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ABSTRACT

Transformer-based models have emerged as the go-to standards in Natural Lan-
guage Processing (NLP), revolutionizing the landscape of NLP applications. As
complex models continue to proliferate, the need for more efficient computational
processing becomes increasingly imperative. This has led to the rise of model
compression techniques, implemented to target computational inefficiencies. Ex-
pounding on this, we propose Pyramid-BERT (P-BERT), the integration of three
established model compression techniques to further reduce the computational in-
efficiency of the standard BERT models, and subsequently optimize BERT under
the hardware characteristics. Specifically, the techniques employed are pruning,
quantization, and knowledge distillation. The first two aforementioned correlated
techniques work simultaneously to remove redundant specifications while leverag-
ing knowledge transfer from baseline models. These techniques enable a substan-
tial reduction in computational cost, making P-BERT highly suitable for portable,
low-power devices such as cellphones, wearable devices, and smartwatches, and
thus enabling hardware-friendly processing on various computing engines. Addi-
tionally, we will be proposing a new metric, the inverted computational complex-
ity to quantify the complexity and efficacy of the model. This metric aims to more
accurately capture the hardware-specific performance characteristics. Our experi-
mental results show that P-BERT achieves a remarkable reduction of at least 60%
in the inverted computational complexity ratio while ensuring comparable accu-
racy and scores across many downstream tasks compared with the baseline BERT
models.

1 INTRODUCTION

In recent years, transformer-based models emerged as the cornerstone of natural language processing
(NLP), catalyzing a paradigm shift in the field. The advent of pre-trained transformer-based models
sparked intense interest and research activity in both industry and academia. This led to the creation
of numerous transformer-based models, including GPT-4 Achiam et al. (2023), RoBERTa Liu et al.
(2019) and DistillBERT Sanh et al. (2019).

Central to the exceptional performance of these transformer-based models are their deep forward
propagation in each layer. While effective, these neural networks are time and space inefficient, due
to overparameterization Ba & Caruana (2014); Rogers et al. (2021) and a large number of operations
involved. Additionally, given the rise diversity of resource-constrained devices, including mobile
phones and edge-devices, current solutions may not be optimal Ganesh et al. (2021). Deployment of
these models in such devices and majorly constrained by computation power, storage capacity and
energy Gou et al. (2021).

Consequently, there are various model compression techniques proposed to mitigate computational
inefficiencies of such models, including pruning, quantization, distillation, parameter sharing and
module replacing Qiu et al. (2020), low-rank factorization Cheng et al. (2018), matrix decomposition
Ganesh et al. (2021). Exploration of these techniques include investigating the effect of pruning and
transfer learning Gordon et al. (2020) and a novel integer-only quantization approach by Kim et al.
(2021). However, directly compressing these models often leads to performance loss, quantified
primarily by accuracy loss.
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Hence, we propose Pyramid-BERT (P-BERT), a hardware-aware optimization of the BERT model
that integrates three proven model compression techniques—pruning, quantization, and knowledge
distillation. By combining these techniques, P-BERT addresses the computational inefficiencies in-
herent in BERT while minimizing performance loss. We selected BERT as the baseline model due
to its suitability for edge devices, aligning with our focus on hardware-aware optimization. Addi-
tionally, we are proposing a novel metric, the inverted computational complexity ratio, to quantify
the complexity and effectiveness of model compression techniques relative to a baseline model.

Our experimental results demonstrate that P-BERT achieves at least a 60% reduction in the inverted
computational complexity ratio, while minimising performance loss on downstream tasks such that
the scoring metric remains comparable with the baseline BERT model. This would mean a fall in at
most 5-6% accuracy or other similar metric the large majority of the time.

In summary, our contributions are highlighted as follows:

• Proposed a variant of the original BERT model, Pyramid-BERT, an integration of three
established model compression techniques - pruning, quantization and knowledge distilla-
tion, that optimizes performance for hardware efficiency.

• P-BERT achieves at least a 60% reduction in inverted computational complexity ratio, well
ensuring comparable accuracy and scores with the baseline model.

• A metric that quantifies the complexity and efficacy of a model — inverted computational
complexity ratio.

2 RELATED WORKS

Many works that have delved into individual model compression techniques, such as pruning, quan-
tization and distillation, each offering unique insights and advancements.

For instance, MiniLM proposed a deep self-attention distillation for task-agnostic Transformer based
LM distillation, involving distilling the self-attention module of the last Transformer layer of the
teacher model Wang et al. (2020). Wang et al. conducted further research with MiniLMv2, introduc-
ing multihead self-attention relation distillation, which allows fine-grained self-attention knowledge
and thus flexibility in the number of student’s attention heads Wang et al. (2021a). Patient Knowl-
edge Distillation proposed an approach that capitalizes on patient learning from multiple intermedi-
ate layers of the teacher model Sun et al. (2019). The approach employs two unique strategies —
learning from the last k layers and learning from every k layer. Their approach improved results on
multiple NLP tasks, with a significant reduction in the total parameters and inference times. How-
ever, using the following metrics as a measure of computational efficiency has its limitations that
have been discussed widely in literature reviews Cheng et al. (2018).

Quantized Neural Networks trains networks with low precision weights (1-bit) and activations
Hubara et al. (2018). They reduced memory size, and accesses and replaced most arithmetic op-
erations with bit-wise operations, while achieving comparable accuracy to the baseline model. Re-
garding quantization, Shen et al. proposed a method for quantizing BERT models to ultra-low pre-
cision through a new group-wise quantization scheme and a Hessian-based mix-precision method
Shen et al. (2020). Quantized 8Bit BERT (Q8BERT) utilizes quantization-aware training during
BERT’s fine-tuning phase to compress the model by a factor of 4 with negligible accuracy degrada-
tion, while also enhancing inference speed on hardware that supports 8-bit integer operations Zafrir
et al. (2019). Other state-of-the-art quantization compression methods include GPTQ Frantar et al.
(2022), AWQ Lin et al. (2024), AQLM Egiazarian et al. (2024), and QuIP# Tseng et al. (2024)
leveraged advanced techniques to achieve significant reductions in model size while maintaining
performance across various natural language processing tasks.

Similarly, some works integrated two model compression techniques. Polino et al. proposed two
new methods: quantized distillation and differentiable quantization, both jointly leverage weight
quantization and knowledge distillation Polino et al. (2018). The first incorporates distillation loss
into quantized weights, while the second optimizes the location of quantization points using stochas-
tic gradient descent. Evolutionary Multi-Objective Model Compression proposed combining prun-
ing and quantization to optimize energy efficiency and accuracy simultaneously Wang et al. (2021b).
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Through integrating pruning, quantization, and knowledge distillation, our approach balances effi-
ciency and effectiveness, while proposing a novel metric to evaluate the computational efficiency
and complexity of models.

3 BACKGROUND

3.1 PRUNING

Deep neural networks are recognized to be overparameterized Ba & Caruana (2014); Rogers et al.
(2021), leading to the high computational and memory cost. Pruning involves the intentional reduc-
tion of redundant parameters Cheng et al. (2018); Ganesh et al. (2021). Pruning is often explored
in relation to the lottery ticket hypothesis in neural networks Frankle & Carbin (2018) and has been
discussed in the context of BERT Chen et al. (2020).

3.2 QUANTIZATION

The high computational inefficiency of deep neural networks is due to the large amount of multiply-
accumulate operations involved in the computation. Quantization directly targets this by reducing
the bit-size of parameter values, which leads to requiring less computational power, memory storage,
and inference time Kim et al. (2021).

3.3 KNOWLEDGE DISTILLATION

Knowledge Distillation, specifically Task-Specific Distillation, is the third pillar in our proposed
model. The method of knowledge distillation distills knowledge from the larger teacher model into
the smaller student model Hinton et al. (2015). Knowledge distillation varies across knowledge cat-
egories, training schemes, teacher-student architecture, and distillation algorithms Gou et al. (2021).
Specific to P-BERT, we adopted a layer-wise knowledge distillation technique by Neo et al. Ming
et al. (2023), to have the student model replicate the teacher model’s behavior. The details of this
approach are elaborated below.

3.3.1 OBJECTIVE FUNCTION

The cross-entropy (CE) between the student’s logits zs and true labels y penalizes wrong classifica-
tions is given in Equation (1).

Lhard = CE(zs,y) (1)

A higher hyperparameter temperature, t, leads to a smoother probability distribution. The cross
entropy between student’s logits and teacher’s logits, zT is given in Equation (2).

Lsoft = CE(zs/t, zT /t) (2)

Equation (3), integrated the mean-squared error (MSE) to ensure each layer of the student learns
from the corresponding layer of the teacher. HS

i and HT
i indicates the hidden states of the student

and teacher models respectively, where l is the number of layers in the model.

Lhidn =

l∑
i=0

MSE(HS
i ,H

T
i ) (3)

The discrepancies between the student’s attention output AS
i and AT

i is penalised by Equation (4).

Lattn =
l∑

i=1

MSE(AS
i ,A

T
i ) (4)

The combined overall objective function for knowledge transfer is summarized in Equation (5),
where α, β and γ are hyperparameters to be tuned.

Lnet = (1− α) ∗ Lhard + α ∗ Lsoft + β(Lhidn + γ ∗ Lattn) (5)
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4 METHODOLOGY

4.1 UNSTRUCTURED PRUNING

This approach greedily prunes hidden states in the feed-forward neural network layers of the trans-
former architecture that are deemed less meaningful. The following method determines which hid-
den states to remove. It is illustrated in Fig (1) as a flowchart. An example of it is in Fig (2).

Start

Obtain the number of hidden states to be
pruned, ki, from the Genetic Algorithm.

Sum the absolute of 1st and 2nd

dimension of the resultant matrix.

Sort them in descending order, hidden_states.

Set number of hidden states
masked to be c = 0. While c < ki.

Has hidden_states[c] 
been marked for removal in 

previous layers? 

c += 1
Yes

Mark
hidden_states[c]

for removal.

No

Is c < ki?

Yes

Is i < 12

Yes

No
i += 1

During each layer's forward pass.

Initialise layer
number i = 0

End

NoMask the
parameters

as 0.

Legend
i = layer number
ki = number of hidden
states to be pruned in
layer i, determined by
genetic algorithm
c = counter

Figure 1: Flowchart of 4.1 Pruning. ki, the num-
ber of hidden states is initialised for each layer, i,
by the genetic algorithm.

HiddenStatex (Sx)
yth rank

yth
HiddenStatex to be
removed in the next layer

yth
HiddenStatex marked to be
removed in previous layers

Sx

Sx

...

Layer 12 S1 S2 S3 S4
...

S767 S768

Layer 11
If k11 = 10, 18th

S1
60th
S2

76th
S3

760th
S4

... 84th
S767

10th
S768

Legend
ki = number of hidden states to
be pruned in layer i, determined
by genetic algorithm

Layer 2
If k2 = 1, 1st

S1
37th
S2

50th
S3

55th
S4

... 23rd
S767

2nd
S768

Layer 1
If k1 = 3, 3rd

S1
9th
S2

1st
S3

53rd
S4

... 2nd
S767

10th
S768

Figure 2: An example of 4.1 Pruning. Layer 1
has k1 = 3 states to remove and hidden states
S3, S767, S1 are the 3 with the lowest abso-
lute sum, and thus, marked for pruning (orange).
Similarly, layer 2, with k2 = 1, S768 is marked
for pruning despite being the second highest as
S1, the highest, was marked to be pruned in a
previous layer (red). This ends in layer 11. In
layer 12, those in red are subsequently masked.

1. The number of hidden states to be pruned at each layer i , ki, is initialized through genetic
algorithm, where 1 ≤ ki ≤ 69.

2. For every layer, where 1 ≤ i ≤ 11, the ki hidden states with the lowest absolute summation
of the 1st and 2nd dimensions of the weight matrix are greedily marked for pruning. Hidden
states previously marked for removal cannot be marked again, thus the next unmarked states
will be selected again.

3. The pruning of the hidden states is simulated through the masking of both the pre-trained
weight matrices of the baseline BERT model and subsequently computed matrices. The
pruning begins with the 2nd layer’s feed-forward.

4.2 QUANTIZATION

BERT follows a standard 23-bit. In our proposed method, each layer can be quantized to: 4-bit, 8-bit,
16-bit, or 32-bit. Quantizing at various levels reduces the model size and computation requirements.
Quantizing to lower bit widths, such as 4-bit or 8-bit, leads to compression by reducing the number
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of bits needed to represent the model’s parameters. The remaining bits in the 32-bit scenario are used
for the scale. The number of bits per layer for each model is initialized through genetic algorithm.
Our implementation of quantization is performed simultaneously with the pruning, and includes
leveraging a straight-through estimator to allow back-propagation during training.

4.3 INVERTED COMPUTATIONAL COMPLEXITY RATIO

We propose a new metric for evaluating the computational efficiency and complexity of a
transformer-based model — inverted computational complexity ratio. The computational complex-
ity is computed as follows: for each layer, beginning with the second, we obtain the product of the
layer number, i, the total number of hidden states left in that layer after pruning, ji, and the number
of bits in that layer, bi. The product for each layer is then summed for the remaining layers (11 in the
case of BERT) to give the computational complexity metric. Equation (6) illustrates the computation
of the computational complexity, Kmodel.

Kmodel =
∑
i

ijibi (6)

4.3.1 COMPUTATIONAL COMPLEXITY OF BASELINE BERT

For example, BERT has bi = 23, ji = 768 for all i ⊂ {1, 2, ..., 11}. It has 11 layers excluding the
first, each layer with a 23-bit size, and a constant of 768 hidden states in each layer. We can obtain
the computational complexity of BERT, KBERT, using Equation (7).

KBERT =
∑
i

ijibi = 1165824 (7)

Using the computational complexity of the baseline as a reference, point we can compute the in-
verted computational complexity ratio as follows in Equation (8).

η =
KBERT

Kmodel
(8)

Figure 3 and Figure 4 both depict a downward sloping straight line obtained using linear regression
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Figure 3: Scatterplot of No. of Operations
against Inverted Computational Complexity Ra-
tio using results from GLUE Task RTE’s final
population of the genetic algorithm in 5. Exper-
iments.
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Figure 4: Scatterplot of No. of Operations
against Inverted Computational Complexity Ra-
tio using results from GLUE Task MRPC’s final
population of the genetic algorithm in 5. Exper-
iments.

that minimizes squared error. This illustrates a linear correlation between the inverted computational
complexity and the number of operations. As the inverted computational complexity ratio increases,
implying a less complex proposed model, the number of operations decreases, similarly implying
that the model requires fewer operations. In both cases, a model that has fewer hidden states or
layers than the original BERT model, would then require comparably fewer operations and thus be
a less complex model. Hence, both metrics are inversely proportional.
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4.3.2 DISCUSSION OF INVERTED COMPUTATIONAL COMPLEXITY RATIO

While the FLOPs metric is a widely used indicator of computational complexity, it does not provide
a complete picture of energy efficiency or consumption, particularly in the context of quantization.
FLOPs measure the number of floating-point operations required, but they fail to account for the
impact of model optimizations, such as quantization, that use lower precision arithmetic like 8-
bit integers. Quantization can significantly reduce both memory usage and energy consumption,
but these benefits are not reflected in the FLOPs measurement. Consequently, while our proposed
Inverted Computational Complexity Ratio offers valuable insight into model compression, it also
highlights the limitations of FLOPs as an indicator of real-world efficiency, particularly in hardware-
accelerated environments where lower precision operations dominate.

4.4 GENETIC ALGORITHM

We chose to leverage the genetic algorithm, specifically Nondominated Sorting Genetic Algorithm II
Deb et al. (2002), to select optimal models. Our objective for the genetic algorithm first prioritizes
the evaluation metric obtained, followed by the inverted computational complexity. The genetic
algorithm is utilized to determine the number of hidden states that are to be pruned at each stage
of the BERT model, and the bit size that each layer would be using. The values are initialized
randomly.

Following the computation of the fitness score of each individual in the population, the new pop-
ulation is selected from individuals with higher fitness scores and obtained through crossover and
mutation. A detailed flowchart integrating pruning and quantization at each layer is illustrated in
Fig (5).

Start

Initialise Genetic Algorithm population,

each with parameters
[k1, k2, ..., k11, b1, b2, ..., b11]

During each layer's

forward pass

Prune the parameters, and

perform quantization. 

Obtain the accuracy metric and

inverted complexity ratio

Select new population

Crossover & Mutation

Termination Criteria 
Reached?

End

Yes

No

Legend
i = layer number
ki = number of hidden
states to be pruned in
layer i
bi = number of bits
for quantization in
layer i

Figure 5: Flowchart of the Genetic Algorithm
with the integration of the pruning and quanti-
zation steps. This illustrates our utilization of
the genetic algorithm to determine the number
of hidden states to be pruned and the bit size of
each layer. Subsequently, the genetic algorithm
would select individuals with a maximized ac-
curacy metric and inverted complexity ratio for
crossover and mutation.
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Figure 6: Pareto Front of the Final Popula-
tion from the Genetic Algorithm on GLUE Task
MRPC. Knowledge distillation has yet to be ap-
plied here. A power law curve was found to fit
the scatter plot of evaluation accuracy and in-
verted computational complexity ratio the best.
As seen in the figure above, the data points are
scattered evenly around the fitted curve. Addi-
tionally, there is an observable downward trend,
where the evaluation accuracy is seen to increase
with a decrease in the inverted computational
complexity ratio. This would suggest that the
more complex the model is, the higher the eval-
uation accuracy, which falls in line with existing
literature.
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4.5 KNOWLEDGE DISTILLATION: TASK-SPECIFIC

The simultaneous pruning and quantization introduced a performance gap between the proposed
model and the baseline model. To bridge this gap, we leveraged task-specific knowledge distillation.

• Teacher Model: BERT baseline model.
• Student Model: The proposed pruned and qunatized model.

Once the optimal models have been selected using the genetic algorithm, we employed knowledge
distillation with tuned hyperparameters to obtain the final score.

5 EXPERIMENTS

We evaluated our approach on Hugging Face’s text classification datasets, specifically the GLUE
benchmarks tasks RTE, MRPC, STSB, and CoLA. The evaluation metrics we have chosen are ac-
curacy for RTE and MRPC, Pearson Coefficient for STSB, and Matthews Correlation Coefficient
for CoLA. Our experiments are conducted on AMD EPYC Millan 7713 for CPU and NVIDIA
A100-40G SXM for GPU.

For our genetic algorithm, we set the population size = 40 and the number of generations = 5. For
our GLUE tasks, the input sequence length = 128 tokens, number of epochs = 4, training batch size
= 32, and a learning rate of 5e-5.

5.1 PRUNING AND QUANTIZATION RESULTS

We chose GLUE Task MRPC as the representative pareto front in Fig (6) because MRPC’s dataset
contains a significant number of examples more than the GLUE Task RTE. Its evaluation metric of
accuracy is preferred over STSB’s Pearson Correlation and CoLA’s Matthews Correlation Coeffi-
cient for its straightforward assessment of the model’s classification capabilities.

Tables 1, 2, 3 and 4 illustrate the optimal final population from the genetic algorithm for our chosen
GLUE tasks RTE, MRPC, STSB and CoLA. It compares combinations of removed hidden states
and quantized layers against each other and the baseline BERT model. As observed from all tables,
as the inverted computational complexity ratio increases the respective metric columns for the four
tasks (Acc., Acc., ρ, and MCC) similarly decrease. From these tables, we can also observe the
effectiveness of pruning and quantization. This is indicated by the high inverted computational
complexity ratio and low number of operations and low estimated inference time.

Notably, while a general decreasing trend in the number of operations (normalized) is observed,
variability persists in tables 1, 2, 3 and 4. The number of operations does not fully capture the
effects of quantization. A model exhibiting both a higher inverted computational complexity ratio
and a higher number of operations would indicate a model that is quantized to a greater extent and
pruned to a lesser extent. This indicates that quantization, while reducing computational complexity,
is not accurately reflected in operation counts, highlighting the need for more comprehensive metrics
when evaluating model efficiency.

The Estimated Inference Time (s) column in the tables reflects the normalized number of operations
and is derived based on our GPU’s performance, which operates at 19.5 TFLOPS for FP32 precision.
This estimation covers the entire dataset, including training, validation, and test examples for each
task. As observed in tables 1, 2, 3 and 4, the inference times show variation despite the decreasing
computational complexity ratio. This discrepancy arises because FLOPs primarily measure floating-
point operations, whereas our model predominantly utilizes integer operations. Consequently, the
estimated inference time has limitations, as it does not account for the impact of quantization.

5.2 KNOWLEDGE DISTILLATION LOSS CURVE

To construct the knowledge distillation loss curve, we modified the number of epochs = 10, while
keeping the rest. This is because we can better observe the loss curve with more epochs. We have
standardized our hyperparameters for the knowledge distillation loss curve: α = 0.9, β = 1.0, tem-
perature, T = 15.0. This imitates the hyperparameter setup in MA-BERT Ming et al. (2023), as we

7
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replicated their distillation technique in our methodology. We have chosen to fix the hyperparame-
ters to ensure that the scale of the loss remains comparable within each task.

5.2.1 RESULTS

Each combination of the results from the optimal final population of the genetic algorithm for RTE
and MRPC (as shown in Table 1 and 2) are indicated by the low opacity black curves in Fig (7) and
Fig (8) below. The solid black curves depict the mean of all curve losses for that specific task. The
mean loss curve is then smoothed under a smooth moving average and depicted in orange.
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Figure 7: Graph of knowledge distillation loss
against the number of iterations on GLUE Task
RTE’s final optimal population. A gradual de-
crease in the mean loss and smoothed mean loss
is observed across the first 200 iterations before
stagnating over the remaining 600 iterations.
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Figure 8: Graph of knowledge distillation loss
against the number of iterations on GLUE Task
MRPC’s final optimal population. A gradual de-
crease in the mean loss and smoothed mean loss
is observed across the first 400 iterations before
stagnating over the remaining 800 iterations.

5.3 KNOWLEDGE DISTILLATION & HYPERPARAMETER TUNING

Our hyperparameters are tuned using Python package optuna’s GridSampler, a variation of Grid
Search. The search space of α = (0.0, 1.0), β = [0.0, 10.0], T = [0.0, 20.0].

5.3.1 RESULTS

Our knowledge distillation results are performed on the final population of each GLUE task. Each
member of the final optimal population has a different underlying architecture with different hidden
states pruned and bits quantized. Hence, each model in the optimal final population underwent
hyperparameter tuning with knowledge distillation, leading to different hyperparameters. Details on
which hyperparameter was selected for each model can be found in A.1.

Tables 1, 2, 3 and 4 largely depict an increase in their evaluation metric following knowledge distil-
lation with tuned hyperparameters, which is the 5th column. Across all tables, models with higher
inverted computational complexity ratios had lower scores on their respective evaluation metrics.
However, after knowledge distillation and hyperparameter tuning, these values all rose, with the
highest η of each task increasing the most. This is most significant in table 4 with a 13.6 increase.

However, tables 1 and 2 where the top 2 and 3 accuracies in each task respectively show a fall
or stagnating accuracy instead. These models have the lowest inverted computational complexity
ratios in their task, indicating a more complex model. We believe that this is due to the limited
room for improvement in the score metric that knowledge distillation can bring about. It is possible
that this is the result of an insufficient number of hyperparameters, or the lack of precision in the
hyperparameters (i.e., the number of decimal places). Additionally, the accuracy we have obtained
after knowledge distillation for RTE remains within 5.5% of the original baseline model, even while
using a significantly less complex model.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: RTE Optimal Final Population
No. of Est. Acc.

η∗ Operations Inference Acc. After
(Norm.) Time (s) KD

3.38 0.678 17.2 66.8 66.4
5.02 0.704 17.9 65.7 65.7
7.21 0.553 14.0 65.0 65.3
7.27 0.589 14.9 62.8 64.6
7.37 0.606 15.4 62.1 65.0
7.64 0.475 12.1 59.9 65.3
1∗∗ 1 25.4 70.8
∗η represents Inverted Computational

Complexity Ratio
∗∗BERT has η = 1 computed from

Equation 8

Table 2: MRPC Optimal Final Population
No. of Est. Acc.

η∗ Operations Inference Acc. After
(Norm.) Time (s) KD

3.58 0.847 21.6 83.1 80.6
3.67 0.755 19.3 81.1 79.4
3.73 0.682 17.4 78.9 78.2
4.18 0.622 15.9 78.2 79.4
4.54 0.709 18.1 77.9 79.2
5.01 0.754 19.2 77.5 79.7
5.83 0.669 17.1 76.7 77.9
7.33 0.559 14.3 76.0 77.0
7.54 0.589 15.0 74.8 76.2
8.53 0.586 15.0 72.3 75.7
1∗∗ 1 25.5 86.0

Table 3: STSB Optimal Final Population
No. of Est. ρ∗∗∗

η∗ Operations Inference ρ∗∗∗ After
(Norm.) Time (s) KD

2.47 0.633 24.0 87.2 87.2
3.57 0.690 26.2 86.9 86.9
3.96 0.771 29.3 86.9 86.9
5.05 0.682 25.9 86.8 86.3
5.15 0.645 24.5 86.5 86.5
5.25 0.661 25.1 86.2 86.3
5.51 0.612 23.2 86.0 85.9
6.97 0.651 24.7 85.9 86.1
8.49 0.577 21.9 84.7 85.6
8.67 0.637 24.2 83.7 84.2
1∗∗ 1 38.0 89.3
∗∗∗ρ represents Pearson Correlation

Table 4: CoLA Optimal Final Population
No. of Est. MCC

η* Operations Inference MCC After
(Norm.) Time (s) KD

3.79 0.828 38.8 52.6 57.3
4.08 0.814 38.1 51.1 55.5
4.12 0.784 36.7 47.9 55.2
4.22 0.822 38.5 45.6 54.3
4.39 0.678 31.8 44.4 48.0
5.00 0.677 31.7 43.5 45.4
5.17 0.776 36.4 43.0 50.3
5.18 0.741 34.7 40.1 49.9
5.23 0.632 29.6 38.0 46.3
5.35 0.761 35.7 35.5 48.1
5.89 0.693 32.5 34.0 44.7
6.42 0.677 31.7 29.2 42.8
1∗∗ 1 46.9 58.4
∗∗∗∗MCC represents Matthews Correlation

In table 3, the increase in the Pearson Correlation after knowledge distillation is small. We believe
that this is because there is limited room for improvement in pearson correlation, especially so given
that the scores are all within a 5.1% drop when compared with the baseline BERT model. Noticeably,
hyperparameters α and β are largely on the same scale indicating that hard and soft loss, and hidden
states and attention loss are significant on the same scale.

5.4 COMPARING AGAINST OTHER MODELS

In this section, we are comparing P-BERT against other BERT-variant models, including BERT
Devlin (2018), RoBERTa Liu et al. (2019), DistilBERT Sanh et al. (2019), ALBERT Lan (2019),
TinyBERT Jiao et al. (2019), I-BERT Kim et al. (2021) and MiniLM Wang et al. (2020). We
have computed the inverted computational complexity ratio for all models using Equation 6 and
Equation 8, and computed the estimated inference time(s) on the same scale as before.

Our study aimed to evaluate P-BERT against other state-of-the-art compression methods, including
LayerDrop Fan et al. (2019), GPTQ Frantar et al. (2022), AWQ Lin et al. (2024), AQLM Egiazarian
et al. (2024), QuIP# Tseng et al. (2024). However, we encountered challenges in implementating
the following methods for BERT-based models. This unfortunately hampered our ability to perform
comprehensive comparative evaluations.

The results presented in Table 5 illustrate the performance and estimated inference time of the afore-
mentioned models on the RTE, MRPC, STSB, and CoLA datasets. Our proposed P-BERT shows
promising results with competitive accuracy, particularly in CoLA, where it achieves a score of
57.3. P-BERT demonstrates a balance between accuracy and efficiency, with inference times rang-
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ing from 17.2 seconds to 38.8 seconds, depending on the task, as well as a generally competitive
inverted computational complexity ratio. These results underscore the effectiveness of our inte-
grated model compression techniques in maintaining performance while optimizing computational
resources, highlighting the potential of P-BERT as a viable alternative for resource-constrained en-
vironments.

Table 5: Results of Other Models
Model η Results Estimated Inference Time (s)

RTE MRPC STSB CoLA RTE MRPC STSB CoLA

BERTbase 1.0 70.8 86.0 89.3 58.4 25.4 25.5 38.0 46.9
RoBERTabase 1.0 72.6 89.5 90.7 57.0 25.4 25.5 38.0 46.9
DistilBERT 4.4 62.5 82.8 87.5 53.8 12.7 12.8 19.0 23.4
ALBERTbase 1.0 69.7 88.0 90.7 53.2 22.7 22.8 33.9 41.9
TinyBERT4 27.1 67.2 85.5 87.4 17.0 1.8 1.8 2.6 3.3
I-BERT 2.9 65.0 88.7 90.9 60.0 0.8 0.8 1.2 1.5
MiniLM12 2.0 69.7 87.3 87.7 55.6 7.6 7.6 11.4 14.0

P-BERT 3.38 66.4 - - - 17.2 - - -
P-BERT 3.58 - 80.6 - - - 21.6 - -
P-BERT 2.47 - - 87.2 - - - 24.0 -
P-BERT 3.79 - - - 57.3 - - - 38.8

5.5 LIMITATIONS

One limitation our model faces is its sensitivity to initialization. Since the seeding of the genetic
algorithm is randomized, it can result in variations in performance across different runs.

Another limitation is that our model is optimized specifically for lightweight, low-power devices. As
a result, the performance gains and efficiencies we demonstrate may not scale effectively to larger,
more powerful hardware platforms, limiting its broader applicability to high-end systems, such as
GPT.

6 CONCLUSION

In this paper, we introduced P-BERT, a hardware-aware and computationally efficient version of
BERT that integrates pruning and quantization to reduce computational complexity and knowledge
distillation to maintain comparable performance to baseline BERT. We introduced a new metric —
inverted computational complexity ratio, that compares the computational complexity of a model to
a baseline. Our experimental results show that our approach can reduce between 60% to 88% in the
inverted computational complexity ratio.

For future work, it would be valuable to explore the applicability of P-BERT on different hardware
architectures and across a wider variety of datasets and benchmarks to further validate its hardware
efficiency and generalizability.

7 REPRODUCIBILITY STATEMENT

All datasets and pre-trained checkpoints used in this study are publicly available and can be easily
downloaded, facilitating straightforward reproduction of the results. The source code for this work
is provided in the accompanying zip file. It includes a detailed README.md outlining the necessary
steps to replicate our experiments.
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Table 6: Comparing KD Hyperparameter Tuning Re-
sults for RTE With Other Models

Acc.
η∗ Acc. After KD α β T

3.38 66.8 66.4 0.1 0.1 8.0
5.02 65.7 65.7 0.1 0.5 15.0
7.21 65.0 65.3 0.1 0.1 5.0
7.27 62.8 64.6 0.1 0.1 9.0
7.37 62.1 65.0 0.5 0.1 10.0
7.64 59.9 65.3 0.2 1.0 5.0
(BERT) 1∗∗ 70.8
∗η represents Inverted Computational

Complexity Ratio
∗∗BERT has η = 1 computed from Equation 8
∗∗∗PKD represents PatientKD6 Sun et al. (2019). It has

Table 7: Comparing KD Hyperparame-
ter Tuning Results for MRPC With Other
Models

Acc.
η∗ Acc. After KD α β T

3.58 83.1 80.6 0.5 0.1 20.0
3.67 81.1 79.4 0.1 8.0 9.0
3.73 78.9 78.2 0.1 10.0 8.0
4.18 78.2 79.4 0.5 3.0 8.0
4.54 77.9 79.2 0.5 3.0 1.0
5.01 77.5 79.7 0.5 3.0 1.0
5.83 76.7 77.9 0.1 0.5 1.0
7.33 76.0 77.0 0.5 3.0 1.0
7.54 74.8 76.2 0.5 3.0 12.0
8.53 72.3 75.7 0.5 0.5 1.0
(BERT) 1∗∗ 86.0

Table 8: Comparing KD Hyperparameter Tun-
ing Results for STSB With Other Models

ρ∗∗

η∗ ρ∗∗ After KD α β T

2.47 87.2 87.2 0.02 0.01 0.1
3.57 86.9 86.9 0.02 0.03 0.1
3.96 86.9 86.9 0.03 0.01 0.1
5.05 86.8 86.3 0.01 0.09 0.1
5.15 86.5 86.5 0.03 0.01 0.1
5.25 86.2 86.3 0.03 0.01 0.1
5.51 86.0 85.9 0.03 0.03 0.1
6.97 85.9 86.1 0.1 0.01 0.1
8.49 84.7 85.6 0.03 0.03 0.1
8.67 83.7 84.2 0.1 0.3 0.1
(BERT) 1∗∗∗ 89.3
∗η represents Inverted Computational

Complexity Ratio
∗∗ρ represents Pearson Correlation
∗∗∗BERT has η = 1 computed from Equation 8

Table 9: Comparing KD Hyperparameter Tun-
ing Results for CoLA With Other Models

MCC
η∗ MCC After KD α β T

3.79 52.6 57.3 0.6 1.0 10.0
4.08 51.1 55.5 0.4 1.0 20.0
4.12 47.9 55.2 0.6 1.0 5.0
4.22 45.6 54.3 0.5 1.0 5.0
4.39 44.4 48.0 0.5 1.0 1.0
5.00 43.5 45.4 0.5 1.0 15.0
5.17 43.0 50.3 0.5 1.0 20.0
5.18 40.1 49.9 0.6 1.0 10.0
5.23 38.0 46.3 0.5 1.0 1.0
5.35 35.5 48.1 0.1 10.0 20.0
5.89 34.0 44.7 0.1 10.0 20.0
6.42 29.2 42.8 0.5 1.0 1.0
(BERT) 1∗∗ 58.4
∗∗∗∗MCC represents Matthews Correlation

Coefficient
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