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Abstract

Graph neural networks (GNNs) achieve remarkable success in tasks such as node classifi-
cation, link prediction, and graph classification. However, despite their effectiveness, the
reliability of the GNN’s prediction remains a major concern, particularly when graphs con-
tain out-of-distribution (OOD) nodes. To date, the calibration of GNNs in the presence of
OOD nodes remains largely under-explored. Our empirical studies reveal that the calibra-
tion problem becomes significantly more complex in the presence of OOD nodes, and existing
calibration methods are notably less effective in such scenarios. Recently, graph structure
learning (GSL), a family of data-centric learning approaches, has shown promise in mitigat-
ing the adverse effects of the noisy information in the graph topology by jointly optimizing
the graph structure and GNN training. However, current GSL methods do not explicitly
address the calibration challenges posed by OOD nodes. To tackle the this challenge, we
propose a novel framework called Graph Calibration via Structure Optimization (GCSO)
to calibrate GNNs in the presence of OOD nodes. Our empirical findings suggest that
reducing the weights of edges connecting in-distribution (ID) and OOD nodes can effec-
tively alleviate the calibration issue. However, identifying such edges and determining their
appropriate weights is challenging due to the unknown distribution of OOD nodes. To
address this, GCSO introduces an iterative edge-sampling mechanism that captures the
topological information of the graph and formulates the structure learning process as a
Markov Decision Process (MDP). We then leverage the actor-critic method to dynamically
adjust edge weights and evaluate their impact on target node predictions. Additionally, we
design a tailored reward signal to guide the policy function toward an optimal graph struc-
ture that minimizes the influence of OOD nodes. Notably, our optimized graph structure
can be seamlessly integrated with existing temperature scaling-based calibration techniques
for further performance gains. Experimental results on benchmark datasets demonstrate
that our method significantly reduces the expected calibration error (ECE) while maintain-
ing competitive accuracy. The anonymous GitHub repository for the code is available at
https://anonymous.4open.science/r/calibration-7F61.

1 Introduction

Graph neural networks (GNNs) have proven to be effective for processing graph-structured data, which is
prevalent in real-world applications such as social networks, traffic systems, and financial networks. Despite
their remarkable success in tasks like node classification, link prediction, and graph classification, the relia-
bility of GNNs has become an increasing concern within the machine learning community. A foundational
study (Guo et al. 2017) introduced the expected calibration error (ECE) to quantify the discrepancy be-
tween a model’s predictive confidence and the actual likelihood of correctness. More recent works (Wang
let al. [2021} [Hsu et al., 2022; Teixeira et al., 2019; Fang et al. [2024} |Yang et al., 2024b) have observed that
GNNs often suffer from under-confidence in their predictions.

Existing GNN calibration methods (Wang et al) [2021; [Hsu et all [2022} [Fang et al) [2024; |[Tang]
2024)) primarily focus on clean graphs, where all nodes are assumed to come from the
same distribution. However, real-world graphs often contain out-of-distribution (OOD) nodes (Zhao!
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let all [2020; Yang et al, [2022; [Song & Wang, 2022). For instance, users on social networks
may be connected not only to family and friends but also to strangers or even online scammers.
When a graph includes OOD nodes, the calibration of GNNs
tends to deteriorate. As illustrated in Fig[I} we designate nodes
from specific classes (e.g., last two classes in Cora 10 I w/o OOD
2016)) as OOD nodes, while treating the remaining nodes as I W oop

in-distribution (ID) nodes. We then perform node classifica- 8

tion using GCN (Kipf & Welling, 2016) across several graph = .

benchmark datasets and compare the ECE in scenarios with fg ] ]

and without OOD nodes. The results indicate that presence * , I
of OOD nodes leads to an increase in ECE. Moreover, the cal- I
ibration issue becomes more nuanced in the OOD setting. As 2 I

shown in Fig [2] unlike the general under-confidence observed I

in GNNs on clean graphs (Wang et al. 2021} [Hsu et all,[2022), 0 Cora Citeseer  PubMed Computers

GNNs in OOD scenarios tend to be over-confident on some

nodes and under-confident on others. Our experiments further Figure 1: The expected calibration er-
demonstrate that existing graph calibration methods become ror (ECE) of GCN on graphs with and with-
less effective when OOD nodes are present. out OOD nodes.

Recently, graph structuring learning (GSL) (Wu et al} 2022} |Zou et al., [2023)) has exhibited promising results
in mitigating the adverse effects of potential flaws, such as redundant, incorrect or missing connections,
by optimizing the graph structure. Recently, Yang et al. (Yang et all 2024a) proposed the Data-centric
Graph Calibration (DCGC) framework which reduces calibration error by modifying the graph structure
and assigning higher weights to decisive and homophilic edges. However, this approach does not explicitly
consider the out-of-distribution (OOD) scenario. To address calibration in the presence of OOD nodes, Shi
et al. employed deep Q-learning (Mnih et all [2013)) to calibrate graphs containing OOD
nodes. While their method leverages reinforcement learning to modify the graph, it assigns fixed weights
to the selected edges, without accounting for variations in the topological structure. Ideally, edge weights
should dynamically adapt based on the distribution of OOD nodes. This limitation may lead to suboptimal
calibration performance.

Inspired by the prior works (Yang et al., [2024a; [Shi et al.,|2023)) that improve GNN calibration by reweighting
edges, we conduct an empirical study and find that the calibration issue can be alleviated to some extent by
adjusting the weights of edges connected to OOD nodes. However, identifying the OOD nodes within a graph
is not a trivial problem. To address this, we propose Graph Calibration via Structure Optimization (GCSO)
which calibrates GNNs through optimized graph structures. Our approach follows the Actor-Critic paradigm.
Specifically, we select the labeled nodes as the target nodes and sample their adjacent edges. We then
introduce a novel iteration approach for these edges based on our predefined discrepancy score and formulate
the iteration process as a Markov Decision Process (MDP). Next, we leverage the Actor-Critic paradigm to
dynamically assess the impact of adjusted edge weights on the target nodes. In particular, we adopt the Deep
Deterministic Policy Gradient (DDPG) (Lillicrap et all 2016) to generate the fine-grained, topology-aware
edge weights. In addition, we design a novel reward signal to guide the optimization of edge weights. The
reward signal consists of two components: an indicator function and the entropy regularization term for the
target nodes. The indicator function aims to preserve the accuracy of the model on node classification with
the optimized graph structure, while the entropy regularizes the logit distribution of the target nodes for the
calibration purpose. Notably, our optimized graph structure can be seamlessly integrated with the existing
post-hoc calibration method to further improve the calibration performance in the downstream tasks. The
contribution of this paper is summarized as follows:

e We propose Graph Calibration via Structure Optimization (GCSO) to enhance the calibration of
graph neural networks in the presence of OOD nodes. Our approach introduces a novel edge it-
eration method which is formulated as the Markov Decision Process (MDP). Additionally, A new
reward signal is designed to guide the policy function to generate the optimized graph structure that
enhances calibration performance.
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Figure 2: Reliability diagrams of GCN on without OOD nodes ((a)-(d)) and with OOD nodes ((e)-(h)). The
results suggest that the calibration issue (i.e., over-confidence or under-confidence) is more complicated with
the presence of OOD nodes. Ideally, in a well-calibrated network, accuracy should align with confidence,
meaning the height of the blue bars (accuracy) should be as close as possible to the height of the red bars
(confidence). When the blue bar is taller than the red bar, it indicates under-confidence. Conversely, if the
blue bar is shorter than the red bar, it indicates over-confidence.

e Our method can be seamlessly integrated with the existing post-hoc calibration methods. Extensive
experiments demonstrate that our method can outperform the baseline methods, achieving promising
performance in the calibration of the GNNs when the graph contains OOD nodes.

o Experimental results further reveal that the learned edge weights are transferable, offering benefits
in graph learning across various GNN architectures. Specifically, our optimized graph structure can
enhance the performance in tasks such as node classification and OOD detection.

2 Related Works

Neural Network Calibration. The pursuit of developing a reliable and trustworthy model has captured
the attention of researchers, leading to its extension into the realm of graph neural networks. Guo et al.
first proposed the calibration error to measure the confidence of the results from deep neural
networks. Extensive work (Mukhoti et al., [2020; |Ghosh et all 2022} Tao et al., 2023; Wang et al.| 2022; [2024;
[Tang et al.l|2024) has been done on the calibration of neural networks. Recent work (Wang et al., 2021) post-
processed the logits of the GCN (Kipf & Welling), 2016) model to obtain the calibrated results. Uncertainty
estimation (Lakshminarayanan et al.,|2017; [Malinin & Gales| 2018) also benefits the network calibration by
modeling the probability distribution of the predicted labels. Wang et al. (Wang et al., [2022)) proposed GCL
loss to mitigate the under-confidence issue of GNNs in an end-to-end manner. Besides, GATS (Hsu et al.

2022) is designed to account for the influential factors that affect the calibration of GNN. Fang et al. (Fang
et a1.|7 highlighted that the ability of GNNs to distinguish between correct and incorrect predictions is
crucial for achieving well-calibrated outcomes. And they propose a simple yet effective approach known as a
Discriminative Calibration model for GNNs .Tang et al. (Tang et al.,|2024)) provided a theoretical insight on
the role of nodewise similarity on the calibration of the GNN and proposed a novel calibration framework
that takes advantage of the similarity on both global and local levels. Yang et al. (Yang et al. [2024Db)
highlighted a key limitation in existing GNN calibration methods, which predominantly focus on the highest
logit while ignoring the full spectrum of prediction probabilities. To address this issue, they proposed a
novel framework called Balanced Calibrated Graph Neural Network (BCGNN) (Yang et al. 2024b). This
framework aims to achieve balanced calibration between over-confidence and under-confidence in the GNN
predictions, which is supported by the solid theoretical justification. Unlike post-hoc methods that adjust
temperature parameters for calibration, Yang et al. (Yang et al) [2024a)) attempt to address the calibration
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issue from the data centric perspective. And their method aims to lower the calibration error by assigning
larger weights to decisive and homophilic edges. Shi et al. (Shi et al. |2023)) also investigated the calibration
issue of graphs that contain OOD nodes and proposed a new framework called GERDQ. However, there are
fundamental differences between our work and GERDQ (Shi et al.| [2023). First, we introduce a novel edge
iteration approach to better capture the topological structure of the graph. Second, while GERDQ (Shi
et al., |2023)) also calibrates graphs by reweighting edges, it assigns a fixed value of weight to adjusted edges
without considering variations in the topological structure (e.g., the distribution of OOD nodes). In contrast,
our method generates fine-grained, topology-aware edge weights that adapt to the graph’s structure. Lastly,
we design a new reward function to guide the generation of an optimized graph structure, ensuring both
improved node classification accuracy and better calibration performance.

Graph Structure Learning. Graph Structure Learning (GSL) aims to address graphs with unreliable,
low-quality, or noisy structures, such as redundant or incomplete edges, by learning an optimized topology.
Up to now, extensive research has been conducted in this field. Wu et al. (Wu et all 2022) introduced
a kernelized Gumbel-Softmax operator for efficiently approximating discrete latent structures among data
point and proposed a transformer-based model to learn the optimal topology from node features and labels.
To address the lack of robustness and interpretability in existing GSL methods, Zou et al. (Zou et al.|
2023) proposed the SE-GSL framework, which can explicitly interpret the hierarchical semantics of graphs,
and enhance the robustness of mainstream GNN approaches against noisy and heterophilous structures. To
reduce the dependence of GSL methods on label information, Liu et al. (Liu et al.,|2022)) introduced Structure
Bootstrapping contrastive Learning Framework (SUBLIME), a novel unsupervised learning framework that
leverages self-supervised contrastive learning to optimize graph structure.

Reinforcement Learning on Graph. The rapid development of Reinforcement Learning (RL) in cross-
disciplinary domains has motivated scholars to explore novel RL models to address graph-related problems,
such as neighborhood detection, information aggregation, and adversarial attacks. GraphNAS (Gao et al.
2019) designs a search space covering sampling functions, aggregation functions, gated functions and searches
the graph neural architectures with RL. Policy-GNN (Lai et al., |2020)) adaptively determines the number of
aggregations for each node via deep Q-learning (Mnih et al., |2013)). RL-Explainer (Shan et al.l [2021)) and
GFlowExplainer (Li et al.l |2023)) adopt off-policy reinforcement learning methods for graph explanation.

Graph Learning with OOD. Most graph learning is built on the hypothesis that training and testing data
are independent and identically distributed (I.LI.D.). Song et al. (Song & Wang}, 2022) first proposed graph
learning with OOD nodes and developed OODGAT (Song & Wang, 2022)) framework to perform both the
node classification and OOD nodes detection. The core of the OODGAT (Song & Wang, 2022) is to identify
the OOD nodes and reduce the connection between ID nodes and OOD nodes. Another line of work focuses
on graph OOD detection. GNNSAGE (Wu et al., 2023)) performs OOD node detection by a learning-free
energy belief propagation scheme. In GPN (Stadler et al.l|2021) OOD nodes detection is completed by the
uncertainty estimation. GraphDE (Li et al., 2022), a probabilistic generative framework, can jointly perform
graph debiased learning and out-of-distribution nodes detection.

3 Preliminary

3.1 Problem Formulation

We first present the problem formulation of our study. Consider an attributed graph G = {V, £, X} where
the finite node set is denoted by V = {i|l < i < N}, and the edge set is denoted by £ C ¥V x V. N is
the total number of the nodes in the graph, and the feature matrix is denoted by X € RV*? in which d is
the length of the feature vector. The structure of the graph G can be represented by the binary adjacency
matrix A = {0, 1}¥*¥, In graph learning with out-of-distribution (OOD) nodes, The nodes set can be split
into an ID node set and an OOD node set V = V;p U Voop. The feature of OOD nodes is sampled from
a different distribution than that of ID nodes, i.e., P(Xoop) # P(X;p). The label space for the ID node
set is Y = {1,2,--- , K}, while we assume that the OOD nodes do not fall into any existing category of
the ID nodes, and their labels are unknown to us. In semi-supervised graph learning, the ID nodes can be
further divided into labeled ID nodes and unlabeled ID nodes, i.e., Vip = Vi, U V¥, The goal of standard
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Table 1: Comparison between GCN with original and modified edge weights in terms of node classification
accuracy (Acc%)1 and expected calibration error (ECE%){. The experiments are repeated 10 times and the
average results are reported. The bold represents the best results.

Cora Citeseer PubMed CS Computers Arxiv
Acc ECE Acc ECE Acc ECE Acc ECE Acc ECE Acc ECE

Original 84.18 990 71.57 541 9211 1.59 92.80 293 90.81 3.88 4247 6.14
Modified 84.50 9.14 71.75 4.98 92.24 1.27 9268 2.73 91.07 3.42 42.93 5.35

Edge weight

semi-supervised graph learning is to learn a classifier f : X, A — Y that maps the feature of the nodes and
graph structural information to the predicted labels Y of the nodes. As aforementioned, the task becomes
more challenging with the presence of unknown OOD nodes. How to rule out the negative impact from the
OOD nodes is the key for the semi-supervised graph learning with OOD nodes.

In our study, the expected calibration error (ECE) is considered as a major metric. According to the

practice in related work (Guo et al., [2017), the predictions are regrouped into M equally spaced confidence
intervals (By, Ba, -+, By) with By, = {i € V|"’Tf1 < pi < 47} where p; is the confidence for node i. And

the expected calibrated error (ECE) can be defined as ECE = 2%21 %hcc(Bm) — conf(By,)|, where
aCC(Bm) = ﬁ EieBm ]1(]]1 = yz) and COI’lf(Bm) = ﬁ EieBm Di-

3.2 Deep Reinforcement Learning

Reinforcement learning plays an important role in the decision
making process, and one representative method is the Markov

Decision Process (MDP). A typical MDP can be formulated as iDnodes @) OODnodes 0.6 Edge weight
M ={S, A, P;,1,v}, po, where S is the state space, A is the ac-
tion space, Pr(s'|s, a) is the state-action transition probability, o before 1

r is the reward function, r is the reward function, v € (0,1) is \

the discount factor ,and pq is the initial state distribution over oe ! \ /)1
state space §. The goal of off-policy reinforcement learning is o u
to learn the policy 7(a|s) that can maximize the discounted cu- . .1/ \1
mulative reward J; = >0, v'r(ss, a;) by training on the out- I S T

comes produced by a different behavior policy rather than that (a) Before adjustment
produced by the target policy. One of the most well-known
off-policy method in deep learning is deep Q-learning ‘ After \1

let al. 2013; [Van Hasselt et al. [2016). The basic idea of deep

Q-learning is to approximate the Q function by deep neural oa 06 \1 /)1
networks, and the policy is obtained from the estimated value o u
of a = argmax,Q(s,a) = argmax,Ey s(r + ymax, Q(s',a’)). oolmm Hl wm ;y \1
Apart from Q-value based methods that obtain the ac- .

tion implicitly from the Q function, policy gradient meth-

ods (Haarnoja et all |2018; [Wang et al., 2017 |Cobbe et al. Figure 3: The change of logit distribution
2021}, [Barth-Maron et al., [2018} [Tkachenko| [2015} [Silver et al. before and after adjustment of edge weight.

2014b; Mnih et al) 2016) instead aim to learn the policy di- rppo result is yielded by GCN on Cora.
rectly by parameterized function mg(a). Similar to deep Q-

learning (Mnih et al., 2013; [Van Hasselt et al. [2016]), we update the parameter 6 in the policy function to
achieve the maximum discounted cumulative reward. Besides, modern off-policy gradient methods (Haarnoja
let al., [2018; Wang et al., |2017; |Cobbe et al., |2021; Barth-Maron et al. 2018; |Tkachenko| 2015) adopt the
actor-critic algorithm that models the policy and Q function to achieve better learning efficiency and conver-
gence. The parameter 6 of policy function can be updated according to the Policy Gradient Theorem

ot Ll [990):

Probability

Probability

(b) After adjustment

VoJ(0) =E,;[VInn(als,0)Qx(s,a)]. (1)



Under review as submission to TMLR

ID node EMA
policy
o 00D node e update weight w=a
------- edge to be sampled
unsampled edge
sampled edge Next state s’
0.9 modified edge weight
state's § A
I ) 1
Indicator
edge ) 10 o7 0
; ) \
iteration 08 P4
09 CE 09 Yo 08 09 10 08 09
@ u @ u () u s —> GNN —> Rewardr = Byffer = Policy = loss ]

(s,a,7,s")

=
2
R CEEEEEE + EEEEEEE]
X
=
=

Figure 4: The illustration of our proposed Graph Calibration via Structure Optimization framework. The
method consists of four steps. First, we iteratively traverse the adjacent edges from the candidate edge
set. In the beginning, only the self-loop edge is taken into consideration. Each time we sample a new edge
within the subgraph without replacement according to the discrepancy score and form the state. Second,
the adjusted weight would be obtained from the state and assigned to the new sampled edge. Next, reward
r is obtained from the GNN with adjusted edge weight and a new state is also formed. Next, the transition
tuple is stored in the replay buffer. Finally, we adopt the DDPG method to train our policy function.

4 Empirical Study

In this section, we investigate whether the calibration error of GNNs can be reduced by adjusting edge
weights in graphs that include out-of-distribution (OOD) nodes. Following previous works (Zhao et al.
2020; |Stadler et al., 2021), we divide the nodes into ID and OOD categories and choose GCN (Kipf &
Welling, 2016) as the target model. Assuming that the labels and distributions of all nodes are known,
we manually modify the weights of edges connected to OOD nodes (e.g., reducing from 1.0 to 0.6). The
experiments are evaluated on the six benchmark datasets. The details of the benchmark can be found in
Table[2] The results in Table[I]show that reducing the weights of edges linked to OOD nodes can effectively
decrease the calibration error while maintaining comparable node classification accuracy relative to using
the original edge weights. Our intuition is that adjusting edge weights regularizes the entropy of the node
predictions, thereby altering the model’s confidence without sacrificing accuracy. To validate this hypothesis,
we examine the output distributions of GCN (Kipf & Welling, 2016) on the Cora dataset (Yang et al., 2016)
before and after modifying the edge weights. As shown in Fig[3] the results indicate a slight shift in predictive
confidence, while the predicted labels remain unchanged. These findings motivate us to design new methods
for learning edge weights that improve the calibration of GNNs in the presence of OOD nodes.

5 Methodology

In this section, we give an overview of our framework. In this section, we first introduce the formulation of
our edge iteration process and the definition of the key elements in our method such as State, Action and
Reward. Then we provide details of our training pipeline. Besides, we provide a discussion of our method
along with an analysis of the time complexity.

5.1 Iterative Edge Sampling and Re-weighting

We first form the candidate nodes set Z which are sampled from node set V. Then the candidate edges
for iteration are sampled from adjacent edges of a target node u € Z and the edge set is denoted as
&% = {ef,el, - ,e}_,}. Specifically, ef is the self-loop edge for node u. During the iteration an edge is
sampled from the candidate edge set and the weight is adjusted accordingly. Specifically, At time ¢t = 0,
we only consider the re-weighting of the self-loop edge ef. From time ¢t — 1 to ¢, a new edge is chosen from
E*. In our framework the iterative edge sampling and the re-weighting process are formulated as a Markov
Decision Process (MDP) and the definitions of state, action, and reward are illustrated as follows.
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State. The state s; € S at timestamp ¢ in our framework is defined as:

St = h(stfla fef,)a (2)

where f. is the feature of the edge e, and h is the function that maps the old state and new edge feature
into the new state. We adopt the average of the features of the connecting nodes of the edge e as the edge
feature. At time t = 0, so = X,,. In our study, the moving average method is adopted to generate the state.
The state at time ¢ can be formulated as:

st = AMe, + (1= N)s—1, (3)

where A is the hyper-parameter that balances the contribution of new edge features in the state.

In each iteration, a new edge is chosen from the candidate edge set £* according to the discrepancy score §.

The discrepancy score § measures the correlation between an adjacent edge e* and the target node u. It is
defined as:

1= 3 (KL(all20) + KL(z2]|20), (1)

where z1, zo and z, are the logit distribution of the connecting nodes of the edge e* and target node wu,
respectively. KL denotes KL divergence. Intuitively, the discrepancy score would be larger if an edge is
connecting to an OOD node of which the logit distribution would deviate from that of ID nodes. In each
iteration, when the policy function yields new edge weights, the logit distribution of the nodes would be
updated and the edge with lowest discrepancy score would be chosen from the candidate edge set. Note the
edge selection is a sampling without replacement process and only the discrepancy score of the unsampled
edges would be compared. The motivation behind this selection is straightforward. Since node similarity
plays an important role in the calibration of the nodes, edge sampling with discrepancy score would be
beneficial to discern the effect of nodes with different similarity on the calibration of the target node and
facilitate the convergence of the training.

Action. In our method, the action a € A we take for each new sampled edge is to adjust its weight. Since
in our case, the action space is continuous A C (0, 1], we adopt the policy function to generate the adjusted
edge weight from the state s. At time ¢, the edge weight we, for e; is generated by:

= m(s:]07), ()

We,

where 7y is the policy function which can be implemented as a neural network with the Sigmoid activation
function in the last layer to ensure the output is between 0 and 1.

Reward. The reward signal r is designed to encourage the policy function to produce new edge weights to
regularize the logit distribution of the target nodes. To determine if the node is over-confident or under-
confident, we evaluate the calibration error on the validation nodes and obtain the acc(B,,) and conf(B,,)
for each bin during training. If the predictive probability of the target node falls into certain bin m, then
the reward would be defined as
T(Sv a) = ]l(gi = yz) + aHz/'Bv (6)
where
a=+41,=1 if §; =y; and acc(B,,) < conf(B,,)
a=-1,=1 if g, =y; and acc(B,,) > conf(B,,)
a=0,0=0 if g, =y; and acc(By,) = conf(B,,)
a=10=1 if g #y
y; is the predicted label for node i generated by the GNN backbone, and y; is the ground truth label. H
denotes the entropy of the target node u.

(7)

5.2 Details of Algorithm

The framework of our proposed method is illustrated in Fig. [l The framework basically consists of four
steps. In this first step, we form the candidate node set Z from the training and validation nodes. For each
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candidate node, we iteratively sample the adjacent edges and form the state, as discussed in Sec. In step
two, the adjusted edge weight is obtained from the policy function my(s). In order to enhance the exploration
ability of the policy function in the continuous action space, we reformulate our adjusted edge weight as:

w, = m(5:)67) + ¢, (8)

where ¢ is the noise following a uniform distribution and the upper bound is determined by €y (1+ %)_"l7 where
€o is the initial noise. T is the total number of iterations. d > 0 is the decay rate. In the next step we obtain
the reward r from the GNN backbone according to Eq. |§| and the tuple of transition (s¢, at, r¢, $¢41) is stored
in the replay buffer B. In the final step, we adopt the Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al.| 2016)) method to train our policy function. Similar to deep Q-learning (Mnih et al.l 2013]), the objective
of critic network Q(s¢,a;|0%) is to approximate the discounted cumulative reward from the state-action pair
by minimizing the loss:

L(69) = Eqy ., al(Qst, 1) 69) — )7, (9)
where y; can be derived from the Bellman equation (Sutton & Barto, [2018) y: = r(st,ae) +
YQ(s¢41,(5:41]607)|0%) . Since our policy function yields the continuous edge weight deterministically
from the state, the parameter of policy can be updated according to the Deterministic Policy Gradient
Theorem (Silver et al., |2014a; |Lillicrap et al., 2016)):

VorJ = Est [VaQ(Sv an)s:st,a:ﬂ(stW")vé"ﬂ-(swﬂ)s:st]

1 ™
~ ﬁ Z(an(sv Q‘GQ)s:si,a:ﬂ(sﬂ@”)v@"ﬂ(sw )9:9,)

(10)

The detailed procedures of our proposed method are summarized in Algorithm [1]in the Appendix.

5.3 Time Complexity

Our framework consists of a GNN and actor/critic network.
Suppose the L is the number of layers in GCN, |E| is the total
number of edges, N is the total number of nodes, d is the
dimension of the features, |£¥| is the number of edges in the
candidate edge set. |Z| is the number of the target nodes.
The time complexity for GNN and actor/critic networks are
O(L|E||E*|d+ LN|E%|d?) and O(|Z||E*|d), respectively. Thus,
the total time complexity is O(|E¥|(L|E| + |Z|)d + LN|E%|d?).
The major factors that influence computational efficiency in
our approach are the number of target nodes and the number
of adjacent edges for iterations. As the graph size increases, % Cora Citeseer PubMed Computers Cs  Physics  Amiv

the number of nodes and adjacent edges also grows, raising the penchmark

computational cost of our method. To address this issue, we

limit the number of target nodes and adjacent edges for each Figure 5: The actual training time of the
iteration. For larger graphs like OGB-Arxiv (Hu et al.| |2020)), baseline (DCGC) our method on different
we select up to 48 target nodes and 64 adjacent edges per node. Penchmarks. The evaluation is conducted
Additionally, to further improve computational efficiency, we OI' an NVIDIA RTX A5000.

process edge iterations for all target nodes in batches. As a result, our method is scalable to large graphs
and it can maintain a reasonable computational cost even as graph size increases. During the inference time,
the modified edge weights would be yielded by our lightweight policy function in batch. Fig[f]illustrates the
actual training time of the data-centric method DCGC (Yang et al., 2024a) and our proposed method on
different benchmarks. The results suggest that, although our method requires more training time than the
baseline, it maintains a reasonable computational cost even for large graphs.

DCGC
GCSO

Training time(s)
8
S

5.4 Discussion

In our method, we design a specialized reward signal to refine the graph structure, which could implicitly
regularize the logit distribution of the GNNs. When the target node is correctly predicted and the corre-
sponding accuracy is lower than the confidence, the reward is r = 1+ H. An increasing reward enlarges the
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Table 2: The statistics of datasets

Dataset ID classes OOD classes #Nodes #Edges #Features
Cora [0 - 4] [5 - 6] 2,708 10,556 1,433
Citeseer [0- 3] [4 - 5] 3,327 9,104 3,703
PubMed [0-1] 2] 19,717 88,648 500
Chameleon [0- 2] [3 - 4] 2,277 36,101 2,325
Coauthor-CS [0 - 10] [11 - 14] 18,333 163,788 6,805
Coauthor-Physics [0-2] 3] 34,493 495,924 8,415
Amazon-Computers [0 - 6] [7-9] 13,752 491,722 767
OGB-Arxiv [0 - 29] [30 - 39] 169,343 1,166,243 128

entropy, making the logit distribution less concentrated (e.g., reducing confidence). When the corresponding
accuracy exceeds the confidence, the reward » = 1 — H reduces the entropy, making the output distribution
more concentrated (e.g., increasing confidence). If the target node is not correctly predicted. The reward
r = H simply makes the model deviate from the current output distribution.

Next, we discuss the generalization of our method. Our policy function is trained on selected edges within a
graph. Since there is no distribution shift within a single graph, our method can generalize to other edges in
the same graph. However, due to the differences in topological structures across graphs, the policy functions
for different graphs need to be trained separately. Another advantage of our method is that the modified
graph structure can be leveraged by other calibration frameworks (e.g., CaGCN (Wang et al., 2021) and
GATS (Hsu et al, 2022)) to achieve better calibration results.

Besides, earlier work (Zhang et al., [2020) suggests three desired properties for calibration methods:
accuracy-preserving, data-efficient, and expressive. Our method can fulfill these properties. Since
the modified graph structure may affect the quality of the learned representations, and thereby influence the
performance on downstream tasks such as node classification, we incorporate an indicator function in the
reward signal. This component empirically encourages the preservation of classification accuracy on the ID
nodes during graph structure optimization. Besides, our method is also data-efficient. In our method we
adopt GCN (Kipf & Welling} [2016)) as the GNN backbone and lightweight MLPs for the actor and critic
models, respectively. At last, our method is expressive, as it could produce a fine-grained, topology-aware
weight for each edge.

Finally, our work aligns with a prior study (Shi et al.,[2023) that also addresses the calibration issue of graph
neural networks (GNNs) in out-of-distribution (OOD) scenarios. Although both works utilize reinforcement
learning, there are significant differences between the two studies. First, the previous work lacks a solid
empirical foundation and is driven by more intuitive motivations. In contrast, our research identifies the
presence of both under-confidence and over-confidence in GNNs with the presence of OOD nodes, an obser-
vation not made in the prior study which led us to develop a different approach. Furthermore, compared to
the previous work (Shi et al., 2023)), we develop a new edge iteration process to capture the topological infor-
mation of the graph. Furthermore, we propose a novel reward signal to generate fine-grained, topology-aware
edge weights for the adjusted graph structure. In contrast, the previous work (Shi et all |2023)) produces
fixed edge weights without considering topological information, such as the distribution of OOD nodes.

6 Experiments

In this section, we first introduce the experimental settings. Then we show the main results of the experiment
as well as the visualization of the reliability diagrams and the distribution of the modified edge weights. The
results of ablation study and case study can be found in Appendix.
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Table 3: Comparison between our proposed method and other baselines in terms of node classification
accuracy (Acc%)?T and expected calibration error (ECE%)J on Cora, Citeseer and PubMed. The experiments
are repeated 10 times and the average results and standard deviation are reported. Note that the primary
focus of our study is the ECE performance of the methods.

Cora Citeseer PubMed Chameleon
Methods
Acc ECE Acc ECE Acc ECE Acc ECE
GCN (Kipf & Welling| 2016 84.18 + 028  9.90 + 061  T1.57 +0.73 5.41 + 1.51 92.11 + 017 1.59 + 056  47.27 + 127  14.81 +2.14
GCL (Wang et al.|[2022 84.19 + 025  10.05 +0.63 71.91 + 0.96 6.07 + 2.03 92.14 + 0.14  1.56 025 45.81 £ 072 13.98 + 1.79

OODGAT (Song & Wang||2022 83.17 +1.3¢ 13.96 + 387 61.95 + 0.78 8.52 + 2.08 87.44 + 091  4.64 £ 128 39.74 £ 457  11.06 + 5.90
HyperU-GCN (Yang et al.|[2022)  81.88 +1.09 840 775  71.27 £ 139  19.69 £ 1374  92.35 £ 048 3.24 + 077 47.36 £220 1522 +9.65

CaGCN (Wang et al.|[2021 84.14 + 035 3.85 +105 T71.57 +0.73 4.27 + 0.62 92.11 + 017 3.09 + 020 47.27 + 127 1415 + 1.24
GATS (Hsu et al.| 2022 83.49 + 031 2.8l o082 72.04 + 0.46 5.05 + 1.86 92.56 + 024  2.27 +039 46.76 + 273 11.18 + 3.62
GERDQ (Shi et al.||2023 83.67 £ 048  9.54 + 050  69.98 + 055 4.36 + 0.92 92.14 + 020 1.60 + 059  46.87 + 154  14.22 + 1.65
DCGC 2024a, 83.91 + o025 10.44 +0.76  65.02 + 0.65 4.62 + 1.07 92.26 + 0.16  2.43 + 044 47.60 +3.22 13.28 + 4.42
5O (Ours 84.95 £ 018 9.22 + 049  71.80 +0.70 4.55 + 1.63 92.16 +0.16  1.49 + o020 46.81 + 103 13.03 £ 1.59
GCSO+CaGCN (Ours) 84.28 £ 027 2.55 +045 71.82 +068 4.15 +048 9224 +026 2.80 +019 47.28 +121 13.78 + 082
GCSO+GATS (Ours) 84.20 £ 031 2.63 £046 72.24 +090 4.20 £048  92.69 o027 213 +0314 46.80 + 195 10.07 +2.07

Table 4: Comparison between our proposed method and other baselines on Photo, Computers and Arxiv in
terms of node classification accuracy (Acc%)t and expected calibration error (ECE%)J). The experiments
are repeated 10 times and the average results and standard deviation are reported. Note that the primary
focus of our study is the ECE performance of the methods.

Methods Coauthor-CS Coauthor-Physics Amazon-Computers OGB-Arxiv
Acc ECE Acc ECE Acc ECE Acc ECE
GCN (Kipf & Welling| 2016 91.96 £ 072 2.57 013  97.02 +o021  1.27 £014 90.81 + 053 3.02 £068 4247 £ 067  6.14 £0.79
GCL (Wang et al.| 2022 91.83 £ 041 291 +020 97.04 +021 1.31 £012 90.65 +1.04 3.40 059 42.53 +0.63 6.41 +0.79

OODGAT (Song & Wang| 2022 90.63 £ 035 4.16 060 93.79 £ 052 344 £038 90.29 +1.02  4.84 + 101 42.11 £ 1.19  11.64 £ 0.74
HyperU-GCN (Yang et al.||2022 90.74 £ 103 294 +o081 9637 o057 1.86 £o070 90.17 +137 582 +110 36.72 £0.65 13.23 £+ 1.58

CaGCN (Wang et al.|[2021 89.79 + 040 4.34 + 040 97.04 +020 1.09 £013 88.67 +038 282 +o0.17 41.99 +o075  4.42 +0.35
GATS (Hsu et al.|[2022 89.28 + 047 4.14 040 96.80 £034 1.21 £021 88.07 043 3.59 o068 42.07 079  4.84 +0.36
GERDQ (Shi et al.||2023 92.36 + 050 3.12+025 97.05+023 138 £023 90.52 + 042 2.52 +049 43.58 +0.60  4.70 + 0.48
DCGC 2024a 92.03 030 3.36 020 96.97 £017 152017 90.84 £ 066 249 £ 043 43.62 054  4.85 + 030
GCSO (Ours 91.96 + 025 2.47 +013 97.08 +021 1.24 £012 90.86 +0.45 2.44 +0.28 43.64 +093 4.35 + 049
GCSO+CaGCN (Ours) 89.75 + 045  4.17 £ 016 97.02 +021 1.06 +0.06 88.50 £0.30 2.64 + 020 42.59 +051  4.16 + 0.39
GCSO+GATS (Ours) 89.28 + 046 3.92 +038 96.78 +033 1.15+o009 8849 +o071 333 £034 42.89 +o071  4.37 +o0.64

6.1 Experimental Settings

In the experiments, we perform the semi-supervised node classification task and compare the performance of
our framework with the baseline methods on eight benchmark datasets. The ablation study and case study
can be found in Appendix.

Datasets. We adopt eight public benchmark datasets, including Cora, Citeseer, PubMed (Yang et al.,[2016)),
Chameleon (Rozemberczki et al.,[2021), Coauthor-CS, Coauthor-Physics, Amazon-Computers (Shchur et al.)
and OGB-Arxiv (Hu et al., 2020), for evaluating our method and baselines. Among the dataset, the
Chameleon (Rozemberczki et all, [2021)is a heterophilous graph while others are homophilous graphs. We
adhere to the train/validation/test splits provided by previous work (Hsu et al., |2022; |Yang et al., |2016}
[Shchur et all 2018)). To formulate the graph learning with the OOD nodes setting, we manually split the
nodes into ID nodes and OOD nodes according to the routine from the previous work (Gal & Ghahramanil,
[2016} |[Song & Wang], [2022} |Stadler et all [2021)). For instance, Cora (Yang et al. [2016) has 7 classes and the
nodes from the last 2 classes would be regarded as OOD nodes which are marked out in the training and
validation data. The rest would be ID nodes. More details of the datasets are illustrated in Table

Baselines. The basclines include GCN (Kipf & Welling, |2016), HyperU-GCN (Yang et al. [2022),
CaGCN (Wang et al) 2021), GATS (Hsu et al) [2022), GCL (Wang et al. 2022), OODGAT (Song &
Wang) 2022), GERDQ (Shi et al, [2023) and DCGC (Yang et all, 2024a). More details about the baseline
methods can be found in Appendix.
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Figure 6: Reliability diagrams of different methods on Cora with OOD nodes. Well-calibrated results
would have closer alignment with the expected results along the diagonal line. The results suggest that the
calibration issue is different and complicated on different datasets.

Table 5: Comparison between our proposed method and baselines in terms of node classification
accuracy(Acc%)1 and expected calibration error(ECE%)J on Cora with different OOD configurations.The
experiments are repeated 10 times and the average results and standard deviation are reported.

Methods Config 1 Config 2 Config 3

Acc ECE Acc ECE Acc ECE
GCN (Kipf & Welling|2016)  81.91 + 057 9.88 o071 8485 +o022 942075 8418028 9.90 = 0.1
CaGCN (Wang et al.|[2021)  81.88 £0.50 4.10 £044 84.82 026 3.39 £o057 8414 £035 3.85 £ 1.05
GATS (Hsu et al.|[2022) 82.61 + 071 4.11 +062 8542 +054 3.03 +1.13 8349 +031 2.81 + 082
GERDQ (Shi et al.| |2023 82.02 £ 059 9.46 060 84.53 + 046 9.25 +£035 83.67 £048 9.54 +0.50
DCGC 80.86 =018 8.62+070 83.16+044 821 +04s 8246 +026  8.57 = 0.2
GCSO (Ours 81.66 + 0.56  9.27 +043 84.77 +023 9.11 + 017 84.95 + 018 9.22 + 049
GCSO+CaGCN (Ours) 82.14 + 042  3.75 + 038 84.80 +028 2.83 +038 84.28 +027 2.55 +045
GCSO+GATS (Ours) 81.89 + 054 2.49 + 033 85.46 +078 2.78 £ 049 84.20 +0.31  2.63 + 0.46

Metrics. In our experiments, we adopt the expected calibration error (ECE) (Guo et al.,|2017) as our major
metric. The lower value of ECE means the better reliability of the prediction results from GNN models.
Besides, we also report the node classification accuracy.

Implementation Details. In our method, we adopt GCN (Kipf & Welling}, 2016) as our GNN backbone.
The hyper-parameters of GCN are the same as the corresponding baselines. The learning rate is le-2 and
weight decay is be-4. The hidden dimension is 64. The Actor and Critic in our framework are implemented
as a three-layered MLP with the dimension of hidden layers 256 and 16, respectively. More details about
the implementation details can be found in Appendix.

6.2 Main Results

Table [3] and Table [4] show the performance of our proposed method and the baselines on the benchmarks.
The results show that the ordinary GNN models such as GCN (Kipf & Welling, 2016)) would yield large
calibration errors. For instance, the ECE can reach an average 9.90% on Cora (Yang et al.| [2016). Besides,
the results also suggest that the methods aimed at the calibration of GNNs can basically improve the
calibration performance on GCN (Kipf & Welling, 2016). However, it could fail on some benchmark datasets.
For instance, Although CaGCN (Wang et al., 2021) can achieve the low calibration error on Cora
et al, and Citeseer (Yang et al., 2016), it still results in poorer calibration on PubMed (Yang et al.
2016) and Coauthor-CS (Shchur et all [2018) than that of GCN (Kipf & Welling| [2016). The cause of the
phenomenon can be attributed to the compromised homophily of the graph and make the regularization
term in CaGCN (Shchur et all) 2018)) less effective on these dataset. GCL (Wang et all 2022)) is also less
effective on some datasets. OODGAT (Song & Wang| 2022) can identify the potential OOD nodes during
the training and reduce the connection between the ID and OOD nodes by lowering the corresponding
edge weights. However, our experimental results show that it would still suffer large calibration errors on
some benchmark datasets. Additionally, our experimental results reveal that GERDQ
and DCGC (Yang et all [2024a) effectively reduce the calibration error across various benchmarks. This

11
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Table 6: Comparison between our proposed method and baselines in terms of node classification
accuracy(Acc%)1 and expected calibration error(ECE%)J. on PubMed with different OOD configurations. The
experiments are repeated 10 times and the average results and standard deviation are reported.

Config 1 Config 2 Config 3
Acc ECE Acc ECE Acc ECE
GCN (Kipf & Welling|2016) ~ 83.65 + 027  3.95 076  90.32 +030 177 x074 9211 +017  1.59 % 0.56

CaGCON (Wang et al.[[2021)  83.67 £ 028 5.07 £050 90.32 £031 1.64 £044 9211 017  3.09 £ 020
GATS (Hsu et al.|[2022) 8347 + 032 3.67 £058 89.81 +030 1.47 £060 92.56 + 024 2.27 +0.39

GERDQ (Shi et al.| 2023 83.65 + 027 3.69 + 057  90.32 +030 1.62 +061 92.14 + 020 1.60 + 0.59
DCGC (Yang et al.|2024a 83.39 + 041 3.68 +070 89.88 +0290 2.41 +033 92.66 + 0.16  2.43 + 0.44

Methods

GCSO (Ours 83.73 £ 028 3.68+051 90.39 +032 1.36+043 9216 +016 1.49 +0.20
GCSO+CaGCN (Ours) 83.70 £ 026 4.86 £o055 90.39 +030 1.60 o021 92.24 o026 2.80 £o0.19
GCSO+GATS (Ours) 83.52 + 045 3.42 +039 89.69 +040 1.30 +0.19 92.69 +o027 2.13 +o0.34

Table 7: Comparison between our proposed method and baselines in terms of node classification

accuracy(Acc%)T and expected calibration error(ECE%)] on Computers with different OOD configura-

tions.The experiments are repeated 10 times and the average results and standard deviation are reported.
Config 1 Config 2 Config 3

Acc ECE Acc ECE Acc ECE

GON (Kipf & Welling|[2016) ~ 87.24 + 058 2.74 £ 040  93.79 039 2.61 028 90.81 +0.53  3.02 + 0.68

CaGCON (Wang et al.|[2021)  88.14 + 024 4.41 £ 054 9225 £ 042 3.16 035 88.67 £o03s 2.82 4017
GATS (Hsu et al.|[2022) 87.50 £ 077 3.21 £ o053  92.25 £ 049 2.75 £ o041 88.07 £o043  3.59 + 0.68

GERDQ (Shi et al.| |2023 87.08 £ 054 2.60 £0.23 9341 +065 2.76 £034 90.52 £ 042  2.52 4+ 0.49
DCGC l 20242 87.90 £ 036 3.32 +071 93.64 +055 2.66 041 90.84 +0.66 2.49 + 0.43

Methods

GCSO (Ours 87.17 £ 041  2.56 035 93.16 to052 2.58 £0.16 90.86 045 2.44 o028
GCSO+CaGCN (Ours) 88.30 + 056 4.03 + 045 92.56 + 048 2.84 +0.19 88.50 + 030 2.64 +0.29
GCSO+GATS (Ours) 87.65 £0.75 3.07 030 9217 o035 2.40 o021 8849 +o071 3.33 £o0.34

further validates that refining the graph topology is beneficial for lowering the calibration error, particularly
in graphs with the presence of OOD nodes.

The experimental results suggest that our proposed GCSO method is effective in calibrating GNNs and
achieves better ECE performance compared to GERDQ and DCGC (Yang et all, [20244)
on most datasets. DCGC (Yang et al. |2024a)) can generate an adjusted graph structure to reduce the
calibration error. However, this method does not account for the presence of OOD nodes. GERDQ
also employed adjusted weights to calibrate GNN results. However, its adjustment is guided
solely by the accuracy signal, which limits its calibration performance. In contrast, our approach employs
a specialized reward signal to dynamically assess the impact of adjusted edge weights on target nodes,
generating an optimal, topology-aware graph structure that regularizes the predictive confidence of GNNs.
When integrated with existing graph calibration methods, our approach can further enhance calibration
performance. For instance, GCSO+CaGCN can approximately achieve the ECE of 2.55% and 1,06% on
Cora (Yang et al.l [2016) and Coauthor-Physics (Shchur et al.| [2018)).

To further assess the generalizabil-

ity and robustness of our proposed Table 8 The different OOD configuration of Cora, PubMed and
method, we expanded our experi- Amazon Computers.

ments by evaluating it on datasets Config 1 Config 2 Config 3

. . . . Dataset
with different OOD node distribu- ID classes OOD classes ID classes OOD classes ID classes OOD classes
tions.  Specifically, we conducted Cora [0,3-6] [1,2] [0-2,5,6] 3.4] [0-4] [5,6]
evaluations on Cora, PubMed, and PubMed (1,2] (0] [0,2] (1 (0,1] [2]

Computers  [0,4-9 1,2,3 0-3,7-9 4,56 0-6 7,8,9
Amazon-Computers, each configured omputers 0,49 [1.25) { ) [4,5.6] [0-6] [7.89]

with distinct OOD settings. The

OOD configurations are detailed in Table[§] and the corresponding results are reported in Tables 5] Table [f]
and Table [ The results suggest that conventional methods such as CaGCN (Wang et al) 2021 struggle
to calibrate GNNs under varying OOD configurations. For example, on the Amazon-Computers dataset,
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Figure 7: The distribution of edge weights connecting to ID nodes and OOD nodes from DCGC ((a)-(d))
and our proposed method ((e)-(h)) on various datasets. Compared to DCGC, the edge weights generated
by our method exhibit a clear distribution shift between ID and OOD nodes.

CaGCN (Wang et all 2021)) yields higher calibration errors in both Configuration 1 (4.41%) and Configu-
ration 2 (3.16%) compared to the baseline GCN (2.74% and 2.61%, respectively). This failure may stem
from the method’s disregard for graph topology, particularly the distribution of OOD nodes, when adjusting
the output logits. In contrast, our proposed method consistently improves calibration across different OOD
settings. The improvements are more pronounced on large graphs (e.g., PubMed and Amazon-Computers)
than on smaller graphs (e.g., Cora). These results across three datasets empirically demonstrate the gener-
alizability and robustness of our approach under diverse OOD distributions.

6.3 Visualization

To better visualize the ECE, the reliability diagrams for our method and the baselines On Cora
are illustrated in Fig. @ Well-calibrated results are supposed to have closer alignment with the
expected results along the diagonal line. Fig. [6] demonstrates the better alignment of our method to the
diagonal line than that of other baselines, which is consistent with our experimental results. The experiments
suggest that both two terms are an indispensable part of the reward signal in our framework.

We also visualize the modified graph structures of both DCGC (Yang et al.| [2024a)) and our proposed method
on various datasets. The histogram in Fig. [7] illustrates the distribution of edge weights connecting ID and
OOD nodes, respectively. Since DCGC (Yang et al., [2024a)) doesn’t explicitly account for OOD nodes, the
distribution of edge weights connecting to ID and OOD nodes shows significant overlap. In contrast, our
method generates topology-aware edge weights. Fig. [7] demonstrates a clear distribution shift between the
edge weights connecting to ID and OOD nodes.

6.4 Ablation Study

In our framework, the reward consists of two terms: indicator function and entropy regularization term. To
investigate the contribution of each term in the reward, we conduct an experiment in which only one term is
available in the reward. The results are shown in Table[9]in Appendix. Indicator function aims to ensure the
comparable accuracy achieved by the model. Without an indicator function, our method would experience
a reduction in the accuracy on the ID nodes and the calibration error is also worsened. Without entropy
regularization term in the reward, our method would be less effective to calibrate graph neural networks.
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Figure 8: Performance of our method on node classification and calibration on PubMed and Coauthor-CS
(a) with varying numbers of labelled nodes, (b) edges and (c¢) value of A. Performance of our method on
node classification and calibration on Coauthor-CS with varying value of (d) discounter factor v and (e)
initial noise €.

Next, we evaluate the impact of the number of sampled target nodes and edges on the performance of
our method, we conducted additional experiments on the PubMed and Coauthor-CS datasets. In the first
experiment, we fixed the number of sampled edges to 20 for PubMed and 40 for Coauthor-CS, and evaluated
the performance using 10, 20, 40, and 80 sampled nodes. In the second experiment, we fixed the number
of sampled nodes to 10 for PubMed and 20 for Coauthor-CS, and varied the number of sampled edges
among 10, 20, 40, and 60. The corresponding results are presented in Fig. a) and Fig. b), respectively.
These results indicate that increasing the number of sampled nodes and edges generally improves calibration
performance. However, beyond a certain point, the improvements become marginal while the computational
cost increases.

We also conducted an evaluation to investigate the influence of the hyperparameter A on the performance of
our proposed method. We varied the value of A among 0.3, 0.5, 0.7, and 0.9, and the corresponding results
are presented in Fig. c). The results indicate that larger values of A lead to more effective calibration of
GNNs. In our method, A controls the update of the state, which is composed of edge features. A smaller A
results in less expressive features, thereby limiting the ability to accurately evaluate the influence of edges
on the target in-distribution (ID) nodes.

Finally, we evaluate the sensitivity of our method to the hyperparameters associated with reinforcement
learning, specifically focusing on the discount factor + and initial noise ¢y. We vary the discount factor
among 0.3, 0.5, 0.7, and 0.9, and the initial noise among 0.2, 0.4, 0.6, and 0.8. The corresponding results
are presented in Fig. d) and Fig. e)7 respectively. The results show that calibration performance tends
to degrade when using a smaller discount factor or a larger initial noise value.

7 Limitations

Although our proposed method effectively calibrates graph neural networks with out-of-distribution (OOD)
nodes through an optimized graph structure, it incurs a higher training time compared to baseline methods
due to the inherent complexity of reinforcement learning. Nevertheless, by incorporating strategies such as
batch processing and sampling of target nodes and edges, the computational cost remains manageable and
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does not scale excessively, even on large-scale graphs. Additionally, our current work focuses primarily on
calibration for node classification. Extending the approach to other tasks, such as link prediction and graph
classification, is an interesting direction for future research.

8 Conclusion

In this paper, we focus on calibrating graph neural networks (GNNs) on graphs containing OOD nodes.
Noisy graphs exacerbate calibration errors of GNNs, and existing graph calibration methods become less
effective. Inspired by graph structure learning, adjusting edge weights presents a plausible solution. However,
assigning appropriate edge weights to a noisy graph is a nontrivial task. To address this challenge, we propose
the Graph Calibration via Structure Optimization (GCSO) framework to derive an optimal, topology-aware
graph structure. Extensive benchmark results demonstrate that our framework effectively calibrates GNNs
in the presence of OOD nodes while maintaining comparable accuracy.
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A Appendix

A.1 Algorithm

Algorithm 1 Algorithm of our GCSO framework
Input: input graph G = (V, &, X), GNN backbone f, labels of the nodes Y, candidate nodes set Z, critic
network Q(s,alf®), actor network 7(s|6™), replay buffer B, discount coefficient v, hyperparameter o,
initial noise og, the total episode P, adjacent matrix A.
Initialize the actor network 7, critic network @ and replay buffer B.
for 1,2,3..., P do
train the GNN backbone f with adjacent matrix A and obtain the acc(B,,) and conf(B,,) on validation
nodes. Sample one target node u from the candidate nodes set Z.
obtain the edge set £* = {ef, e}, -+ ,e}_,} for each target node w.
for ¢ from 1 to |€%| do
calculate the discrepancy score for unsampled edges according to Eq. [d
choose the edge e} with the lowest discrepancy score and obtain the state s; by Eq. 3]
calculate the adjusted edge weight w, = a; from state s; by Eq. [}
add the noise to the adjusted edge weight for exploration via Eq. 8]
assign the adjusted edge weight to the original graph G.
obtain the reward r from the GNN backbone f via Eq. [6}
form the transition tuple (s¢, a, $¢1+1,7¢) into replay buffer B.
randomly sample the data from replay buffer B and train the actor network 7 and critic network @
via Eq. 9] and Eq [I0}
end for
generate the new edge weights and obtain new adjacent matrix A’ using Eq.[5l Train the GNN backbone
f and save the actor and critic networks based on the evaluation of model f.
update the adjacent matrix A = A’
end for

Table 9: Comparison between our method with complete reward signal, reward signal without entropy and
reward signal without indicator function on Cora, PubMed, Coauthor-CS and Amazon-Computers in terms
of node classification accuracy (Acc%)T and expected calibration error (ECE%)]. The experiments are
repeated 10 times and the average results and standard deviation are reported. Note that the primary focus
of our study is the ECE performance of the methods.

Cora PubMed Coauthor-CS Amazon-Computers
Methods
Acc ECE Acc ECE Acc ECE Acc ECE
w/o entropy  84.88 + 024 10.01 £o0.60 92.16 £o0.61 1.55 +028 92.80 +050 292 +046 90.91 £1.20 3.70 £ 0.54

w/o indicator  84.25 +0.27  10.08 £ 0.69 92.02 £ 016 1.57 +023 9222 +035 3.11 +036 9048 +0.75  3.61 + 0.36
Complete 84.95 + 018 9.90 £ 061 92.16 +016 1.49 +020 92.70 £ 047 2.79 +0.33 91.20 + 048 3.56 + 0.49

A.2 Experiment

GCN (Kipf & Welling, [2016)): The learning rate is le-2, weight decay is 5e-4. The hidden dimension is 64
with two layers. We choose Adam(Kingma & Ba), [2014) optimizer to train the model.

CaGCN (Wang et al., [2021)) calibrates the confidence of the GNN by the post-hoc method to ensure the
reliability of the prediction, with an estimation of different types of uncertainty. In the experiment we choose
GCN (Kipf & Welling| 2016|) as the base model. The hidden dimension is 64. The initial learning rate is
le-2. The number of heads is 8.

GATS (Hsu et al.[[2022): GATS proposed a new temperature scaling technique to calibrate the graph neural
networks. We choose GCN (Kipf & Welling} 2016) as the base model. The hidden dimension is 64. In the
experiment. The weight decay is 5e-3.
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Table 10: The performance of GKDE-GCN on node classification and OOD node detection with old and
new edge weights. The bold represents the best results.
Dataset Edge weight Acc(%) ECE(%) OOD AUROC(%) OOD AUPR(%)

' original 85.61 10.73 85.21 73.58
PubMed Modified 85.28 9.70 85.39 72.46
it original 65.43 4.56 80.75 81.72

reseer Modified  67.93  3.56 83.41 83.57
original 89.83 3.05 69.05 61.35
Amazon Photo \j vieed  91.42 1.80 69.90 62.16

GCL (Wang et all 2022): GCL loss function is proposed to calibrate the graph neural network in an end-
to-end manner. The coefficient «y is set to 0.020. The hidden dimension is 64. The rest setting is the same
as GCN (Kipf & Welling, [2016)).

OODGAT (Song & Wang, 2022): OODGAT aims to perform the node classification and OOD detection
simultaneously when the graph is mixed with OOD nodes. We adopt the same experimental setting as the
original work. Note that the ID/OOD split in our experiment is different from that of OODGAT.

HyperU-GCN (Yang et all) 2022)) focuses on automated graph learning which can obtain the optimal
hyperparameters through joint optimization on model weights and hyperparameters. We adopt the same
experimental setting as the original work.

GERDQ (Shi et al., 2023) investigates the calibration of graph neural networks when graph is mixed
with OOD nodes. GERDQ aims to mitigate the calibration issue by adjusting the edge weight via deep
Q-learning (Mnih et al., |2013).

DCGC (Yang et al.l|2024a) is a data-centric method which aims to calibrate the graph neural networks by
assigning larger weights to the decisive and homophilic edges.

In our method, we adopt GCN (Kipf & Welling} [2016) and CaGCN (Wang et al., 2021)) and GATS (Hsu
et al., 2022) as our GNN backbone. The hyper-parameters of GCN are the same as the corresponding
baselines. The learning rate is le-2 and weight decay is be-4. The hidden dimension is 64. The Actor and
Critic in our framework are implemented as a three-layered MLP with the dimension of hidden layers 256
and 16, respectively. Adam (Kingma & Bal [2014) is adopted for training optimization with the learning rate
of 1e-3 for Actor and Critic, The weight decay is le-2. The « is set to 0.95, and the discount coefficient ~y
is 0.90. og is set to 0.2. The size of the replay buffer is 1le4 and the total number of episodes P is 30. The
training epoch is 600 for all datasets. We choose 10 target nodes in the training and then select 16 edges for
Cora and Citeseer (Yang et al.l 2016, 128 edges for Arxiv (Hu et al., |2020) and 64 edges for the rest. We
adopt 10 bins for evaluation of expected calibration error. All the experiments are running on the NVIDIA
A5000. We test our method and baselines 10 times with different seeds and the average results are reported.

A.3 Case Study

We conduct a case study to investigate if the adjusted edge weights can improve the graph learning perfor-
mance of other methods. GKDE-GCN (Zhao et al.| |2020) is a representative method for detecting out-of-
distribution (OOD) nodes by uncertainty estimation. We evaluate the performance of GKDE-GCN (Zhao
et al.l 2020) on node classification and OOD node detection with the adjusted edge weights learned by our
framework. The metrics for the OOD node detection are AUROC and AUPR. We run the experiments 10
times on Cora, Citeseer, and PubMed (Yang et al., 2016)), and report the average results in Table The
results show that our adjusted edge weights can help improve the node classification and OOD detection
performance of the base model GKDE-GCN (Zhao et al., [2020).

A.4 Visualization

To better visualize the ECE, the reliability diagrams of different methods on different datasets are illustrated
from Fig. [9 to Fig.
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Figure 9: Reliability diagrams of different methods on PubMed with OOD nodes. Well-calibrated results
would have closer alignment with the expected results along the diagonal line. The results suggest that the
calibration issue is different and complicated on different datasets.
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Figure 10: Reliability diagrams of different methods on Coauthor-CS with OOD nodes. Well-calibrated
results would have closer alignment with the expected results along the diagonal line. The results suggest
that the calibration issue is different and complicated on different datasets.
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Figure 11: Reliability diagrams of different methods on Coauthor-Physics with OOD nodes. Well-calibrated
results would have closer alignment with the expected results along the diagonal line. The results suggest
that the calibration issue is different and complicated on different datasets.
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Figure 12: Reliability diagrams of different methods on Arxiv with OOD nodes. Well-calibrated results
would have closer alignment with the expected results along the diagonal line. The results suggest that the
calibration issue is different and complicated on different datasets.
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