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Abstract

Recent work has shown that the task of entity
resolution (ER) can be effectively performed
by gradual machine learning (GML). GML be-
gins with some easy instances, which can be
automatically labeled by the machine with high
accuracy, and then gradually labels more chal-
lenging instances by iterative knowledge con-
veyance in a factor graph. Without involving
manual labeling effort, the current GML so-
lution for ER is unsupervised. However, its
performance is limited by inaccurate and in-
sufficient knowledge conveyance. Therefore,
there is a need to investigate how to improve
knowledge conveyance by manual labeling ef-
fort.

In this paper, we propose an active learning
(AL) approach based on GML for ER. It itera-
tively generates new knowledge in the form of
one-sided rules by manual label verification and
instills them into a factor graph for improved
knowledge conveyance. We first present a tech-
nique of knowledge discovery based on genetic
mutations, which can generate effective knowl-
edge rules with very small manual verification
cost. Then, we demonstrate how to leverage
the generated rules for improved knowledge
conveyance by measuring their influence over
label status by the metric of skyline distance.
We have evaluated the performance of the pro-
posed approach by a comparative study on real
benchmark data. Our extensive experiments
have shown that it can significantly improve
the performance of unsupervised GML with
very small manual cost; furthermore, it outper-
forms the state-of-the-art AL solutions for deep
learning by considerable margins in terms of
learning efficiency.

1 Introduction

Entity resolution (ER) aims at finding the records
that refer to the same real-world entity (Barlaug
and Gulla, 2021; Doan et al., 2020; Christen, 2012).
Consider the running example shown in Table 1.

ER needs to match the paper records between two
tables, 77 and 7. The pair of < e14,e2; >, in
which ey; and eg; denote a record entity in 77 and
T5 respectively, is called an equivalent pair if and
only if ey; and eg; refer to the same paper; oth-
erwise, it is called an inequivalent pair. In the
example, e1; and eq; are equivalent while e;o and
eo9 are inequivalent.

The state-of-the-art solutions for ER were built
on a variety of deep neural networks (DNN) (Li
et al., 2020; Barlaug and Gulla, 2021; Mudgal et al.,
2018; Ebraheem et al., 2018; Nie et al., 2019; Fu
et al., 2019; Zhao and He, 2019)). However, to
achieve high performance, they require a large
quantity of accurately labeled training data, which
unfortunately may not be readily available in real
scenarios. Furthermore, DNN models usually have
limited interpretability. To alleviate these limita-
tions, a solution based on the paradigm of gradual
machine learning (GML) has been recently pro-
posed for ER (Hou et al., 2019; Hou et al., 2020).
Without depending on the Independent and Iden-
tically Distributed (IID) assumption, GML begins
with some easy instances, which can be automat-
ically labeled by the machine with high accuracy,
and then gradually reasons about the labels of more
challenging instances by iterative knowledge con-
veyance in a factor graph. The current GML solu-
tion for ER does not require manual labeling effort,
but its efficacy depends on effective knowledge con-
veyance from easy instances to harder ones. Unfor-
tunately, unsupervised knowledge conveyance may
be inaccurate and insufficient. On one hand, some
pair instances may be mislabeled in the process
of gradual learning, thus providing noisy eviden-
tial observations. On the other hand, the current
solution conveys knowledge between instances by
global influence regression based on pre-specified
basic metrics, mostly value similarities on differ-
ent attributes (e.g. paper titles or author names
in the running example); however, learning effi-



Table 1: A running example of ER.

ID Title Author Venue  Year

e11  Peer Collaborative Learning for Online Knowledge Distillation G. Wu, S. Gong AAAI 2021

ei2 Deep Reinforcement Learning for General Game Playing A. Goldwaser, M. Thielscher AAAI 2020
Ty

ID Title Author Venue  Year

e21 Peer Collaborative Learning for Online Knowledge Distillation Wu, Gong AAAI 2021

e22  Deep Reinforcement Learning for Navigation in AAA Video Games  Alonso, Peter, Goumard, Romoff IJCAI ~ 2021

ciency of such knowledge conveyance is limited
because a handful of new observations could only
have marginal impact on global distribution regres-
sion.

Therefore, there is a need to investigate how to
enable supervised knowledge conveyance for im-
proved gradual learning. Active learning (AL), in
which data are actively sampled to be labeled by
human oracles with the goal of maximizing model
performance while minimizing labeling cost, has
presented itself as a feasible approach for tradi-
tional machine learning (ML) models including
DNN (Barlaug and Gulla, 2021; Doan et al., 2020;
Settles, 2012). In this paper, we propose an active
learning approach based on GML for ER. Instead
of selecting samples for manual labeling and then
submitting them for model training, the proposed
approach leverage labeled samples to generate new
knowledge in the form of one-sided rules and then
instills them into GML factor graph for improved
knowledge conveyance. Inspired by the concept of
genetic evolution (Jong, 2006), it first generates a
wide variety of candidate rules by mutations and
then singles out the fittest among them by skyline
observations with very small manual cost. The
resulting rules can accurately indicate label status
while covering many mislabeled instances. By mea-
suring their influence over label status by skyline
distance, the proposed approach enables effective
knowledge conveyance with only a small amount
of manual effort.

The major contributions of this paper can be
summarized as follows:

1. We propose a novel active learning approach
based on GML for ER, which can effectively
improve the performance of gradual learning
with only a small amount of manual effort;

2. We present a new technique of active knowl-
edge generation for ER based on genetic evo-
lution. It can generate highly accurate one-
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sided labeling rules based on skyline observa-
tions with very small manual cost;

3. We validate the efficacy of the proposed ap-
proach on real benchmark data by a compar-
ative study. Our extensive experiments have
shown that it can significantly improve the per-
formance of GML with only a small amount
of manual effort, and it considerably outper-
forms the state-of-the-art AL solutions for
deep models in terms of learning efficiency.

2 Related Work

Due to space limit, we briefly review related work
from the orthogonal perspectives of entity resolu-
tion and active learning.

Entity Resolution. The problem of ER has been
extensively studied in the literature (Barlaug and
Gulla, 2021; Doan et al., 2020; Christen, 2012).
It has been widely recognized that the unsuper-
vised approaches have limited efficacy in real sce-
narios (Bilenko et al., 2003). The supervised ap-
proaches viewed ER as a binary classification task
and then applied various statistical learning mod-
els (e.g. SVM (Arasu et al., 2010; Bellare et al.,
2012), native Bayesian (Berger, 1985), rule-based
methods (Li et al., 2015; Quinlan, 1986) and DNN
models (Mudgal et al., 2018; Li et al., 2020)) for
the task. However, the performance of these super-
vised approaches heavily relies on labeled training
data.

Recently, a non-i.i.d learning paradigm called
Gradual Machine Learning (GML) (Hou et al.,
2020; Hou et al., 2019; Zhong et al., 2021) has
been proposed to enable effective machine learning
for ER without the requirement for manual labeling
effort. GML has also been applied to the task of
sentiment analysis (Wang et al., 2021; Ahmed et al.,
2021). The current unsupervised GML solutions
can achieve competitive performance compared
with many supervised approaches. However, with-



out exploiting labeled training data, their perfor-
mance is still limited by inaccurate and insufficient
knowledge conveyance.

Active Learning. Active learning has been ex-
tensively studied in the context of machine learn-
ing. For traditional machine learning such as SVM,
the most prominent approaches that proved to per-
form well include margin-based, maximum entropy,
Query by committee and Expected variance reduc-
tion to name a few (Settles, 2012). However, many
of the above methods pose challenges when applied
to deep neural networks.

Most active learning works for DNN have
been focused on image classification. They
can be broadly categorized into three groups:(1)
uncertainty-based (Houlsby et al., 2011; Gal and
Ghahramani, 2016; Kirsch et al., 2019): they ap-
plied dropout at test time to approximate Bayesian
inference enabling the application of Bayesian
methods to deep learning; (2) expected model
change-based (Zhang et al., 2017): they used an ex-
pected model change measure to choose examples
that maximize the impact on the learned model
weights when labeled; (3) representativeness-
based (Ash et al., 2020; Yang et al., 2017; El-
hamifar et al., 2013; Sener and Savarese, 2018):
they usually aimed to achieve trade-off between
representativeness and uncertainty. Other recent
works include generative data augmentation for
AL (Tran et al., 2019), e.g., adversarial network-
based discrimination of informative points (Sinha
et al., 2019) and detrimental point processes-based
batch selection (Biyik et al., 2019). Active deep
learning for ER has also been specifically stud-
ied (Kasai et al., 2019; Bogatu et al., 2021). They
usually tailored the mainstream AL strategies to
ER.

3 Unsupervised GML for ER

Given an ER workload consisting of record pairs, a
solution needs to label each pair in the workload as
equivalent or inequivalent. The unsupervised GML
solution for ER, as shown in Figure 1, consists of
the following 3 essential steps:

3.1 Easy Instance Labeling.

Given an ER workload, unsupervised GML first
uses an unsupervised clustering algorithm to esti-
mate the proportions of equivalent and inequivalent
instances in the workload, and then proportionally
(e.g. 30%) identify the pair instances with the high-
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Figure 1: Overview of GML Solution for ER.

est (resp. lowest) record similarities as the easy
equivalent (resp. inequivalent) instances.

3.2 Feature Extraction and Influence
Modeling.

GML extracts the features satisfying the mono-
tonicity assumption of precision to facilitate knowl-
edge conveyance, e.g. attribute value similarity
and token features aligned with record similarity.
Intuitively speaking, the monotonicity assumption
of precision statistically states that an equivalence
probability of a pair instance increases with its
feature values. Since the proposed active learn-
ing approach also depends on the monotonicity as-
sumption, we formally define it as in (Arasu et al.,
2010):

Assumption 1 (Monotonicity of Precision) A
value interval I; is dominated by another interval
I;, denoted by I; = I;, if every value in I; is less
than every value in I;. We say that precision is
monotonic with respect to a pair metric if for
any two value intervals I; =< I; in [0,1], we
have P(I;) < P(I;), in which P(I;) denotes the
equivalence precision of the set of instance pairs
whose metric values are located in I;.

For each feature, GML models its influence over
pair labels by a monotonous sigmoid function with
two parameters, o and 7, which denote the func-
tion’s midpoint and the steepness of the curve re-
spectively. Formally, given a feature f and a pair
d, the influence of f w.r.t d is represented by

1
- 1 4 e~ Trlzs(d)=ay)’

ey

Py(d)

in which x¢(d) represents d’s feature value w.r.t
f- According to Eq. 1, provided with the values



of oy and 7y, the influence model statistically dic-
tates that any feature value of xf(d) corresponds
to an equivalence probability. Typically, the value
of P¢(d) increases with the feature value of d, or

xy(d).
3.3 Gradual Inference.

GML fulfills gradual learning by a factor graph
G, which consists of evidence variables A, infer-
ence variables V7 and factors modeling labeled in-
stances, unlabeled instances and their shared fea-
tures respectively. Typically, GML labels only one
instance at each iteration. At each iteration, gradual
inference essentially learns the feature parameter
values (« and 7) such that the inferred results max-
imally match the evidential observations. Formally,
the objective function can be represented by

(&,7) = argmin—log »  Par(A,V7), (2)
T VI

in which P, ; (A, V) denotes the joint probability
of the variables in G.

To enable scalable gradual learning, in each iter-
ation, GML first selects the top-m unlabeled in-
stances with the most evidential support as the
candidates, and then efficiently approximates their
probabilities.  Finally, GML constructs factor
graphs individually only for the top-k most promis-
ing unlabeled instances (or the instances with the
lowest entropies) among the m candidates, to infer
their probabilities via maximum likelihood. GML
labels the one with the lowest entropy at each itera-
tion. A newly labeled instance would serve as an
evidential observation in the following iterations.

4 Active GML Framework

The active GML approach, denoted by A-GML,
iteratively discovers new knowledge in the form
of one-sided labeling rule and integrates them into
GML factor graph for improved gradual learning.
In each round, it can select some unlabeled in-
stances from a pre-specified pool for manual la-
bel verification. As first introduced in (Chen et al.,
2020), one-sided rules act as label status indicators.
As opposed to the classical setting where a rule
is used to label pairs in both ways (equivalent or
inequivalent), a one-sided rule focuses exclusively
on one single class. An example is as follows:

ri[Year] # rj[Y ear] = inequivalent(r;,r;),

3)

where r;[Year] denotes the record r;’s attribute
value at Year and inequivalent(r;,r;) denotes the
inequivalence between r; and ;. With this knowl-
edge, a pair of records with different publication
years is supposed to have a high probability of be-
ing inequivalent. However, this rule does not intend
to indicate the label status of any pair with the same
publication year.

The active approach begins with the labeling
result of unsupervised GML. As shown in Fig 2,
given a manual budget of B for each round, it itera-
tively performs the following two steps: knowledge
rule generation and rule-augmented gradual infer-
ence.
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Figure 2: Active GML Framework for ER.

4.1 Knowledge Rule Generation

Formally, we represent a one-sided labeling rule by
a first order logic expression as

/l,\pi(fi(d)avi) — L, “4)

where f;(d) denotes the feature value of a pair in-
stance d w.r.t a feature f;, v; denotes a constant



within the domain of f;(d), p;(fi(d), v;) denotes a
predicate in the form of f;(d) < v; or fi(d) > v;,
A denotes the conjunction of predicates, and L
denotes a label status (0 for inequivalent or 1 for
equivalent). To ensure high interpretability, we
usually limit the maximum number of predicates in
a rule to a small number (e.g. 2 in our implementa-
tion).

We discretize continuous feature values to facil-
itate knowledge generation. Specifically, given a
feature, we deploy a Gaussian mixture model to
cluster its values into a specified number of clusters
(e.g. 20 in our experiments). We sort the ranks of
clusters by their center values to preserve mono-
tonicity. Then, given a continuous feature value,
we assign the rank of its corresponding cluster as
its discrete value.

The active approach generates an initial set of
candidate rules based on the labeling result of un-
supervised GML, and then tries to produce more
candidates by genetic evolution. From the candi-
date rules, it singles out only a few fittest rules for
manual label verification based on a reward met-
ric. Intuitively speaking, only the highly accurate
rules that can potentially correct many mislabeled
instances are worthy of being verified. The detailed
technical solution for knowledge rule generation
will be presented in Section 5.

4.2 Rule-augmented Gradual Inference

Similar to unsupervised GML, A-GML also pro-
portionally (e.g. 30% in our implementation) labels
a set of easy equivalent and inequivalent instances
based on record similarity to start gradual inference.
In each round of A-GML, the manually verified in-
stances are always considered as easy instances
while the rest of easy instances are identified based
on record similarity. For each validated rule, we
create a corresponding factor, which are shared by
all the satisfying instances. Similar to the existing
GML features for ER, we also use the sigmoid func-
tion to model a rule’s influence over label status
as

w(fr) :T'(xr_a)> (5)

where r denotes a rule, f, denotes the correspond-
ing factor of r, and x, denotes the feature value
of an instance w.r.t f.. With the monotonicity as-
sumption, we quantify the feature value of = by
an instance’s skyline distance to the rule. The pa-
rameters of o and 7 need to be learned based on
evidential observations in the process of gradual

inference. According to the sigmoid model, a rule’s
influence over an instance would increase with sky-
line distance. We will detail how to measure sky-
line distance in Section 5.

S Knowledge Rule Generation

In this section, we describe how to efficiently gen-
erate accurate one-sided labeling rules with only a
small amount of manual effort. The process con-
sists of two steps: candidate rule generation and
manual rule verification.

5.1 Candidate Rule Generation

Based on the labeling result of unsupervised GML,
we directly use the algorithm proposed in (Chen
et al., 2020) to generate the initial candidate rules
with the maximal depth of m (m=2 in our experi-
ments). To discover new knowledge beyond those
implied by the initial rules, we explore new rules
by the operations of gene mutation and gene recom-
bination:

5.1.1 Gene Mutation
Consider the validated rule of

Sim(Title) > 18 A Sim(Authors) > 18 — 1, (6)

which specifies that a pair instance is equivalent if
both its discretized title similarity level and author
similarity level are no less than 18. The mutation
operation would relax the thresholds of title and au-
thor similarities by one discrete level. For instance,
if both thresholds are relaxed to 17, we would get
a new candidate rule represented as

Sim(Title) > 17 A Sim(Authors) > 17 — 1. (7)

Due to the monotonicity assumption, we usually
reduce the value level of equivalence predicates
while increasing the value level of inequivalence
predicates. Since the number of predicates in any
rule is small, our algorithm executes all possible
relaxation operations on a validated rule to generate
as many candidate rules as possible.

5.1.2 Gene Recombination

Beside gene mutations, we also extract the predi-
cates (genes) from separate rules and combine them
by the AND operator to reproduce new ones. It is
noteworthy that the recombination operation has to
be executed on the predicates indicating the same
label. Since the total number of defined predicate
templates is limited (e.g. only dozens in our ex-
periments) and the maximum number of predicates



in a rule is small (e.g. 2 in our implementation),
we construct all possible predicate combinations,
whose total number is also limited.

5.2 Manual Rule Verification

Rules are supposed to be verified based on skyline
observations. Therefore, in this subsection, we first
introduce the concept of skyline distance, and then
describe how to efficiently select accurate rules
with potential big reward with only a small amount
of manual cost.

5.2.1 Skyline Distance

Given a set of instances of D and a rule of r, an
instance d; in D is said to be a skyline of a rule r
if and only if d; is not strictly dominated by any
other instance in D w.r.t r. Given an equivalence
rule of r, an instance d; is said to strictly dominate
another one dj, r : d; > dj, if and only if d;’s value
at each predicate of r is no larger than that of d;
and there exists at least one predicate such that d;’s
value is less than that of d;. It is noteworthy that
according to the monotonicity assumption, if d;
strictly dominates d;, the equivalence probability
of d; is at least as large as that of d;. The case for
inequivalence rule is similar.

Building upon the work in (Huang et al., 2013),
we define a non-skyline instance’s skyline distance
to a rule as follows:

Definition 1 Skyline Distance. Given a rule, r,
the skyline distance of an instance d; € D to
r, denoted by SkyDist,(d;), is defined as the
minimum sum of the changing values on all the
predicates of r to move d; to a new position
d}, so that d; is not strictly dominated by any
other instance in D. That is, SkyDist,(d;) :=
MAN @/ . ' rd;, $d;eD, r: dy-a, M D(di, d}), where
M D(d;,d}) denotes the Manhattan Distance be-
tween d; and d}.

Our strategy of rule verification is built upon
the monotonicity assumption of skyline distance,
which can be formally stated as follows:

Assumption 2 (Monotonicity Assumption of
Skyline Distance) Given a rule of r indicating
the label of L (L=0 or 1), an interval of skyline
distance /; is dominated by another interval I}, de-
noted by I; <X I, if every skyline distance in I;
is no less than every skyline distance in I;. We
say that precision is monotonic with respect to a
skyline distance if for any two skyline distance in-
tervals I; < I; in [0,1], we have P(I;) > P(I;), in

which P(1;) denotes the precision that the labels of
the set of instances whose skyline distance values
are located in I; are equivalent to L.

5.2.2 Rule Selection

In each round, we iteratively select the rule with the
maximum reward for manual verification until the
round budget of B runs out. Formally, the reward
of arule r, W(r), is estimated by

W(r) = Conf(r)- Benf(r), ®)

where C'on f () represents the confidence of r, and
Benf(r) denotes the benefit of r, or the number
of instances whose currently predicted labels is
not consistent with r (can thus be potentially cor-
rected by 7). Specifically, we measure C'on f(r) by
the difference between the estimated equivalence
probabilities of r’s skylines, S,., and their labels as
indicated by 7:

Conf(r) =1~ L= 5= 3 Pld)l. 9)

diESr

In Eq. 9, if d; has a ground-truth label, its value
of P(d;) is equal to O (if inequivalent) or 1 (if
equivalent). If d; does not have a ground-truth
label, its value of P(d;) is approximated by the
equivalence probability estimated by the current
GML model.

After manual verification, if the proportion of
r’s skyline observations, whose ground-truth labels
match r’s indicating label, exceeds a pre-specified
threshold 6 (e.g. 6=0.95 in our implementation),
the rule is considered to be true and will participate
in the next round of gradual inference. In case that
a chosen candidate rule fails manual verification,
the algorithm would try to produce new candidate
rules by re-constructing one-sided decision trees
based on new manual observations as well as the
current GML labeling results.

5.2.3 Discussion on Verification Efficiency

Rule verification generally requires to manually in-
spect every skyline. It is noteworthy that for ER,
the maximum number of predicates in rules needs
to be limited to a small value (e.g., 2 in our im-
plementation) to ensure high interpretability. As
a result, the number of a rule’s skylines is usually
small (e.g., dozens in our experiments) in most
cases. Furthermore, we set a budget of B° (B°=20
in our implementation) for each rule’s verification.
If a rule has less than B° skylines, those with the



smallest skyline distances would be additionally
verified. In case that the number of skylines ex-
ceeds B°, the algorithm would select the instances
in the decreasing order of entropy as predicted by
the current GML model.

5.3 An Illustrative Example

We illustrate the process of rule generation by the
examples extracted from the DBLP-ACM work-
load!. Active GML generates a candidate rule
based on the results of unsupervised GML in the
first round as follows:

r1: BEq(Year) = 0 A Sim(Authors) < 16 — 0, (10)

where the predicate of Eq(Year) indicates whether
two records have the same publication year, and
Sim(Authors) denotes their value similarity at Au-
thors. By gene mutation, the following new candi-
date rule is generated in the second round:

ro : Eq(Year) = 0 A Sim(Authors) <17 — 0. (11)

After r9 is verified to be valid, the threshold of
Sim(Authors) continues to be relaxed. Finally, the
discrete level of Sim(Authors) reaches the maxi-
mum and r; evolves into the following rule with
only one predicate:

r3 : Eq(Year) =0 — 0. (12)

On DA, the results of unsupervised GML contain
many false positives, many of which however can
be successfully predicted by r3. As a result, the
first round of active GML can significantly improve
precision as shown in our empirical evaluation.

6 Empirical Evaluation

In this section, we empirically evaluate the per-
formance of the proposed approach (denoted by
A-GML). Besides against the unsupervised GML
solution, we have compared A-GML with four
state-of-the-art deep AL solutions tailored to the
Ditto (Li et al., 2020), which is the state-of-the-art
deep model for ER. The four AL solutions include:
1) Maximum Entropy (Yang and Loog, 2018) (de-
noted by ME-Ditto). The traditional approach sam-
ples the points with the highest entropy values in
each round; 2) BALD (Houlsby et al., 2011) (de-
noted by BALD-Ditto). Also based on uncertainty
measurement, it samples the points that maximize
the mutual information with Ditto’s parameters; 3)

lavailable at https://github.com/megagonlabs/ditto

EGL (Zhang et al., 2017) (denoted by EGL-Ditto).
Based on the metric of expected model change, it
samples the points that cause the biggest change
to the embedding layer parameters of DNN; 4)
BADGE (Ash et al., 2020) (denoted by BADGE-
Ditto). The recently proposed approach samples
points with diverse gradient embeddings to trade
off between uncertainty and diversity.

The evaluation has been conducted on four
widely used benchmark datasets, which include:
1) Abt—Buy1 (denoted by AB): ER needs to match
product entities from two commercial websites,
Abt.com and Buy.com; 2) DBLP-ACM! (denoted
by DA): ER needs to match the publication entities
from two sources, DBLP and ACM; 3) Songs2 (de-
noted by SG): ER needs to match the song entries
within a single table; 4) iTunes-Amazon' (denoted
by IA): ER needs to match the music entities from
two sources, iTunes and Amazon.

As in (Li et al., 2020), we randomly divide each
dataset into three parts, the training pool (60%),
the validation pool (20%) and the test pool (20%).
Active instances are sampled from the training
pool while performance is evaluated on the test
pool. The validation pool is used for Ditto’s hyper-
parameter tuning. Note that unsupervised GML can
achieve competitive performance compared with
supervised Ditto. For fair comparison, in the evalu-
ation of AL solutions for Ditto, we randomly select
an initial set of instances from the training pool to
train Ditto such that its performance is very close
to that of unsupervised GML. With the similar ini-
tial performance, we then compare A-GML and
various AL solutions for Ditto in terms of learning
efficiency. On AB, DA and SG, each AL round
samples 1% instances from the training pool for
manual verification; while on IA, each round sam-
ples 3% due to its small data size.

As usual, we measure performance by the metric
of F1, which is a balanced combination of preci-
sion and recall. In the implementation of A-GML,
we set the maximum size of verified skyline set at
20. We set the discrete levels of continuous metric
values at 20. The accuracy threshold of a valid rule
is set at 95%. The performance of A-GML is ob-
served to be very stable. The performance of Ditto
is however relatively more volatile. All the reported
results are averages over 5 runs. The codes are
available at https://github.com/wailler/ActiveGML.

Evaluation Results: the detailed evaluation results

Zavailable at http://pages.cs.wisc.edu/"anhai/data/falcon_data/songs
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Figure 3: Comparative Evaluation Results.

have been presented in Fig. 3. It can be observed
that the supervised approach improves the perfor-
mance of GML by considerable margins. On most
datasets (e.g. AB, DA and SG), the performance of
GML almost reaches the maximum with only two
rounds, but flattens out thereafter. The only excep-
tion is on IA, where the performance of A-GML
can consistently improve in the five rounds. It is
worthy to point out that this observation should not
be surprising, because the performance of A-GML
is destined to be theoretically bounded by the ex-
pressive power of one-sided rules. Since all the
rules are constructed based on the existing basic
metrics, there exist some instances in each dataset
that no rule is able to correctly label without com-
promising overall labeling quality.

It can be observed that with the similar initial
performance, A-GML performs considerably bet-
ter than the deep AL solutions in terms of learn-
ing efficiency on all the test datasets. Specifically,
with only one round (manual cost at 1%), A-GML
achieves the close-to-optimal performance on AB,
DA and SG while the deep AL solutions take con-
siderably more rounds. We also report the optimal
performance that can be achieved by Ditto provided
with all the labeled data in training pools. With 60%

of the whole dataset as training data, Ditto can be
supposed to be sufficiently trained. It can be ob-
served that on AB and SG, A-GML, which exploits
only 4% training data, beats the Ditto model trained
with 60% training data. On IA, A-GML provided
with only 20% training data also beats Ditto trained
with 60%. On DA, Ditto trained with 60% however
beats A-GML trained with 4% with a slight margin.
Our experimental results clearly demonstrate the
efficacy of A-GML.

7 Conclusion

In this paper, we have proposed a novel active learn-
ing approach based on GML for ER. By generating
accurate one-sided labeling rules based on skyline
observations, it can effectively improve the perfor-
mance of GML with very small manual cost. Our
empirical study has validated its efficacy. For fu-
ture work, we have observed that not surprisingly,
the performance of the active solution is limited by
the expressive power of rules constructed based on
pre-specified basic metrics; unfortunately, increas-
ing the number of predicates in a rule has limited
efficacy. Therefore, it is interesting to investigate
other forms of knowledge that can further improve
the performance of GML in future work.
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