A] To our best knowledge, it is the first time the component-wise identifiabil-
ity is discussed in the context of multi-task neural operator learning.

6
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3.3 A GENERIC ALGORITHM FOR VARIOUS SUPERVISION CASES

Although DisentangO is primarily designed for the challenging scenario of learning without super-
vision on b nor prior knowledge on the PDE model form in equation 3.1} its methodology is generic
and readily can be extended to handle the scenarios with partial or full measurements of b, which
are common in classical inverse PDE benchmark problems. In this section, we discuss the practical
utility of DisentangO under three scenarios:

¢ (SCI: Supervised) The value of b" is given.

* (SC2: Semi-supervised) The value of b" is not given, but a label ¢(b") (e.g., a classification
of b") is given.

* (SC3: Unsupervised) No value or label is given for b for each task.

A pseudo Algorithm|T]is provided in the Appendix.

To obtain the posterior ¢ in equation [3.12] we assume that each latent variable satisfies a Gaussian
distribution of distinct means and diagonal covariance, i.e., ¢,._ x. (2]0) := N (1. (0), 22(0)) then
estimate its mean and covariance using an MLP. As a result, the KL—divergence term in the ELBO

admits a closed form: 4
13
SC2SC3: Dice, (a(216) || p(2)) = 5 D ((S2)F + (1) — 2log(()) — 1), (BAD)

=1

In the supervised setting, we take 1. (67,) = b", and then the KL divergence term writes:

d
N 1 ¢
SCL: Dier (q(210) | p(2)) = 3 Y (27 + (0 = 0)F = 210g((£2).) = 1).  G.18)
i=1
For the first decoder, the likelihood p(6"]2") is a factorized Gaussian with mean 1y and covariance
X9, computed from another MLP. By taking as input Monte Carlo samples once for each z, the
reconstruction accuracy term can be approximated as:

do o N2 do
Byt logp(0l2) ~ = > (W) =3 (oa(S)i o)

i=1 i=1
where dy is the dimension of 8, and ¢ is a constant.

For the second decoder, we parameterize it as a multi-task NO in equation @ and model the

discrepancy between G| fi; 0"](z,) and the ground truth w(z;,) as an additive independent unbiased
Gaussian random noise €, with

g[.ffﬁ”](‘” )—u (k) + €n,jks €0k ~ N(O,wQ),

where w is the standard deviation of the additive noise as defined in the data model. In practice, the
observational noise is unknown, and we treat w as a tunable hyperparameter. Then, with a uniform
spatial discretization of size Az in a domain  C R%:, the log likelihood after eliminating the
constant terms can be written as:

S Ntrain 2
77 ( _
o 3o O |60 0 — )
n=1 j=1
In our empirical tests in Section[d] for the unsupervised and semi-supervised scenarios, we choose
q as a standard Gaussian distribution following the 1ndependence assumption of Theorem 2] Addi-
tionally, to avoid overparameterization, we take ¥y = 021, with oy being a tunable hyperparameter.
In this case, the total objective can be further simplified as:

(3.19)

L)

Ntrain 2 .
Ltoes = QU
o= 330 (30 otz =] =] s
for the unsupervised scenario, and
BN el 1. on 1 ? iyl |2 n 1|2
L 0ss — & r7 ! " — -b .
z 57,2::1 Ba Z:: Gls7; 0" — o po|| +BrLllpl —b"
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2
for the fully supervised scenario. Here, 3y = % and fp = o3 are treated as tunable
hyperparameters. In the semi-supervised scenario, we incorporate partial supervision by equipping
the above loss with a constraint following |Locatello et al.| (2020):

S Ntrain
1 § : § : AR ) n||?
Lloss = g gt <ﬁd : g[f_] ’977] - uJ

N 2
97]7 nH 7 2 CSLC 777 > g
w07 = b | Bren 2l + B L=, e(87)

with . a tunable parameter and L.(z",¢(5")) the corresponding loss term based on provided
information (e.g., L. is the cross-entropy loss when taking c as the classification label of 37).

Note that Sk, is closely connected to the adjustable hyperparameter in 5—VAE (Higgins et al.,
2017). Taking a larger Sk, encourages disentanglement (Locatello et al.l 2019), while it also adds
additional constraint on the implicit capacity of the latent bottleneck resulting in information loss
(Burgess et al., 2018). On the other hand, the data reconstruction term forces the latent factors to
contribute to the “reconstruction” of the more complicated solution field in a global perspective,
and hence increasing [, is anticipated to alleviate information loss. In our empirical study, we
demonstrate the interplay between these two tunable hyperparameters.

4 EXPERIMENTS

We assess DisentangO across various physics modeling and discovery datasets, denoting a model
with latent dimension 7 as DisentangO-n. Our evaluation focuses on several key aspects. Firstly, we
demonstrate the capability of DisentangO in forward PDE learning, and compare its performance
with a total of 14 relevant baselines. In particular, we select 8 NO baselines, i.e., FNO (Li et al.,
2020c), UFNO (Wen et al., 2022), NIO (Molinaro et al., [2023), WNO (Tripura & Chakraborty),
2022), PIANO (Zhang et al., [2024), MetaNO (Zhang et al., [2023)), FUSE (Lingsch et al.}|2024) and
its extension, as well as six non-NO baselines, i.e., CAMEL (Blanke & Lelarge, 2023)), InVAErt
(Tong et al.l [2024)), SMDP (Holzschuh et al., 2023), two VAE variants (Kingma & Welling, 2013)
and 5-VAE (Higgins et al) 2017). Secondly, we showcase the merits of DisentangO in inverse
modeling for interpretable physics discovery. We perform parametric studies on the associated dis-
entanglement parameters. Lastly, we provide interpretations of the disentangled parameters. Further
details and an additional experiment for identifiability demonstration are provided in Appendices B

and respectively.
4.1 SUPERVISED FORWARD AND INVERSE PDE LEARNING

We start by investigating DisentangO’s Table 1: Test errors and the number of trainable parameters in
capability in solving both forward experiment 1. Bold number highlights the best method.

and inverse PDE problems in a fully Models | #param | per-epoch Test eIrors
supervised setting. Specifically, we time (s) data z (SCI)
consider the constitutive modeling ~ DisentangO 697k 12.2 1.65%  4.63%
of anisotropic fiber-reinforced hy- MetaNO 296k 9.8 1.59% -
perelastic materials governed by the NIO 709k 5.6 - 15.16%
Holzapfel_Gasser_Ogden (HGO) FNO 698k 9.1 2.45% 14.55%
model, where the data-generating UFNO 720k 212 7.61%  11.23%
process is controlled by sampling PI\Z§8 gggt 1?23 ggg? lggggo
the governing material parameter set CAMEL 654k 523 | 11928% =
. . 0 -
{E,v, ki1, k2, a} and the latent factors SMDP 671k 512 - 17.76%
can be learned consequently in a super- InVAErt 707k 0.1 i} 5.16%
vised fashion. In this setting, the model FUSE 706k 22 - 4.999
takes as input the padded traction field FUSE-f 707k 11.4 16.33% 6.19%
and learns to predict the displacement. VAE 698k 28 | 4997%  16.34%
. convVAE 664k 2.8 81.11% 16.27%
As the number of latent factors is fixed B-VAE 698k 28 | 51.16% 16.47%

for supervised learning in this experi-
ment, we defer our ablation study to the second experiment. We report in Table [T] our experimen-
tal results. Note that only FNO, PIANO, FUSE-f, VAE and its variations are able to handle both
forward and inverse problems, whereas MetaNO can only solve the forward problem, and NIO, In-
VAErt, and FUSE can only solve the inverse problem. With this caveat in mind, MetaNO achieves
the best performance in forward PDE learning, with DisentangO performing comparably well and
beating the third best model by 32.7% in accuracy. In terms of inverse modeling with full latent



Under review as a conference paper at ICLR 2026

> . 0.6 ; . 0.04
4 s Y ) t 2
0.4 9 o, A

2 0.2 5*"‘ 002 (3 ";?'

] § of b ¥ e

w» » 0.0] wrator *hipe. 0.00 T
0 o 0 [ A 0
02 0 30850 2
5 H H d -0.02 {f}i". :
S| Mo o' e 5
I o el o ¢ (79 ~0.04 s s
» 5| _oslcs s

-6 -4 -2 0 2 4 -0.6 -04 -0.2 0.0 0.2 0.4 0.6 —0.06 —0.025 0.000 0.025 0.050 0.075 0.100
Figure 2: MMNIST scatterplot with DisentangO-2 and B4 = 1: left: (B = 1,8as =

100, data error 18.81%), middle: (Bx = 10,8as = 10,data error 16.94%), right: fully unsupervised
DisentangO-2 without classification loss (8x; = 100, data error 12.65%).

supervision (SC1), DisentangO is the only method that can hold the error well below 5%, outper-
forming the second best method by 7.2% and the second best joint (i.e., simultaneous forward and
inverse) solver by 25.2%.

4.2 SEMI-SUPERVISED MECHANICAL MNIST BENCHMARK

We consider semi-supervised learning and apply DisentangO to the Mechanical MNIST (MMNIST)
benchmark (Lejeune}, 2020). MMNIST comprises 70,000 heterogeneous material specimens under-
going large deformation, each governed by a material model of the Neo-Hookean type with a varying
modulus converted from the MNIST bitmap images. In our experiment, we take 500 images (with a
420/40/40 split for training/validation/test) and generate 200 loading/response data pairs per sample
on a 29 x 29 structured grid, simulating uniaxial extension, shear, equibiaxial extension, and con-
fined compression load scenarios. Since only partial knowledge is available for each image (i.e., the
corresponding digit), we apply semi-supervised learning to the latent factors to classify the digits.

Table 2: Test errors and number of trainable parameters in experiment 2. DisentangO is abbreviated as DNO
due to space limit. Bold number highlights the best method that can handle both forward and inverse settings.

Models DNO-2 DNO-5 DNO-10 DNO-15 VAE [(-VAE MetaNO PIANO
#param (M) 0.66 0.97 1.49 2.02 2.02 2.02 0.35 2.05
Ba=1 12.82%  9.56% 7.36% 6.29% 1634% 17.13% 2.68% 13.73%
Ba =10 11.51%  9.16% 6.62% 5.95% - - -
Ba =100 11.49%  8.43% 6.65% 5.48% - - -
Ba = 1000 11.62%  8.22% 6.50% 5.80% - - -

Ablation study. Firstly, we investigate DisentangQ’s predictability in forward PDE learning by
comparing its performance to MetaNO (i.e., the base meta-learned NO model without the hyper-
network structure). As seen in Table @ MetaNO achieves a forward prediction error of 2.68%,
which serves as the optimal bound for DisentangO. As we increase the latent dimension in Disen-
tangO from 2 to 15, the prediction error drops from 11.49% to 5.48% and converges to the optimal
bound. Next, we study the role of the data loss term in disentanglement by gradually varying 3, from
B4 = 1to B4 = 1000. In Table[2]we observe a consistent improvement in accuracy with the increase
in B4, where the boost in accuracy becomes marginal or slightly deteriorates beyond 84 = 100. We
thus choose 5; = 100 as the best DisentangO model in this case. Besides offering an increased
accuracy in forward modeling, the data loss term also enhances disentanglement as discussed in
Section [3.2] This is evidenced by the illustration in Figure [3] where the unsupervised mutual in-
formation (MI) score that measures the amount of MI across latent factors consistently decreases in
both DisentangO-2 and DisentangO-15 as we increase 34 from 3; = 1 (solid lines) to 5; = 100
(dashed lines). On the contrary, the classification term poses a negative effect on disentanglement,
as indicated by the increase in 3.5 leading to an increase in MI scores. This is reasonable because
the classifier linearly combines all the latent factors to make a classification. The more accurate the
classification, the stronger the correlation across latent factors. We then move on to study the effect
of semi-supervised learning by comparing the model’s performance with and without latent partial
supervision. While the models without semi-supervision is slightly more accurate in that the forward
prediction accuracy with S4 = 1 reaches 12.60% and 6.16% in DisentangO-2 and DisentangO-15,
respectively, the latent scatterplot in Figure | reveals the inability of the DisentangO model without
latent semi-supervision to acquire the partial knowledge of the embedded digits from data. In con-
trast, although the accuracy of DisentangO with latent semi-supervision slightly deteriorates due to
the additional regularization effect from the classification loss term, it is able to correctly recognize
the embedded digits and leverage this partial knowledge in disentangling meaningful latent factors.
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Comparison with additional baselines. We compare DisentangO with additional baselines, i.e.,
VAE and -VAE. We abandon the three NO-related baselines in this and the following experiments
as they are black-box approximators and do not possess any mechanism to extract meaningful infor-
mation without supervision. In this context, even the least accurate DisentangO-2 model (i.e., with
B4 = 1) with significantly fewer parameters outperforms the selected baselines in Table[2|by 21.5%
and 25.2%, respectively, with the best performing DisentangO-15 model beating the baselines by
66.5% and 68.0% in accuracy, respectively. We do not proceed to compare the physics discovery
capability between them as the baseline models are considerably inaccurate in forward prediction.

Interpretable physics discovery. To showcase the interpretability of DisentangO, we visualize
its latent variables through latent traversal based on a randomly picked loading field as input in
DisentangO-2, as displayed in Figure[6of Appendix One can clearly see that the digit changes
from “6” to “0” and then “2” from the top left moving down, and from “6” to “1” and then “7”
moving to the right. Other digits are visible as well such as “7”, “9”, “4” and “8” in the right-most
column. This corresponds well to the distribution of the latent clustering in Figure [2} More discus-
sions on the interpretability of DisentangO-15 can be found in Figures[7/and[§]in Appendix [B.3]

4.3 UNSUPERVISED HETEROGENEOUS MATERIAL LEARNING

We demonstrate DisentangO in unsupervised
learning in the context of learning synthetic tis-
sues that exhibit highly organized structures,
with collagen fiber arrangements varying spa-

Table 3: Test errors and number of trainable param-
eters in experiment 3. DisentangO is abbreviated as
DNO due to space limit. Bold number highlights the
best method for both forward and inverse settings.

tially. In this case, it is critical to understand the Models  #param (M) Test error
underlying low-dimensional disentangled prop- Ba=1 Ba =100
erties in the hidden latent space of complex, DNO-2 0.63 2633%  25.18%
high-dimensional microstructure, as inferred DNO-5 0.94 17.51%  15.75%
from experimental mechanical measurements. DNO-10 1.46 10.76%  10.01%
We generate two datasets, each containing 500 DNO-15 1.98 7.11% 7.02%
; . . . DNO-30 3.55 5.33% 5.28%

specimens and 100 loading/displacement pairs.
The first d f Dk in fib . VAE 3.55 61.10% -

e first dataset features variations in fiber ori- B-VAE 355 57.04% }
entation distributions using a Gaussian Random MetaNO 0.32 2.67% _
Field (GRF) and the second differs fiber angles PIANO 3.42 50.71%

in two segmented regions, separated by a center-
line with a randomly rotated orientation.

We report in Table [3] our experimental results of DisentangO with different latent dimensions and
data loss strength /34, along with comparisons with the baseline model results. Consistent with the
findings in the second experiment, increasing /3, results in a boost in accuracy by comparing the rows
in the table. The model’s predictive performance also converges to the optimal bound of MetaNO
as we increase the latent dimension from 2 to 30, where the model’s prediction error improves from
25.18% to 5.28%. This significantly outperforms the best baseline model by 90.7%. On the other
hand, the effect of the data loss term on disentanglement is further proved in Figure ] where in-
creasing 34 leads to a decrease in MI between the latent factors, thus encouraging disentanglement.
Lastly, we interpret the mechanism of the learned latent factors in DisentangO-3 via learning a map-
ping between the learned latent factors and the underlying material microstructure and subsequently
performing latent traversal in each dimension. The results are shown in Figure [5] where the three
latent factors manifest control on the border rotation between the two segments, the relative fiber
orientation between the two segments, and the fiber orientation of the top segment, respectively.

5 CONCLUSION

We present DisentangO for disentangling latent physical factors embedded within black-box NO
parameters. DisentangO leverages a hypernetwork-type NO architecture that extracts varying pa-
rameters of the governing PDE through a task-wise adaptive layer, and further disentangles these
variations into distinct latent factors. By learning disentangled representations, DisentangO not only
enhances physical interpretability but also enables robust generalization across diverse physical sys-
tems under different learning contexts. Limitations: Since the scalability of DisentangO is gov-
erned by the scalability of the NO backbone used for forward modeling, which has been extensively
discussed in previous works, this study focuses on experiments involving high latent dimensions.
Demonstrations on high-dimensional PDEs are beyond the scope of the current work.
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A IDENTIFIABILITY ANALYSIS

A.1 PROOF OF THE MAIN THEOREMS

We first provide the proof of Theorem [T}
Proof: With equation[3.16] we have:
Paf:60lf = Pgre:011 £ < PosO|f = PG 0)1f < PoIF = Pg;1eGy ()£

Note that the parameter 6 varies with the change of b. Per the data generating process in equation[3.6]
the distribution of b is invariant to f. Therefore, the distribution of # is also invariant to f:

Po = Polf = Pg toG,(0)|f = Pgrtogs(d) vfeF.

Denoting 7 := Gy o Q;l, it is the transformation between the true ¢ and the estimated one, and it is
invertible and invariant with respect to f.

We proceed to derive the relation between z and 2: since § = r(é), with the invertibility assumption
0 =H '(z)and § = H'(2), we obtain:

z=H(O)=Hor(l) =HoroH '(2).

Denoting h := H oro?{ 1, itis the transformation between the true latent variable and the estimated
one, and it is invertible because r, H and H are all invertible. O

We now show the proof of Theorem 2]

Proof: With the independence relation assumption, we have
Pzp(2 szlw i), pzp(2]b) = szl\b ) .
Denoting §; := log pz, |, it yields:
log pjs(2|b) = Z% 2i,b), logpzp(2]b) = ZqL Zi,b

With the change of variables we have
Pzlb = Ph(2)|b = P2|p " |Jp—1| & Zqz'(qu, + log|Jn| = Zqz 2i,b)
i
where |.J},—1| stands for the absolute value of the Jacobian matrix determmant of h~1. Differentiating
the above equation twice with respect to 2 and 24, k # ¢, yields

Z qi(2i,b) 9z 0z | 0qi(zi,b) 92 n 92 log | Jy|

=0. (A.1)
i
To show the identifiability, one can rewrite the Jacobian J}, as:
0z
J = | == -

g [ 0z
The invertibility results shown in Theoremﬂ]indieates that it is full rank. Next, we will use the linear
independence assumption to show that there exists one and only one non-zero component in each

row of

z
0z’
Taking b = b°, - - - , b%>?: in equation and subtracting them from each other, we have

dzz ((82qi(zi,bj) i 82q¢(zi,b0)> 821 822 + (aqi(zi7bj) . 8(],’(21‘71)0)) 8221 ) -0
=1

022 022 031 034 0z; 0z; 02,024
where j = 1,---,2d,. With the linear independence condition for w, this is a 2d, x 2d, linear
system, and therefore the only solution is
0z 0z 92
0% g, 22—,
0%, 0%4 02,024
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fort = 1,---,d,. The first part implies that, for the i—th row of the Jacobian matrix J;,, we have
0z . . .

—* £ 0 for at most one element k € {1,--- ,d.}, hence z is identifiable up to permutation and
8zk
component-wise invertible transformation. O

A.2 FURTHER DISCUSSION ON THE ASSUMPTIONS

Herein, we provide additional discussion on the validity and emprical validation for Assumptions

M4

As seen in the proof above, Assumptions 1 (Density Smoothness and Positivity) and 2 (Invertibil-

ity) are required to guarantee that there exists a smooth and injective mapping h := H or o H~!,
from the ground-truth latent embedding z to the learned embedding 2. Furthermore, the smoothness
assumption further makes it feasible to take derivatives of z with respect to 2, which supports the
permutation-wise identifiability proof for Theorem 2. Here, we note that the smoothness assumption
may possibly be relaxed to C2. Assumptions 3 (Conditional Independence) and 4 (Linear Indepen-
dence) are needed to show that the Jacobian of h has one and only one non-zero component for each
column. Without these assumptions, it is possible that the data from different b lack variability.

While the first three assumptions are common in many VAE architectures, the last assumption is
plausible for many real-world data distributions. For instance, when the prior on the latent vari-
ables p(z|b) is conditionally factorial, where each element z; has a univariate exponential family
distribution given conditioning variable b:

119G St
p(z\b)—H Z:(b) exp ZTZ,J(%))‘W(b) )

where (); is the base measure, Z;(b) is the normalizing constant, T;,; are the sufficient statistics,
and \; ; are the corresponding parameters depending on b. This exponential family has universal
approximation capabilities. Additionally, we note that this distribution is conditionally independent
with

k
i = log(Qi(2i)) — log(Zi(b)) + Z T;,5(2)Ai () |

and the linear independence indicates that the matrix formed by
w(z,b") — w(z,b%) = (T'(A(B") =A%), T"(A(B") = A(b°))) , n=1,---,8
has full rank 2d,,.

In the fully supervised case, the conditional independence and linear independence assumptions are
automatically guaranteed by picking proper distributions p(z|b) when designing the VAE architec-
ture. In the semi-supervised and unsupervised cases, one can also validate these assumptions when
the true values of b is given on some tasks, by inferring an empirical distribution of p(z|b) from
these tasks. To investigate such a capability, in the additional synthetic experiment in Appendix[C.4}
we consider an unsupervised setting, estimate p(z|b) from the trained model, and check the linear
independence condition by calculating the vector in equation for each task b" and forming an
S x 2d, matrix from all tasks. When the rank of this matrix is 2d,, it means that we can select 2d, +1
tasks from them with sufficient variability, such that the linear independence condition is satisfied.
As a demonstration, in Appendix [C.4 we validate this assumption on a synthetic dataset and show
that the identifiability can be largely achieved with Gaussian distributions of distinct means and
variances.

B ADDITIONAL EXPERIMENTAL DETAILS, RESULTS AND DISCUSSION

We provide additional details in training and baseline models, as well as more results as a supplement
of Section 4]
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Figure 3: MMNIST unsupervised scores against 34 with DisentangO-2 (left) and DisentangO-15 (right). By
comparing B4 = 1 (solid lines) with B4 = 100 (dashed lines), increasing 34 forces the latent factors to

maximize the contained information and in turn decreases MI, thus encouraging disentanglement.
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Figure 5: Latent traversal of DisentangO-3 in unsupervised heterogeneous material learning, where the three
latent dimensions control the border rotation between the two segments (top), the relative fiber orientation
between the two segments (middle), and the fiber orientation of the top segment (bottom), respectively. Legend
indicates fiber orientation ranging from O to 7.

B.1 TRAINING DETAILS

In all experiments, we adopt the Adam optimizer for optimization and use a n-layer DisentangO
model, where n = 8 in the first experiment and n = 16 in the second and third experiments due
to increased complexity. For fair comparison across different models, we tune the hyperparameters,
including the learning rates, the decay rates, and the regularization parameters, to minimize the
validation loss. Experiments are conducted on a single NVIDIA Tesla A100 GPU with 40 GB
memory. A pseudo algorithm of all three scenarios is summarized in Algorithm|T}
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Algorithm 1 A pseudo algorithm of DisentangO.

1:

Denote data reconstruction 1oss Lg,t4, task-wise NO parameter reconstruction 10ss Ly.ccon, KL
loss L, and sebmi-supervision 10sS Lgem; as:

S
Lgata :% Z [_E(IOg(p(u|f»6n)))] s Lrecon = %Z [_Eq(zﬂe”) Ing(0n|zn)] P
n=1 =1
S
Lict = . 1D (O] L = el l4).

SC1: Supervised/SC3: Unsupervised

The total loss is comprised of the data loss, the NO parameter reconstruction loss, and the KL
loss: Ligss = ﬁdeata + Lrecon + BKLLKL~

SC2: Semi-supervised

The total loss is comprised of the data loss, the NO parameter reconstruction loss, the KL loss,
and a semi-supervised loss: Ljoss = BaLldata + Lrecon + B L L + BeisLsemi-

B.2 SUPERVISED FORWARD AND INVERSE PDE LEARNING

The parameter of each baseline is given in the following, where the parameter choice of each model
is selected by tuning the number of layers and the width (channel dimension), keeping the total
number of parameters on the same magnitude.

* MetaNO: We use a 8-layer IFNO model with the lifting layer as the adaptive layer. We keep
the total number of parameters in MetaNO the same as the number of parameters used in
forward PDE learning in DisentangO.

* NIO: We closely follow the setup in [Molinaro et al.[ (2023), where two neural operators
(DeepONet and FNO) are stacked together to realize the operator-to-function intuition. The
first operator maps multiple solution functions to a set of representations (which can be seen
as an analog of eigenfunctions), and the second operator infers the underlying parameter
field from the mixed representations. As NIO requires the solution field as input, it cannot
be used as a forward solver. Hence, NIO only solves the inverse PDE problem, and it can
only be applied to the fully supervised setting. Specifically, we use four convolution blocks
as the encoder for the branch net and a fully connected neural network with two hidden
layers of 256 neurons as the trunk net, with the number of basis functions set to 50. For the
FNO part, we use one Fourier layer with width 32 and modes 8, as suggested in |Molinaro!
et al.|(2023).

* FNO: Since FNO is originally designed as a function-to-function mapping, we consider the
inverse optimization procedure following |Lee et al.[(2024)), and develop a two-phase pro-
cess to solve the forward and inverse problems sequentially. In the first phase, we construct
the forward mapping from the loading field f and the ground-truth material parameter b to
the corresponding solution u as: GFNO[f, b; 7 NO](x) = w(x). This can be seen as an
analog of the forward solution operator G in our setting. Then, with the trained FNO as a
surrogate for the forward solution operator, we fix its NN parameters 7V and use it to-
gether with gradient-based optimization to solve for the optimal material parameters as an
inverse solver. Specifically, given a set of loading/solution data pairs {( fi, u;)} Y, we start
from a random guess of the underlying material parameters (typically chosen as the aver-
age of all available instances of material parameters for fast convergence), and minimize
the difference between the predicted displacement field from FNO and the ground-truth
one:

N
b* = argmin, Z ui — GFNO[f;,b; 07NO||%
i=1
As the FNO parameters are fixed, we can back propagate this loss and optimize the input
material parameters in an iterative fashion. We adopt a 4-layer FNO with width 26 and
modes 8. For the forward model, in addition to the loading field and the coordinates as
input, we also concatenate the ground-truth material properties to form the final input.
For the inverse model, we employ an iterative gradient-based optimization to solve for
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the optimal material parameters for physics discovery. For fair comparison, in terms of the
averaged per-epoch runtime, we report the sum of both the forward and inverse solvers. The
averaged per-epoch runtimes for the forward solver and the inverse solver are 6.2 seconds
and 2.9 seconds, respectively, accounting for the total per-epoch runtime of 9.1 seconds in
Table[Il

e UFNO: The 2D U-FNO model extends the Fourier Neural Operator (FNO) architecture by
incorporating U-Net-style skip connections. The network consists of six spectral convolu-
tion blocks, each combining a global Fourier operator and a local 1 x 1 convolution. In the
later three layers, additional skip-enhanced feature extraction is provided by U-Net blocks.
The input consists of spatial features f(x,y), concatenated with coordinate embeddings
(z,y) and 5 material parameters. The input is lifted to a higher-dimensional latent space
via a linear layer of size [8,20]. Each of the six layers performs the following composite
operation:

vj+1 = ReLU(F;(v;) + W;j(v;) + U;(v5)),
where F; is a spectral convolution layer (2D Fourier transform, mode truncation, linear
transformation, and inverse transform), JV; is a 1 x 1 convolution, and I{; is a U-Net block
(included only in layers 4 to 6). After all six layers, the output is projected through two
fully connected layers of sizes [20, 128] and [128, 2] to produce the final 2-channel output.

* WNO: The Wavelet Neural Operator (WNO) consists of 4 stacked wavelet kernel integral
layers. The input is first lifted to a high-dimensional representation using a fully con-
nected layer of size [8,27]. Each of the 4 layers combines a learned local operator W
(implemented as 1 x 1 convolution) with a non-local wavelet-based integral operator K
(via continuous wavelet transform). The architecture follows: The input f(x,y) is first
augmented by concatenating it with the positional grid coordinates (x,y) and additional 5
material parameters. This augmented input is then lifted into a higher-dimensional space
via a fully connected layer that maps the input to a hidden width of width. The core
of the architecture consists of 4 wavelet-based layers, the output is projected back to the
desired output space using two linear layers of sizes [27, 128] and [128, 41 * 41 * 2]. Mish
activations are applied after each intermediate layer except the last projection layer.

¢ CAMEL: The architecture consists of two networks, V-Net and C-Net
G(f(x);0,w) = c((f(2);0) + wv(f(2);0). (B.1)
The score network V is a 5-layer MLP with width 320 and Tanh activations, with layer
sizes [d, 320, 320, 320, 320, r] The coefficient network cy is a 3-layer MLP with width 128

and Tanh activations, with layer sizes [d, 128,128, 1],, where d is the size of the flatten
f(z),andr =5

» SMDP: Since we do not have an explicit physical operator to evaluate P~!(z, f(z)),
we use only the score network, implemented as a 6-layer MLP with layer sizes
[128, 512,256,128, 64,32, d,], where d, denotes the dimension of the latent space.

* PIANO: We use the ground-truth material properties as the physical-invariant embedding.
The loading field is first processed by a lifting layer, while the material parameters are
passed through an attention module implemented as a 3-layer MLP with hidden dimension
32. The outputs of the lifting layer and the attention module are then concatenated and fed
into a convolutional layer with width 26, followed by a 3-layer IFNO with width 26 and
modes 8. For both the forward and inverse solution procedures, we adopt the same settings
as in the FNO baseline.

* InVAErt: We directly take the InVAErt implementation from |Lingsch et al.| (2024) and de-
fine the encoder, the VAE encoder and the decoder as 4-layer MLPs with hidden dimension
96 and silu activation function.

» FUSE: For the forward model, we take three Fourier layers in addition to the first band-
limited lifting layer that increases the dimension of the parameters and performs an in-
verse Fourier transform. On the other hand, the inverse model maps the functional input
to the parameter space by employing a concatenation of two Fourier layers and a band-
limited forward Fourier transform that generates a fixed-size latent representation of the
input function, followed by a flow-matching posterior estimation (FMPE) that maps to the
final parameter output. All Fourier layers have a latent width of 32 and 8 modes, while the
FMPE flow has 4 layers of width 360.
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» FUSE-f: Since the original FUSE model assumes a constant loading field, it cannot handle
situations where the input loading field changes that create multiple instances of a PDE
system. We therefore create a FUSE variation (denoted as “FUSE-f”) that takes a concate-
nation of both the displacement field and the loading field as input to the inverse model.
For the forward model, we concatenate the loading field to the output of the first band-
limited lifting layer and subsequently use a one-layer MLP to map it back to the original
dimension. All other settings are the same as the original FUSE baseline.

* VAE: We use a 2-layer MLP of size [1681, 136, 30] as the encoder, and another 2-layer
MLP of size [30, 136, 1681] as the decoder, with the size of the bottleneck layer being 30.

* convVAE: We use a convolutional layer with 136 kernels of size 3 x 3 with a stride of 2
pixels and a fully connected layer of size [59976, 5] as the encoder, and a fully connected
layer of size of [5, 59976] and a transposed convolutional layer with 2 kernels of size 3 x 3
as the decoder.

e (B-VAE: The parameter choice of the 5-VAE baseline is the same as the VAE baseline,
except that we tune the 8 hyperparameter.

Model-agnostic architecture. The proposed DisentangO architecture is model-agnostic and can
incorporate any neural operator as the forward solver, including FNO, UFNO, and WNO. This flexi-
bility stems from DisentangO’s design, which only requires designating the lifting layer as the task-
wise adaptation layer and adding the VAE structure for latent disentanglement (i.e., the encoder and
the first decoder in Figure[I). DisentangO’s overall performance scales directly with the underlying
neural operator’s capabilities. As long as the chosen NO achieves comparable forward prediction
accuracy to IFNO, DisentangO will maintain similar performance, since (1) the upper bound of
forward prediction accuracy depends on the base neural operator, and (2) the inverse prediction
accuracy depends on how well the latent factors are encoded in the task-wise lifting layer param-
eters. We select IFNO for three key advantages: (1) parameter efficiency: the layer-independent
parameter setting significantly reduces trainable parameters compared to alternatives, (2) theoretical
guarantees: IFNO is a provably universal approximator as PDE solution operators, and (3) natural
integration: seamless compatibility with MetaNO’s lifting layer approach for task-wise adaptation.
If the IFNO part is replaced with other neural operators such as the considered baselines of FNO,
UFNO, and WNO as in Table [I] the forward prediction accuracy will decrease (cf. the data test
errors in Table[T)), meaning that the upper bound of DisentangO’s forward prediction accuracy will
decrease. Additionally, the inverse prediction accuracy (i.e., the z test error in Table |1) will likely
drop as well, because the degraded forward prediction accuracy typically indicates degraded encod-
ing of latent information in the lifting layer, which will negatively impact the inverse modeling even
if the VAE part can reconstruct the lifting layer parameters perfectly. As IFNO performs the best
in forward prediction and requires the least amount of trainable parameters, we choose IFNO as the
forward prediction backbone in DisentangO.

To demonstrate DisentangO’s compatibility with alternative neural operators, we replace IFNO with
UFNO in the DisentangO architecture. The performance comparison is presented in Table[4]

Table 4: Test errors and the number of trainable parameters in experiment 1. Bold number highlights the best
method.

Models | #param | per-epoch Test errors
time (s) data z (SCI)
DisentangO 697k 122 | 1.65% 4.63%
MetaNO 296k 9.8 | 1.59% -
MetaUFNO 304k 11.4 | 3.55% -
DisentangO-UFNO 688k 142 | 6.61% 9.85%
UFNO 720k 212 | 7.61% 11.23%

B.3 MECHANICAL MNIST BENCHMARK

We demonstrate the latent traversal based on a randomly picked loading field as DisentangO-2 input.
One can clearly see that the digit changes from “6” to “0” and then “2” from the top left moving
down, and from “6” to “1” and then “7” moving to the right. Other digits are visible as well such
as “7”, “9”, “4” and “8” in the right-most column. This corresponds well to the distribution of the
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Figure 6: MMNIST latent traversal based on a randomly picked loading field as DisentangO-2 input.

latent clustering in Figure 2} We also provide two exemplary MMNIST latent interpretations of the
learned DisentangO-15 in Figures[7 and [§]

B.4 LATENT VISUALIZATION AND PHYSICAL INTERPRETATION

As the hidden parameter field 0”7 of the PDE is generally not accessible, especially in the semi-
supervised or unsupervised settings, one cannot directly reconstruct b” from the learned latent vari-
ables z. Through disentangled representation learning, the latent variables z are anticipated to con-
tain critical information of b, but there does not exist a direct and explicit mapping from z to b”7. As
a result, one cannot directly reconstruct b” from z. However, there are several tricks one can play
with to obtain meaningful interpretations from the learned z. On one hand, one can feed a randomly
selected input into DisentangO and manually define a desired z in the latent space and perform a for-
ward pass using the trained DisentangO. b" can then be visualized from the output, as demonstrated
in Figure [6]in the MMNIST experiment. On the other hand, one can also train a simple MLP and
construct a mapping from z to b", provided that b7 is available. With this mapping at hand, one can
then traverse z and visualize what each dimension of z controls. This is demonstrated in Figure[3)in
the third experiment.
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Figure 7: Exemplary MMNIST latent interpretation of DisentangO-15: dimension 10 encodes the information
for digit ‘8’, as is evidenced by the fact that all y < —0.4 regions on the scatterplots contain only digit ‘8’.

B.5 FURTHER DISCUSSION

Probabilistic latent space. We use a variational (probabilistic) encoder rather than a deterministic
map for two reasons:

* Regularization and stability of the inverse map. The inverse operator in ill-posed PDE
settings is highly sensitive: small perturbations in the solution u can correspond to large
changes in the inferred parameters. The VAE’s KL term imposes a distributional prior on
the latent variables, preventing the encoder from collapsing to arbitrarily sharp or unstable
mappings. This yields a smoother, more stable inverse that generalizes better under noise
and limited data.
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Figure 8: Exemplary MMNIST latent interpretation of DisentangO-15: dimension 12 encodes the information
for digit ‘3, as is evidenced by the fact that all y < —0.45 regions on the scatterplots contain only digit ‘3’.

* Identifiability and disentanglement. The identifiability results we reference (e.g., up to
component-wise invertible transformations) rely on the latent distribution having a simple,
factorized prior. The VAE provides exactly this structure: a normalized, independent latent
prior that constrains the representation and supports the theoretical guarantees.

Scalability. Scaling interpretable neural operators to complex, high-dimensional PDE:s is critical for
broader impact. Our work is structured to first establish the foundational capabilities of DisentangO
in controlled settings where disentanglement and representation quality can be rigorously verified.
Notably, our work tackles scenarios with partially or fully unknown physics: the second experiment
demonstrates DisentangO’s ability to disentangle and identify latent codes when only partial knowl-
edge is available, and the third experiment aims to mimic a real-world fully unsupervised scenario
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where the physical parameters are entirely unknown, yet DisentangO successfully extracts inter-
pretable latent factors. DisentangO is designed to be inherently scalable for several key reasons:
(1) Modular architecture: DisentangO inherits the computational efficiency of the underlying neural
operator backbone (IFNO in our implementation), which supports batched, GPU-accelerated infer-
ence in high dimensions. (2) Constant latent dimension: the latent code dimensionality remains low
regardless of spatial resolution or system complexity, enabling practical inverse inference even for
complex systems. (3) Linear scaling: the latent inference network scales linearly with the number
of PDE instances, independent of spatial dimensionality. (4) Plug-and-play design: DisentangO can
incorporate any state-of-the-art neural operator as its backbone, inheriting its scalability properties.
In essence, the scalability of DisentangO is governed by the scalability of the neural operator used
for forward modeling. As long as the NO component performs well and the training data spans
sufficient variability in physical system parameters, DisentangO remains applicable.

Encoding b in lifting layers. Our choice to encode the parameters b in the lifting layers 6p is jus-
tified through three complementary perspectives. (1) Theoretical expressivity: as demonstrated in
MetaNO (Zhang et al.| 2023)), varying only the lifting layer across tasks is sufficient to universally
approximate a wide class of parametric operators. DisentangO inherits this universal approximation
property while maintaining a meta-learning framework where the core iterative Fourier layers serve
as a shared meta-operator across tasks. (2) Representation identifiability: restricting adaptation to
the lifting layer significantly enhances the identifiability of latent representations, a critical require-
ment for disentangled inverse learning. When adaptation is allowed in deeper layers, the mapping
between latent codes and operators becomes more diffuse and less interpretable. (3) Empirical
validation: our experiments across diverse PDE types confirm that this design choice enables Dis-
entangO to: (a) accurately model task-specific operators, (b) recover interpretable physical factors,
and (c) generalize to unseen parameter combinations and interpolation tasks.

Interpretability beyond parameter reconstruction. Our approach provides interpretability at the
level of identifiable physical factors, which is often more meaningful than raw parameter recon-
struction. Many physical parameters are inherently non-identifiable from observational data alone
(e.g., material properties in regions with zero stress). Our method identifies the factors that actu-
ally govern system behaviors. Moreover, our experiments demonstrate clear interpretable patterns:
(1) MMNIST (Figure [6): latent traversal reveals smooth transitions between digit patterns, show-
ing the method captures meaningful morphological variations, (2) Heterogeneous materials (Fig-
ure [3): each latent dimension controls specific physical aspects: border rotation, relative fiber ori-
entation, and segment-wise fiber orientation, (3) Semi-supervised results (Figure 2): latent factors
successfully cluster different digit classes without explicit supervision. Our theoretical results on
component-wise identifiability (Theorems [T] and [2) guarantee that the learned factors Z correspond
to true generative factors z up to invertible transformations. This provides theoretical grounding
for interpretability claims. In terms of practical utility, even without exact b reconstruction, the
disentangled factors can enable system classification and similarity assessment, design space explo-
ration through latent traversal, transfer learning to new parameter regimes, and anomaly detection
in physical systems.

Quantitative interpretability metric. The evaluation of interpretability depends critically on the
availability of ground truth, which varies across our three practical scenarios, i.e., supervised, semi-
supervised, and unsupervised. In the fully supervised setting corresponding to experiment 1, When
true generative factors are available, we use quantitative metrics. The interpretability metric is the
latent supervision test error (cf. Table [I), which directly measures how well the learned latent
variables z recover the true physical parameters b. In the semi-supervised setting corresponding
to experiment 2, the goal of interpreting physics is to discover the underlying microstructure gov-
erning the deformation. Under this setting, since the true generative factors are not available, one
cannot use any closed-form metric to evaluate interpretability. However, since the ground-truth mi-
crostructure generation is controlled by MNIST digits, successful disentanglement should reveal this
digit information. We thus follow the standard evaluation methods in disentangled representation
learning and investigate if the learned latent variables indeed contain the digit information via latent
traversal, and Figure [6] confirms that our learned latent variables capture the underlying digit struc-
ture, demonstrating physical interpretability through microstructure discovery. In the third setting
of unsupervised learning, without ground truth labels, we evaluate interpretability through latent
traversal analysis. Figure [5] demonstrates that our method discovers meaningful physical factors:
border rotation between segments, relative fiber orientation between segments, and fiber orientation
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of individual segments—all physically meaningful properties for understanding the microstructure
mechanism.

Physical insights across different PDE types. Our method is designed for parametric PDE fam-
ilies—scenarios where underlying physics follows the same governing equations with varying pa-
rameters. This represents a very common and scientifically important class of problems in computa-
tional physics and engineering. While our current framework focuses on parametric variation within
PDE families, the core architectural principles can extend to different PDE types. For example, in
multi-physics systems, our approach could handle different but related physics (e.g., heat conduction
vs. diffusion-reaction) by learning shared latent factors capturing common physical principles while
using task-specific decoders. Extending to heterogeneous PDE types represents an exciting research
frontier that would require modular architectures for different equation types, shared representation
learning across physics domains, and physics-informed constraints for cross-domain transfer.

Accuracy-interpretability trade-off. As discussed, MetaNO represents the forward prediction
upper-bound for Disentango. The accuracy gap between the two is primarily due to insufficient
latent dimensions relative to data complexity. Taking experiment 3 for instance, the data generation
process may involve more than 30 true generative factors due to numerical solver noise and system
complexity. Table 3| clearly shows the error decreases from 25.18% to 5.28% as we increase latent
dimensions from 2 to 30—a trend that would continue with higher dimensions. We stopped at 30
dimensions because: (1) 5.28% error is reasonably accurate for practical use, and (2) limited com-
putational resource. In practice, users should gradually increase latent dimensions until convergence
to MetaNO’s performance, ensuring the model capacity matches the true generative factors. Disen-
tangO prioritizes joint modeling with interpretability over pure forward accuracy. For applications
requiring only forward prediction, specialized NOs remain more accurate. However, for scientific
discovery where understanding mechanisms is essential, the slightly degraded accuracy with full
interpretability represents a favorable trade-off.

C DATA GENERATION

C.1 EXPERIMENT 1 - SUPERVISED FORWARD AND INVERSE PDE LEARNING

we consider the constitutive modeling of anisotropic fiber-reinforced hyperelastic materials gov-
erned by the Holzapfel-Gasser—Ogden (HGO) model, whose strain energy density function can be
written as:

E = E

- Y (-2)-—"
Ty LT R
k1 ka(S@)? | ka(S(—a)? _ B JP-1
G +e 2”6(1—21/)( > InJ), (C.1)

where (-) indicates the Macaulay bracket, «, k; and ko are the fiber angle, modulus and expo-
nential coefficient, respectively, £ denotes the Young’s modulus of the matrix, v is Poisson’s ra-

tio, and S(«) describes the fiber strain of the two fiber groups, S(«) = 14(04)71+\1’4(a)71\ I; is

the ™ invariant of the right Cauchy-Green tensor C, I; = tr(C) and I, = nT(a)Cn(a), with
n(a) = [cos(a),sin(a)]T. In this context, the data generation process is controlled by sampling
the material set { £, v, k1, ko, a}, and the latent factors can be learned consequently in a supervised
fashion. The physical parameters are sampled from ’;—; ~ U[90,100] ,k2 ~ U[0.001,0.1], E ~
U[0.5001, 0.6001], v ~ 1£[0.2,0.3], and o ~ U[r/10,7/2]. To generate the high-fidelity (ground-
truth) dataset, we sample 220 material sets, which are split into 200/10/10 for training/validation/test,
respectively. For each material set, we sample 50 different vertical traction conditions 7}, () on the
top edge from a random field, following the algorithm in|Lang & Potthoff| (2011b)); Yin et al.[(2022).
T,(zx) is taken as the restriction of a 2D random field, ¢(z) = F~(y/2F("))(x), on the top

edge. Here, I'() is a Gaussian white noise random field on R2, v = (w? 4+ w2)~ 7 represents a
correlation function, and w;, wo are the wave numbers on x and y directions, respectively. Then, for
each sampled traction loading, we solve the displacement field on the entire domain by minimizing
the potential energy using the finite element method implemented in FEniCS (Alnzs et al., [2015).
Sample data of the obtained dataset is illustrated in Figure[9] In this setting, the model takes as input
the padded traction field and learns to predict the resulting displacement field.
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u
1y
Figure 9: Tlustration of the HGO data, loading and displacement pairs of three materials b7, n = 1,2, 3.

Top: three instances of different loadings T, (x), which corresponds to different f;. Bottom: corresponding
displacement solutions ], illustrating the impacts of system (b") variability in solution operators.

C.2 EXPERIMENT 2 - MECHANICAL MNIST BENCHMARK

Mechanical MNIST is a benchmark dataset of heterogeneous material undergoing large deformation,
modeled by the Neo-Hookean material with a varying modulus converted from the MNIST bitmap
images 2020). It contains 70,000 heterogeneous material specimens, and each specimen is
governed by the Neo-Hookean material with a varying modulus converted from the MNIST bitmap
images. We illustrate samples from the MMNIST dataset in Figure including the underlying
microstructure, two randomly picked loading fields, and the corresponding displacement fields.

C.3 EXPERIMENT 3 - UNSUPERVISED HETEROGENEOUS MATERIAL LEARNING

We generate two sets of datasets in this case, varying the material microstructure in the following
two ways.

Varying fiber orientation distribution. We generate the samples by controlling the predefined
parameters of Gaussian Random Field (GRF). With the GRF sharpened by the thresholding, the
values to binary field represent two distinct fiber orientations. The binary field is smoothed using a
windowed convolution. To address boundary conditions, the matrix is padded with replicated edge
values, ensuring that the convolution works uniformly across the entire grid. After the smoothing
process, the padded sections are removed, and the remaining field is used to construct the fiber field.
We use two fixed fiber angles 7, %’T for the corresponding binary field. We generate 300 material
sets, each with 500 loading/displacement pairs, and divide these into training, validation, and test
sets in a 200/50/50 split. Exemplar samples from this dataset are illustrated in Figure [IT] These
samples demonstrate the variability of b, which is critical for the latent variable identifiability in
unsupervised learning settings, as proved in Theorem 2}

Varying fiber orientation magnitude and segmentation line rotation. Instead of controlling the
fiber orientation angles on the binary field as two constant values, we sample the orientation distri-
bution consisting of two segments with orientations «; and a on each side, respectively, separated
by a line passing through the center. The values of a; and o are independently sampled from a uni-
form distribution over [0, 27], and the centerline’s rotation is sampled from [0, 7]. We generate 300
material sets, each with 500 loading/displacement pairs, and divide these into training, validation,
and test sets in a 200/50/50 split.
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(a) MMNIST material microstructure

(b) Loading #38 and the corresponding displacement field

(c) Loading #123 and the corresponding displacement field

Figure 10: Illustration of exemplar MMNIST samples in the semi-supervised scenario. (a): material parameter
field corresponding to different b”. (b): displacement fields (second row) ugs corresponding to the same
loading field (first row) f3s. (c): displacement fields (second row) u7,s corresponding to the same loading
field (first row) fiss.
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Figure 11: Illustration of fiber orientation magnitude and segmentation line rotation. Upper: three different
loading instances of f;. Bottom left: three different microstructure instances of b”. Bottom right: correspond-
ing solution fields w; .

Loading and displacement pairs for one microstructure. After generating the specimens with
varying fiber orientations, we feed the b"(x) as the a(z) to the HGO model, and keep the material
property set {E, v, k1, ko } as constant. For each microstructure, we randomly sample loading and
displacement pairs for each microstructure from the previous step.

The loading in this example is taken as the body load, f(x). Each instance is generated as the
restriction of a 2D random field, ¢(x) = F~'(y'/2F(I"))(x). Here, I'(x) is a Gaussian white
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Figure 12: The scatter plot of the true generative variables z and the disentangled latent variables Z from the
synthetic dataset with d = 9 in experiment 4.

noise random field on R?, v = (w% + w%)_% represents a correlation function, wy and ws are the
wave numbers on x and y directions, respectively, and F and F —1 denote the Fourier transform
and its inverse, respectively. This random field is anticipated to have a zero mean and covariance
operator C' = (—A)~2%, with A being the Laplacian with periodic boundary conditions on [0, 2],
and we then further restrict it to 2. For the detailed implementation of Gaussian random field sample
generation, we refer interested readers to Lang & Potthoff| (2011a). Then, for each sampled loading
field f;(z) and microstructure field b7(x), we solve for the displacement field . (x) on the entire
domain.

C.4 EXPERIMENT 4 - SYNTHETIC DATASET FOR IDENTIFIABILITY DEMONSTRATION

We demonstrate using experiment 4 that the disentangled latent factors from DisentangO correspond
to the true generative factors. We generate synthetic data following the process in equation[C.2] We
work with latent variables z of dimension 2 and sample from z ~ A(up, 02I) € R? where for
each microstructure b, we sample pp ~ U[—4,4] and op ~ U[1,10] and f ~ U[0,1] € R3,
M ~ U[0,1] € R?*2, A = [I,21,31,41)T, M € R®*2, b ~ U[0,1] € R, W ~ U[0,1] € R**1,
I ~U[0,1] e R,

0 =Az, (C.2)
We generate 700 data pairs of (z, 6) corresponding to 700 tasks, and for each task, we generate 200
samples of (f,u) pairs.

d 3 5 7 9
MCC 0.7836 0.8013 0.8237 0.9121
R? 0.5673 0.6026 0.6473 0.8242

Rank(w) 3 4 4 4

Table 5: The MCC and R? scores to evaluate identifiability on the synthetic dataset in experiment 4.

We conduct experiments on the synthetic dataset and split the tasks into d/100/500 for training,
validation and test, respectively, with d chosen from the set of (3,5,7,9) to investigate the effect
of the number of training tasks on the identifiability. In particular, we measure the component-wise
identifiability of the latent variables z by computing the Mean Correlation Coefficient (MCC) and
the coefficient of determination R? scores on the test dataset, and report the results in Table where
we observe a monotonic growth on both MCC and R? with the increase of the number of training
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tasks d. Figure |12]illustrates the alignment on the test dataset between the true generative factors
z and the disentangled factors Z from DisentangO in the case of d = 9. To verify Assumption 4,
we calculate the rank of the matrix w(z,b). Specifically, for each 6, with the VAE encoder, we
9qi (2, b7) and 0%qi(z, b))

calculate the up and op, sample z, and calculate the corresponding 02 022 ,

wherei=1,---d,,j=1---d.
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