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ABSTRACT

Recent advances in multivariate time series forecasting have seen a shift toward
a pure graph paradigm, which transforms time series into hypervariate graphs
and employs graph neural networks (GNNs) to holistically capture intertwined
spatiotemporal dependencies. While promising, this approach faces notable
challenges. First, converting time series into hypervariate graphs often neglects
essential temporal sequences, which are vital for accurately capturing temporal
dependencies. Second, treating the graph as a complete structure can obscure the
varying importance of intra- and inter-series connections, potentially overlooking
key local patterns. To address these challenges, we introduce a novel hyperspectral
graph data structure that embeds sequential order into frequency signals and
employs a sparse yet meaningful topological structure. In addition, we propose
the UFGTIME framework, featuring a frequency-based global graph framelet
message-passing operator tailored to hyperspectral graphs, effectively mitigating
the smoothing issue and capturing global insights through sparse connections.
Extensive experiments demonstrate that our framework significantly surpasses
state-of-the-art methods, excelling in both short- and long-range time series
forecasting while achieving superior efficiency. Our code is available at: https:
//anonymous.4open.science/r/UFGTIME-E352.

1 INTRODUCTION

Multivariate time series forecasting is crucial in industrial applications such as transportation,
manufacturing, and energy management. Recent advancements in deep neural networks, evolving
from recurrent to convolutional and attention-based models, have significantly improved forecasting
accuracy. However, many of these methods fail to fully capture the critical spatial correlations, which
are essential for modeling complex dependencies in multivariate time series data. Graph Neural
Networks (GNNs) have emerged as a powerful approach to address this limitation. Initially, GNNs
were employed to capture spatial information across time steps, which was then combined with
historical temporal information through a forecasting model. This approach led to foundational
models such as DCRNN (Li et al., 2018), GraphWaveNet (Wu et al., 2019), STGCN (Yu et al.,
2018), and MTGNN (Wu et al., 2020). Despite their success, these models often rely on integrating
GNN modules with separate components to capture temporal dependencies, treating the processes of
modeling spatial and temporal dependencies as independent tasks. This separation contradicts the
intertwined nature of spatial temporal information.

Recent research, FourierGNN (Yi et al., 2024), has explicitly tackled these intertwined interactions
by transforming time series into a new data structure called the hypervariate graph, pioneering a
novel pure graph paradigm for multivariate time series forecasting. However, this pure graph-based
method faces two key challenges:

Challenge 1. Processing multivariate time series in a hypervariate graph structure risks losing
essential sequential information. Challenge 2. The fully connected setting in hypervariate graphs
tends to reduce attention to various connections, which leads to overlooking important temporal
patterns.
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To address these challenges, we propose an innovative frequency graph framelet time series
forecasting framework, named UFGTIME. Our method transforms the time series into frequency
domain signals, preserving the sequential information of the original time series within the frequency
signals. We further reform a novel graph data structure called the hyperspectral graph, which
transforms frequency signals into graph features and constructs sparse topological structures based
on signal similarities to enhance attention to cross-signal relationships. Finally, we propose a
global manner framelet message-passing operator to capture global patterns through sparse graph
connections and mitigate the smoothing effects caused by aggregation between similar nodes. Our
contributions are as follows:

• Identifying the limitations of hypervariate graphs in ignoring temporal sequential information and
neglecting attention to local connection patterns in fully connected graphs setting.

• Proposing an innovative hyperspectral graph structure, reorganizing signals from fast Fourier
transforms, preserving temporal sequential order in frequency signals, and using KNN to capture
local (sparse) connections between signal features.

• Introducing a global framelet message-passing operator to capture the global patterns of the
hyperspectral graph through sparse connections and alleviate the smoothing effects from connecting
similar nodes.

• Validating the effectiveness of the UFGTIME framework through extensive experiments,
demonstrating its ability to outperform state-of-the-art methods.

2 PRELIMINARIES AND RELATED WORKS

2.1 PROBLEM DEFINITION

A multivariate time series X ∈ RN×T×D represents a sequence of D-dimensional vector
observations of N entities recorded over a time period T . Given a window size T , we denote
Xt = [Xt−T+1, . . . , Xt−1, Xt] ∈ RN×T×D representing the observations on the looking back-
window of size T at time t, where Xt ∈ RN×D is the observation for all the N entities at t. A typical
forecasting task is to learn a model f(·), by minimizing a predefined loss function, such that

Ŷt+1 = f(Xt) = f ([Xt−T+1, . . . , Xt]) (1)
predicts the next τ steps of another time series Y at t+1, e.g., Yt+1 = [Xt+1, . . . , Xt+τ ] ∈ RN×τ×D,
forecasting within the prediction time window τ .

2.2 PARADIGM OF GNNS IN MULTIVARIATE TIME SERIES FORECASTING

Deep learning methods such as convolutional neural networks (CNNs) (Borovykh et al., 2017; Assaf
et al., 2019), recurrent neural networks (RNNs) (Connor et al., 1994; Hochreiter & Schmidhuber,
1997), and transformers (Zhou et al., 2021; Zhang & Yan, 2023) have demonstrated considerable
success in multivariate time series forecasting. However, a significant limitation of these approaches
lies in their inability to explicitly model the spatial topological structure information. To address the
challenges in temporal dynamics, GNNs have been applied using different paradigms, which can be
categorized as follows:

Modularity Paradigm The introduction of DCRNN (Li et al., 2018), which integrates graph and
recurrent modules into an end-to-end framework, marked a significant advancement in capturing
spatial correlations along with temporal dynamics. This design has become the dominant paradigm
for applying GNNs in multivariate time series forecasting. Variants of this approach have combined
GNNs with different architectures, leading to methods such as GNNs with recurrence (e.g., ST-
MetaNet (Pan et al., 2019), STGNN (Wang et al., 2020), AGCRN (Bai et al., 2020), GTS (Shang
et al., 2021), and HiGP (Cini et al., 2024)), GNNs with convolution (e.g., GraphWaveNet (Wu et al.,
2019), MTGNN (Wu et al., 2020), StemGNN (Cao et al., 2020), STGODE (Fang et al., 2021),
MTGODE (Jin et al., 2022), and CaST (Xia et al., 2024)), and GNNs with temporal attention (e.g.,
GMAN (Zheng et al., 2020), STAR (Yu et al., 2020), and TPGNN (Liu et al., 2022)). Despite their
effectiveness, these frameworks often treat spatial correlation and temporal processes as separate
entities, which may result in a disjointed representation of spatio-temporal dependencies, potentially
misrepresenting the inherent interconnections found in real-world scenarios.
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Pure Graph Paradigm To address the limitations of the modularity paradigm in capturing the
complex entanglement of spatial and temporal information, the FourierGNN (Yi et al., 2024)
introduces the pure graph paradigm, which transforms multivariate time series into a data structure
known as a hypervariate graph:
Definition 1 (Hypervariate Graph). Given a general multivariate time window Xt ∈ RN×T×D at
timestamp t, a hypervariate graph is defined as GH

t =
(
XG

t ,J
)
, where XG

t ∈ RNT×D represents
the node features, and J ∈ 1NT×NT denotes the fully connected adjacency matrix.
By transforming the multivariate time series into a pure graph structure, each timestamp entity in the
multivariate time series is represented as a node within the hypervariate graph, with all entities fully
connected. This approach inherently embeds both temporal dynamics and spatial correlations within
the graph, enabling the forecasting problem to be reformulated as:

Ŷt+1 = g(GH
t ) = g(XG

t ,J), (2)
where g(·) is a GNN that accepts node features and adjacency matrices as inputs. This paradigm
emphasizes a fully integrated graph representation of spatial and temporal data, offering significant
potential for time series analysis. However, the hypervariate graph method has certain limitations,
such as the potential oversight orders of the time sequences and the challenges posed by the fully
connected graph, which will be discussed in Section 3.

3 LIMITATIONS OF STATES-OF-ARTS WORKS IN PURE GRAPH PARADIGM

3.1 OVERSIGHT OF TIME SERIES SEQUENTIAL ORDER
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Figure 1: A demonstration of Losing Sequential information on
Hypervariate Graph

PERM MAE RMSE MAPE

None 0.0565 0.0879 0.1366

25% 0.0677 0.0988 0.1471

50% 0.0749 0.1075 0.1849

75% 0.0767 0.1085 0.1891

100% 0.0778 0.1114 0.1936

Table 1: Permutations on
Hypervariate Graph

Recent work on FourierGNN utilizes hypervariate graphs to integrate temporal dependencies and
spatial information, proposing a novel pure graph paradigm for time series forecasting. However,
this approach overlooks a critical aspect: the sequential order inherent in temporal data, which is
essential for capturing time-dependent relationships. In hypervariate graphs, the topological structure
is typically assumed to be fully connected, with each node representing temporal features at a
specific timestamp. Permuting the node order in a hypervariate graph results in an isomorphic graph,
indicating the hypervariate graph’s invariance to node ordering. Figure 3.1 visualizes two multivariate
time series with identical values but different sequential orders, forming isomorphic hypervariate
graphs, despite the underlying time series being fundamentally different due to the order change.
Our findings underscore the limitations of hypervariate graphs in preserving sequential order, as
formalized in the following proposition (with proof provided in Appendix A.1):
Propostion 1. The hypervariate graph is insensitive to the temporal order of the original time series,
thereby discarding critical sequential information.

We conducted an empirical study to assess the performance of FourierGNN under time series order
permutations. The results, as shown in Table 1, indicate limited performance variation, even with
large-scale permutations on the temporal dimension of the data. This suggests that the FourierGNN
model in hypervariate graphs may be relatively insensitive to temporal sequential order, implying that
hypervariate graphs might not effectively preserve sequential information.

3.2 FULL CONNECTION REDUCE ATTENTION OF HYPERVARIATE GRAPH

In the hypervariate graph setting, as defined in Definition 1, the graph topology is represented
by a fully connected adjacency matrix, indicating that all vertices are uniformly connected. In
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this context, each node in the hypervariate graph corresponds to a specific timestamp within a
multivariate time series. This fully connected design aims to capture the comprehensive dynamics
of global time dependence. However, many studies have demonstrated that local patterns within
time series can be equally significant (Papadimitriou & Yu, 2006; Chen et al., 2006). Due to the
uniform distribution of connections, a fully connected graph tends to diminish the importance
of local connections in the hypervariate graph, potentially overlooking some meaningful implicit
local patterns. To support our argument, we constructed a toy example of a hypervariate graph
involving a multivariate temporal system with four time series, each containing nine timestamps.
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(a) Sparse Laplacian (b) Fully Connected Laplacian

Figure 2: Visualization of Laplacian Patterns in a Toy Hypervariate
Graph. (a) The Sparse Laplacian is generated using the KNN
algorithm, showing distinct attention to intra- and inter-connection
nodes. (b) The Fully Connected Graph demonstrates uniform
connections across all nodes within the hypervariate graph,
highlighting neglect attention across the network.

We computed a sparse
Laplacian matrix using
the K-Nearest Neighbors
(KNN) algorithm based on
the temporal characteristics.
We compared it to a fully
connected Laplacian, as
illustrated in Figure 2.
The sparse Laplacian
reveals significant attention
patterns in intra- and
inter-series connections,
whereas the fully connected
Laplacian uniformly
distributes attention across
all connections, diminishing
their relative importance.
Additionally, fully connected
graphs have several other
drawbacks, such as a tendency to over-smooth (Huang et al., 2020) and higher computational
complexity, but these limitations are beyond the scope of this work.

4 PROPOSED METHOD

4.1 BYPASS SEQUENTIAL ORDER OF TIME SERIES WITH DOMAIN TRANSFER

As discussed in Section 3.1, state-of-the-art approaches within the pure graph paradigm may suffer
from overlooking the sequential order inherent in time series due to the transformation into a
hypervariate graph. A promising strategy to address this limitation involves representing the
multivariate time series X ∈ RN×T×D in the spectral domain using orthogonal bases, expressed
as S = F(X) ∈ CN×C×D, where F(·) denotes the Fourier transform applied along the time
dimension, and C represents the length of the transformed temporal signal in the spectral domain.
Subsequently, a graph is constructed using the spectral signals S following the method that forms the
hypervariate graph. This new type of graph is defined as follows:
Definition 2 (Hyperspectral Graph). Given a general multivariate time window Xt ∈ RN×T×D

at time step t, the spectral temporal signals St are defined as the Fourier-transformed time series,
St = F(Xt) ∈ CN×C×D. The hyperspectral graph GS

t at timestamp t is then defined as GS
t =(

SG
t ,At

)
, where SG

t ∈ CNC×D represents the graph features, and At ∈ {0, 1}NC×NC is the
adjacency matrix associate with hyperspectral graph features SG

t .
Our motivation behind advocating using hyperspectral graphs lies in the inherent flexibility of the
Fourier transformation in interpreting and manipulating the frequency components derived from a
signal (e.g., a 1D discrete (ordered) signal in the case of Discrete Fourier transform). The Fourier
transformation output can be interpreted as frequency components contained in the original signal.
Although mathematically all the frequency components are inherently presented in a specific order
from the lowest to the highest frequencies, this order is not part of signal information but the amount
of different frequencies. Thus the Fourier coefficients can be rearranged according to the analysis’s
needs without impacting the data’s integrity. As long as the frequency associated with each output
component is clearly understood and consistently applied, the actual order of these components can
be adjusted to suit specific analytical goals. This flexibility indicates that it is appropriate to use
graphs to represent output data from the Fourier transform. Therefore, transforming the multivariate
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time series into a hyperspectral graph can effectively alleviate the issue of overlooking the temporal
order present in the hypervariate graph.

4.2 PROPAGATING FEATURES VIA HYPERSPECTRAL GRAPH

Unlike the hypervariate graph introduced in Definition 1, where fully connected graphs are
constructed across all timestamps, the adjacency matrices in the hyperspectral graph are estimated
based on signal similarity using algorithms KNN. Generally, this can be expressed as At =
KNN

(
Re(SG

t )⌢Im(SG
t ), k

)
, where k represents the number of neighbors, and Re(SG

t )⌢Im(SG
t )

denotes the concatenation of the real and imaginary components of the hyperspectral graph features.
Once the graph structure is defined, the next challenge is to process the features SG with the generated
sparse graph structure At. Since At is sparse, employing traditional GNNs to propagate hyperspectral
graph features may limit the focus to local (short-sightedness), nearest-neighbor connections rather
than capturing global relationships. Additionally, because At is constructed from the top k signal
similarities in the hyperspectral graph, propagating the features risks over-smoothing. This can lead
to embedding becoming indistinguishable after propagation, which is detrimental for downstream
tasks such as forecasting. Therefore, a desired GNN model for hyperspectral graphs must satisfy the
following requirements:

1. Prevent excessive smoothing (similarity) of hyperspectral graph features by preserving the
identifiability (sharpness) of each node’s features during propagation.

2. Propagate node features in a global manner, even though the graph is sparsely connected.

How to select GNN for hyperspectral graphs? GNNs that satisfy Requirement 1 often employ a
diffusion-reaction paradigm, where node features are first homogenized through spatial propagation
(i.e., using A). Then the ego-graph feature (e.g., SG

t ) is added to reintroduce variation into
the system (Choi et al., 2023; Han et al., 2024; Thorpe et al., 2022). While these models have
achieved remarkable results, spectral GNNs, such as ChebNet (Defferrard et al., 2016), typically
learn filtering functions (e.g., diagonal matrices) in the spectral domain (i.e., the eigenspace of
the graph Laplacian), which enables feature propagation from a global perspective, thus satisfying
Requirement 2. Consequently, an ideal model would either be a spectral GNN that can induce multiple
feature dynamics or a spatial GNN that accounts for global dependencies between features. In light
of these considerations, we focus on a family of spectral GNNs known as Graph Framelets, which
meet the aforementioned requirements (Zheng et al., 2021).

4.3 GRAPH FRAMELETS ON THE FOURIER DOMAIN

In this section, we formulate a novel graph framelet system, called UFGTIME, specifically designed
for hyperspectral graphs in multivariate time series forecasting tasks, addressing the unique demand
posed by this setting. While numerous framelet variants have been developed in recent years (Shi
et al., 2023; Han et al., 2022; Liu et al., 2023), these approaches primarily focus on node features in
the real domain. In contrast, our work reforms the original graph framelet framework (Zheng et al.,
2021; Yang et al., 2022) to the spectral domain of hyperspectral graphs. This new design allows us to
better capture the intricate relationships of the hyperspectral graph.

Graph Framelet and Framelet Message-Passing Graph framelets are defined by a set of filter
banks, denoted as ηa,b = {a; b(1), . . . , b(L)}, and the corresponding complex-valued scaling functions.
These scaling functions are typically expressed as Ψ = {α;β(1), . . . , β(L)}, where L represents the
number of high-pass filters. The framelet framework adheres to the following refinement relationship
between the scaling functions and filter banks:

α̂(2ξ) = â(ξ)α̂(ξ) and β̂(r)(2ξ) = b̂(r)(ξ)α̂(ξ), ∀ ξ ∈ R, r = 1, . . . , L,

where α̂ and β̂(r) denote the Fourier transforms of α and β(r), respectively, and â, b̂(r) represent the
Fourier series of a and b(r). The graph framelets are then defined as

φj,p(v) =

n∑
i=1

α̂

(
Λi

2j

)
ui(p)ui(v) and ψr

j,p(v) =

n∑
i=1

β̂(r)

(
Λi

2j

)
ui(p)ui(v),

5
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for r = 1, . . . , L and scale level j = 1, . . . , J . Here, ui(v) refers to the eigenvector ui at node v.
The functions φj,p(·) and ψr

j,p(·) are commonly referred to as the low-pass framelets and high-pass
framelets at node p. One can define the framelet decomposition matrices W0,J and Wr,J as:

W0,J = U â

(
Λ

2m+J

)
· · · â

(
Λ

2m

)
U⊤,Wr,0 = U b̂(r)

(
Λ

2m

)
U⊤, for r = 1, . . . , L, (3)

Wr,j = U b̂(r)
(

Λ

2m+j

)
â

(
Λ

2m+j−1

)
· · · â

(
Λ

2m

)
U⊤, for r = 1, . . . , L, j = 1, . . . , J. (4)

Here, m represents the coarsest scale level, which is the smallest value satisfying 2−mλN ≤ π. It can
be shown that

∑
(r,j)∈I W⊤

r,jWr,j = I for I = {(r, j) : r = 1, . . . , L, j = 0, 1, . . . , J} ∪ {(0, J)},
indicating the tightness of the framelet decomposition and reconstruction. We highlight that in
real practice, to avoid heavy eigen-decomposition of the graph Laplacian, one may adopt the K
order polynomial to boost the implementation speed (refer to Appendix B.1). In summary, one can
explicitly denote the (spectral) feature propagation of the graph framelet (without activation) as

SG
t (ℓ+ 1) =

∑
(r,j)∈I

W⊤
r,jdiag(θr,j)Wr,jS

G
t (ℓ)W (ℓ), (5)

where diag(θ) ∈ RNT×NT contains learnable coefficients in each frequency domain and W (ℓ) is
the weight matrix that is shared across the different frequency domains. One can check that the
dynamic in Equation 5 propagates the node features in a global view due to its spectral filtering
nature. In addition, we expect our framelet model to maintain the global spectral filtering manner with
relatively low computational cost. We, therefore, adopt the framelet message-passing manner (Liu
et al., 2023), which suggests that the reconstruction process of the graph framelet can be omitted.
Resulting as

SG
t (ℓ+ 1) =

∑
(r,j)∈I

Wr,jS
G
t (ℓ)Wr,j(ℓ), (6)

suggesting a distinguished channel-mixing operation, i.e., Wr,j(ℓ) ∈ CD×D across different
frequency domains. However, we expect our model to remain in the global spectral filtering manner
but also with comparable complexity. We propose an innovative framelet message-passing by aligning
the same channel-mixing operation to all frequency domains with different filtering coefficients.
Accordingly, we have

SG
t (ℓ+ 1) =

∑
(r,j)∈I

diag(θr,j)Wr,jS
G
t (ℓ)W (ℓ) (7)

Theoretical Analysis To show graph framelet meets Requirement 1, let us consider the framelet
model with Haar filtering function of scale one. That is, when J = 1, we have:

W0,1 = UΛ0,1U
⊤ = Ucos(Λ/8)U⊤, W1,1 = UΛ1,1U

⊤ = Usin(Λ/8)U⊤, (8)
and the following one-layer framelet convolution from Equation 5 (without activation) can be further
denoted as:

SG
t (ℓ+ 1) =

(
Udiag(θ0,1)cos

2(Λ/8) + diag(θ1,1)sin
2(Λ/8)U⊤)SG

t (ℓ)W (ℓ). (9)
When we fix θ0,1 = 1NT , where 1NT is the vector of all ones, and θ1,1 = θ1NT , one can check that
when θ > 1, the model is dominated by the high-pass filtering dynamic, i.e., diag(θ1,1)sin2(Λ/8)
since the function sin2(Λ/8) is monotonically increasing over the graph spectral domain. On the
other hand, when 0 < θ < 1, the model dynamic is dominated by the low-pass filtering dynamic,
i.e., diag(θ0,1)cos2(Λ/8) as cos2(Λ/8) is monotonically decreasing via the spectral domain. This
shows graph framelets can naturally induce both smoothing and sharpening dynamics to meet the
requirement . It is worth noting that our conclusion can be smoothly applied to our proposed model in
equation 7. We refer the more theoretical details to the works in (Shi et al., 2023; Shao et al., 2023b).

Complexity Analysis For simplicity of analysis, we assume that the weights of our Fourier domain
framelet message-passing operator are of the form CD×D, and the frequency signal has the same
length T as the time series. The time complexity of a single layer of our framelet operator is
O(NTkD+NTD2), where k represents the number of neighbours in the KNN graph. More details
on the complexity analysis can be found in Appendix B.3.
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Figure 3: A workflow demonstration of UFGTIME framework for predicting Ŷt+1 with input Xt

4.4 MULTIVARIATE TIME SERIES FORECASTING WITH UFGTIME

The main framework of UFGTIME is illustrated in Figure 3. Given input multivariate time series
data Xt ∈ RN×T×D, we first apply moving-average decomposition to the input to extract trend
information Tt ∈ RN×T×D, and then apply the Fast Fourier Transform (FFT) on the time dimension
of the input to obtain the frequency signal St ∈ CN×C×D. The frequency signal is reshaped into a
hyperspectral graph feature SG

t ∈ CNC×D. Next, we leverage KNN to generate a sparse topological
structure At ∈ {0,1}NT×NT , associated with the input Re(SG

t )⌢Im(SG
t ). At this point, we obtain

the hyperspectral graph GS
t =

(
SG
t ,At

)
. Subsequently, to capture intricate dependencies on the

hyperspectral graph, we feed the data into ℓ layers of a global framelet message-passing operator with
a SiLU activation function, defined as SG

t (ℓ+ 1) = SiLU
(∑

(r,j)∈I diag(θr,j)Wr,jS
G
t (ℓ)W (ℓ)

)
.

Afterward, we reshape SG
t (ℓ+1) into frequency signal St(ℓ+1) ∈ CN×C×D and use the Inverse Fast

Fourier Transform (IFFT) F−1(St(ℓ+1)) to obtain the output hidden state Ht ∈ RN×T×D. Finally,
based on the output hidden state Ht, which encodes spatiotemporal interdependencies, we apply a
two-layer feed-forward network (FFN) (see Appendix B.2) to project it onto τ future steps. This
result is combined with the trend embedding to yield the final output Ŷt+1 = FFN(Ht)⊕Lin(Tt) ∈
RN×τ×D.

5 EMPIRICAL EVALUATION

5.1 EXPERIMENTAL SETUP

Datasets We employ several datasets for short-term multivariate time series forecasting, including
SOLAR-FL, WIKI-500, TRAFFIC, ECG, ELECTRICITY2H, and COVID-CAL. For long-term
multivariate time series forecasting, we utilize the ETTM1, ETTM2, ETTH1, and ETTH2 datasets.
We adopt the original data splits provided by Yi et al. (2024) and Zhou et al. (2021) to ensure a fair
comparison. Additional details and data sources are in Appendix B.4.

Baselines Our baselines encompass a range of well-established models in time series forecasting,
which can be classified into three categories. 1) Transformer-based methods: Autoformer (Wu et al.,
2021), Informer (Zhou et al., 2021), Pyraformer (Liu et al., 2021), and Crossformer (Zhang & Yan,
2023). 2) Graph-based methods: DCRNN (Li et al., 2018), STGCN (Yu et al., 2018), GWNet (Wu
et al., 2019), MTGNN (Wu et al., 2020), StemGNN (Cao et al., 2020), AGCRN (Bai et al., 2020), and
FourierGNN (Yi et al., 2024). 3) Linear-based methods: DLinear (Zeng et al., 2023), and TiDE (Das
et al., 2023). Additional baseline details can be found in Appendix B.6.

Implementation We reproduce the baseline models using revised scripts from FourierGNN (Yi
et al., 2024) and the fair benchmarking toolkit BasicTS+ (Shao et al., 2023a). The models are
fine-tuned using Adam and RMSprop optimizers to minimize the MSE loss. Additional fine-tuning
details can be found in Appendix B.6.

5.2 OVERALL PERFORMANCE ANALYSIS

Can UFGTIME effectively capture temporal patterns from short input sequences? The partial
performance of short-term multivariate time series forecasting is presented in Table 2 (full
performance results shown in Table 6), where both the history window and forecasting length
are set to 12. The best results are highlighted in grey. It is important to note that some transformer-
based methods, such as Autoformer, Informer, and Pyraformer, do not produce results on the ECG
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dataset due to the lack of time-stamp information. The key observations from the experiments
are summarized as follows. Compared to all state-of-the-art baselines, UFGTIME demonstrates
exceptional performance across short-term forecasting datasets. Notably, on the COVID-CAL,
SOLAR-FL, and WIKI-500 datasets, UFGTIME shows a strong ability to capture complex dynamic
patterns that often challenge transformer-based methods. This highlights the effectiveness of the
dedicated multi-resolution graph framelet architecture and underscores the importance of managing
sequential order in pure graph paradigms for multivariate time series forecasting. For other datasets,
which exhibit clearly distinguishable seasonal patterns, all baselines, including UFGTIME, perform
at a similar level, demonstrating the generalization capability of our method for typical time series
datasets.
Table 2: Short-Term Multivariate Time Series Forecasting Results on Four Datasets. Best and Second
Best Results Per Dataset Highlighted in Grey and Underlined Respectively. ECG Results for Partial
Transformer-based Methods are Denoted as ’−’ Due to Missing Temporal Information.

BASELINES
SOLAR-FL WIKI-500 ECG COVID-CAL

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

AUTOFORMER 0.1078 0.1489 3.4948 0.1936 0.3917 2.8225 - - - 0.6654 1.1961 0.3363

INFORMER 0.0827 0.1296 3.4536 0.1255 0.3183 2.4051 - - - 2.6893 4.7431 0.8996

PYRAFORMER 0.1451 0.1862 3.5104 0.0957 0.2651 2.0245 - - - 3.4571 5.4846 0.9987

CROSSFORMER 0.0858 0.1281 3.4378 0.1566 0.2927 2.7246 0.0592 0.0850 0.1335 2.1863 4.6706 0.5858

DLINEAR 0.0895 0.1351 3.4382 0.0594 0.3159 1.4073 0.0544 0.0814 0.1182 0.2045 0.4458 0.2115

DCRNN 0.4772 0.5995 3.8203 0.4397 0.5655 3.6791 0.6491 0.7858 1.1309 3.9790 5.9690 1.1232

STGCN 0.0873 0.1351 3.4544 0.0761 0.1901 1.7022 0.0642 0.0923 0.1472 3.2116 5.4279 0.8565

GWNET 0.0838 0.1339 3.4561 0.0513 0.1698 1.2301 0.0564 0.0833 0.1231 2.4842 5.0064 0.6153

MTGNN 0.0843 0.1343 3.4613 0.0518 0.1711 1.2702 0.0557 0.0833 0.1232 2.4513 4.2893 0.6835

STEMGNN 0.1558 0.2002 3.4951 0.2004 0.2977 3.0139 0.1147 0.1496 0.2577 3.9085 5.8803 1.1068

AGCRN 0.2169 0.3441 3.4381 0.5697 0.6508 3.9500 0.0991 0.1320 0.2286 3.5163 5.6340 0.9627

FOURIERGNN 0.0809 0.1245 3.4414 0.1040 0.2246 2.2089 0.0565 0.0879 0.1366 0.2729 0.5113 0.2345

UFGTIME 0.0809 0.1259 3.4372 0.0471 0.1696 0.8746 0.0536 0.0806 0.1173 0.1918 0.4488 0.2051

Table 3: Long-Term Multivariate Time Series Forecasting Results on Four ETT Datasets. Best
Results Per Dataset Highlighted in Grey .

DATASETS STEPS
UFGTIME FOURIERGNN CROSSFORMER TIDE DLINEAR PYRAFORMER AUTOFORMER INFORMER

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTM1

96 0.314 0.358 0.581 0.462 0.375 0.415 0.364 0.387 0.345 0.372 0.543 0.510 0.505 0.475 0.672 0.571

192 0.187 0.381 0.904 0.643 0.453 0.474 0.398 0.404 0.381 0.390 0.557 0.537 0.573 0.509 0.795 0.669

336 0.369 0.421 0.919 0.646 0.548 0.526 0.428 0.425 0.414 0.424 0.754 0.655 0.621 0.537 1.212 0.871

720 0.884 0.468 0.927 0.648 0.857 0.713 0.487 0.461 0.473 0.451 0.908 0.724 0.749 0.5694 1.307 0.893

Avg 0.439 0.407 0.833 0.600 0.563 0.532 0.419 0.419 0.404 0.409 0.691 0.607 0.612 0.523 0.997 0.751

ETTM2

96 0.081 0.321 0.574 0.415 0.267 0.349 0.207 0.305 0.195 0.294 0.435 0.507 0.255 0.339 0.365 0.453

192 0.104 0.408 0.684 0.503 0.472 0.479 0.290 0.364 0.283 0.359 0.730 0.673 0.281 0.340 0.5334 0.563

336 0.275 0.466 0.804 0.594 0.919 0.702 0.377 0.422 0.384 0.427 1.201 0.845 0.339 0.375 1.363 0.887

720 0.429 0.575 0.970 0.705 4.874 1.601 0.558 0.524 0.516 0.502 3.625 1.451 0.433 0.432 3.379 1.338

Avg 0.222 0.442 0.758 0.554 1.633 0.782 0.358 0.404 0.344 0.396 1.498 0.869 0.327 0.372 1.410 0.810

ETTH1

96 0.568 0.421 0.115 0.495 0.441 0.457 0.479 0.464 0.396 0.430 0.664 0.612 0.449 0.459 0.865 0.713

192 0.216 0.450 0.247 0.571 0.521 0.503 0.525 0.492 0.449 0.454 0.790 0.681 0.500 0.482 1.008 0.792

336 0.739 0.421 1.173 0.574 0.659 0.603 0.569 0.551 0.487 0.465 0.891 0.738 0.521 0.496 1.107 0.809

720 0.748 0.602 0.733 0.716 0.893 0.736 0.770 0.672 0.516 0.513 0.963 0.782 0.514 0.512 1.181 0.865

Avg 0.567 0.473 0.567 0.589 0.628 0.574 0.541 0.507 0.462 0.466 0.827 0.703 0.496 0.487 1.040 0.794

ETTH2

96 0.561 0.394 0.519 0.564 0.681 0.592 0.400 0.440 0.343 0.396 0.645 0.597 0.385 0.397 3.755 1.525

192 0.552 0.455 0.529 0.638 1.837 1.054 0.528 0.509 0.473 0.474 0.788 0.683 0.557 0.511 5.602 1.931

336 1.206 0.478 1.329 0.672 3.000 1.472 0.643 0.571 0.603 0.546 0.907 0.747 0.482 0.486 4.721 1.835

720 1.225 0.653 1.257 0.967 3.024 1.399 0.874 0.679 0.812 0.654 0.963 0.783 0.515 0.611 3.647 1.625

Avg 0.961 0.495 0.833 0.710 2.136 1.130 0.611 0.550 0.558 0.517 0.826 0.703 0.484 0.501 4.431 1.729

Is UFGIME still effective in extracting long-term temporal relationships? It was mentioned by
FourierGNN paper that graph models are more focused on dealing with dynamic patterns rather than
long-range dependencies such as periodic patterns and trends. In our method, we incorporate trend
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decomposition and global framelet message-passing operators to enable our models to capture global
patterns, making our approach capable of performing long-term forecasting tasks. Therefore, we test
our method and FourierGNN on four public long-range forecasting datasets for 96, 192, 336, and 720
steps. Comparison results of state-of-arts long-range forecasting baselines are shown in Table 3.

Surprisingly, FourierGNN does not exhibit significant performance loss with longer prediction
windows, even outperforming some transformer-based methods. Compared with FourierGNN,
our method shows competitive performance in long-range prediction and matches some baselines
specifically designed for long-range time forecasting. This provides strong evidence that our
sophisticated design for preserving global patterns benefits long-range predictions.

5.3 RESOURCE UTILIZATION ANALYSIS

Table 4: Comparison of Parameters and Computational Costs for
Various Model Hidden Size on the WIKI-500 Dataset with a Batch
Size of 32. Computational Costs are shown in Gflop/s.

BASELINES
HIDDEN 32 HIDDEN 64 HIDDEN 128 HIDDEN 256

Param Gflop/s Param Gflop/s Param Gflop/s Param Gflop/s

CROSSFORMER 588, 216 30.2640 1, 398, 616 70.0281 3, 707, 544 178.0567 11, 077, 912 508.1150

STEMGNN 1, 800, 504 57.5376 1, 800, 504 57.5376 1, 800, 504 57.5376 1, 800, 504 57.5376

INFORMER 183, 348 0.1664 404, 340 0.3642 963, 060 0.8542 2, 547, 444 2.2118

MTGNN 106, 268 13.5128 195, 548 26.5872 374, 108 52.7361 731, 228 105.0339

FOURIERGNN 68, 076 2.1748 70, 540 2.2528 75, 368 2.4084 85, 324 2.7197

UFGTIME 3, 690 0.1245 7, 261 0.2341 14, 045 0.4532 27, 613 0.8915

AGCRN 3, 960 0.1232 7, 080 0.2331 13, 480 0.4321 26, 840 0.8531

In Table 4, we compare
the resource utilization
of selected baselines. To
eliminate the effect of
hardware differences, we
compare the utilization
metrics generated by
THOP1, including total
parameter volume and Giga-
floating-point operations per
second (Gflop/s). To assess
scalability, we also vary the
hidden size settings. AGCRN shows outstanding efficiency, surpassing most baselines, while our
method achieves comparable efficiency with only about 1/6 of the resources required by FourierGNN.
In terms of scalability, aside from StemGNN, which lacks a hidden size option, all methods exhibit
competitive performance, with the Transformer showing the weakest scalability.
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Figure 4: Complexity Boundary across
Input Length T and Number of Time
Series N

Is the O(NT log(NT )) Time Complexity Sufficiently
Efficient for Pure Graph Paradigm in Time Series
Forecasting? The FourierGNN design introduces the
Discrete Fourier Transform (DFT) to reduce the complexity
of the convolution operation over a fully connected graph
to O(NT log(NT )D + NTD2). In our method, due to
our sparse graph design, the framelet graph convolution
time complexity is O(NTkD +NTD2). Compared with
FourierGNN, we find that the difference in complexity
lies in the factors k and log(NT ). We conduct further
simulations to determine the settings of same level of
complexity. As shown in Figure 4, the surface indicates
the k settings to achieve the same level of complexity as
FourierGNN. In practice, we set k = 2, which explains the
outstanding efficiency of our method in Table 4.

5.4 ABLATION ANALYSIS

In this section, we conduct an ablation analysis to explore the impact of different design choices in our
model. We divide the experiments into four parts to test designs such as Sparse Graph Generation(SG),
Framelet Graph Convolution (FrC), Convolutions on the hyperspectral graph (GC), and Frequency
Transformation to form the hyperspectral graph. We run comparisons over 10 iterations to objectively
assess performance differences and perform two-way ANOVA to test the statistical significance of
performance differences. The main observations are summarized below. Sparse or Fully Connected
Graph? We replace the sparse graph with a fully connected graph to compare their impact. The
results shown in Figure 5a indicate the superiority of sparse graphs. Is Framelet Necessary? We
replace framelet convolution with GCN (Kipf & Welling, 2017), and the framelet operator shows
outstanding performance, evidencing its necessity (see Figure 5b). Do We Really Need a Graph

1https://github.com/ultralytics/thop
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MAE RMSE MAPE
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✱ ✱ ns

(a) Sparse Graph

MAE RMSE MAPE
0

1
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w/   FrC

(b) Framelet

MAE RMSE MAPE
0

1

2

3 w/   GCw/o GC

✱ ns✱

(c) Graph Convolution

MAE RMSE MAPE
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2 w/   FTw/o FT

✱ ✱ ns

(d) Freq Transformation

Figure 5: Ablation Study of Key Designs of UFGTIME on COVID-CAL Dataset. Differences were
Analyzed using a Two-Way ANOVA Test. ”*” Indicate Statistical Significant at the 0.05 Level,
While ”ns” Denotes No Statistically Significant.
in the Pure Graph Paradigm? We remove the graph convolution and replace it with a linear layer
to test its significance. As shown in Figure 5c, the model with graph convolution outperforms
significantly, indicating the capability to capture complex temporal patterns. hyperspectral graph
vs. hypervariate Graph Studies above suggest that the Hypervariate Graph may lose sequential
information. We compare the UFGTIME model on both graphs. We aim to preserve sequential
information through frequency signals by applying frequency transformations like DFT. Figure 5d
supports that the hyperspectral graph is a more reasonable setting for the pure graph paradigm in time
series forecasting.

5.5 HYPERPARAMETER SENSITIVITY ANALYSIS
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Figure 6: Contour Plots of Hyperparameters Surface

In this section, we conduct a sensitivity study of our proposed method. To assess the impact of
the model’s hyperparameters, we conduct a grid search on the ECG dataset over three architectural
hyperparameters: framelet dilation scale s, number of graph neighbors k, and hidden size. The
main observations are as follows: Are UFGTIME Sensitive to Hyperparameters? Based on the
results in Figure 6, we find that the MAE of our model is insensitive to changes in hyperparameters,
remaining around 0.055. Patterns of Hyperparameters? From Figure 6, we observe that our model
is more sensitive to hidden size; increasing the number of hidden units sharpens the contour surface.
Moreover, as the hidden size increases, the optimal values of k and s decrease, indicating that the
model maintains an equilibrium between dilation scale, number of neighbors, and hidden size to
preserve complexity.

6 CONCLUSION

In this work, we addressed the potential limitations of the hypervariate graph from FourierGNN
by proposing a reasonable framework that embeds advanced graph operations and frequency
transformations, demonstrating the feasibility of the pure graph paradigm in time series forecasting.
We transformed the time series into a hyperspectral graph to preserve sequential information and
replaced the fully connected graph with a sparse KNN graph for higher efficiency. To tackle
short-sightedness in sparse graphs and smoothing issues in convolution on hyperspectral graph,
we introduced an advanced framelet graph convolution operator that extracts both local and global
temporal dependencies while alleviating smoothing. We conducted comprehensive performance and
efficiency comparisons on extensive temporal datasets to evaluate our method’s improvements. The
results indicate our method’s potential as a new solution for time series forecasting using the pure
graph paradigm.
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A THEORETICAL JUSTIFICATION

A.1 PROOFS REGARDING TO THE HYPERVARIATE GRAPH LOSING SEQUENTIAL ORDER

Propostion 1. The hypervariate graph is insensitive to the temporal order of the original time series,
thereby discarding critical sequential information.

Proof. Let G1 = (XG1 ,J) and G2 = (XG2 ,J) be two hypervariate graphs, where XG1 =

{XG1
1 , . . . , XG1

n } and XG2 = {XG2
1 , . . . , XG2

n }, with n ∈ {1, . . . , NT}, representing the sets of
node features that transformed from time series X1,X2 ∈ RN×D×T . We assume that the features
are identical but permuted, meaning there exists a permutation ρ : {1, 2, . . . , n} 7→ {1, 2, . . . , n}
such that for all i ∈ {1, 2, . . . , n}, we have XG1

i = XG2

ρ(i).

By definition of graph isomorphism, if there exists such a permutation ρ mapping the node features
of G1 to those of G2, then the graphs G1 and G2 are isomorphic, i.e., G1

∼= G2.

However, the original time series X1 and X2 are different (X1 ̸= X2), yet their corresponding
hypervariate graphs G1 and G2 are isomorphic. This implies that the hypervariate graph
representation does not retain the sequential order information of the underlying time series.
Specifically, different time series can lead to isomorphic hypervariate graphs if the node order
is permuted, thus discarding crucial temporal information.

B ADDITIONAL DETAILS

B.1 POLYNOMIAL APPROXIMATION OF FRAMELET DECOMPOSITION

To avoid time-consuming eigendecomposition, the Chebyshev polynomial approximation provides
an efficient and scalable solution for framelet decomposition (Dong, 2017; Zheng et al., 2021). Let
K denote the highest order of the involved Chebyshev polynomial. The K-order approximations
of α and {β(r)}Lr=1 are denoted as T K

0 and {T K
r }Lr=1, respectively. The approximated framelet

decomposition operator Wr,j is defined as the product of Chebyshev polynomials of the graph
Laplacian L, i.e.,

Wr,j =

{
T K
0 (2−mL) j = 1,

T K
r (2−(m+j−1)L)T K

0 (2−1(m+j−2)L) . . . T K
0 (2−mL) j = 2, . . . , J

(10)

Here we denote the operation 2−mL means a scaling operation onto Laplacian’s eigenvalues. The
real-valued dilation scale m is the smallest integer such that λmax = λN ≤ π, so that the range of π
fits the domain of Chebyshev polynomial.

B.2 ADDITIONAL DETAILS OF FFN

The fully connected feed-forward network (FFN) consists of two linear transformations with SiLU
activation and InstantNorm2D in between. Suppose the hidden unit size is set to feature size F . The
FFN is formulated as follows:

Ht = Reshape(Ht)[N,D, T ]

H1
t = SiLU (InstantNorm2D(Ht))W1

H2
t = SiLU

(
InstantNorm2D(H1

t )
)
W2,

(11)

where W1 ∈ RT×F and W2 ∈ RF×F are weight matrices. After getting reshaped trend information
Tt ∈ RN×D×T , we conduct a trend information fusion with a single linear layer as:

Ŷt+1 =
(
H2

t + TtWtrend

)
W3, (12)

where Wtrend ∈ RT×F is weight matrix that embed trend information into hidden space, and
W3 ∈ RF×τ is weight matrix that project hidden state into prediction length τ .
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B.3 DETAILS OF COMPLEXITY ANALYSIS

For simplicity of analysis, we assume the weights of our Fourier domain framelet message-passing
operator are in CD×D, and the frequency signal has the same length T as the time series. The time
complexity of a single layer of our framelet operator on the hyperspectral graph GS is given by
O(L(J + 1)(NT )2D +NTD2), where L represents the number of high-pass filters and J stands
for the levels of the scaling function. Since the hyperspectral graph is sparse, the complexity term of
graph convolution NT can be replaced by |E|, the total number of edges in the hyperspectral graph.
Additionally, the topology of the hyperspectral graph is generated using the KNN algorithm, resulting
in |E| ≤ kNT , where k is the number of neighbours. Therefore, an upper bound for the complexity
of our framelet operator is O(L(J + 1)NTkD + NTD2). In practice, we set both L and J to 1,
making the product L(J + 1) a small constant that can be omitted from the total complexity. Finally,
the complexity of the framelet operator simplifies to O(NTkD +NTD2), resulting in UFGTIME
being highly efficient.

B.4 DETAILS OF DATASETS

Table 5: Summary of datasets

Datasets SOLAR-FL WIKI-500 TRAFFIC ECG ELECTRICITY2H COVID-CAL ETTM1/2 ETTH1/2

Samples 4380 803 10560 4999 4380 345 69680 17420

Variables 593 500 963 140 370 60 7 7

Granularity 2 hour 1 day 1 hour - 2 hour 1 day 15 minutes 1 hour

Start time 2006-01-01 2015-01-07 2015-01-01 - 2014-01-01 2020-01-22 2016-07-01 2016-07-01

We follow the instructions provided by FourierGNN to set up six short-term forecasting datasets from
the source (refer to dataset detail in Table 5). However, we found that some datasets downloaded from
these sources did not match the data descriptions in the FourierGNN paper. Therefore, we provide
the full details of the data sources and processing steps for the datasets used in our paper, as follows:

• ECG2: This dataset originally from a 20-hour heartbeat recording and 5,000 heartbeat
random sampling are made during data generation, the ECG dataset lacks granularity and
start time information.

• SOLAR-FL3: We followed the FourierGNN setup to select the Florida subset of the solar
dataset from the eastern states. However, we found that the dataset was originally recorded
at 15-minute intervals and not match the 3,650 samples reported in FourierGNN. Therefore,
we down-sampled it to 2-hour intervals, resulting in a total of 4,380 samples.

• COVID-CAL4: The source repository contains multiple COVID-19 datasets, and there is no
specific information on which dataset FourierGNN used. We selected the CSSE COVID-
19 confirmed cases dataset for the U.S. to best approximate the original dataset used in
FourierGNN. We filtered hospital records from 60 counties in California, resulting in a total
of 345 timestamps.

• ELECTRICITY2H5: We downloaded the Electricity dataset, which contains 140,211 samples
recorded at 15-minute intervals. We down sampled the data to 2-hour intervals to create the
ELECTRICITY2H dataset.

• WIKI-5006: The original Wiki dataset contains 145,000 samples across 830 timestamps.
We randomly selected 500 time series to form the WIKI-500 dataset.

• TRAFFIC7: This dataset contains hourly traffic data from 963 freeway sensors in San
Francisco. The traffic data are collected starting from 2015/01/01 at 1-hour intervals.

2https://timeseriesclassification.com/description.php?Dataset=ECG5000
3https://www.nrel.gov/grid/solar-power-data.html
4https://github.com/CSSEGISandData/COVID-19
5https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
6https://drive.google.com/uc?export=download&id=1VytXoL_

vkrLqXxCR5IOXgE45hN2UL5oB
7https://drive.google.com/uc?export=download&id=1dyeYj8IJwZ3bKvk1H67eaDTANdapKe7w
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For long-range time series forecasting dataset ETTH1/2 and ETTM1/2, we follow the original
setting provided by Zhou et al. (2021) and details are shown as Table 3

B.5 ADDITIONAL EXPERIMENT RESULTS

Due to space limitations, the complete short-term forecasting results are presented below:

Table 6: Full Short-Term Forecasting Results on Six Datasets. Best and Second Best Results Per
Dataset Highlighted in Grey and Underlined Respectively. ECG Results for Partial Transformer-
based Methods are Denoted as ’−’ Due to Missing Temporal Information.

BASELINES
SOLAR-FL WIKI-500 TRAFFIC

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

AUTOFORMER 0.1078 0.1489 3.4948 0.1936 0.3917 2.8225 0.0669 0.1018 0.9734

INFORMER 0.0827 0.1296 3.4536 0.1255 0.3183 2.4051 0.0522 0.0837 0.6640

PYRAFORMER 0.1451 0.1862 3.5104 0.0957 0.2651 2.0245 0.0466 0.0768 0.6961

CROSSFORMER 0.0858 0.1281 3.4378 0.1566 0.2927 2.7246 0.0642 0.0940 1.0889

DLINEAR 0.0895 0.1351 3.4382 0.0594 0.3159 1.4073 0.0655 0.1036 0.9161

DCRNN 0.4772 0.5995 3.8203 0.4397 0.5655 3.6791 0.4404 0.5507 3.2122

STGCN 0.0873 0.1351 3.4544 0.0761 0.1901 1.7022 0.0356 0.0619 0.5107

GWNET 0.0838 0.1339 3.4561 0.0513 0.1698 1.2301 0.0354 0.0638 0.5164

MTGNN 0.0843 0.1343 3.4613 0.0518 0.1711 1.2702 0.0348 0.0618 0.4972

STEMGNN 0.1558 0.2002 3.4951 0.2004 0.2977 3.0139 0.0694 0.1028 1.0486

AGCRN 0.2169 0.3441 3.4381 0.5697 0.6508 3.9500 0.0973 0.1336 1.4485

FOURIERGNN 0.0809 0.1245 3.4414 0.1040 0.2246 2.2089 0.0403 0.0696 0.5908

UFGTIME 0.0809 0.1259 3.4372 0.0471 0.1696 0.8746 0.0351 0.0618 0.5191

BASELINES
ECG ELECTRICITY2H COVID-CAL

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

AUTOFORMER - - - 0.0961 0.1273 0.4902 0.6654 1.1961 0.3363

INFORMER - - - 0.1241 0.1611 0.6116 2.6893 4.7431 0.8996

PYRAFORMER - - - 0.1525 0.1986 0.8710 3.4571 5.4846 0.9987

CROSSFORMER 0.0592 0.0850 0.1335 0.1403 0.1750 0.8241 2.1863 4.6706 0.5858

DLINEAR 0.0544 0.0814 0.1182 0.0859 0.1193 0.4912 0.2045 0.4458 0.2115

DCRNN 0.6491 0.7858 1.1309 0.5532 0.6879 1.8591 3.9790 5.9690 1.1232

STGCN 0.0642 0.0923 0.1472 0.1155 0.1587 0.6625 3.2116 5.4279 0.8565

GWNET 0.0564 0.0833 0.1231 0.0782 0.1201 0.4536 2.4842 5.0064 0.6153

MTGNN 0.0557 0.0824 0.1222 0.0834 0.1235 0.5106 2.4513 4.2893 0.6835

STEMGNN 0.1147 0.1496 0.2577 0.2929 0.3598 1.0889 3.9085 5.8803 1.1068

AGCRN 0.0991 0.1320 0.2286 0.1735 0.2193 0.9563 3.5163 5.6340 0.9627

FOURIERGNN 0.0565 0.0879 0.1366 0.0927 0.1359 0.5589 0.2729 0.5113 0.2345

UFGTIME 0.0536 0.0806 0.1173 0.0752 0.1164 0.0455 0.1918 0.4488 0.2051

B.6 REPRODUCTION DETAILS

In what follows, we present the search space of hyperparameters for our proposed UFGTIME and
compared baselines. To ensure that all models are evaluated under a fair comparison environment, we
perform hyperparameter tuning of all models under the same experimental framework and designate
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the same search space of common hyperparameters (i.e. Learning rate, Weight decay and Batch size).
We denote {} as a set with discrete values and [] as a closed interval containing continuous values.

UFGTIME

- Learning rate ∈ [1e-5, 5e-2]
- Hidden size ∈ {16, 32, 64, 128, 256}
- Weight decay: wd ∈ [1e-5, 5e-2]
- Chebyshev order ∈ {2, 3, 4}
- K neighbors ∈ {1-10} with a step of 1
- s ∈ [1.1, 10.0]
- Batch size ∈ {16, 32, 64, 128, 256}
- epochs: 100

B.6.1 BASELINES

In experiments, we consider 12 baselines for the validation of our proposed UFGTIME and provide
their brief introduction as well as corresponding hyperparameters considered in our implementations
as follows.

Autoformer (Wu et al., 2021) Comprising a decomposition architecture with an Auto-correlation
mechanism, Autoformer is able to handle complex time series with progressive decomposition
capacities and capture dependencies at the sub-series level. We obtain the source code from https:
//github.com/thuml/Autoformer

- d model ∈ {256, 512}
- d ff ∈ {512, 1024, 2048}
- n head ∈ {6, 8, 10}

Informer (Zhou et al., 2021) Aiming to improve prediction capacity for long sequence time-series
forecasting, Informer is constructed with three distinctive modules that achieve lower time complexity,
effectively handle extremely long input sequences, and improve the inference speed of long-sequence
predictions respectively. We obtain the source code from https://github.com/zhouhaoyi/
Informer2020

- d model ∈ {256, 512}
- d ff ∈ {512, 1024, 2048}
- n head ∈ {6, 8, 10}

Pyraformer (Liu et al., 2021) Pyraformer considers the multi-resolution representation of the
time series using the pyramidal attention module. This module introduces an inter-scale tree
structure to capture features at different resolutions and also an intra-scale neighboring connection
to capture the temporal dependencies. We obtain the source code from https://github.com/
ant-research/Pyraformer

- d model ∈ {256, 512}
- d inner hid ∈ {256, 512}
- n head ∈ {4, 6}

Crossformer (Zhang & Yan, 2023) Going beyond modeling the temporal dependency, Crossformer
further considers the dependency among different variables for multivariate time series forecasting. It
utilizes the Dimension-Segment-Wise embedding and a Two-Stage Attention layer to model both
dependencies across time and dimension. We obtain the source code from https://github.
com/Thinklab-SJTU/Crossformer

- d model ∈ {256, 512}
- d inner hid ∈ {256, 512}
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- n head ∈ {6, 8, 10}

DLinear (Zeng et al., 2023) DLinear is a simple one-layer linear model that regresses historical time
series to conduct forecasts directly. The design of this model aims to retrieve the loss information
from the nature of the permutation invariant self-attention mechanism of Transformers, which
preserves order information through positional encoding. We obtain the source code from https:
//github.com/honeywell21/DLinear

TiDE (Das et al., 2023) TiDE is an MLP-based encoder-decoder model that shows high simplicity
and is able to capture covariates and non-linear dependencies. It encodes historical data and decodes
data with future covariates using dense MLPs. We obtain the source code from https://github.
com/google-research/google-research/tree/master/tide

- d model ∈ {256, 512}
- d inner hid ∈ {256, 512}
- e layers ∈ {2}
- d layers ∈ {2}

DCRNN (Li et al., 2018) Integrating recurrent neural networks, DCRNN considers a bidirectional
graph random work technique to capture spatial relationships for modeling temporal dynamics.
DCRNN demands a pre-defined graph adjacency matrix and we utilize K-nearest neighbors
with k = 10 to generate corresponding graph structures. We obtain the source code from
the BasicTS+(Shao et al., 2023a): https://github.com/GestaltCogTeam/BasicTS/
tree/master/baselines/DCRNN/arch

- Number of rnn layers ∈ {2, 3, 4}
- Rnn units ∈ {32, 64, 128, 256}
- Use curriculum learning ∈ {True, False}

STGCN (Yu et al., 2018) By formulating the problem on graphs, STGCN simultaneously captures
spatial and temporal correlations through the integration of graph convolution and gated temporal
convolution. STGCN demands a pre-defined graph adjacency matrix and we utilize K-nearest
neighbors with k = 10 to generate corresponding graph structures. We obtain the source code from
the BasicTS+(Shao et al., 2023a): https://github.com/GestaltCogTeam/BasicTS/
tree/master/baselines/STGCN/arch

- Kt ∈ {3}
- Ks ∈ {3}
- blocks ∈ {[[1], [64, 16, 64], [64, 16, 64], [128, 128], [12]]}
- activation function ∈ {glu, gtu}

GWNET (Wu et al., 2019) GWNET learns an adaptive dependency matrix through node
embedding to capture graph hidden spatial dependency. We obtain the source code from
the BasicTS+(Shao et al., 2023a): https://github.com/GestaltCogTeam/BasicTS/
tree/master/baselines/GWNet/arch

- Residual channels ∈ {32, 64}
- Dilation channels ∈ {32, 64}
- Skip channels ∈ {128, 256}
- End channels ∈ {256, 512}
- Kernel size ∈ {2, 3, 4}
- Blocks ∈ {3, 4, 5}
- Layers ∈ {2, 3, 4}

18

https://github.com/honeywell21/DLinear
https://github.com/honeywell21/DLinear
https://github.com/google-research/google-research/tree/master/tide
https://github.com/google-research/google-research/tree/master/tide
https://github.com/GestaltCogTeam/BasicTS/tree/master/baselines/DCRNN/arch
https://github.com/GestaltCogTeam/BasicTS/tree/master/baselines/DCRNN/arch
https://github.com/GestaltCogTeam/BasicTS/tree/master/baselines/STGCN/arch
https://github.com/GestaltCogTeam/BasicTS/tree/master/baselines/STGCN/arch
https://github.com/GestaltCogTeam/BasicTS/tree/master/baselines/GWNet/arch
https://github.com/GestaltCogTeam/BasicTS/tree/master/baselines/GWNet/arch


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

MTGNN (Wu et al., 2020) MTGNN automatically extracts the inherent dependency relationship
and utilizes a mix-hop propagation layer along with a dilated inception layer to model spatial and
temporal correlations. We obtain the source code from the BasicTS+(Shao et al., 2023a): https://
github.com/GestaltCogTeam/BasicTS/tree/master/baselines/MTGNN/arch

- Subgraph size ∈ {10, 20, 30}
- Convolution channels ∈ {16, 32, 64}
- Residual channels ∈ {32, 64}
- Skip channels ∈ {64, 128}
- End channels ∈ {128, 256}
- Layers ∈ {2, 3, 4}

StemGNN (Cao et al., 2020) StemGNN leverages Graph Fourier Transform and Discrete
Fourier Transform so that it is able to model inter-series correlations and temporal dependencies
jointly in the spectral domain. We obtain the source code from the BasicTS+(Shao
et al., 2023a): https://github.com/GestaltCogTeam/BasicTS/tree/master/
baselines/StemGNN/arch

- Stack count ∈ {2, 3, 4}
- Multi-layer ∈ {3, 4, 5, 6, 7}

AGCRN (Bai et al., 2020) AGCRN captures node-specific patterns and the inter-dependencies
respectively by a node parameter learning module and graph generation module. These
two modules are designed in an adaptive manner that can automatically capture fine-grained
spatial and temporal correlations between time-series. We obtain the source code from
the BasicTS+(Shao et al., 2023a): https://github.com/GestaltCogTeam/BasicTS/
tree/master/baselines/AGCRN/arch

- Rnn units ∈ {32, 64, 128, 256}
- Layer number ∈ {2, 4, 6}
- Chebyshev order ∈ {2, 3, 4}

FourierGNN (Yi et al., 2024) FourierGNN rethinks multivariate time series into a pure graph problem
where each series value can be regarded as a graph node and performs message-passing in Fourier
space such that an adequate expressiveness and lower complexity can be achieved. We obtain the
source code from: https://github.com/aikunyi/FourierGNN

- Hidden size ∈ {128, 256, 512}
- Embedding size ∈ {128, 256, 512}
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