Under review as a conference paper at ICLR 2025

RETHINKING DATASET QUANTIZATION: EFFICIENT
CORESET SELECTION VIA SEMANTICALLY-AWARE
DATA AUGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Dataset quantization (DQ) is an innovative coreset selection method to choose
representative subsets from large-scale datasets, such as ImageNet. Although DQ
has made significant progress, it heavily relies on large pre-trained models (like
MAESs), leading to substantial additional computational overhead. We first iden-
tify that removing this pre-trained MAE model degrades DQ’s performance and
increases the variance in model training. Where MAE plays a crucial role in in-
troducing prior knowledge and implicit regularization into the training process.
Second, we investigate a data augmentation scheme that can simulate the steps of
pixel compression and reconstruction in DQ by simply using a randomly initial-
ized ResNet model. This randomly initialized ResNet model can take advantage
of the inductive bias of CNNs to locate the semantic object region and then re-
place the other region with other images. Therefore, we can use a random model
or trained model in the early training stage to enhance semantic diversity while
selecting important samples. We remove the module that contains the pre-trained
MAE model and integrate the data augmentation scheme into the DQ pipeline,
which formulates a new simple but efficient method, called DQ_v2. Our method
achieves performance improvements across multiple datasets, such as ImageNette,
CUB-200, and Food-101.

1 INTRODUCTION

Deep learning has become the golden standard for many computer vision and machine learning
tasks (Dosovitskiy et al., 2021)), which have seen rapid growth due to increasing model sizes and
dataset volumes. However, training emerging deep models, e.g., vision transformers (ViTs) (Doso-
vitskiy et al., 2021), on large-scale datasets like ImageNet (Deng et al., 2009) and LIAON (Schuh-
mann et al., |2021) requires substantial computational resources, including high-performance GPUs,
large memory capacity, and high-speed storage (Bartoldson et al.| [2023)). These requirements pose
a significant barrier to entry for many researchers and practitioners, especially those in resource-
constrained environments. Thus, how to efficiently train large-scale deep learning models with
limited resources has become a common concern in both academia and industry.

Recent research has shown that large-scale datasets have many redundant and irrelevant samples
(Xia et al., |2024; He et al., |2024), which can be compressed into a smaller representative subset
without losing model performance. Thus, either coreset selection or dataset distillation, as crucial
methods to address this issue, aims to choose or synthesize a representative subset from large-scale
datasets to reduce computational complexity while maintaining model performance (Guo et al.,
2022; [Bartoldson et al.||2023)). However, most existing methods face challenges in maintaining gen-
eralization and low scalability for larger datasets (Guo et al., 2022; Zhou et al.,|2023)). To this end,
Dataset Quantization (DQ) is a recently proposed method that effectively addresses these challenges
while maintaining high performance under all data keep ratios (Zhou et al.} 2023} Zhao et al.|[2024).
We will quickly review the DQ method in the following section.

DQ is heavily based on various pre-trained models, that is, Masked Autoencoders (MAE) (He et al.,
2022)) and a pre-trained ResNet model (He et al.,[2016). The ResNet model controls the dataset bin
generation step, while the MAE model is used for image reconstruction in the pixel quantization and
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Figure 1: The overall pipeline of DQ and DQ_V2.

reconstruction step. These two steps are crucial for the DQ method to achieve high performance and
stability. However, it is currently unclear whether these pre-trained models are crucial for the high
performance of DQ methods. In addition, pre-trained models introduce additional computational
overhead and inject prior knowledge into the selected subset, which may limit the generalization
ability of trained models and affect the training stability.

Therefore, in this paper, we study the necessity of pre-trained models in the DQ method and propose
a new method that achieves efficient coreset selection without relying on any pre-trained models.
First, we observe that removing the MAE reconstruction step will significantly increase the variance
in the trained model under different random seeds. That is, synthetic data has a beneficial effect
on the training stability, which is crucial for the DQ method. Our preliminary analysis verify that
the pre-trained MAE model is actually equivalent to a data augmentation method, which introduces
prior knowledge and implicit regularization into the training process.

Therefore, inspired by the data augmentation method proposed by Tobias et al. (Cao & Wul |[2022),
we propose a new data augmentation strategy that can replace the MAE model in the DQ method.
This simple but effective data augmentation strategy leverages the inductive bias of random CNNs
to effectively preserve the semantic structure while introducing beneficial variations. On the other
hand, we can also use this model to split the dataset, which can be trained with several epochs
from scratch similar to |Paul et al.| (2021)). We integrate this semantically aware data augmentation
strategy into the DQ framework without the MAE model and propose a new method, named Dataset
Quantization V2 (DQ_V2). Figure[I|shows the pipeline of our DQ_V2. Intuitively, this method does
not rely on any existing pre-trained foundation models. It simply uses one model, which not only
helps to enhance the data diversity (like MAE in DQ), but can also do the dataset split (like bin
generalization/selection in DQ).

We conducted extensive experiments on multiple datasets, including ImageNette (a 10-class subset
of ImageNet), CUB-200-2011, Food-101, and ImageNet. We evaluated the performance and stabil-
ity of the deep models (i.e., both ResNet and ViT models) trained on the selected subset using our
proposed method under various data keep ratios. The experimental results show that the proposed
DQ_V2 can eliminate the drawbacks of DQ’s dependence on pre-trained models while achieving
performance improvements across multiple datasets.

2 RELATED WORK

2.1 DATASET QUANTIZATION

Coreset selection is a crucial technique for reducing the computational complexity of deep learning
models by selecting a representative subset from large-scale datasets. Many efforts have been made
to address this issue, including geometry-based methods (Agarwal et al., [2020; |(Chen et al., 2012;
Sener & Savarese), 2018)), uncertainty-based methods (Coleman et al., |2019), error-based methods
(Toneva et al.| 2019 [Paul et al., 2021), decision boundary-based methods (Ducoffe & Precioso}
2018} Margatina et al., [2021), gradient matching-based methods (Mirzasoleiman et al., [2020; |Kil-
lamsetty et al.| 2021)), and submodularity-based methods (Iyer et al. 2021). On the other hand,
dataset distillation (Sachdeva & McAuleyl 2023)) is another important technique for compressing
large-scale datasets, which aims to synthesize a representative subset from the original dataset.
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However, recent research has shown that regardless of coreset selection or dataset distillation, most
existing methods face challenges in low scalability to larger datasets (Guo et al., [2022; Zhou et al.}
2023). Therefore, Dataset Quantization (DQ), a combination of coreset selection and dataset distil-
lation, has been proposed to address these challenges (Zhou et al., 2023}, Zhao et al.,[2024). It can ef-
fectively select a representative subset from large-scale datasets while maintaining high performance
under all data keep ratios. However, DQ-based framework is heavily based on various pre-trained
models, that is, Masked AutoEncoder (MAE) (Zhao et al.,|2024) and a pre-trained ResNet model.
These pre-trained models dominate the computational complexity and stability of the DQ method.
Directly removing them leads to performance degradation and increased variance in trained model
under different random seeds. In this work, we rethink the necessity of these pre-trained models in
the DQ method and propose a new method that achieves efficient coreset selection without relying
on any pre-trained models.

2.2 DATA AUGMENTATION

Data augmentation (Shorten & Khoshgoftaar, 2019) plays an essential role in improving model ro-
bustness and generalization ability. Traditional data augmentation methods focus mainly on simple
image transformations, such as rotation, flipping, and color adjustment. Recent studies have ex-
plored more advanced data augmentation strategies, such as random erasing (Zhong et al., |2020),
Mixup (Zhang et al., 2018), CutMix (Yun et al.,[2019)), and "Copy and paste” (Dwibedi et al., 2017;
Ghiasi et al.,|2020). These methods have achieved significant success in enhancing the performance
and stability of vision models. Although these data augmentation methods have achieved significant
success in improving model performance, they generally lack consideration of image semantic struc-
ture. |Cao & Wul(2022) introduce a novel data augmentation method that leverages the inductive bias
of random CNNs to preserve semantic objects while mixing up the background. How to design data
augmentation strategies that can both maintain image naturalness and effectively enhance model
learning ability remains an open question. In this work, we first observe that the pre-trained MAE
model is actually equivalent to a data augmentation method, which introduces prior knowledge and
implicit regularization into the training process. Thus, this observation motivates us to explore a
new data augmentation strategy that can replace the MAE model in the DQ method.

3 METHODOLOGY

3.1 PRELIMINARIES

Suppose that we have a large dataset D = {(z;,v;)}._,, where x; is the i-th image and y; is
the corresponding label, and T’ is the total number of training samples. Coreset selection aims to
choose a optimal small subset Dg from a large-scale dataset D, where Dg C D and |Dg| < |D].
The model trained on Dg can achieve comparable performance to the model trained on the entire
dataset D. Finally, the model trained on the coreset Dg can be used to make predictions on the
test set. As discussed above, most coreset selection and dataset distillation methods suffer from
some obvious drawbacks, such as poor generalization and low scalability. Therefore, [Zhou et al.
(2023)) proposed a new method, Dataset Quantization (DQ), which consists of three main steps: 1)
dataset bin generalization, 2) selection of subset bin , and 3) image pixel quantization. The entire
DQ pipeline is shown in Figure[I] ().

The first step aims to generate multiple non-overlapping dataset subsets (referred to as bins), each
containing representative and diverse samples. Where DQ leverages the traditional coreset selection
method, i.e., GraphCut method (Iyer et al.,[2021) to select the most representative samples. Here, a
pre-trained ResNet model is used to extract features for all images, and the GraphCut score is cal-
culated for each unselected sample when added to the current bin. The second step involves random
sampling of the generated bins to form the final compressed dataset. This design introduces addi-
tional randomness, contributing to improved model robustness and generalization. The final step is
to further reduce storage requirements and enhance data quality. This process involves image patch-
ing, importance scoring, patch selection, and image reconstruction. Here the pre-trained Masked
Autoencoder (MAE) decoder is used to reconstruct the complete image.

Since DQ can achieve state-of-the-art performance on various datasets, especially large-scale
datasets like ImageNet, it has attracted significant attention from the research community. Despite
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Figure 2: The effect of pre-trained MAE model. We compare the performance of DQ and DQ
without MAE on CIFAR-10 and ImageNette datasets.
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Figure 3: The examples of image dropping and MAE reconstruction. The original images are from
the ImageNette dataset.

significant advancements in coreset selection, DQ still faces several key challenges, particularly in
computational efficiency and method stability. We argue that this potential issue is due to the heavy
reliance on large pre-trained models, especially the ViT-Large architecture-based MAE model used
in the pixel quantization step. So, in this paper, we study the essential factors of the pre-trained
models in the DQ method that affect the performance and stability of the trained model.

3.2 THE EFFECT OF PRE-TRAINED MODELS

Our goal is to ablate the role of the pre-trained models in the DQ method. Thus, we conducted
a series of controllable experiments to investigate the impact of pre-trained models, particularly
the Masked Autoencoder (MAE) model, on the performance and stability of the DQ method. Our
results reveal that removing the MAE model significantly degrades DQ’s performance and increases
the variance in model training.

We remove the pixel quantization step in the original DQ method and directly use the selected images
from the second step to train the model. This process is equivalent to removing the pre-trained
MAE model in the DQ method. We conducted experiments on both CIFAR-10 and ImageNette
datasets with different random seeds, and we report the mean accuracy and variance of the trained
models in Figure 2] The results show that the pre-trained MAE model contributes significantly to
reducing the variance in model training, which makes the final trained model achieve consistent
performance under different random seeds. This also helps researchers reproduce the results and
compare different methods more effectively. However, removing the MAE model will not affect the
mean accuracy, but the accuracy increases slightly in CIFAR-10. We think this is because the image
scale of CIFAR-10 is relatively small, and the MAE model may introduce some noise that affects
the model’s performance. But, on ImageNette, the MAE model indeed helps to improve the model’s
performance.

In general, these results reveal an interesting phenomenon: MAE has a crucial impact on DQ’s
performance and stability of DQ for larger datasets, while its role is relatively minor for smaller
datasets. Therefore, we further analyze the underlying reasons for this phenomenon.

In the third step of DQ, the training images are first removing the less-informative patches based
on the importance scores and then reconstructing the complete image using the pre-trained MAE
model. See Figure[3] In fact, the MAE model is pre-trained on a large-scale dataset, which makes
it encapsulate extensive image prior knowledge. Since the removing region usually locates in the
background or less important regions, the MAE reconstruction actually infers the missing regions
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based on the semantic structure of the object in the image. We argue that the MAE reconstruction is
equivalent to a data augmentation method which introduces prior knowledge and implicit regulariza-
tion into the training process. It can also improve the diversity and quality of the training samples,
thus improving the performance and stability of the model.

However, this enhancement comes at the cost of increased computational complexity and depen-
dence on large pre-trained models. This raises a crucial question: Can we design a more efficient
method that achieves or surpasses DQ’s performance without relying on large pre-trained models?
In the following sections, we will answer this question by introducing a novel data augmentation
strategy that can replace the MAE model in the DQ method.

3.3 SEMANTICALLY AWARE DATA AUGMENTATION

As discussed before, the pixel quantization step mainly preserves the semantic object while dropping
the background regions that are less-informative or less important for the model training. However,
the reconstruction process not only imputes the missing regions, but also slightly modifies the orig-
inal image, which can be viewed as a form of data augmentation. This process is similar to the
classical data augmentation method, i.e., CutMix (Yun et al.},2019). CutMix generates new training
samples by cutting and pasting patches between training images while adjusting the corresponding
labels proportionally, enhancing the model’s robustness and generalization.

However, CutMix may randomly cut foreground objects, which cannot hold the semantic object.
We simply replace CutMix with the MAE reconstruction step in the DQ method and directly apply
the composed data augmentation to the DQ pipeline. We find that the results on the ImageNette
dataset show that the CutMix method has a significant performance drop compared to the MAE
reconstruction method. See the results reported in the following section. Thus, we need to design
a more effective data augmentation strategy that not only maintains the information of semantic
objects but also does not rely on any pre-trained models.

We investigated two data augmentation strategies in recent work that help to relieve the dependency
on the pre-trained models in the DQ method. Tobias leverages the inductive bias of randomly ini-
tialized CNNs to preserve semantic objects while mixing up the background. This method can
effectively maintain the naturalness of the image and introduce beneficial variations. See Figure [5a]
In addition, we mix the Tobias data and the original images to further enhance the diversity of the
training data. We also report that using appropriately mixing rates can further improve the model’s
performance. While this strategy offers the following advantages:

* Semantic Consistency: By preserving the image’s main object region, it ensures that aug-
mented images maintain the original semantic information.

* Diversity Introduction: The replacement of background regions introduces new visual con-
texts, increases data diversity, and improves model generalization.

» Computational Efficiency: Compared to using large pre-trained models (like MAE), this
method has lower computational overhead and requires no additional model dependencies,
making it suitable for resource-constrained environments.

3.4 OUR PROPOSED FRAMEWORK: DQ_v2

By integrating the Tobias data augmentation strategy into the DQ framework without the MAE
model, we addressed the stability issues of the original DQ method while reducing computational
complexity. Our improved method includes the following key steps:

1) Mask Generation: Use an early-trained mode (e.g., ResNet-50) to generate masks for each
image in the training set, localizing the regions of the main objects. This step leverages CNN’s
inductive bias to effectively identify the main objects in the images. 2) Tobias Data Augmentation:
Based on the generated masks, augment the training data. Specifically, we retain the main object
part of the image while replacing the original background with randomly selected backgrounds from
other images, creating an expanded training set. This step maintains the original image’s semantic

!The early-trained model is the model trained by several epochs (like 10 epochs), which is similar to the
scheme in (Paul et al.| | 2021).
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information while introducing new visual contexts. Then, we mix the Tobias data and the original
data in an appropriate ratio to build a new training dataset. 3) Dataset Binning: Use the early-trained
model to extract the visual feature and then apply the GraphCut method (lyer et al., 2021)) to split
the mixed training set, generating multiple non-overlapping bins. This step ensures that the selected
samples are representative and diverse, keeping the core advantages of the DQ method. 4) Bin
Sampling: Randomly select a certain percentage of images from each bin to form the final core set.
This random sampling process further increases the diversity of the data, allowing users to flexibly
adjust the proportions of the data to suit the different task requirements. 5) Model Training: Train
the model using the selected core set. As the coreset contains both original and augmented images,
the model can learn richer and more robust feature representations, enhancing model performance
and stability.

The pipeline of our proposed method, named Dataset Quantization V2 (DQ_V2), is illustrated in
Figure[I] Through this design, our method not only resolves the original DQ method’s dependence
on large pre-trained models but also improves performance and efficiency in multiple aspects. Ex-
perimental results show that without using the MAE model, our method can achieve or even surpass
the performance of the original DQ, providing an efficient and practical solution for core set selec-
tion and data compression.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Datasets: We conducted experiments on multiple datasets, including ImageNet-30 (a 30-class sub-
set of ImageNet), ImageNette (a 10-class subset of ImageNet), CUB-200-2011, and Food-101.
These datasets cover a wide range of image classification tasks, enabling us to comprehensively
evaluate the performance of our proposed method. In addition, we also conducted experiments on
Tiny-ImageNet to further validate the effectiveness of our proposed method compared to the state-
of-the-art methods.

Implementation Details: We implement our proposed DQ_v2 method using PyTorch and train the
models on NVIDIA V100 GPUs. We use the randomly initialized ResNet-50 model as the backbone
for Tobias data augmentation. This model is pre-trained on the corresponding full dataset with 10
epochs, and then be used as the feature extractor for selecting the dataset bins. The number of the
dataset bins is set to 10 as default. We also use the timm library (Wightman, [2019) for model training
in all datasets. We train the ResNet-50 modeﬂ for 200 epochs for all experiments with a batch size
of 128 and an initial learning rate of 0.1 with a one-cycle learning rate scheduler.

4.2 MAIN RESULTS

Stability Analysis. As discussed before, the pixel quantization step plays an important role in
reducing the variance of the trained model. Therefore, in this part, we first investigate the stability
of our proposed DQ_v2 method compared to the original DQ method. See Figure ] (a).

First, we observe that removing the MAE model from the original DQ method significantly increases
the variance in the trained model, while the performance also has a significant drop (from 72.14% to
69.69% in ImageNette dataset). Then, compared to the original DQ method, our proposed DQ_v2
method can achieve a comparable variance, while achieving a higher accuracy of 73.80%. This
result indicates that our proposed method can effectively address the stability issue of the original
DQ method while maintaining high performance. Furthermore, we conduct experiments on two
other datasets, such as CUB-200-2011 and Food-101, and the results show that our proposed method
can achieve lower variance and higher accuracy compared to the original DQ method. For instance,
on CUB-200-2011 dataset, our proposed method achieves a variance of 0.233, significantly lower
than DQ’s 0.763. In the Food-101 dataset, our proposed method achieves a variance of 0.0745, also
lower than DQ’s 0.197.

These results underscore the effectiveness of our method in addressing the instability issue of DQ
when the pre-trained model is removed. We attribute DQ_v2’s stability primarily to the following

2If not otherwise specified, the accuracy we report is always using ResNet-50 as the backbone model.
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Figure 4: Main results of our proposed method. The subfigure (a) shows the stability analysis of our
proposed method compared to the original DQ method. The subfigure (b) shows the performance
comparison of our proposed method with the original DQ method. We report the mean accuracy
(%) and variance in five runs with different seeds.

Table 1: The results of the storage cost. We report the storage cost of the original dataset, the dataset
after dropping the less informative region, the dataset after reconstruction, and the dataset generated
by Tobias method.
Method Original Dropping MAE Reconstruction  Ours
(GB) 3.35 0.29 0.30 1.83

factors: 1) By employing semantically-aware background replacement, it provides more diverse
training samples, reducing dependence on specific background features while expanding the sample
space and mitigating the risk of overfitting. 2) Maintaining a balance of original images and Tobias-
augmented images in the dataset preserves the authenticity of the original data while introducing
sufficient diversity.

Comparison with original DQ. In this part, we mainly evaluate the performance of our DQ_v2
method compared to the original DQ method. Specifically, the results on four representative datasets
are shown in Figure El (b). The results show that our method achieves comparable or even better
performance compared to the original DQ method. For example, our method achieves an average
performance gain of 1.57% over four evaluation datasets. especially in the Food-101 dataset, our
method achieves a significant performance improvement of 3.98% compared to the original DQ
method. Moreover, based on the subset selected by using ResNet-50, we train a ViT model and
evaluate the performance on ImageNette. The accuracy of DQ method is 55.30%=+2.73%, and ours
s 57.67%=+1.20%. The results further verify the effectiveness of our proposed method.

In addition, we compare the storage cost of our proposed method with the original DQ method. The
DQ method utilizes the patch drop scheme and MAE reconstruction, which claims to reduce the
storage cost of the dataset. The results are reported in the Table [T} Therefore, we can see that the
pixel Quantization step indeed helps to reduce the storage cost of the training dataset. Although our
method needs more storage cost, but we don’t need to rely on the pre-trained MAE model, which
can reduce the computational complexity and improve the training efficiency. Thus, how to further
reduce the storage cost of the training dataset while maintaining the performance of the model is an
interesting direction for future research.

Comparison with State-of-the-arts.

We mainly compare our proposed DQ_V2 method with the original DQ method and other state-of-

the-art coreset selection methods, including random selection (Guo et al.,2022), GraNd (Paul et al.|
2021), Grad-Match (Killamsetty et al.l 2021), GC 2021), etc. Following the default

setting in previous work (Zhou et al.l 2023} |Guo et al., [2022), we conduct the experiments on the
Tiny-ImageNet dataset. We used ResNet-50 as the backbone model for all experiments. We vary the
data keep ratio from 0.1 to 0.4 and report the performance of the trained models in the test set. The
results are shown in the following table: The results show that, the proposed method can achieve the
best performance compared to other state-of-the-art methods, especially when the data keep ratio
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Table 2: Performance comparison with state-of-the-art methods Tiny-ImageNet datasets. We com-
pare our method with five representative methods. All results of the compared methods refer to

(Zhao et al, 2029

Ratio/Method Random GradNd GradMatch  GC DQ DQ._V2

10% 50.19 42.14 43.23 5271 52777  53.12
20% 52.50 44.39 46.69 53.18 55.16  56.77
30% 58.52 43.65 49.10 5375 59.05 61.04
40% 61.45 48.75 51.92 56.00 6224 63.01
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Figure 5: Impact of Tobias size on DQ_v2 performance

is relatively low. While our results are not always competitive when compared to those in (Zhao
2024)), we believe that our proposed pipeline can be integrated into this method, where the
performance can be further improved.

4.3 ABLATION STUDY

In this subsection, we mainly study our method by changing one component while keeping the others
fixed. We study the impact of Tobias augmentation, bin split strategy, and mixing ratio between
original images and Tobias-generated images on the performance of our proposed method.

Impact of Tobias Size. First, we investigate the impact of the Tobias size that is a key parameter in
the Tobias data augmentation strategy. The Tobias size determines the granularity of the image patch
division. A higher value indicates a finer division, which better preserves the semantic structure. See
Figure [5a as an example. We evaluated five different Tobias sizes on the ImageNette dataset, and
the results are shown in Figure [5b]

The results show that the Tobias size has a significant impact on the performance of our proposed
method. First, we observe that smaller Tobias sizes (e.g., 4 x4, 8x8) lead to performance degrada-
tion, possibly due to insufficient granularity resulting in incorrect segmentation of the main subject.
Second, as Tobias size increases, performance generally shows an upward trend, reaching optimal
at 40x40. Finally, larger Tobias sizes (e.g., 32x32, 40x40) not only improve average accuracy
but also reduce variance, indicating more stable performance. This phenomenon may stem from
more detailed background replacement almost eliminating semantic information in the background,
allowing the model to better focus on foreground features while reducing dependence on and over-
fitting to specific backgrounds. Based on these results, we recommend using a Tobias size of 40x40
for optimal performance and stability.

Impact of Bin Division Algorithms.

Then, we analyze the impact of different bin split algorithms on the performance of our proposed
method. Similarly to (Zhou et al [2023)), we compare the performance of our method with four
different group split strategies, including the GraphCut, Random, Uniform, and EarlyTrain methods,
in the ImageNet-30 dataset. The results are shown in Table 3] The results show that the GraphCut
method achieves the best performance compared to other bin split methods. This indicates that the
GraphCut method can effectively select the most representative samples from the dataset, which can
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Table 3: Performance comparison of different bin split algorithms on ImageNet-30

Method ImageNet-30 Accuracy
DQ_v2 with GraphCut (Iyer et al., [2021])) 70.61%
DQ_v2 with EarlyTrain (Paul et al.|[2021) 70.27%
DQ_v2 with Random bin generation 70.29%
DQ_v2 with Uniform bin generation 70.20%
2 71.0 0.61% 70.76% g e 1 g 70.0 69.71%

68.5
100% T + 100% O 50% T + 50% O 50% T + 100% O 100% T +50%0 75%T +75%0 50%T + 100% O 75% T +75% 0 100% T + 50% O 50% T + 100% O

Figure 6: Performance with different T and O ratios in ImageNet-30 (left), CUB-200 (center), and
Food-101 (right). We report the mean accuracy (%) and variance in five runs with different seeds.

improve the performance of the trained model. Moreover, the GraphCut method also achieves the
lowest variance compared to other methods, which indicates that the GraphCut method can provide
more stable performance under different random seeds. We also observe similar results on other
datasets. For example, on the Imagenette dataset, the GraphCut method achieves an accuracy of
72.136% =+ 1.092%, while the Uniform method achieves 71.46% + 3.759%.

In summary, the GraphCut algorithm not only consistently outperforms Random and Uniform meth-
ods across different datasets but also significantly reduces the variance between different random
seeds, indicating more stable performance. Therefore, in practice, we recommend using the Graph-
Cut method to achieve optimal performance and stability.

Impact of Mixing Ratio. Finally, we investigate the impact of the mixing ratio between the original
images and Tobias-generated images on the performance of our proposed method. Since we do not
need to rely on the pre-trained MAE model, we can simply mix Tobias data and original images to
improve the diversity and quality of the data. Thus, we evaluated the performance of our proposed
method with different mixing ratios in the ImageNet-30, CUB-200, and Food-101 datasets. The re-
sults are shown in Figure[§] We observe that performance consistently achieves the best score when
we use all original images together with 50% Tobias-generated images. However, this strategy ac-
tually increases the scale of the training dataset. To balance performance and efficiency, we suggest
splitting the training dataset into more bins, each maintaining the same scale as that in DQ’s setting,
to be used for training the model.

5 CONCLUSION

In this paper, we introduced DQ_V2, an enhanced version of the Dataset Quantization (DQ) method,
which integrates the Tobias data augmentation strategy to address the limitations of the original DQ
method. Our proposed framework eliminates the dependency on large pre-trained models, thereby
reducing computational complexity and improving training efficiency. Through extensive experi-
ments on multiple datasets, we demonstrated that DQ_V2 achieves superior performance and stabil-
ity compared to the original DQ method and other state-of-the-art coreset selection techniques.

Our findings suggest that intelligent data augmentation and selection strategies can significantly
enhance model performance without relying on extensive pre-training. Future research directions
include exploring more advanced semantic-aware data augmentation techniques, extending DQ_V2
to other visual tasks, and developing adaptive parameter adjustment strategies to further improve its
flexibility and applicability.
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A THE TOBIAS DATA AUGMENTATION STRATEGY

The Tobias data augmentation strategy includes the following steps:

1. Mask Generation: Use a randomly initialized or lightweight pre-trained CNN to generate
masks for each image, identifying the main object regions.

2. Image Segmentation: Divide the image into fixed-size patches.

3. Background Replacement: Based on the generated mask, the patches are retained in the
main object region and the background patches are replaced with those of other images.

B DIiSCUSSION AND FUTURE PROSPECTS

Based on our experiments and analysis, this paper summarizes the following key findings.

* No reliance on large pre-trained models: DQ_v2 achieves comparable or superior per-
formance to DQ without relying on large pre-trained models.

* Computational resources and implementation simplicity: DQ_v2 requires fewer com-
putational resources and is simpler to implement.

* Excellent performance across multiple datasets and scales: DQ_v2 performs well on
various datasets with different image sizes.

* Significant improvement in training stability: DQ_v2 significantly improves the stability
of model training, reducing performance variations between different random seeds.

* Good complementarity with data augmentation: DQ_v2 demonstrates good comple-
mentarity with other data augmentation methods (e.g., Mixup).

Based on these observations, we offer insight into several important questions, with the aim of
inspiring the community to rethink core set selection and data augmentation methods.

B.1 ARE LARGE PRE-TRAINED MODELS NECESSARY?

No. The prior knowledge provided by large pre-trained models is not absolutely necessary. Our
experiments show that DQ_v2 can achieve or even surpass DQ’s performance without using large
pre-trained models like MAE. As mentioned in (He et al., |2019), the prior knowledge from pre-
trained models does not necessarily improve model performance on target data. Through simple
processing of target data, DQ_v2 can achieve effects similar to using expensive pre-trained large
models.

B.2 IS THE DQ METHOD USEFUL?

Yes. DQ, as a core set selection method, provides a crucial auxiliary tool for the computer vision
community. Not only do it saves computational resources required for large-scale data, but also it
shortens research cycles, making it easier to obtain encouraging results. We believe these advantages
will continue to make DQ play an important role in computer vision research. However, DQ_v2’s
success indicates that there is still room for further improvement in efficiency and performance
through smarter data processing methods.

B.3 DO WE NEED BIG DATA?

Yes, but the cost of data collection and cleaning needs to be balanced. Although large-scale datasets
have advantages in some tasks, general large-scale classification pre-training sets are not always
ideal, for example, the cost of collecting ImageNet is largely overlooked. If the benefits of large-
scale classification-level pre-training show diminishing returns, collecting data in the target domain
might be more efficient. The success of DQ_v2 demonstrates that existing data can be used more
effectively through intelligent data augmentation and selection strategies to improve model perfor-
mance.
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B.4 FUTURE PROSPECTS

DQ_v2 opens new research directions in core set selection and data augmentation. Future research
may include the following.

» Exploring more precise and intelligent semantic-aware data augmentation strategies: De-
veloping more advanced data augmentation methods to further enhance model generaliza-
tion ability and performance.

» Extending DQ_v2 to more visual tasks: For example, object detection and semantic seg-
mentation, to verify its effectiveness in more complex tasks.

* Developing adaptive parameter adjustment strategies: Enabling DQ_v2 to better adapt to
different datasets and task requirements, achieving higher flexibility and applicability.

C EVALUATION ON DATA AUGMENTATION METHODS.

Since we leverage the Tobias data augmentation strategy to simulate the pixel quantization step, we
further investigate the effects of data augmentation methods on the performance of our proposed
method. During the final model training, we further add the Mixup and CutMix data augmentation
methods to our pipeline, and evaluate the performance of the trained model on the ImageNet-30
dataset.

Method DQ.v2 +Mixup +CutMix +Both
Accuracy  70.76 73.08 71.11 73.87

As can be seen in the table, traditional data augmentation methods (such as Mixup and CutMix)
significantly improve the performance. This indicates that our method is not mutually exclusive
with these methods, but can work synergistically.

These observations reveal the following points:

* Complementarity: Ours provides a unique form of data augmentation through semanti-
cally aware background replacement, which complements well with methods like Mixup
(linear interpolation) or CutMix (region replacement). This implies that our method can
work in conjunction with other data augmentation techniques to further enhance model
performance.

* Intrinsic Regularization: Ours may already have achieved a degree of data augmentation
effect, resulting in limited additional performance gains when combined with other meth-
ods. This suggests that ours has inherent advantages in improving model generalization,
reducing dependence on other regularization methods.

D EVALUATION OF DIFFERENT BACKBONE.

In the proposed method, we use ResNet-50 as the backbone model for the Tobias data enhancement
strategy and also split / select the data sets. So, we evaluated the performance of our proposed
method with different backbone models, including ResNet-50, ViT-tiny, RepVGG, and Inception
V3. The results are shown in the following table: These results show a similar tendency to the

Table 4: Performance comparison of different backbone models on ImageNete

Method Accuracy
DQ_v2 with ResNet-50 73.80% + 1.54
DQ_v2 with ViT-tiny 69.89% + 0.16

DQ_v2 with RepVGG 69.95% + 1.17
DQ_v2 with Inception V3 70.57% =+ 0.27

original Tobias work in (Cao & Wu,|2022)), that the ResNet-50 model achieves the best performance
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compared to other backbone models. However, we also observe an intriguing phenomenon that the
ViT-tiny and Inception models can achieve a lower variance compared to the ResNet-50 model. This
indicates that the backbone model can also affect the stability of the trained model. Although the
current results are not good enough, we believe that the backbone model can be further optimized to
improve the performance and stability of the trained model.
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