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Abstract

Recent work has shown that the task of entity001
resolution (ER) can be effectively performed002
by gradual machine learning (GML). GML be-003
gins with some easy instances, which can be004
automatically labeled by the machine with high005
accuracy, and then gradually labels more chal-006
lenging instances by iterative knowledge con-007
veyance in a factor graph. Without involving008
manual labeling effort, the current GML so-009
lution for ER is unsupervised. However, its010
performance is limited by inaccurate and in-011
sufficient knowledge conveyance. Therefore,012
there is a need to investigate how to improve013
knowledge conveyance by manual labeling ef-014
fort.015

In this paper, we propose an active learning016
(AL) approach based on GML for ER. It itera-017
tively generates new knowledge in the form of018
one-sided rules by manual label verification and019
instills them into a factor graph for improved020
knowledge conveyance. We first present a tech-021
nique of knowledge discovery based on genetic022
mutations, which can generate effective knowl-023
edge rules with very small manual verification024
cost. Then, we demonstrate how to leverage025
the generated rules for improved knowledge026
conveyance by measuring their influence over027
label status by the metric of skyline distance.028
We have evaluated the performance of the pro-029
posed approach by a comparative study on real030
benchmark data. Our extensive experiments031
have shown that it can significantly improve032
the performance of unsupervised GML with033
very small manual cost; furthermore, it outper-034
forms the state-of-the-art AL solutions for deep035
learning by considerable margins in terms of036
learning efficiency.037

1 Introduction038

Entity resolution (ER) aims at finding the records039

that refer to the same real-world entity (Barlaug040

and Gulla, 2021; Doan et al., 2020; Christen, 2012).041

Consider the running example shown in Table 1.042

ER needs to match the paper records between two 043

tables, T1 and T2. The pair of < e1i, e2j >, in 044

which e1i and e2j denote a record entity in T1 and 045

T2 respectively, is called an equivalent pair if and 046

only if e1i and e2j refer to the same paper; oth- 047

erwise, it is called an inequivalent pair. In the 048

example, e11 and e21 are equivalent while e12 and 049

e22 are inequivalent. 050

The state-of-the-art solutions for ER were built 051

on a variety of deep neural networks (DNN) (Li 052

et al., 2020; Barlaug and Gulla, 2021; Mudgal et al., 053

2018; Ebraheem et al., 2018; Nie et al., 2019; Fu 054

et al., 2019; Zhao and He, 2019)). However, to 055

achieve high performance, they require a large 056

quantity of accurately labeled training data, which 057

unfortunately may not be readily available in real 058

scenarios. Furthermore, DNN models usually have 059

limited interpretability. To alleviate these limita- 060

tions, a solution based on the paradigm of gradual 061

machine learning (GML) has been recently pro- 062

posed for ER (Hou et al., 2019; Hou et al., 2020). 063

Without depending on the Independent and Iden- 064

tically Distributed (IID) assumption, GML begins 065

with some easy instances, which can be automat- 066

ically labeled by the machine with high accuracy, 067

and then gradually reasons about the labels of more 068

challenging instances by iterative knowledge con- 069

veyance in a factor graph. The current GML solu- 070

tion for ER does not require manual labeling effort, 071

but its efficacy depends on effective knowledge con- 072

veyance from easy instances to harder ones. Unfor- 073

tunately, unsupervised knowledge conveyance may 074

be inaccurate and insufficient. On one hand, some 075

pair instances may be mislabeled in the process 076

of gradual learning, thus providing noisy eviden- 077

tial observations. On the other hand, the current 078

solution conveys knowledge between instances by 079

global influence regression based on pre-specified 080

basic metrics, mostly value similarities on differ- 081

ent attributes (e.g. paper titles or author names 082

in the running example); however, learning effi- 083
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Table 1: A running example of ER.

ID Title Author Venue Year
e11 Peer Collaborative Learning for Online Knowledge Distillation G. Wu, S. Gong AAAI 2021
e12 Deep Reinforcement Learning for General Game Playing A. Goldwaser, M. Thielscher AAAI 2020

T1

ID Title Author Venue Year
e21 Peer Collaborative Learning for Online Knowledge Distillation Wu, Gong AAAI 2021
e22 Deep Reinforcement Learning for Navigation in AAA Video Games Alonso, Peter, Goumard, Romoff IJCAI 2021

T2

ciency of such knowledge conveyance is limited084

because a handful of new observations could only085

have marginal impact on global distribution regres-086

sion.087

Therefore, there is a need to investigate how to088

enable supervised knowledge conveyance for im-089

proved gradual learning. Active learning (AL), in090

which data are actively sampled to be labeled by091

human oracles with the goal of maximizing model092

performance while minimizing labeling cost, has093

presented itself as a feasible approach for tradi-094

tional machine learning (ML) models including095

DNN (Barlaug and Gulla, 2021; Doan et al., 2020;096

Settles, 2012). In this paper, we propose an active097

learning approach based on GML for ER. Instead098

of selecting samples for manual labeling and then099

submitting them for model training, the proposed100

approach leverage labeled samples to generate new101

knowledge in the form of one-sided rules and then102

instills them into GML factor graph for improved103

knowledge conveyance. Inspired by the concept of104

genetic evolution (Jong, 2006), it first generates a105

wide variety of candidate rules by mutations and106

then singles out the fittest among them by skyline107

observations with very small manual cost. The108

resulting rules can accurately indicate label status109

while covering many mislabeled instances. By mea-110

suring their influence over label status by skyline111

distance, the proposed approach enables effective112

knowledge conveyance with only a small amount113

of manual effort.114

The major contributions of this paper can be115

summarized as follows:116

1. We propose a novel active learning approach117

based on GML for ER, which can effectively118

improve the performance of gradual learning119

with only a small amount of manual effort;120

2. We present a new technique of active knowl-121

edge generation for ER based on genetic evo-122

lution. It can generate highly accurate one-123

sided labeling rules based on skyline observa- 124

tions with very small manual cost; 125

3. We validate the efficacy of the proposed ap- 126

proach on real benchmark data by a compar- 127

ative study. Our extensive experiments have 128

shown that it can significantly improve the per- 129

formance of GML with only a small amount 130

of manual effort, and it considerably outper- 131

forms the state-of-the-art AL solutions for 132

deep models in terms of learning efficiency. 133

2 Related Work 134

Due to space limit, we briefly review related work 135

from the orthogonal perspectives of entity resolu- 136

tion and active learning. 137

Entity Resolution. The problem of ER has been 138

extensively studied in the literature (Barlaug and 139

Gulla, 2021; Doan et al., 2020; Christen, 2012). 140

It has been widely recognized that the unsuper- 141

vised approaches have limited efficacy in real sce- 142

narios (Bilenko et al., 2003). The supervised ap- 143

proaches viewed ER as a binary classification task 144

and then applied various statistical learning mod- 145

els (e.g. SVM (Arasu et al., 2010; Bellare et al., 146

2012), native Bayesian (Berger, 1985), rule-based 147

methods (Li et al., 2015; Quinlan, 1986) and DNN 148

models (Mudgal et al., 2018; Li et al., 2020)) for 149

the task. However, the performance of these super- 150

vised approaches heavily relies on labeled training 151

data. 152

Recently, a non-i.i.d learning paradigm called 153

Gradual Machine Learning (GML) (Hou et al., 154

2020; Hou et al., 2019; Zhong et al., 2021) has 155

been proposed to enable effective machine learning 156

for ER without the requirement for manual labeling 157

effort. GML has also been applied to the task of 158

sentiment analysis (Wang et al., 2021; Ahmed et al., 159

2021). The current unsupervised GML solutions 160

can achieve competitive performance compared 161

with many supervised approaches. However, with- 162
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out exploiting labeled training data, their perfor-163

mance is still limited by inaccurate and insufficient164

knowledge conveyance.165

Active Learning. Active learning has been ex-166

tensively studied in the context of machine learn-167

ing. For traditional machine learning such as SVM,168

the most prominent approaches that proved to per-169

form well include margin-based, maximum entropy,170

Query by committee and Expected variance reduc-171

tion to name a few (Settles, 2012). However, many172

of the above methods pose challenges when applied173

to deep neural networks.174

Most active learning works for DNN have175

been focused on image classification. They176

can be broadly categorized into three groups:(1)177

uncertainty-based (Houlsby et al., 2011; Gal and178

Ghahramani, 2016; Kirsch et al., 2019): they ap-179

plied dropout at test time to approximate Bayesian180

inference enabling the application of Bayesian181

methods to deep learning; (2) expected model182

change-based (Zhang et al., 2017): they used an ex-183

pected model change measure to choose examples184

that maximize the impact on the learned model185

weights when labeled; (3) representativeness-186

based (Ash et al., 2020; Yang et al., 2017; El-187

hamifar et al., 2013; Sener and Savarese, 2018):188

they usually aimed to achieve trade-off between189

representativeness and uncertainty. Other recent190

works include generative data augmentation for191

AL (Tran et al., 2019), e.g., adversarial network-192

based discrimination of informative points (Sinha193

et al., 2019) and detrimental point processes-based194

batch selection (Bıyık et al., 2019). Active deep195

learning for ER has also been specifically stud-196

ied (Kasai et al., 2019; Bogatu et al., 2021). They197

usually tailored the mainstream AL strategies to198

ER.199

3 Unsupervised GML for ER200

Given an ER workload consisting of record pairs, a201

solution needs to label each pair in the workload as202

equivalent or inequivalent. The unsupervised GML203

solution for ER, as shown in Figure 1, consists of204

the following 3 essential steps:205

3.1 Easy Instance Labeling.206

Given an ER workload, unsupervised GML first207

uses an unsupervised clustering algorithm to esti-208

mate the proportions of equivalent and inequivalent209

instances in the workload, and then proportionally210

(e.g. 30%) identify the pair instances with the high-211
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Figure 1: Overview of GML Solution for ER.

est (resp. lowest) record similarities as the easy 212

equivalent (resp. inequivalent) instances. 213

3.2 Feature Extraction and Influence 214

Modeling. 215

GML extracts the features satisfying the mono- 216

tonicity assumption of precision to facilitate knowl- 217

edge conveyance, e.g. attribute value similarity 218

and token features aligned with record similarity. 219

Intuitively speaking, the monotonicity assumption 220

of precision statistically states that an equivalence 221

probability of a pair instance increases with its 222

feature values. Since the proposed active learn- 223

ing approach also depends on the monotonicity as- 224

sumption, we formally define it as in (Arasu et al., 225

2010): 226

Assumption 1 (Monotonicity of Precision) A 227

value interval Ii is dominated by another interval 228

Ij , denoted by Ii ⪯ Ij , if every value in Ii is less 229

than every value in Ij . We say that precision is 230

monotonic with respect to a pair metric if for 231

any two value intervals Ii ⪯ Ij in [0,1], we 232

have P (Ii) ≤ P (Ij), in which P (Ii) denotes the 233

equivalence precision of the set of instance pairs 234

whose metric values are located in Ii. 235

For each feature, GML models its influence over 236

pair labels by a monotonous sigmoid function with 237

two parameters, α and τ , which denote the func- 238

tion’s midpoint and the steepness of the curve re- 239

spectively. Formally, given a feature f and a pair 240

d, the influence of f w.r.t d is represented by 241

Pf (d) =
1

1 + e−τf (xf (d)−αf )
, (1) 242

in which xf (d) represents d’s feature value w.r.t 243

f . According to Eq. 1, provided with the values 244

3



of αf and τf , the influence model statistically dic-245

tates that any feature value of xf (d) corresponds246

to an equivalence probability. Typically, the value247

of Pf (d) increases with the feature value of d, or248

xf (d).249

3.3 Gradual Inference.250

GML fulfills gradual learning by a factor graph251

G, which consists of evidence variables Λ, infer-252

ence variables VI and factors modeling labeled in-253

stances, unlabeled instances and their shared fea-254

tures respectively. Typically, GML labels only one255

instance at each iteration. At each iteration, gradual256

inference essentially learns the feature parameter257

values (α and τ ) such that the inferred results max-258

imally match the evidential observations. Formally,259

the objective function can be represented by260

(α̂, τ̂) = argmin
α,τ

− log
∑
VI

Pα,τ (Λ, VI), (2)261

in which Pα,τ (Λ, VI) denotes the joint probability262

of the variables in G.263

To enable scalable gradual learning, in each iter-264

ation, GML first selects the top-m unlabeled in-265

stances with the most evidential support as the266

candidates, and then efficiently approximates their267

probabilities. Finally, GML constructs factor268

graphs individually only for the top-k most promis-269

ing unlabeled instances (or the instances with the270

lowest entropies) among the m candidates, to infer271

their probabilities via maximum likelihood. GML272

labels the one with the lowest entropy at each itera-273

tion. A newly labeled instance would serve as an274

evidential observation in the following iterations.275

4 Active GML Framework276

The active GML approach, denoted by A-GML,277

iteratively discovers new knowledge in the form278

of one-sided labeling rule and integrates them into279

GML factor graph for improved gradual learning.280

In each round, it can select some unlabeled in-281

stances from a pre-specified pool for manual la-282

bel verification. As first introduced in (Chen et al.,283

2020), one-sided rules act as label status indicators.284

As opposed to the classical setting where a rule285

is used to label pairs in both ways (equivalent or286

inequivalent), a one-sided rule focuses exclusively287

on one single class. An example is as follows:288

ri[Y ear] ̸= rj [Y ear] → inequivalent(ri, rj),
(3)289

where ri[Y ear] denotes the record ri’s attribute 290

value at Year and inequivalent(ri, rj) denotes the 291

inequivalence between ri and rj . With this knowl- 292

edge, a pair of records with different publication 293

years is supposed to have a high probability of be- 294

ing inequivalent. However, this rule does not intend 295

to indicate the label status of any pair with the same 296

publication year. 297

The active approach begins with the labeling 298

result of unsupervised GML. As shown in Fig 2, 299

given a manual budget of B for each round, it itera- 300

tively performs the following two steps: knowledge 301

rule generation and rule-augmented gradual infer- 302

ence. 303

Unsupervised GML

Candidate Rule Generation

Manual Rule Verification

Remaining Round

Budget > 0 ?

Rule Selection

Rule-augmented Gradual Inference

YES

Remaining Round

Count > 0 ?

Rule 

Mutation

Rule 

Recombination

NO

YES

Decision Tree Construction

Output

NO

Figure 2: Active GML Framework for ER.

4.1 Knowledge Rule Generation 304

Formally, we represent a one-sided labeling rule by 305

a first order logic expression as 306

∧
i
pi(fi(d), vi) → L, (4) 307

where fi(d) denotes the feature value of a pair in- 308

stance d w.r.t a feature fi, vi denotes a constant 309
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within the domain of fi(d), pi(fi(d), vi) denotes a310

predicate in the form of fi(d) ≤ vi or fi(d) ≥ vi,311

∧ denotes the conjunction of predicates, and L312

denotes a label status (0 for inequivalent or 1 for313

equivalent). To ensure high interpretability, we314

usually limit the maximum number of predicates in315

a rule to a small number (e.g. 2 in our implementa-316

tion).317

We discretize continuous feature values to facil-318

itate knowledge generation. Specifically, given a319

feature, we deploy a Gaussian mixture model to320

cluster its values into a specified number of clusters321

(e.g. 20 in our experiments). We sort the ranks of322

clusters by their center values to preserve mono-323

tonicity. Then, given a continuous feature value,324

we assign the rank of its corresponding cluster as325

its discrete value.326

The active approach generates an initial set of327

candidate rules based on the labeling result of un-328

supervised GML, and then tries to produce more329

candidates by genetic evolution. From the candi-330

date rules, it singles out only a few fittest rules for331

manual label verification based on a reward met-332

ric. Intuitively speaking, only the highly accurate333

rules that can potentially correct many mislabeled334

instances are worthy of being verified. The detailed335

technical solution for knowledge rule generation336

will be presented in Section 5.337

4.2 Rule-augmented Gradual Inference338

Similar to unsupervised GML, A-GML also pro-339

portionally (e.g. 30% in our implementation) labels340

a set of easy equivalent and inequivalent instances341

based on record similarity to start gradual inference.342

In each round of A-GML, the manually verified in-343

stances are always considered as easy instances344

while the rest of easy instances are identified based345

on record similarity. For each validated rule, we346

create a corresponding factor, which are shared by347

all the satisfying instances. Similar to the existing348

GML features for ER, we also use the sigmoid func-349

tion to model a rule’s influence over label status350

as351

w(fr) = τ · (xr − α), (5)352

where r denotes a rule, fr denotes the correspond-353

ing factor of r, and xr denotes the feature value354

of an instance w.r.t fr. With the monotonicity as-355

sumption, we quantify the feature value of x by356

an instance’s skyline distance to the rule. The pa-357

rameters of α and τ need to be learned based on358

evidential observations in the process of gradual359

inference. According to the sigmoid model, a rule’s 360

influence over an instance would increase with sky- 361

line distance. We will detail how to measure sky- 362

line distance in Section 5. 363

5 Knowledge Rule Generation 364

In this section, we describe how to efficiently gen- 365

erate accurate one-sided labeling rules with only a 366

small amount of manual effort. The process con- 367

sists of two steps: candidate rule generation and 368

manual rule verification. 369

5.1 Candidate Rule Generation 370

Based on the labeling result of unsupervised GML, 371

we directly use the algorithm proposed in (Chen 372

et al., 2020) to generate the initial candidate rules 373

with the maximal depth of m (m=2 in our experi- 374

ments). To discover new knowledge beyond those 375

implied by the initial rules, we explore new rules 376

by the operations of gene mutation and gene recom- 377

bination: 378

5.1.1 Gene Mutation 379

Consider the validated rule of 380

Sim(T itle) ≥ 18 ∧ Sim(Authors) ≥ 18 → 1, (6) 381

which specifies that a pair instance is equivalent if 382

both its discretized title similarity level and author 383

similarity level are no less than 18. The mutation 384

operation would relax the thresholds of title and au- 385

thor similarities by one discrete level. For instance, 386

if both thresholds are relaxed to 17, we would get 387

a new candidate rule represented as 388

Sim(T itle) ≥ 17 ∧ Sim(Authors) ≥ 17 → 1. (7) 389

Due to the monotonicity assumption, we usually 390

reduce the value level of equivalence predicates 391

while increasing the value level of inequivalence 392

predicates. Since the number of predicates in any 393

rule is small, our algorithm executes all possible 394

relaxation operations on a validated rule to generate 395

as many candidate rules as possible. 396

5.1.2 Gene Recombination 397

Beside gene mutations, we also extract the predi- 398

cates (genes) from separate rules and combine them 399

by the AND operator to reproduce new ones. It is 400

noteworthy that the recombination operation has to 401

be executed on the predicates indicating the same 402

label. Since the total number of defined predicate 403

templates is limited (e.g. only dozens in our ex- 404

periments) and the maximum number of predicates 405
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in a rule is small (e.g. 2 in our implementation),406

we construct all possible predicate combinations,407

whose total number is also limited.408

5.2 Manual Rule Verification409

Rules are supposed to be verified based on skyline410

observations. Therefore, in this subsection, we first411

introduce the concept of skyline distance, and then412

describe how to efficiently select accurate rules413

with potential big reward with only a small amount414

of manual cost.415

5.2.1 Skyline Distance416

Given a set of instances of D and a rule of r, an417

instance di in D is said to be a skyline of a rule r418

if and only if di is not strictly dominated by any419

other instance in D w.r.t r. Given an equivalence420

rule of r, an instance di is said to strictly dominate421

another one dj , r : di ≻ dj , if and only if di’s value422

at each predicate of r is no larger than that of dj423

and there exists at least one predicate such that di’s424

value is less than that of dj . It is noteworthy that425

according to the monotonicity assumption, if di426

strictly dominates dj , the equivalence probability427

of dj is at least as large as that of di. The case for428

inequivalence rule is similar.429

Building upon the work in (Huang et al., 2013),430

we define a non-skyline instance’s skyline distance431

to a rule as follows:432

Definition 1 Skyline Distance. Given a rule, r,433

the skyline distance of an instance di ∈ D to434

r, denoted by SkyDistr(di), is defined as the435

minimum sum of the changing values on all the436

predicates of r to move di to a new position437

d′i, so that d′i is not strictly dominated by any438

other instance in D. That is, SkyDistr(di) :=439

min d′i, r: d
′
i⪰di, ∄dj∈D, r: dj≻d′i

MD(di, d
′
i), where440

MD(di, d
′
i) denotes the Manhattan Distance be-441

tween di and d′i.442

Our strategy of rule verification is built upon443

the monotonicity assumption of skyline distance,444

which can be formally stated as follows:445

Assumption 2 (Monotonicity Assumption of446

Skyline Distance) Given a rule of r indicating447

the label of L (L=0 or 1), an interval of skyline448

distance Ii is dominated by another interval Ij , de-449

noted by Ii ⪯ Ij , if every skyline distance in Ii450

is no less than every skyline distance in Ij . We451

say that precision is monotonic with respect to a452

skyline distance if for any two skyline distance in-453

tervals Ii ⪯ Ij in [0,1], we have P (Ii) ≥ P (Ij), in454

which P (Ii) denotes the precision that the labels of 455

the set of instances whose skyline distance values 456

are located in Ii are equivalent to L. 457

5.2.2 Rule Selection 458

In each round, we iteratively select the rule with the 459

maximum reward for manual verification until the 460

round budget of B runs out. Formally, the reward 461

of a rule r, W (r), is estimated by 462

W (r) = Conf(r) ·Benf(r), (8) 463

where Conf(r) represents the confidence of r, and 464

Benf(r) denotes the benefit of r, or the number 465

of instances whose currently predicted labels is 466

not consistent with r (can thus be potentially cor- 467

rected by r). Specifically, we measure Conf(r) by 468

the difference between the estimated equivalence 469

probabilities of r’s skylines, Sr, and their labels as 470

indicated by r: 471

Conf(r) = |1− L− 1

|Sr|
∑
di∈Sr

P (di)|. (9) 472

In Eq. 9, if di has a ground-truth label, its value 473

of P (di) is equal to 0 (if inequivalent) or 1 (if 474

equivalent). If di does not have a ground-truth 475

label, its value of P (di) is approximated by the 476

equivalence probability estimated by the current 477

GML model. 478

After manual verification, if the proportion of 479

r’s skyline observations, whose ground-truth labels 480

match r’s indicating label, exceeds a pre-specified 481

threshold θ (e.g. θ=0.95 in our implementation), 482

the rule is considered to be true and will participate 483

in the next round of gradual inference. In case that 484

a chosen candidate rule fails manual verification, 485

the algorithm would try to produce new candidate 486

rules by re-constructing one-sided decision trees 487

based on new manual observations as well as the 488

current GML labeling results. 489

5.2.3 Discussion on Verification Efficiency 490

Rule verification generally requires to manually in- 491

spect every skyline. It is noteworthy that for ER, 492

the maximum number of predicates in rules needs 493

to be limited to a small value (e.g., 2 in our im- 494

plementation) to ensure high interpretability. As 495

a result, the number of a rule’s skylines is usually 496

small (e.g., dozens in our experiments) in most 497

cases. Furthermore, we set a budget of B◦ (B◦=20 498

in our implementation) for each rule’s verification. 499

If a rule has less than B◦ skylines, those with the 500
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smallest skyline distances would be additionally501

verified. In case that the number of skylines ex-502

ceeds B◦, the algorithm would select the instances503

in the decreasing order of entropy as predicted by504

the current GML model.505

5.3 An Illustrative Example506

We illustrate the process of rule generation by the507

examples extracted from the DBLP-ACM work-508

load1. Active GML generates a candidate rule509

based on the results of unsupervised GML in the510

first round as follows:511

r1 : Eq(Y ear) = 0 ∧ Sim(Authors) ≤ 16 → 0, (10)512

where the predicate of Eq(Year) indicates whether513

two records have the same publication year, and514

Sim(Authors) denotes their value similarity at Au-515

thors. By gene mutation, the following new candi-516

date rule is generated in the second round:517

r2 : Eq(Y ear) = 0 ∧ Sim(Authors) ≤ 17 → 0. (11)518

After r2 is verified to be valid, the threshold of519

Sim(Authors) continues to be relaxed. Finally, the520

discrete level of Sim(Authors) reaches the maxi-521

mum and r1 evolves into the following rule with522

only one predicate:523

r3 : Eq(Y ear) = 0 → 0. (12)524

On DA, the results of unsupervised GML contain525

many false positives, many of which however can526

be successfully predicted by r3. As a result, the527

first round of active GML can significantly improve528

precision as shown in our empirical evaluation.529

6 Empirical Evaluation530

In this section, we empirically evaluate the per-531

formance of the proposed approach (denoted by532

A-GML). Besides against the unsupervised GML533

solution, we have compared A-GML with four534

state-of-the-art deep AL solutions tailored to the535

Ditto (Li et al., 2020), which is the state-of-the-art536

deep model for ER. The four AL solutions include:537

1) Maximum Entropy (Yang and Loog, 2018) (de-538

noted by ME-Ditto). The traditional approach sam-539

ples the points with the highest entropy values in540

each round; 2) BALD (Houlsby et al., 2011) (de-541

noted by BALD-Ditto). Also based on uncertainty542

measurement, it samples the points that maximize543

the mutual information with Ditto’s parameters; 3)544

1available at https://github.com/megagonlabs/ditto

EGL (Zhang et al., 2017) (denoted by EGL-Ditto). 545

Based on the metric of expected model change, it 546

samples the points that cause the biggest change 547

to the embedding layer parameters of DNN; 4) 548

BADGE (Ash et al., 2020) (denoted by BADGE- 549

Ditto). The recently proposed approach samples 550

points with diverse gradient embeddings to trade 551

off between uncertainty and diversity. 552

The evaluation has been conducted on four 553

widely used benchmark datasets, which include: 554

1) Abt-Buy1 (denoted by AB): ER needs to match 555

product entities from two commercial websites, 556

Abt.com and Buy.com; 2) DBLP-ACM1 (denoted 557

by DA): ER needs to match the publication entities 558

from two sources, DBLP and ACM; 3) Songs2 (de- 559

noted by SG): ER needs to match the song entries 560

within a single table; 4) iTunes-Amazon1 (denoted 561

by IA): ER needs to match the music entities from 562

two sources, iTunes and Amazon. 563

As in (Li et al., 2020), we randomly divide each 564

dataset into three parts, the training pool (60%), 565

the validation pool (20%) and the test pool (20%). 566

Active instances are sampled from the training 567

pool while performance is evaluated on the test 568

pool. The validation pool is used for Ditto’s hyper- 569

parameter tuning. Note that unsupervised GML can 570

achieve competitive performance compared with 571

supervised Ditto. For fair comparison, in the evalu- 572

ation of AL solutions for Ditto, we randomly select 573

an initial set of instances from the training pool to 574

train Ditto such that its performance is very close 575

to that of unsupervised GML. With the similar ini- 576

tial performance, we then compare A-GML and 577

various AL solutions for Ditto in terms of learning 578

efficiency. On AB, DA and SG, each AL round 579

samples 1% instances from the training pool for 580

manual verification; while on IA, each round sam- 581

ples 3% due to its small data size. 582

As usual, we measure performance by the metric 583

of F1, which is a balanced combination of preci- 584

sion and recall. In the implementation of A-GML, 585

we set the maximum size of verified skyline set at 586

20. We set the discrete levels of continuous metric 587

values at 20. The accuracy threshold of a valid rule 588

is set at 95%. The performance of A-GML is ob- 589

served to be very stable. The performance of Ditto 590

is however relatively more volatile. All the reported 591

results are averages over 5 runs. The codes are 592

available at https://github.com/wailler/ActiveGML. 593

Evaluation Results: the detailed evaluation results 594

2available at http://pages.cs.wisc.edu/˜anhai/data/falcon_data/songs
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(a) AB (b) DA

(c) SG (d) IA

Figure 3: Comparative Evaluation Results.

have been presented in Fig. 3. It can be observed595

that the supervised approach improves the perfor-596

mance of GML by considerable margins. On most597

datasets (e.g. AB, DA and SG), the performance of598

GML almost reaches the maximum with only two599

rounds, but flattens out thereafter. The only excep-600

tion is on IA, where the performance of A-GML601

can consistently improve in the five rounds. It is602

worthy to point out that this observation should not603

be surprising, because the performance of A-GML604

is destined to be theoretically bounded by the ex-605

pressive power of one-sided rules. Since all the606

rules are constructed based on the existing basic607

metrics, there exist some instances in each dataset608

that no rule is able to correctly label without com-609

promising overall labeling quality.610

It can be observed that with the similar initial611

performance, A-GML performs considerably bet-612

ter than the deep AL solutions in terms of learn-613

ing efficiency on all the test datasets. Specifically,614

with only one round (manual cost at 1%), A-GML615

achieves the close-to-optimal performance on AB,616

DA and SG while the deep AL solutions take con-617

siderably more rounds. We also report the optimal618

performance that can be achieved by Ditto provided619

with all the labeled data in training pools. With 60%620

of the whole dataset as training data, Ditto can be 621

supposed to be sufficiently trained. It can be ob- 622

served that on AB and SG, A-GML, which exploits 623

only 4% training data, beats the Ditto model trained 624

with 60% training data. On IA, A-GML provided 625

with only 20% training data also beats Ditto trained 626

with 60%. On DA, Ditto trained with 60% however 627

beats A-GML trained with 4% with a slight margin. 628

Our experimental results clearly demonstrate the 629

efficacy of A-GML. 630

7 Conclusion 631

In this paper, we have proposed a novel active learn- 632

ing approach based on GML for ER. By generating 633

accurate one-sided labeling rules based on skyline 634

observations, it can effectively improve the perfor- 635

mance of GML with very small manual cost. Our 636

empirical study has validated its efficacy. For fu- 637

ture work, we have observed that not surprisingly, 638

the performance of the active solution is limited by 639

the expressive power of rules constructed based on 640

pre-specified basic metrics; unfortunately, increas- 641

ing the number of predicates in a rule has limited 642

efficacy. Therefore, it is interesting to investigate 643

other forms of knowledge that can further improve 644

the performance of GML in future work. 645
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