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Abstract

Designing neural networks with bounded Lipschitz constant is a promising way
to obtain certifiably robust classifiers against adversarial examples. However, the
relevant progress for the important ℓ∞ perturbation setting is rather limited, and a
principled understanding of how to design expressive ℓ∞ Lipschitz networks is still
lacking. In this paper, we bridge the gap by studying certified ℓ∞ robustness from
a novel perspective of representing Boolean functions. We derive two fundamental
impossibility results that hold for any standard Lipschitz network: one for robust
classification on finite datasets, and the other for Lipschitz function approximation.
These results identify that networks built upon norm-bounded affine layers and Lip-
schitz activations intrinsically lose expressive power even in the two-dimensional
case, and shed light on how recently proposed Lipschitz networks (e.g., GroupSort
and ℓ∞-distance nets) bypass these impossibilities by leveraging order statistic
functions. Finally, based on these insights, we develop a unified Lipschitz network
that generalizes prior works, and design a practical version that can be efficiently
trained (making certified robust training free). Extensive experiments show that our
approach is scalable, efficient, and consistently yields better certified robustness
across multiple datasets and perturbation radii than prior Lipschitz networks.

1 Introduction

Modern neural networks, despite their great success in various applications [22, 13], typically suffer
from a severe drawback of lacking adversarial robustness. In classification tasks, given an image x
correctly classified by a neural network, there often exists a small adversarial perturbation δ, making
the perturbed image x+ δ look indistinguishable to humans but fool the network to predict a wrong
class with high confidence [57, 4].

It is well-known that the adversarial robustness of a neural network is closely related to its Lipschitz
continuity [8, 61] (see Section 3.1). Accordingly, training neural networks with bounded Lipschitz
constant has been considered a promising way to address the problem. A variety of works studied
Lipschitz architectures for the ordinary Euclidean norm [61, 60, 36, 54], and recent works even
established state-of-the-art (deterministic) certified ℓ2 robustness [55, 40]. However, when it comes
to the more critical (realistic) ℓ∞ perturbation setting, the progress seems to be rather limited. In fact,
standard Lipschitz ReLU networks have been shown to perform poorly in terms of ℓ∞ robustness
[61, 24, 2]. While other more advanced Lipschitz networks have been proposed [2, 10], the achieved
results are still not satisfactory even on simple datasets like MNIST. Until recently, Zhang et al.
[73, 74] designed a quite unusual Lipschitz network based on a heuristic choice of the ℓ∞-distance
function, which surprisingly established state-of-the-art certified ℓ∞ robustness on multiple datasets
over prior works. Yet, it remains unclear why previous Lipschitz networks typically failed, and what
is the essential reason behind the success of this particular ℓ∞-distance network structure.
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Theoretical contributions. In this work, we systematically investigate how to design expressive
Lipschitz neural networks (w.r.t. ℓ∞-norm) through the novel lens of representing discrete Boolean
functions, which provides a deep understanding on the aforementioned problems. Specifically, we
first figure out a fundamental limitation of standard Lipschitz networks in representing a class of
logical operations called symmetric Boolean functions (SBF), which comprises the basic logical
AND/OR as special cases. We prove that for any non-constant SBF of d variables, there exists a finite
dataset of size O(d) such that the certified ℓ∞ robust radius must vanish as O(1/d) for any classifier
induced by a standard Lipschitz network. Remarkably, since logical AND/OR operations correspond
to perhaps the most basic classifiers, our result indicates an intrinsic difficulty of such networks in
fitting high-dimensional real-world datasets with guaranteed certified ℓ∞ robustness.

Our analysis can be readily extended into the Lipschitz function approximation setting. We point out
the relationship between monotonic SBF and the order statistics (which are 1-Lipschitz functions),
and then prove that any d-dimensional order statistic (including the max/min function) on a compact
domain cannot be approximated by standard Lipschitz networks with error O(1− 1/d), regardless
of the network size. This impossibility result is significant in that: (i) it applies to all Lipschitz
activations (thus extending prior works [2, 24]), (ii) it resolves an open problem raised recently in
[43], and (iii) a quantitative lower bound of approximation error is established.

Equipped by the above impossibility results, we proceed to examine two advanced Lipschitz ar-
chitectures: the GroupSort network [2] and the recently proposed ℓ∞-distance net [73, 74]. We
find that besides the linear operation, both networks incorporate other Lipschitz aggregation oper-
ations into the neuron design, especially the order statistic functions, thus shedding light on how
they work. However, for the MaxMin network [2] — a computationally efficient version of the
GroupSort network implemented in practice, representing Boolean functions and order statistics
is possible only when the network is very deep. In particular, we prove that representing certain
d-dimensional Boolean functions requires a depth of Ω(d), implying that shallow MaxMin networks
are not Lipschitz-universal function approximators. In contrast, we show a two-layer ℓ∞-distance net
suffices to represent any order statistic function on a compact domain or even all Boolean functions.
This strongly justifies the empirical success of ℓ∞-distance net over GroupSort (MaxMin) networks.

Practical contributions. Our theoretical insights can also guide in designing better Lipschitz network
architectures. Inspired by the importance of order statistics, we propose a general form of Lipschitz
network, called SortNet, that extends both GroupSort and ℓ∞ distance networks and incorporates
them into a unified framework. Yet, the full-sort operation is computationally expensive and leads to
optimization difficulties (as with the GroupSort network). We further propose a specialized SortNet
that can be efficiently trained, by assigning each weight vector w using geometric series, i.e. wi

proportional to ρi for some 0 ≤ ρ < 1. This leads to a restricted version of SortNet but still covers
ℓ∞-distance net as a special case. For this particular SortNet, we skillfully derive a stochastic
estimation that gives an unbiased approximation of the neuron output without performing sorting
operations explicitly. This eventually yields an efficient training strategy with similar cost as training
standard networks, thus making certified robust training free. Extensive experiments demonstrate that
the proposed SortNet is scalable, efficient, and consistently achieves better certified robustness than
prior Lipschitz networks across multiple datasets and perturbation radii. In particular, our approach
even scales on a variant of ImageNet, and surpasses the best-known result [69] with a 22-fold decrease
in training time thanks to our “free” certified training approach.

The contribution and organization of this paper can be summarized as follows:

• We develop a systematic study for the expressive power of Lipschitz neural networks using
the tools of Boolean function theory. We prove the impossibility results of standard Lipschitz
networks in two settings: a) certified ℓ∞ robustness on discrete datasets (Section 3.2); b)
Lipschitz function approximation (Section 3.3).

• We provide insights into how recently proposed networks can bypass the impossibility results.
In particular, we show that a two-layer ℓ∞-distance net can precisely represent any Boolean
functions, while shallow GroupSort networks cannot (Section 3.4).

• We propose SortNet, a Lipschitz network that generalizes GroupSort and ℓ∞-distance net. For
a special type of SortNet, we derive a stochastic training approach that bypasses the difficulties
in calculating sorting operations explicitly and makes certified training free (Section 4).

• Extensive experiments demonstrate that SortNet exhibits better certified robustness on several
benchmark datasets over baseline methods with high training efficiency (Section 5).
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2 Related Work

Extensive studies have been devoted to developing neural networks with certified robustness guaran-
tees. Existing approaches can be mainly divided into the following three categories.

Certified defenses for standard networks. A variety of works focus on establishing certified
robustness for standard neural networks. However, exactly calculating the certified radius of a
standard ReLU network is known to be NP-hard [28]. Researchers thus developed a class of
relaxation-based approaches that provide a tight lower bound estimate of the certified robustness
efficiently. These approaches typically use convex relaxation to calculate a bound of the neuron
outputs under input perturbations layer by layer [65, 66, 64, 53, 42, 19, 62, 76]. See also [3, 15, 16,
47, 48, 68, 11, 35, 63, 23, 51] for more advanced approaches. However, most of these works suffer
from high computational costs and are hard to scale up to large datasets. Currently, the only scalable
convex relaxation approach is based on interval bound propagation (IBP) [42, 21, 75, 69, 52], but
the produced bound is known to be loose [50], and a recent study showed that IBP cannot achieve
enough certified robustness on simple datasets for any standard ReLU network [41].

Certified defenses using Lipschitz networks. On the other hand, Lipschitz networks inherently
imply certified robustness, resulting in a much simpler certification process based on the output margin
(see Proposition 3.1). Yet, most prior works can only handle the ℓ2-norm Lipschitz situation by
leveraging specific mathematical properties such as the spectral norm [8, 71, 20, 61, 17, 46, 2, 36, 40]
or orthogonality of weight matrices [39, 60, 54, 55]. For the ℓ∞-norm, standard Lipschitz networks
were shown to give only a vanishingly small certified radius [61]. Huster et al. [24] found that
standard Lipschitz ReLU networks cannot represent certain simple functions such as the absolute
value, which inspired the first expressive Lipschitz architecture called the GroupSort network [2].
Since then, GroupSort has been extensively investigated [10, 58], but its performance is still much
worse than the above relaxation-based approaches even on MNIST. Recently, Zhang et al. [73, 74]
first proposed a practical 1-Lipschitz architecture w.r.t. ℓ∞-norm based on a special neuron called the
ℓ∞-distance neuron, which can scale to TinyImageNet with state-of-the-art certified robustness over
relaxation-based approaches. However, despite its practical success, it is rather puzzling how such a
simple architecture can work while prior approaches all failed. Answering this question may require
an in-depth re-examination of Lipschitz networks (w.r.t. ℓ∞-norm), which is the focus of this paper.

Certified defenses via randomized smoothing. As a rather different and parallel research line,
randomized smoothing typically provides probabilistic certified ℓ2 robustness guarantees. Due to
the wide applicability, randomized smoothing has been scaled up to ImageNet and achieves state-of-
the-art certified accuracy for ℓ2 perturbations [34, 38, 9, 49, 72, 27]. However, certifying robustness
with high probability requires sampling a large number of noisy inputs (e.g., 105) for a single image,
leading to a high computational cost at inference. Moreover, theoretical results pointed out that it
cannot achieve non-trivial certified ℓ∞ robustness if the perturbation radius is larger than Ω(d−1/2)
where d is the input dimension [70, 5, 30, 67].

3 The Expressive Power of Lipschitz Neural Networks

3.1 Preliminaries

Notations. We use boldface letters to denote vectors (e.g., x) or vector functions (e.g., f ), and use
xi (or fi) to denote its i-th element. For a unary function σ, σ(x) applies σ(·) element-wise on
vector x. The ℓp-norm (p ≥ 1) and ℓ∞-norm of a vector x are defined as ∥x∥p = (

∑
i |xi|p)1/p and

∥x∥∞ = maxi |xi|, respectively. The matrix ∞-norm is defined as ∥W∥∞ = maxi ∥Wi,:∥1 where
Wi,: is the i-th row of the matrix W. The k-th largest element of a vector x is denoted as x(k). We
use [n] to denote the set {1, · · · , n}, and use ei to denote the unit vector with the i-th element being
one. We adopt the big O notations by using O(·), Ω(·), and Θ(·) to hide universal constants.

Lipschitzness. A mapping f : Rn → Rm is said to be L-Lipschitz continuous w.r.t. norm ∥ · ∥ if for
any pair of inputs x1,x2 ∈ Rn,

∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥. (1)
If the mapping f represented by a neural network has a small Lipschitz constant L, then (1) implies
that the change of network output can be strictly controlled under input perturbations, resulting in
certified robustness guarantees as shown in the following proposition.
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Proposition 3.1. (Certified robustness of Lipschitz networks) For a neural network f with Lipschitz
constant L under ℓp-norm ∥ · ∥p, define the resulting classifier g as g(x) := argmaxk fk(x) for an
input x. Then g is provably robust under perturbations ∥δ∥p < c

L margin(f(x)), i.e.

g(x+ δ) = g(x) for all δ with ∥δ∥p < c/L ·margin(f(x)). (2)

Here c = p
√
2/2 is a constant depending only on the norm ∥ · ∥p, which is 1/2 for the ℓ∞-norm, and

margin(f(x)) is the margin between the largest and second largest output logits.
The proof of Proposition 3.1 is simple and can be found in Appendix B.1 or [39, Appendix P]. It can
be seen that the robust radius is inversely proportional to the Lipschitz constant L.

Standard Lipschitz networks. Throughout this paper, we refer to standard neural networks as neural
networks formed by affine layers (e.g., fully-connected or convolutional layers) and element-wise
activation functions. Based on the Lipschitz property of composite functions, most prior works
enforce the 1-Lipschitzness of a multi-layer neural network by constraining each layer to be a 1-
Lipschitz mapping. For the ℓ∞-norm, it is further equivalent to constraining the weight matrices to
have bounded ∞-norm, plus using Lipschitz activation functions [2], which can be formalized as

x(l) = σ(l)(W(l)x(l−1) + b(l)) s.t. ∥W(l)∥∞ ≤ 1 and σ(l) being 1-Lipschitz, l ∈ [M ]. (3)

Here M is the number of layers and usually σ(M)(x) = x is the identity function. The network takes
x(0) := x as the input and outputs x(M). For K-class classification problems, x(M) ∈ RK and
the network predicts the class g(x) := argmaxk∈[K] x

(M)
k . We refer to the resulting network as a

standard Lipschitz network.

3.2 Certified robustness on discrete Boolean datasets

In this section, we will construct a class of counterexamples for which certified ℓ∞ robustness can be
arbitrarily poor using standard Lipschitz networks. We focus on the Boolean dataset, a discrete dataset
where both inputs and labels are Boolean-valued and the relationship between inputs and their labels
(x(i), y(i)) ∈ {0, 1}d ×{0, 1} can be described using a Boolean function gB : {0, 1}d → {0, 1}. The
key motivation lies in the finding that Boolean vectors correspond to the vertices of a d-dimensional
hypercube, and thus are geometrically related to the ℓ∞-distance metric. In particular, the ℓ∞-distance
between any two different data points in a Boolean dataset is always 1, which means that the dataset
is well-separated. This yields the following proposition, stating that it is always possible to achieve
optimal certified ℓ∞ robustness on Boolean datasets by using Lipschitz classifiers.
Proposition 3.2. For any Boolean dataset D = {(x(i), y(i))}ni=1, there exists a classifier ĝ : Rd →
{0, 1} induced by a 1-Lipschitz mapping f̂ : Rd → R2, such that ĝ can fit the whole dataset with
margin(f̂(x(i))) = 1 ∀i ∈ [n], thus achieving a certified ℓ∞ radius of 1/2 by Proposition 3.1.
The key observation in the proof (Appendix B.2) is that one can construct a so-called nearest neighbor
classifier that achieves a large margin on the whole dataset and is 1-Lipschitz. Based on Proposition
3.2, it is natural to ask whether standard Lipschitz networks of the form (3) can perform well on
Boolean datasets. Unfortunately, we show it is not the case, even on a class of simple datasets
constructed using symmetric Boolean functions.
Definition 3.3. A Boolean function gB : {0, 1}d → {0, 1} is symmetric if it is invariant under input
permutation, i.e. gB(x1, · · · , xd) = gB(xπ(1), · · · , xπ(d)) for any x ∈ {0, 1}d and π ∈ Sd.
Example 3.4. Two of the most basic operations in Boolean algebra are the logical AND/OR, both
of which belong to the class of symmetric Boolean functions. Other important examples include
the exclusive-or (XOR, also called the parity function), NAND, NOR, and the majority function (or
generally, the threshold functions). See Appendix A.2 for a detailed description of these examples.
Theorem 3.5. For any non-constant symmetric Boolean function gB : {0, 1}d → {0, 1}, there exists
a Boolean dataset with labels y(i) = gB(x(i)), such that no standard Lipschitz network can achieve a
certified ℓ∞ robust radius larger than 1/2d on the dataset.
Implications. Theorem 3.5 shows that the certified radius of standard Lipschitz networks must vanish
as dimension d grows, which is in stark contrast to the constant radius given by Proposition 3.2.
Also, note that the logical AND/OR functions are perhaps the most basic classifiers (which simply
make predictions based on the existence of binary input features). It is thus not surprising to see that
standard Lipschitz networks perform poorly on real-world datasets (e.g., even the simple MNIST
dataset where input pixels are almost Boolean-valued (black/white) [61]).
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We give an elegant proof of Theorem 3.5 in Appendix B.3, where we also prove that the bound of
1/2d is tight in Proposition B.8. Moreover, we discuss the sample complexity by proving that a
dataset of size O(d) already suffices to give O(1/d) certified radius (Corollary B.10). To the best of
our knowledge, Theorem 3.5 is the first impossibility result that targets the certified ℓ∞ robustness
of standard Lipschitz networks with an quantitative upper bound on the certified radius. In the next
section, we will extend our analysis to the function approximation setting and make discussions with
literature results [24, 2].

3.3 Lipschitz function approximation

Classic approximation theory has shown that standard neural networks are universal function approxi-
mators [12, 37], in that they can approximate any continuous function on a compact domain arbitrarily
well. For 1-Lipschitz neural networks, an analogous question is whether they can approximate all
1-Lipschitz functions accordingly. Unfortunately, the result in Section 3.2 already implies a negative
answer. Indeed, by combining Proposition 3.2 and Theorem 3.5, f̂ is clearly a 1-Lipschitz function
that cannot be approximated by any standard Lipschitz network.

To gain further insights into the structure of unrepresentable 1-Lipschitz functions, let us consider the
continuousization of discrete Boolean functions. For the symmetric case, one needs to find a class of
1-Lipschitz continuous functions that are also invariant under permutations. It can be found that a
simple class of candidates is the order statistics, i.e. the k-th largest element of a vector. One can
check that the k-th order statistic x(k) is indeed 1-Lipschitz and is precisely the continuousization of
the k-threshold Boolean function defined as gB,k(x) := I(

∑
i xi ≥ k). In particular, x(1) = maxi xi

and x(d) = mini xi corresponds to the logical OR/AND functions, respectively. Importantly, note that
any Boolean function that is both symmetric and monotonic is a k-threshold function, and vice versa
(Appendix A.2). Therefore, k-threshold functions can be regarded as the most elementary Boolean
functions, suggesting that the ability to express order statistics is necessary for neural networks.

Unfortunately, using a similar analysis as the previous section, we have the following theorem:
Theorem 3.6. Any standard Lipschitz network f : Rd → R cannot approximate the simple 1-
Lipschitz function x → x(k) for arbitrary k ∈ [d] on a bounded domain K = [0, 1]d if d ≥ 2.
Moreover, there exists a point x̂ ∈ K, such that

|f(x̂)− x̂(k)| ≥
1

2
− 1

2d
. (4)

We give a proof in Appendix B.4. The above theorem indicates that order statistics cannot be uniformly
approximated using any standard Lipschitz network regardless of the network size. Moreover, note
that the trivial constant function f̃(x) = 1/2 already achieves an approximation error of 1/2
uniformly on K, implying that standard Lipschitz networks can hardly improve upon trivial solutions.
Remark 3.7. Theorem 3.6 can be easily generalized to weaker forms of non-uniform approximation,
e.g., using the ℓp-norm as distance metrics [45], by proving that there exists a hypercube B∞(x̂)
centered at x̂ with length Θ(1), such that |f(x̃) − x̃(k)| ≥ Θ(1) holds for all x̃ ∈ B∞(x̂) when
d ≥ 2. See Corollary B.13 for details.
Discussion with prior works [2, 24, 43]. The work of Anil et al. also gave negative results on the
expressive power of standard Lipschitz networks2 [2, Theorem 1]. They proved a different (weaker)
version of Theorem 3.6, showing that if the activation function σ is monotonic, the network cannot
precisely represent non-linear 1-Lipschitz functions whose gradient norm is 1 almost everywhere (e.g.,
the absolute value function proved before by [24]). They did not give a quantitative approximation
error. The intuition is that any monotonic non-linear 1-Lipschitz activation (e.g., ReLU) must have
regions with slopes less than 1, leading to gradient attenuation during backpropagation. The authors
thus attributed the reason to the activation function, which is not gradient-norm preserving (GNP).
However, such an explanation is still not fully satisfactory, as GNP can be simply achieved using a
non-monotonic activation (e.g., σ(x) = |x|). Consequently, one may expect that a standard Lipschitz
network built on a suitable (non-monotonic) activation function can have sufficient expressive power.
Such an idea is recently explored in [43], where the authors proved that using a general 1-Lipschitz
piecewise linear activation with 3 linear regions, the corresponding network achieves the maximum
expressive power compared with other Lipschitz activations and can approximate any one-dimensional
1-Lipschitz function. They pose the high dimension setting as an open problem.

2The result is described w.r.t. ℓ2-norm, but with some effort, it can be extended to the ℓ∞-norm case.
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Unfortunately, Theorem 3.6 addressed the open problem with negative answer, stating that such
networks are not expressive even for the two-dimensional setting. It also implies that GNP is not
sufficient to explain the failure of standard Lipschitz networks. Instead, we draw a rather different
conclusion, arguing that the lack of expressiveness is due to the inability of weight-constrained affine
transformations to perform basic Boolean operations (even in two dimensions). A further justification
is given in Section 3.4. Finally, compared with Anil et al. [2], the form of Theorem 3.6 is more
fundamental, in the sense that it does not make assumptions on the activation function, and it gives a
quantitative error bound on the approximation that is arbitrarily close to the plain fit f(x) = 1/2.

3.4 Investigating more advanced Lipschitz networks

Seeing the above impossibility results, we then examine two representative works of (non-standard)
Lipschitz networks in literature: the GroupSort network [2] and the recently proposed ℓ∞-distance
net [73, 74]. Notably, both networks are Lipschitz-universal function approximators and thus fully
expressive. The GroupSort network makes minimum changes to standard Lipschitz networks (3), by
replacing element-wise activation σ with GroupSort layers. GroupSort partitions the input vector
into groups, sorts the sub-vector of each group in descending order, and finally concatenates the
resulting sub-vectors. Since sorting is computationally expensive, the authors considered a practical
version of GroupSort with a group size of 2, called MaxMin, which simply calculates the maximum
and minimum pair by pair [6]. ℓ∞-distance net, on the other hand, is fundamentally different from
standard Lipschitz networks. Each neuron in an ℓ∞-distance net is designed based on the ℓ∞-distance
function y = ∥x −w∥∞ + b (with parameters {w, b}). Despite the somewhat unusual structure,
ℓ∞-distance net has been shown to substantially outperform GroupSort (MaxMin) in terms of certified
ℓ∞ robustness according to [73], a puzzling thing to be understood.

We provide a possible explanation for this. We find that both networks incorporate order statistics into
the neuron design, either explicitly (GroupSort) or implicitly (ℓ∞-distance net), thus bypassing the
impossibility result in Theorem 3.6. Indeed, the sorting operations in GroupSort explicitly calculate
order statistics. As for ℓ∞-distance net, we show its basic neuron can implicitly represent the max
function on a bounded domain, by assigning the weight w = −c1 and the bias b = −c with a
sufficiently large constant c:

y = ∥x−w∥∞ + b = maxi |xi − (−c)| − c = maxi xi if c ≥ maxi −xi, (5)

and thus can represent the logical OR operation. In general, we have the following theorem:
Theorem 3.8. A two-layer ℓ∞-distance net can exactly represent the following functions: (i) any
discrete Boolean function; (ii) any continuous order-statistic function on a compact domain.
We give a proof in Appendix B.5. Our proof uses the fundamental result in Boolean algebra that
any Boolean function can be written in its disjunctive normal form (DNF, see Appendix A.1), which
can be further reduced to using only the composition of logical OR operations of literals and thus
be realized by a two-layer ℓ∞-distance net. To represent order statistics, we formulate them as
nested max-min functions, which can also be realized by a two-layer ℓ∞-distance net. Therefore, the
construction in our proof provides a novel understanding of the mechanism behind the success of
ℓ∞-distance nets, since each ℓ∞-distance neuron can be regarded as a basic “logical gate” and the
whole network can simulate any Boolean circuit.

For GroupSort networks with a group size G ≥ d, a similar result holds. However, it is not the case
for practically used MaxMin networks (G = 2), where we have the following impossibility results:
Theorem 3.9. An M -layer MaxMin network f : Rd → R cannot approximate any k-th order statistic
function on a bounded domain K = [0, 1]d if M ≤ ⌈log2 d⌉ (no matter how wide the network is).
Moreover, there exists a point x̂ ∈ K, such that

|f(x̂)− x̂(k)| ≥
1

2
− 2M−2

d
≥ 1

4
if M ≤ ⌊log2 d⌋. (6)

Theorem 3.10. Let Md be the minimum depth such that an Md-layer MaxMin network can represent
any (discrete) d-dimensional Boolean function. Then Md = Ω(d).
The above theorems show that MaxMin networks must be very deep in order to represent Boolean
functions and order statistics, which is in stark contrast to Theorem 3.8, as a constant depth is
sufficient for ℓ∞-distance nets. Based on Theorem 3.10, we directly have the following corollary:
Corollary 3.11. The function class induced by Md-layer MaxMin networks is not a universal
approximator to the d-dimensional 1-Lipschitz functions if Md = o(d).
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The proofs of Theorems 3.9 and 3.10 are deferred to Appendix B.6 and B.7, respectively. In particular,
the proof of Theorem 3.10 is non-trivial and makes elegant use of Boolean circuit theory, so we
present a proof sketch here. The key insight is that for any Boolean function, if it can be expressed
by some MaxMin network f , then it can be expressed by a special MaxMin network with the same
topology as f such that all the weight vectors w are sparse with at most one non-zero element, either
1 or −1 (Corollary B.23). This implies that weight vectors have no use in representing Boolean
functions and thus MaxMin networks reduce to 2-ary Boolean circuits, i.e. directed acyclic graphs
whose internal nodes are logical gates including NOT and the 2-ary AND/OR. Note that for a 2-ary
Boolean circuit that has M layers and outputs a scalar, the number of nodes will not exceed 2M+1−1
(achieved by a complete binary tree). However, the classic result in Boolean circuit theory (Shannon
1942) showed that for most Boolean functions of d variables, a lower bound on the minimum size of
2-ary Boolean circuits is Ω(2d/d) , which thus yields M = Ω(d) and concludes the proof.

In Appendix, we also discuss the tightness of the above theorems. We prove that a depth of O(log2 d)
is sufficient to represent any order statistic function using Boolean circuit theory (Theorem B.19),
and a straightforward construction using DNF shows that a depth of O(d) is sufficient to represent
any Boolean functions (Proposition B.20). Thus both theorems are tight.

Unfortunately, training deep MaxMin networks is known to be challenging due to optimization
difficulties [10]. Consequently, prior works only use a shallow MaxMin network with no more
than 4 layers [2, 10], which severely lacks expressive power. One possible solution is to increase
the group size, and several works explored this aspect using toy examples and observed significant
benefits empirically [10, 58]. However, a large group size involves computationally expensive sorting
operations and makes the network hard to train [2], limiting its value in practice.

4 A Unified Framework of Lipschitz Neural Networks

The above theoretical results have justified order statistics as a crucial component in representing
a class of Boolean functions, shedding light on how GroupSort and ℓ∞-distance net work. Based
on these insights, in this section, we will propose a unified framework of Lipschitz networks that
take the respective advantage of prior Lipschitz architectures, and then give a practical (specialized)
version that enables efficient training.

Consider a general Lipschitz network constructed using the following three basic types of 1-Lipschitz
operations: (i) norm-bounded affine transformations, e.g. y = wTx (∥w∥1 ≤ 1) and y = x + b;
(ii) 1-Lipschitz unary activation functions σ; (iii) order statistics. The first two types are extensively
used in standard Lipschitz networks, while the last type is motivated by Section 3 and is of crucial
importance. We propose the following network which naturally combines the above components:
Definition 4.1. (SortNet) Define an M -layer fully-connected SortNet f as follows. The network
takes x = x(0) as input, and the k-th unit in the l-th hidden layer x(l)

k is computed by

x
(l)
k = (w(l,k))T sort(σ(x(l−1) + b(l,k))), s.t. ∥w(l,k)∥1 ≤ 1, l ∈ [M ], k ∈ [dl] (7)

where dl is the size of the l-th layer, and sort(x) := (x(1), · · · , x(d))
T calculates all order statistics of

x ∈ Rd. The network outputs f(x) = x(M) + bout. Here {w(l,k)}, {b(l,k)} and bout are parameters.

It is easy to see that SortNet is 1-Lipschitz w.r.t. ℓ∞-norm. We now show that SortNet is a general
architecture that extends both GroupSort and ℓ∞-distance networks into a unified framework.
Proposition 4.2. Any GroupSort network with an arbitrary group size on a compact input domain
can be represented by a SortNet with the same topological structure using activation σ(x) = x.
Proposition 4.3. Any ℓ∞-distance net can be represented by a SortNet with the same topological
structure by fixing the weights w(l,k) = e1 and using the absolute-value activation σ(x) = |x|.
See Appendix C for a proof. As a result, SortNet can exploit the respective advantage of these
Lipschitz networks. Compared with GroupSort, SortNet can freely use activation functions such as
the absolute value, thus easily addressing the problem claimed in [24, 2]. Moreover, unlike GroupSort,
the bias vector b(l,k) in SortNet (7) can be assigned diversely for different neurons in the same layer.
In this way, one can control the sorting behavior of each neuron individually by varying the bias
value without disturbing the output of other neurons, which is very beneficial (see Appendix C.1 for
details). Compared with ℓ∞-distance net, SortNet adds linear transformation and incorporates all
order statistics (rather than only the maximum), thus can represent certain functions more effectively.
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A practical version of SortNet. As with GroupSort networks, we also design a practical (specialized)
version of SortNet which enjoys efficient training. But different from the MaxMin network that
reduces the group size, we keep the full-dimensional order statistics as they are crucial for the
expressive power (Section 3.4). The key observation is that in (7), the only required computation
is the linear combination of order statistics (i.e. wT sort(·)), rather than the entire sorting results
(i.e. sort(·)). We find that for certain carefully designed choices of the weight vector w, there exist
efficient approximation algorithms that can give a good estimation of wT sort(·). In particular, we
propose an assignment of the weight vector that follows geometric series, i.e. wi proportional to ρi,
in which case we have the following result:
Proposition 4.4. Let w ∈ Rd be a vector satisfying wi = (1− ρ)ρi−1, i ∈ [d] for some 0 ≤ ρ < 1.
Then for any vector x ∈ Rd

+ with non-negative elements,

wT sort(x) = Es∼Ber(1-ρ)[max
i

sixi]. (8)

Here s is a random vector following independent Bernoulli distribution with probability 1− ρ being
1 and ρ being 0.

Proof. Without loss of generality, assume x1, · · · , xd are different from each other. Denote j1, · · · , jd
as the sorting indices such that sort(x) = (xj1 , · · · , xjd). Then

Es∼Ber(ρ)[maxi sixi] =
∑

k∈[d] Prs∼Ber(ρ) [maxi sixi = xjk ]xjk

=
∑

k∈[d] Prs∼Ber(ρ) [sjk = 1 and sji = 0 ∀1 ≤ i < k]xjk

=
∑

k∈[d](1− ρ)ρk−1 · x(k) = wT sort(x).

It is easy to check that the weight w in the above proposition satisfies ∥w∥1 ≤ 1, which guarantees
the Lipschitzness. The non-negative condition on x in Proposition 4.4 holds when using a suitable
activation function in neuron (7), such as the absolute value function.

Proposition 4.4 suggests that one can use maxi sixi to give an unbiased estimation of wT sort(x). In
this way, the expensive sorting operation is avoided and replaced by a max operation, thus significantly
reducing the computational cost in training. We give an efficiently GPU implementation for training
SortNet in Appendix D. Note that s is a random Bernoulli vector, so the above calculation is similar
to applying a mask on the input of each neuron, like dropout [56]. It means that the introduced
stochasticity may further prevent overfitting and benefit generalization performance.

Regarding the value of ρ. When ρ = 0, only the maximum value is taken into the computation and
the resulting network can recover the ℓ∞-distance net by choosing the activation function σ(x) = |x|.
This means the specialized SortNet still extends ℓ∞-distance net and thus has sufficient expressive
power. When ρ > 0, all order statistics become utilized. A simple way of selecting ρ is to regard it as
a hyper-parameter and set its value by cross-validation, which is adopted in our experiments. One can
also consider treating ρ as learnable parameters for each neuron that participate in the optimization
process, but this involves calculating the gradient of ρ which may be complicated due to the stochastic
sampling procedure (8). We will leave the study as future work.

5 Experiments

In this section, we perform extensive empirical evaluations of the proposed SortNet architec-
ture as well as various prior works in the certified ℓ∞ robustness area. To show the scalability
of different approaches, we consider a variety of benchmark datasets, including MNIST [33],
CIFAR-10 [29], TinyImageNet [32], and ImageNet (64 × 64) [7]. Due to space limitations, a
complete training recipe is given in Appendix E. Our code and trained models are released at
https://github.com/zbh2047/SortNet.

5.1 Experimental setting

SortNet model configuration. Since SortNet generalizes the ℓ∞-distance net, we simply follow
the same model configurations as [73] and consider two types of models. The first one is a simple
SortNet consisting of M fully-connected layers with a hidden size of 5120, which is used in MNIST
and CIFAR-10. Like [73], we choose M = 5 for MNIST and M = 6 for CIFAR-10. Since SortNet is
Lipschitz, we directly apply the margin-based certification method to calculate the certified accuracy
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(Proposition 3.1). To achieve the best results on ImageNet-like datasets, in our second type of model
we consider using a composite architecture consisting of a base SortNet backbone and a prediction
head (denoted as SortNet+MLP). Following [73], the SortNet backbone has 5 layers with a width of
5120 neurons, which serves as a robust feature extractor. The top prediction head is a lightweight
2-layer perceptron with 512 hidden neurons (or 2048 for ImageNet), which takes the robust features
as input to give classification results. We also try a larger SortNet backbone, denoted as SortNet+MLP
(2x), that has roughly four times the training cost (see Appendix E.2 for architectural details). We
use the same approach as [73] to train and certify these models, i.e. by combining margin-based
certification for the SortNet backbone and interval bound propagation for the top MLP [21].

Baseline methods and metrics. We compare SortNet with representative literature approaches
including relaxation-based certification (for standard networks), margin-based certification (using
Lipschitz networks), and mixed-integer linear programming (MILP) [59]. In Appendix G, we also
discuss randomized smoothing approaches [9, 49], which provide probabilistic guarantees rather than
deterministic ones. For each method in these tables, we report five metrics: (i) training efficiency,
measured by the wall-clock time per training epoch; (ii) certification efficiency, measured by the
time needed to calculate the certified accuracy on the test dataset; (iii) the clean test accuracy without
perturbation (denoted as Clean); (iv) the robust test accuracy under 100-step PGD attack (denoted
as PGD); (v) the certified robust test accuracy (denoted as Certified). For a fair comparison, we
reproduce most of baseline methods using the official codes and report the wall-clock time under the
same NVIDIA-RTX 3090 GPU. These results are presented in Tables 1, 2 and 3. In Appendix H, we
also show the training variance of each setting by running 8 sets of experiments independently, and
full results (including the median performance) are reported in Table 9 and 10.

5.2 Experimental results

Performance on MNIST. The results are presented in Table 1. Following the common practice, we
consider both a small perturbation radius ϵ = 0.1 and a larger one ϵ = 0.3. It can be seen that the
SortNet models can achieve 98.14% (ϵ = 0.1) and 93.40% (ϵ = 0.3) certified accuracy, respectively,
both of which outperform all previous baseline methods. In contrast, the GroupSort network can only
achieve a trivial certified accuracy for ϵ = 0.3. This matches our theory in Section 3.4, indicating
that the expressive power of shallow MaxMin networks is insufficient in real-world applications.

Performance on CIFAR-10. The results are presented in Table 2. Following the common practice,
we consider two perturbation radii: ϵ = 2/255 and ϵ = 8/255. Our models can achieve 56.94%
(ϵ = 2/255) and 40.39% (ϵ = 8/255) certified accuracy, respectively. Moreover, the training
approach proposed in Section 4 is very efficient, e.g., with a training time of 13∼14 seconds per
epoch. For both radii, our models perform the best among all existing approaches that can be certified
in a reasonable time. Compared with relaxation-based methods, the certified accuracy of SortNet
models is much higher (typically +3 ∼ +6 point for both radii), despite our training speed being
several times faster. Such results may indicate that certified ℓ∞ robustness can be better achieved by
designing suitable Lipschitz models than by devising relaxation procedures for non-Lipschitz models.

Performance on TinyImageNet and ImageNet. To demonstrate the scalability of SortNet models,
we finally run experiments on two large-scale datasets: Tiny-ImageNet and ImageNet (64 × 64).
Notably, the ImageNet dataset has 1000 classes and contains 1.28 million images for training and
50,000 images for testing. Due to both the large size and the huge number of classes, achieving
certified ℓ∞ robustness on the ImageNet level has long been a challenging task.

Table 3 presents our results along with existing baselines. Among them, we achieve 18.18%
certified accuracy on TinyImageNet and achieve 9.54% certified accuracy on ImageNet, both of
which establish state-of-the-art results. The gap is most prominent on ImageNet, where our small
SortNet+MLP model already outperforms the largest model of [69] while being 22 times faster to
train. Even for the largest model (SortNet+MLP 2x), the training is still 7 times faster, resulting in a
training overhead of 4 days using two GPUs. We suspect that continuing to increase the model size
will yield better results, given the noticeable improvement of the larger model over the smaller one.

Comparing with ℓ∞-distance net. As can be seen, SortNet models consistently achieve better
certified accuracy than ℓ∞-distance nets for all different datasets and perturbation levels, and the
performance gap is quite prominent compared with the original work [73]. Very recently, a follow-up
paper [74] significantly improved the performance of ℓ∞-distance net using a carefully designed
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Table 1: Comparison of our results with existing methods on MNIST dataset.

Method Train MNIST (ϵ = 0.1) MNIST (ϵ = 0.3)
Time (s) Clean PGD Certified Clean PGD Certified

Relaxation
IBP [21] 17.5 98.92 97.98 97.25 97.88 93.22 91.79
IBP [52] 34.7 98.84 – 97.95 97.67 – 93.10

CROWN-IBP [75] 60.3 98.83 98.19 97.76 98.18 93.95 92.98

Lipschitz

GroupSort (MaxMin) [2] – 97.0 84.0 79.0 97.0 34.0 2.0
ℓ∞-dist Net [73] 17.2 98.66 97.85 97.73 98.54 94.62 92.64

ℓ∞-dist Net+MLP [73] 17.2 98.86 97.77 97.60 98.56 95.05 93.09
ℓ∞-dist Net [74] 17.0 98.93 98.03 97.95 98.56 94.73 93.20

SortNet 10.6 99.01 98.21 98.14 98.46 94.64 93.40
MILP COLT [3] – 99.2 – 97.1 97.3 – 85.7

Table 2: Comparison of our results with existing methods on CIFAR-10 dataset.

Method Time (s) ϵ = 2/255 ϵ = 8/255
Train Certify Clean PGD Certified Clean PGD Certified

Relaxation

CAP [66] 659.0 7,570 68.28 – 53.89 28.67 – 21.78
IBP [21] 19.0 2.74 61.46 50.28 44.79 50.99 31.27 29.19
IBP [52] 70.4 4.02 66.84 – 52.85 48.94 – 34.97

CROWN-IBP [75] 87.2 7.01 71.52 59.72 53.97 45.98 34.58 33.06
CROWN-IBP [69] 45.0 4.02 – – – 46.29 35.69 33.38

Lipschitz

ℓ∞-dist Net [73] 19.7 1.73 60.33 51.55 50.94 56.80 36.19 33.30
ℓ∞-dist Net+MLP [73] 19.7 1.74 65.62 51.47 51.05 50.80 36.51 35.42

ℓ∞-dist Net [74] 18.9 1.73 60.61 54.28 54.12 54.30 41.84 40.06
SortNet 14.0 8.00 65.96 57.03 56.67 54.84 41.50 40.39

SortNet+MLP 13.4 8.01 67.72 57.83 56.94 54.13 41.58 39.99
MILP COLT [3] 252.0 ∼ 105 78.4 – 60.5 51.7 – 27.5

Table 3: Comparison of our results with existing methods on TinyImageNet and ImageNet datasets.

Method TinyImageNet (ϵ = 1/255) ImageNet 64× 64 (ϵ = 1/255)
Time (s) Clean PGD Certified Time (s) Clean PGD Certified

IBP [21] 735 26.46 20.60 14.85 11,026 15.96 9.12 6.13
IBP [52] 284 25.71 – 17.64 – – – –

CROWN-IBP [69] 1,256 27.82 20.52 15.86 16,269 16.23 10.26 8.73
ℓ∞-dist Net+MLP [73] 55 21.82 – 16.31 – – – –

ℓ∞-dist Net [74] 55 12.57 11.09 11.04 – – – –
SortNet+MLP 39 24.17 20.57 17.92 715 13.48 10.93 9.02

SortNet+MLP (2x larger) 156 25.69 21.57 18.18 2,192 14.79 11.93 9.54

training strategy, creating a strong baseline on CIFAR-10. However, we find their approach does not
suit the ImageNet-like datasets when the number of classes is large (see Appendix E.6). In contrast,
SortNet models enjoy great scalability ranging from MNIST to ImageNet and consistently outperform
[74]. The improvement is also remarkable for ϵ = 2/255 on CIFAR-10 (+7.11% and +2.82% in
clean / certified accuracy).

In Appendix F, we conduct ablation studies on CIFAR-10 by varying the value of ρ and comparing
SortNet models (ρ > 0) with ℓ∞-distance net (ρ = 0), under the same training strategy in this
paper without additional tricks. We observe a large gain in certified accuracy when switching from
ℓ∞-distance net to general SortNet. This empirically indicates that incorporating other order statistics
has extra benefits in certified ℓ∞ robustness than using only the maximum (the first order statistic).

6 Conclusion

In this paper, we study certified ℓ∞ robustness from the novel perspective of representing Boolean
functions. Our analysis points out an inherent problem in the expressive power of standard Lipschitz
networks, and provides novel insights on how recently proposed Lipschitz networks resolve the
problem. We also answer several previous open problems, such as (i) the expressive power of
standard Lipschitz networks with general activations [43] and (ii) the lower bound on the depth of
MaxMin networks to become universal approximators [58, 43]. Finally, guided by the theoretical
results, we design a new Lipschitz network with better empirical performance than prior works.
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Limitations, Open Problems, and Broader Impact

Regarding the ℓp-norm. One major limitation of this work is that we only focus on ℓ∞ robustness.
While such results may shed light on general ℓp-norm settings when p is large, it does not apply to
the standard ℓ2-norm. In particular, in this case MaxMin is equivalent to the absolute value activation
function in terms of expressive power [2], which contrasts to the ℓ∞-norm case for which MaxMin
networks are strcitly more expressive. Moreover, empirical results suggest that these ℓ2 Lipschitz
networks may have sufficient expressive power [55] (although it remains a fantastic open problem to
prove that MaxMin networks with bounded matrix 2-norm are universal approximators).

Based on the above finding, this work reflects an interesting “phase transition” in the expressive
power of standard Lipschitz networks when p is switched from 2 to a large number. Coincidentally, a
similar limitation is also proved when using randomized smoothing, which suffers from the curse of
dimensionality when p > 2 [70]. This raises an interesting question of why the effect of p is very
similar for both methods and how things change as p increases.

Beyond standard Lipschitz networks. Another limitation is that our results apply only for standard
Lipschitz networks. When the Lipschitz constant is constrained using carefully designed bounding
methods [47, 18, 31, 51] (rather than a simple stacking of 1-Lipschitz layers), the robustness certifica-
tion will be less efficient, but the resulting networks are likely to bypass the impossibility results in
this paper. It is an interesting direction to study whether we can just use standard networks with a
carefully-designed Lipschitz bounding method that can achieve good certified robustness while still
keeping adequate efficiency.

Other promising directions. On the application side, it is interesting to study how to design efficient
training approaches for the general SortNet models with learnable weights or learnable ρ. Another
meaningful question is how to encode inductive biases into these Lipschitz networks (e.g., designing
convolutional architectures) to better suit image tasks.

Broader impact. Interestingly, our theoretical results point out a surprising connection between
MaxMin/ℓ∞-distance networks and Boolean circuits. We believe the value of this paper may go
beyond the certified robustness community and link to the field of theoretical computer science.

Acknowledgement

This work is supported by National Science Foundation of China (NSFC62276005), The Major Key
Project of PCL (PCL2021A12), Exploratory Research Project of Zhejiang Lab (No. 2022RC0AN02),
and Project 2020BD006 supported by PKUBaidu Fund. Bohang Zhang would like to thank Ruichen
Li and Yuxin Dong for helpful discussions. We also thank all the anonymous reviewers for the very
careful and detailed reviews as well as the valuable suggestions. Their help has further enhanced our
work.

References
[1] Miklós Ajtai, János Komlós, and Endre Szemerédi. An 0 (n log n) sorting network. In

Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 1–9, 1983.

[2] Cem Anil, James Lucas, and Roger Grosse. Sorting out Lipschitz function approximation. In
International Conference on Machine Learning, pages 291–301, 2019.

[3] Mislav Balunovic and Martin Vechev. Adversarial training and provable defenses: Bridging the
gap. In International Conference on Learning Representations, 2020.

[4] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov,
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