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ABSTRACT

We investigate some previously unexplored (or under-explored) computational
aspects of total variation (TV) distance. First, we give a simple deterministic
polynomial-time algorithm for checking equivalence between mixtures of product
distributions, over arbitrary alphabets. This corresponds to a special case, whereby
the TV distance between the two distributions is zero. Second, we prove that unless
NP ⊆ RP it is impossible to efficiently estimate the TV distance between arbitrary
Ising models, even in a bounded-error randomized setting.

1 INTRODUCTION

The total variation (TV) distance between distributions P and Q over a common sample space D,
denoted by dTV(P,Q), is defined as

dTV(P,Q) := max
S⊆D

(P (S)−Q(S)) =
1

2

∑
x∈D

|P (x)−Q(x)| =
∑
x∈D

max(0, P (x)−Q(x)) .

The TV distance satisfies many basic properties which makes it a versatile and fundamental measure
for quantifying the dissimilarity between probability distributions. First, it has an explicit probabilistic
interpretation: The TV distance between two distributions is the maximum gap between the proba-
bilities assigned to a single event by the two distributions. Second, it satisfies many mathematically
desirable properties: It is bounded and lies in [0, 1], it is a metric, and it is invariant with respect to bi-
jections. Third, it satisfies some interesting composability property. Given f(g1, g2, . . . , gn), suppose
we replace g2 with g′2 such that dTV(g2, g

′
2) ≤ ε. Then the TV distance between f(g1, g2, . . . , gn)

and f(g1, g
′
2, . . . , gn) is at most ε. Because of these reasons, the total variation distance is a central

distance measure employed in a wide range of areas including probability and statistics Mitzen-
macher & Upfal (2005), machine learning Shalev-Shwartz & Ben-David (2014), and information
theory Cover & Thomas (2006), cryptography Stinson (1995), data privacy Dwork (2006), and
pseudorandomness Vadhan (2012).

Lately, the computational aspects of TV distance have attracted a lot of attention. Sahai & Vadhan
(2003) established, in a seminal work, that additively approximating the TV distance between two
distributions that are samplable by Boolean circuits is hard for SZK (Statistical Zero Knowledge).
The complexity class SZK is fundamental to cryptography and is believed to be computationally hard.
Subsequent works captured variations of this theme Goldreich et al. (1999); Malka (2015); Dixon
et al. (2020): For example, Goldreich et al. (1999) showed that the problem of deciding whether a
distribution samplable by a Boolean circuit is close or far from the uniform distribution is complete
for NISZK (Non-Interactive Statistical Zero Knowledge). Moreover, Cortes et al. (2007); Lyngsø
& Pedersen (2002); Kiefer (2018) showed that it is undecidable to check whether the TV distance
between two hidden Markov models is greater than a threshold or not, and that it is #P-hard to
additively approximate it. Finally, Bhattacharyya et al. (2023) showed that (a) exactly computing the
TV distance between product distributions is #P-complete, and (b) multiplicatively approximating
the TV distance between Bayes nets is NP-hard.

On an algorithmic note, Bhattacharyya et al. (2020) designed efficient algorithms to additively ap-
proximate the TV distance between distributions efficiently samplable and efficiently computable
(including the case of ferromagnetic Ising models). In particular, they designed efficient algorithms
for additively approximating the TV distance of structured high dimensional distributions such
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as Bayesian networks, Ising models, and multivariate Gaussians. In a similar vein, Pote & Meel
(2021) studied a related property testing variant of TV distance for distributions encoded by circuits.
Multiplicative approximation of TV distance has received less attention compared to additive ap-
proximation. Recently, Bhattacharyya et al. (2023) gave an FPTAS for estimating the TV distance
between an arbitrary product distribution and a product distribution with a bounded number of distinct
marginals. Feng et al. (2023) designed an FPRAS for multiplicatively approximating the TV distance
between two arbitrary product distributions and Feng et al. (2024) gave an FPTAS for the same task.
Finally, Bhattacharyya et al. (2024) gave an FPRAS for estimating the TV distance between Bayes
nets of small treewidth.

In this paper we address some previously unexplored (or under-explored) computational aspects of
total variation distance relating to mixtures of product distributions and Ising models.

1.1 EQUIVALENCE CHECKING FOR MIXTURES OF PRODUCT DISTRIBUTIONS

Mixtures of product distributions constitute a natural and important class of distributions that have
been studied in the mathematics and computer science literature. For instance, it is a standard
observation that any distribution can be described by some (possibly large) mixture of product
distributions (see Observation 9 in Appendix A).

Freund & Mansour (1999) gave an efficient algorithm for learning a mixture of two product distribu-
tions over the Boolean domain. As part of their analysis, they showed that given two mixtures of
two product distributions, their KL divergence can be upper bounded by that of the components and
a certain distance between the mixture coefficients. However, this upper bound does not lead to an
equivalence checking algorithm.

A related problem in machine learning is source identification, whereby one is asked to identify the
source parameters of a distribution. Gordon et al. (2021); Gordon & Schulman (2022); Gordon et al.
(2023) give algorithms for source identification of a mixture of k product distributions on n bits,
when given as input approximate values of multilinear moments.

We focus on the equivalence checking problem regarding mixtures of product distributions. Note that
while it is easy to check whether two product distributions are equivalent, that is, by checking whether
their respective Bernoulli parameters are equal, it is not clear how to do so for the case of mixtures of
product distributions. This is so, because there are mixtures of product distributions that are equal (as
distributions) but different sets of Bernoulli parameters describe them. For example, consider the case
where we have two mixtures over one bit, namely P = 1 ·P1+0 ·P2 and Q = 1

2 ·Q1+
1
2 ·Q2, where

P1 = P2 = Bern( 12 ) while Q1 = Bern( 13 ) and Q2 = Bern( 23 ). In this case, P = Q = Bern( 12 ),
but the parameters of P and Q are different.

We present a simple deterministic polynomial-time algorithm for checking equivalence between
mixtures of product distributions. Let us first formally define mixtures of product distributions. Let
w1, . . . , wk be real numbers (weights) such that 0 ≤ wi ≤ 1 for all 1 ≤ i ≤ k,

∑k
i=1 wi = 1, and

P1, . . . , Pk are n-dimensional product distributions over an alphabet Σ. The distribution P specified
by the tuple (w1, . . . , wk, P1, . . . , Pk) is a mixture of products if for all x ∈ Σn it is the case that
P (x) =

∑k
i=1 wiPi(x). For a distribution P , we denote by P≤i its marginal on the first i variables.

We may now state our first main result.

Theorem 1. There is a deterministic algorithm E such that, given two mixtures of product distri-
butions P and Q, specified by (w1, . . . , wk, P1, . . . , Pk) and (v1, . . . , vk, Q1, . . . , Qk), respectively,
decides whether P = Q or not. Moreover, if P ̸= Q, then E outputs some x ∈ Σi (with i ≤ n) such
that P≤i(x) ̸= Q≤i(x). The running time of E is O(nk4|Σ|4).

(Note that the algorithm outlined in Theorem 1 has input size Ω(kn |Σ|).) The primary conceptual
contribution of our work is a connection between equivalence checking for mixtures of distributions
and basis construction over appropriately chosen vector space. The connection lends itself to a
construction that makes the algorithm as well as proof accessible to undergraduates.
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1.2 HARDNESS OF APPROXIMATING TOTAL VARIATION DISTANCE BETWEEN ISING MODELS

The Ising model (Ising, 1925; Lenz, 1920), originally developed to describe ferromagnetism in
statistical mechanics, serves as a cornerstone in the study of phase transitions and critical phenomena.
It consists of discrete variables, known as spins, which can take values of either +1 or −1. These
spins are arranged on a lattice, and their interactions with nearest neighbors lead to a rich tapestry of
behavior, including spontaneous magnetization and phase transitions at critical temperatures.

One of the most fascinating aspects of the Ising model is its ability to illustrate complex systems using
simple rules. For instance, in 2D, it exhibits a second-order phase transition at a critical temperature,
where the system changes from a disordered state to an ordered state as temperature decreases. This
model has been extensively studied, leading to profound insights not only in physics but also in fields
such as biology, sociology, and computer science. For more information the reader is invited to check
the survey written by Cipra (1987).

On another note, the computational study of the Ising model has become increasingly relevant. With
its relatively simple structure—interacting binary spins on a lattice, the Ising model serves as an ideal
platform for exploring computational techniques ranging from Monte Carlo simulations to mean-field
approximations. Monte Carlo methods, in particular, are widely used to investigate thermodynamic
properties of the Ising model, as they allow for efficient sampling of spin configurations at various
temperatures, enabling the computation of quantities like magnetization and susceptibility.

Some notable algorithmic results along these lines are the ones by Kasteleyn (1963) and Fisher
(1966), whereby they showed that the evaluation of the partition function for planar Ising models
can be reduced to some appropriate determinant computations. Moreover, Jerrum & Sinclair (1993)
devised an efficient Monte Carlo approximation algorithm for estimating the partition function of
arbitrary ferromagnetic (whereby all wi,j’s are positive) Ising models.

On the other hand, there are some works pertaining to the intractability of computing various quantities
of interest regarding Ising models (Welsh, 1993), such as the partition function outlined above. For
example, Jerrum & Sinclair (1993) show that unless NP = RP, there is no fully polynomial-time
randomized approximation scheme (FPRAS) to estimate the partition function of arbitrary Ising
models. Moreover, Istrail (2000) proves that computing the partition function (for various kinds of
Ising models) is NP-complete.

The second part of our work falls in this latter category. Let us first fix some notation. We focus on
Ising models P such that for all x ∈ {−1, 1}n it is the case that the probability that the underlying
system of spins assumes the configuration x is

P (x) =
1

Z
exp

∑
i,j

wi,jxixj +
∑
i

hixi

 ∝ exp

∑
i,j

wi,jxixj +
∑
i

hixi

 ,

whereby Z :=
∑

y exp
(∑

i,j wi,jyiyj +
∑

i hiyi

)
is the partition function of P , and {wi,j}i,j and

{hi}i are the parameters of the system.

We prove that it is hard to estimate the TV distance between Ising models under the very mild
complexity-theoretic assumption NP ̸⊆ RP, which states that Boolean formula satisfiability (SAT)
does not admit any one-sided-error randomized polynomial-time algorithm, that is, a randomized
polynomial-time algorithm that may output a false positive answer with small probability (Arora &
Barak, 2009).
Theorem 2. If NP ̸⊆ RP, then there is no FPRAS that estimates the TV distance between any two
Ising models.

Our proof draws on the hardness result of Jerrum & Sinclair (1993), and shows that the partition
function of Ising models can be reduced to the TV distance between Ising models, by a simple efficient
approximation preserving reduction. The main ingredients of this reduction are as follows. First,
we prove that estimating the partition function of any Ising model reduces to estimating any atomic
marginal the form PrP [xk = ±1] for any variable xk and any Ising model P (see Proposition 6).
Then we show that estimating any atomic marginal the form PrP [xk = ±1] for any variable xk and
any Ising model P , can be reduced to estimating the TV distance between the Ising models P,Q,
whereby Q depends on P (see Proposition 7).
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1.3 PAPER ORGANIZATION

We give some preliminaries in Section 2. We prove Theorem 1 in Section 3 and Theorem 2 in
Section 4. We conclude in Section 5 with some interesting open problems. Observation 9 is proved
in Appendix A and Proposition 6 is proved in Appendix B.

2 PRELIMINARIES

We require the following folklore result, which is an application of Gaussian elimination.
Proposition 3. There is a deterministic algorithm G that gets as input a set of vectors V , and outputs
a maximum-size subset S ⊆ V of linearly independent vectors. The running time of G is O

(
|V |4

)
.

An n-dimensional product distribution R over an alphabet Σ is described by the n |Σ| parameters{
Pr
R
[Xi = y]

}
i∈[n],
y∈Σ

so that R(x) =

n∏
i=1

Pr
R
[Xi = xi] for all x ∈ Σn.

For n-dimensional product distribution R over an alphabet Σ, we denote its marginal over the first
1 ≤ j ≤ n coordinates by R≤j . Note that for any x ∈ Σj we have R≤j(x) =

∏j
i=1 PrR[Xi = xi] .

We shall also require the following notion of approximation algorithm.
Definition 4. A function f : {0, 1}∗ → R admits a fully polynomial-time randomized approximation
scheme (FPRAS) if there is a randomized algorithm A such that for every input x (of length n) and
parameters ε, δ > 0, the algorithm A outputs a ε-multiplicative approximation of f(x), i.e., a value
that lies in the interval [f(x)/(1 + ε), (1 + ε)f(x)], with probability at least 1− δ. The running time
of A is polynomial in n, 1/ε, 1/δ.

3 EQUIVALENCE CHECKING FOR MIXTURES OF PRODUCT DISTRIBUTIONS

Let us now prove Theorem 1. First, observe that P = Q if and only if P≤j = Q≤j for all 1 ≤ j ≤ n.
This is so, since if P = Q, then every marginal of P matches the respective marginal of Q (in
symbols, P≤j = Q≤j for all 1 ≤ j ≤ n). Otherwise, there would be some 1 ≤ j ≤ n and y ∈ Σj

such that P≤j(y) ̸= Q≤j(y). The latter would then establish the existence of an x := (y, z) ∈ Σn

(for some z ∈ Σn−j) such that P (x) ̸= Q(x). On the other hand, if P≤j = Q≤j for all 1 ≤ j ≤ n,
then P≤n = Q≤n, which in particular implies that P = Q.

Note that the condition P≤j = Q≤j for all 1 ≤ j ≤ n is equivalent, by the definitions of P and Q, to
the condition

∑k
i=1 wiP

≤j
i =

∑k
i=1 viQ

≤j
i for all 1 ≤ j ≤ n. Thus, if P ̸= Q, then there is some

1 ≤ j ≤ n so that
∑k

i=1 wiP
≤j
i ̸=

∑k
i=1 viQ

≤j
i .

We will use an inductive argument on 1 ≤ j ≤ n to show that these conditions can be efficiently
checked (in either case).

Base Case. For j = 1, we can efficiently check whether it is the case that
k∑

i=1

wiP
≤1
i =

k∑
i=1

viQ
≤1
i .

This is done by checking for all x ∈ Σ that
k∑

i=1

wi Pr
Pi

[X1 = x]−
k∑

i=1

vi Pr
Qi

[X1 = x] = 0.

If these tests pass, then the algorithm proceeds with the inductive argument outlined below (otherwise,
it outputs x). Towards this, we will now find a basis B1 for the set of coefficient vectors of the
equations {

k∑
i=1

wi Pr
Pi

[X1 = x] zi −
k∑

i=1

vi Pr
Qi

[X1 = x] zk+i = 0

}
x∈Σ

,

4
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over variables z1, . . . , z2k. Note that the size of B1 is at most min(2k, |Σ|) ≤ 2k. We can find B1 as
follows. We appeal to Proposition 3 and run the algorithm G outlined there on the set of vectors{(

w1 Pr
P1

[X1 = x] , . . . , wk Pr
Pk

[X1 = x] ,−v1 Pr
Q1

[X1 = x] , . . . ,−vk Pr
Qk

[X1 = x]

)}
x∈Σ

(in time O
(
|Σ|4

)
). Then, we define B1 to be the set of independent vectors being output by G.

Induction Hypothesis. Assume that for a j ≥ 1 it is the case that
k∑

i=1

wiP
≤j
i =

k∑
i=1

viQ
≤j
i ,

and we have a basis Bj for the set of coefficient vectors of the following equations{
k∑

i=1

wiP
≤j
i (x) zi −

k∑
i=1

viQ
≤j
i (x) zk+i = 0

}
x∈Σj

over variables z1, . . . , z2k. Note that Bj is of size at most min
(
2k, |Σ|j

)
≤ 2k.

Induction Step. We will establish that we can check whether P and Q agree up to coordinate j + 1
and compute a basis Bj+1 for the respective set of coefficient vectors of the equations that capture
this equivalence.

To see whether P and Q agree up to coordinate j + 1, one needs to check that
k∑

i=1

wiP
≤j
i (x)Pr

Pi

[Xj+1 = y]−
k∑

i=1

viQ
≤j
i (x)Pr

Qi

[Xj+1 = y] = 0

for all x ∈ Σj and y ∈ Σ. A crucial observation (that follows from the inductive hypothesis) is that
we only need to check whether these equations hold for the assignments x that correspond to vectors
in Bj , and the values y ∈ Σ. (Note that each basis vector b ∈ Bj can be specified by an assignment
xb ∈ Σj . This follows from the way these basis vectors are constructed. See below, the discussion
after Claim 5.) If any of these tests fails, then the algorithm outputs (x, y); else, it continues as
follows.

To proceed with the induction, it would suffice to show how to construct a basis Bj+1 for the set of
coefficient vectors of the following equations over variables z1, . . . , z2k, namely{

k∑
i=1

wiP
≤j
i (x)Pr

Pi

[Xj+1 = y] zi −
k∑

i=1

viQ
≤j
i (x)Pr

Qi

[Xj+1 = y] zk+i = 0

}
x∈Σj ,
y∈Σ

.

Let Bj = {b1 = (b1,1, . . . , b1,2k) , . . . , bm = (bm,1, . . . , bm,2k)} whereby m ≤ 2k and C :=⋃m
i=1 Ci is such that

C1 :=

{(
b1,1 Pr

P1

[Xj+1 = y] , . . . , b1,k Pr
Pk

[Xj+1 = y] ,

b1,k+1 Pr
Q1

[Xj+1 = y] , . . . , b1,2k Pr
Qk

[Xj+1 = y]

)}
y∈Σ

,

...

Cm :=

{(
bm,1 Pr

P1

[Xj+1 = y] , . . . , bm,k Pr
Pk

[Xj+1 = y] ,

bm,k+1 Pr
Q1

[Xj+1 = y] , . . . , bm,2k Pr
Qk

[Xj+1 = y]

)}
y∈Σ

.

We require the following claim. Below, we denote the dot product of vectors a, b ∈ Rs by ⟨a, b⟩.
That is, ⟨a, b⟩ =

∑s
i=1 aibi.

5
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Claim 5. It is the case that Bj+1 ⊆ C.

Claim 5 helps explain how, for any vector b ∈ Bj+1, one may extract an assignment xb ∈ Σj+1 that
corresponds to b. This is done by keeping track of the Bernoulli parameters that appear in b: There is
exactly one such parameter for each variable, and it refers to a symbol in Σ.

Proof of Claim 5. Let y ∈ Σ. We have that
k∑

i=1

wiP
≤j+1
i (x, y) zi −

k∑
i=1

viQ
≤j+1
i (x, y) zk+i

=

k∑
i=1

wiP
≤j
i (x)Pr

Pi

[Xj+1 = y] zi −
k∑

i=1

viQ
≤j
i (x)Pr

Qi

[Xj+1 = y] zk+i.

Let z := (z1, . . . , z2k). By the inductive hypothesis, for any x ∈ Σj ,
k∑

i=1

wiP
≤j
i (x) zi −

k∑
i=1

viQ
≤j
i (x) zk+i

can be written as a linear combination of {⟨bℓ, z⟩}mℓ=1. Concretely, there exist d1, . . . , dm ∈ R such
that

k∑
i=1

wiP
≤j
i (x) zi −

k∑
i=1

viQ
≤j
i (x) zk+i =

m∑
ℓ=1

dℓ ⟨bℓ, z⟩ .

Since the corresponding coefficients of each zi must be equal between the LHS and the RHS of this
equation, we get that for all 1 ≤ i ≤ k,

wiP
≤j
i (x) =

m∑
ℓ=1

dℓ · bℓ,i and viQ
≤j
i (x) = −

m∑
ℓ=1

dℓ · bℓ,k+i (1)

for some d1, . . . , dm. Then it is straightforward to see that for every y ∈ Σ

k∑
i=1

wiP
≤j
i (x)Pr

Pi

[Xj+1 = y] zi −
k∑

i=1

viQ
≤j
i (x)Pr

Qi

[Xj+1 = y] zk+i =

m∑
ℓ=1

dℓ ⟨cℓ, z⟩ ,

whereby cℓ is the vector within the set Cℓ that corresponds to the setting where Xj+1 = y. To see
why this equation holds, we will consider the coefficients of each zi in either side of this equation and
show that they are equal. Let us consider the case where 1 ≤ i ≤ k. (The case where k+1 ≤ i ≤ 2k
is similar.) In the LHS, the coefficient of zi is equal to

wiP
≤j
i (x)Pr

Pi

[Xj+1 = y] =

m∑
ℓ=1

dℓ · bℓ,i ·Pr
Pi

[Xj+1 = y] ,

by Equation (1), while in the RHS it is equal to
m∑
ℓ=1

dℓ · cℓ,i =
m∑
ℓ=1

dℓ · bℓ,i ·Pr
Pi

[Xj+1 = y] ,

by the definition of cℓ. This shows that Bj+1 is a subset of C, and the proof is complete.

By Claim 5, we have that Bj+1 contains (at most) m |Σ| = O(k |Σ|) vectors. However, not all of
these O(k |Σ|) vectors are (necessarily) independent. By Proposition 3, we can find the (at most) 2k
independent vectors among the O(k |Σ|) vectors in time O

(
k4 |Σ|4

)
. These vectors constitute Bj+1.

This concludes the inductive description of our algorithm.

Running Time. Let T (n, k,Σ) denote the running time of this procedure, on mixtures of size k
over n variables that have alphabet Σ. We have the recurrence relation

T (n, k,Σ) ≤ T (n− 1, k,Σ) +O
(
k4 |Σ|4

)
,

which in particular yields T (n, k,Σ) = O
(
nk4 |Σ|4

)
.

6
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4 HARDNESS OF APPROXIMATING TOTAL VARIATION DISTANCE BETWEEN
ISING MODELS

In this section we prove Theorem 2.

4.1 REDUCING THE PARTITION FUNCTION TO ATOMIC MARGINALS

We first observe the following. The proof is standard and is given in Appendix B.
Proposition 6. If there is some FPRAS that estimates any atomic marginal of any Ising model P ,
namely PrP [xk = ±1] for any variable xk, then there is some FPRAS that estimates the partition
function of any Ising model.

4.2 REDUCING THE ATOMIC MARGINALS TO TV DISTANCE

We prove the following.
Proposition 7. If there is some FPRAS that estimates the TV distance between any two Ising
models, then there is some FPRAS that estimates any atomic marginal of any Ising model P , namely
PrP [xk = ±1] for any variable xk.

Proof. Assume that there is some FPRAS that estimates the TV distance between any two Ising
models. We will show that there is some FPRAS that estimates the atomic marginals of any Ising
model P , namely PrP [xk = ±1] for any variable xk. Let ε be the desired accuracy error of the
FPTAS that estimates the atomic marginals of any Ising model P .

Fix some Ising model P with parameters {wi,j}i,j and {hi}i. We shall first introduce a new dummy
variable x0. Let P0 be a new Ising model over x0, . . . , xn with parameters {wi,j}i,j and {hi}i so that
w0,i = 0 for all i > 0 and h0 → −∞ (that is, h0 is a small negative quantity which we will fix later).
Note that under these conditions x0 is independent from every other node x1, . . . , xn. Moreover,

Pr
P0

[x0 = 1] =
∑

x:x0=1

P0(x) =

∑
x:x0=1 exp

(∑
i,j wi,jxixj +

∑
i hixi

)
∑

x exp
(∑

i,j wi,jxixj +
∑

i hixi

)
=

∑
x:x0=1 exp

(∑
i,j wi,jxixj + h0x0 +

∑
i>0 hixi

)
∑

x exp
(∑

i,j wi,jxixj + h0x0 +
∑

i>0 hixi

)
=

∑
x:x0=1 exp

(∑
i,j wi,jxixj + h0 +

∑
i>0 hixi

)
∑

x exp
(∑

i,j wi,jxixj + h0x0 +
∑

i>0 hixi

)
=

exp(h0)
∑

x:x0=1 exp
(∑

i,j wi,jxixj +
∑

i>0 hixi

)
∑

x exp
(∑

i,j wi,jxixj + h0x0 +
∑

i>0 hixi

)
=

exp(h0)
∑

x exp
(∑

i,j wi,jxixj +
∑

i>0 hixi

)
∑

x exp
(∑

i,j wi,jxixj + h0x0 +
∑

i>0 hixi

) .

Let now us define E(x) := exp
(∑

i,j wi,jxixj +
∑

i>0 hixi

)
for all x. We have

Pr
P0

[x0 = 1] =
exp(h0)

∑
x E(x)

exp(h0)
∑

x:x0=1 E(x) + exp(−h0)
∑

x:x0=−1 E(x)

=
exp(h0)

∑
x E(x)

exp(h0)
∑

x E(x) + exp(−h0)
∑

x E(x)

=
exp(2h0)

∑
x E(x)

exp(2h0)
∑

x E(x) +
∑

x E(x)
=

exp(2h0)

exp(2h0) + 1
.
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We shall now define another Ising model Q over x0, . . . , xn as follows. The model Q has parameters{
w′

i,j

}
i,j

and {h′
i}i so that w′

i,j := wi,j if (i, j) ̸= (0, k) and w′
0,k := w0,k + δ for some δ > 1, and

h′
i = hi for all i. We have that for all x ∈ {−1, 1}n it is the case that

Q(x) ∝ exp

∑
i,j

w′
i,jxixj +

∑
i

h′
ixi


= exp

∑
i,j

w′
i,jxixj +

∑
i

hixi


= exp

(w0,k + δ)x0xk +
∑

(i,j)̸=(0,k)

wi,jxixj +
∑
i

hixi


= exp

w0,kx0xk + δx0xk +
∑

(i,j) ̸=(0,k)

wi,jxixj +
∑
i

hixi


= exp

δx0xk +
∑
i,j

wi,jxixj +
∑
i

hixi


= exp(δx0xk) exp

∑
i,j

wi,jxixj +
∑
i

hixi

 = exp(δx0xk)P0(x)ZP0
,

whereby ZP0 is the partition function of P0. If x0xk = 1, then Q(x) ∝ exp(δ)P0(x); else
Q(x) ∝ exp(−δ)P0(x). Moreover, for any x such that x0xk = 1,

Q(x) =
exp(δ)P0(x)ZP0

ZQ

=
exp(δ)P0(x)ZP0∑

x:x0xk=1 exp(δ)P0(x)ZP0
+

∑
x:x0xk=−1 exp(−δ)P0(x)ZP0

=
P0(x)∑

x:x0xk=1 P0(x) + exp(−2δ)
∑

x:x0xk=−1 P0(x)

≥ P0(x)∑
x:x0xk=1 P0(x) +

∑
x:x0xk=−1 P0(x)

=
P0(x)∑
x P0(x)

≥ P0(x)

where ZQ is the partition function of Q. Similarly, for any x such that x0xk = −1,

Q(x) =
exp(−δ)P0(x)ZP0

ZQ

=
exp(−δ)P0(x)ZP0∑

x:x0xk=1 exp(δ)P0(x)ZP0 +
∑

x:x0xk=−1 exp(−δ)P0(x)ZP0

=
P0(x)∑

x:x0xk=1 exp(2δ)P0(x) +
∑

x:x0xk=−1 P0(x)

<
P0(x)∑

x:x0xk=1 P0(x) +
∑

x:x0xk=−1 P0(x)
= P0(x).

That is, P0 (x) ≥ Q (x) if and only if x0xk = −1. We now have

dTV(P0, Q) =
∑
x

max(0, P0(x)−Q(x))

=
∑

x:P0(x)≥Q(x)

(P0(x)−Q(x))

=
∑

x:x0xk=−1

(P0(x)−Q(x)) =
∑

x:x0xk=−1

P0(x)−
∑

x:x0xk=−1

Q(x) .

8
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Moreover, ∑
x:x0xk=−1

P0(x) = Pr
P0

[x0xk = −1]

= Pr
P0

[x0 = 1, xk = −1] +Pr
P0

[x0 = −1, xk = 1]

= Pr
P0

[x0 = 1]Pr
P0

[xk = −1] +Pr
P0

[x0 = −1]Pr
P0

[xk = 1]

= Pr
P0

[x0 = 1]Pr
P
[xk = −1] +Pr

P0

[x0 = −1]Pr
P
[xk = 1]

= Pr
P0

[x0 = 1] +

(
1− 2Pr

P0

[x0 = 1]

)
Pr
P
[xk = 1]

=
exp(2h0)

exp(2h0) + 1
+

1− exp(2h0)

exp(2h0) + 1
Pr
P
[xk = 1] ,

whereby we have used the fact that PrP0
[xk = ±1] = PrP [xk = ±1]. That is,

dTV(P0, Q) =
exp(2h0)

exp(2h0) + 1
−

∑
x:x0xk=−1

Q(x) +
1− exp(2h0)

exp(2h0) + 1
Pr
P
[xk = 1] . (2)

Note that

0 ≤
∑

x:x0xk=−1

Q(x) =
∑

x:x0xk=−1

exp(−δ)P0(x)ZP0

ZQ
≤ exp(−δ)ZP0

ZQ
.

Intuitively, note that if (in the above) we set δ → ∞ and h0 → −∞, then dTV(P0, Q) =
PrP [xk = 1], and an approximation of dTV(P0, Q) implies an approximation of PrP [xk = 1].
Now we make this formal by finitely quantifying h0, δ.

It would suffice to show that∣∣∣dTV(P0, Q)−Pr
P
[xk = 1]

∣∣∣ ≤ ε

2
·Pr

P
[xk = 1] .

Then this could be combined with an ε
2 -multiplicative approximation of dTV(P0, Q) to yield the

desired ε-multiplicative approximation of PrP [xk = 1]. By Equation (2),∣∣∣dTV(P0, Q)−Pr
P
[xk = 1]

∣∣∣ ≤ exp (2h0)

exp (2h0) + 1
+

exp (−δ)ZP0

ZQ
+

exp (2h0)

exp (2h0) + 1
Pr
P
[xk = 1]

≤ 2 exp(2h0) +
exp (−δ)ZP0

ZQ
.

Let W := maxi,j |wi,j | and H := maxi |hi|. Then for any x,

Pr
P
[xk = 1] =

∑
x:xk=1

exp
(∑

i,j wi,jxixj +
∑

i hixi

)
∑

y exp
(∑

i,j wi,jyiyj +
∑

i hiyi

)
≥

2n−1 exp
(
−W (n+ 1)

2 − (n+ 1)H
)

2n+1 exp
(
W (n+ 1)

2
+ (n+ 1)H

)
=

exp
(
−W (n+ 1)

2 − (n+ 1)H
)

4 exp
(
W (n+ 1)

2
+ (n+ 1)H

) .

Choosing h0 and δ such that max(−h0, δ) = Ω(poly(n,H,W, 1/ε, ZP0/ZQ)) =
Ω(poly(n,H,W, 1/ε)) (note that ZP0/ZQ can be bounded by some polynomial in n,H,W ) we
may ensure the desired

exp
(
−W (n+ 1)

2 − (n+ 1)H
)

4 exp
(
W (n+ 1)

2
+ (n+ 1)H

) ≥ 2

ε

(
2 exp(2h0) +

exp (−δ)ZP0

ZQ

)
.
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An identical to the above argument can be employed to get a multiplicative approximation of
PrP [xk = −1] (by letting h0 → ∞ above).

Since dTV(P0, Q) multiplicatively approximates PrP [xk = ±1], this is an approximation preserving
reduction, as any multiplicative approximation of dTV(P0, Q) is a multiplicative approximation of
PrP [xk = ±1].

4.3 PROOF OF THEOREM 2

To prove Theorem 2 we shall require the following result of Jerrum & Sinclair (1993).

Theorem 8 (Jerrum & Sinclair (1993)). If NP ̸⊆ RP, then there is no FPRAS that estimates the
partition function of any Ising model.

We now turn to the proof of Theorem 2.

Proof of Theorem 2. By Proposition 6, if there exists some FPRAS that estimates any atomic marginal
of any Ising model, then there exists some FPRAS that estimates the partition function of any Ising
model. By Proposition 7, if there exists some FPRAS that estimates the TV distance between Ising
models, then there exists some FPRAS that estimates any atomic marginal of any Ising model. That
is, if there exists some FPRAS that estimates the TV distance between Ising models, then there exists
some FPRAS that estimates the partition function of any Ising model. By Theorem 8, if NP ̸⊆ RP,
then there is no FPRAS that estimates the partition function of any Ising model. That is, if NP ̸⊆ RP,
then there is no FPRAS that estimates the TV distance between Ising models. This concludes the
proof.

5 DISCUSSION

We have shown how to efficiently check whether two mixtures of product distributions are equivalent
or not. One might wonder whether our ideas can be applied to check equivalence between mixtures
of other, more expressive, kinds of distributions, such as Bayes nets.

Bayes nets constitute Pearl (1989) a probabilistic graphical model, with numerous applications in
machine learning and inference, that naturally generalize product distributions in that they allow for
dependencies among different variables. Bhattacharyya et al. (2023) showed that it is NP-hard to
decide whether the total variation distance between two Bayes nets P and Q is equal to 0 or not,
so one cannot hope to extend our methods to testing equivalence between mixtures of Bayes net
distributions (unless, of course, P = NP.) Can our ideas be extended to testing equivalence between
mixtures of some subclass of Bayes net distributions, such as Bayes net distributions whereby their
underlying graph is a tree or has small treewidth?

Our second result, namely the hardness of approximating the TV distance between Ising models, helps
us further understand the intricacies of the Ising model and the consequences of complexity-theoretic
conjectures such as NP ̸⊆ RP. Can we extend this complexity-theoretic hardness of approximation
to other classes of probability distributions, such as factor graphs or general undirected probabilistic
graphical models?
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A THE EXPRESSIBILITY OF MIXTURES OF PRODUCTS

We require the following observation.

Observation 9. Let D be a distribution over Σn for some alphabet Σ. Then for k := |Σn| there
exists a mixture of product distributions (w1, . . . , wk, P1, . . . , Pk) over Σn such that for all x ∈ Σn

it is the case that

D(x) =

k∑
i=1

wiPi(x) .

Proof. Let x1, . . . , xk be the elements of Σn. For all 1 ≤ i ≤ k, let Pi be a product distribution on
n variables such that Pi(y) = 1 if y = xi, otherwise, Pi(y) = 0. We can construct such a product
distribution Pi as follows. First, note that Pi(y) =

∏n
j=1 pi,j(yj), whereby pi,j(z) is the probability

that the j-th coordinate of Pi takes the value z ∈ Σ. Let xi = xi,1, . . . , xi,n, whereby xi,j ∈ Σ.
Then for all j define pi,j(z) := 1 if z = xi,j , otherwise, pi,j(z) := 0. Moreover, let wi := D(xi)

and note that
∑k

i=1 wi = 1. Then the desired equality follows by straightforward calculations.
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B PROOF OF PROPOSITION 6

Let us first assume that there is some FPRAS M that runs in time tM and estimates any atomic
marginal of any Ising model. We will prove there is some FPRAS that estimates the partition function
of any Ising model.

Let P1 be an Ising model over variables x1, . . . , xn with parameters {wi,j}i,j and {hi}i with
partition function Z1. We will show how to estimate Z1. To this end, let us define a new Ising
model P2 over variables x2, . . . , xn with parameters

{
w

(2)
i,j

}
i,j

and
{
h
(2)
i

}
i

so that w(2)
i,j := wi,j

and h
(2)
i := w1,i + hi for all 2 ≤ i < j ≤ n. Let Z2 be the partition function of P2. Let also

E1(x) := exp

∑
i,j

wi,jxixj +
∑
i

hixi

 , E2(x) := exp

∑
i,j ̸=1

w
(2)
i,j xixj +

∑
i ̸=1

h
(2)
i xi

 ,

for all x, and note that Z1 =
∑

x E1(x) and Z2 =
∑

x E2(x). We have

∑
x:x1=1

E1(x) =
∑

x:x1=1

exp

∑
i,j

wi,jxixj +
∑
i

hixi


=

∑
x:x1=1

exp

∑
i,j ̸=1

wi,jxixj +
∑
i

w1,ixi +
∑
i̸=1

hixi + h1


=

∑
x:x1=1

exp

∑
i,j ̸=1

wi,jxixj +
∑
i ̸=1

(w1,i + hi)xi + h1


=

∑
x:x1=1

exp

∑
i,j ̸=1

wi,jxixj +
∑
i ̸=1

(w1,i + hi)xi

 exp(h1)

= exp(h1)
∑

x:x1=1

exp

∑
i,j ̸=1

wi,jxixj +
∑
i ̸=1

(w1,i + hi)xi


= exp(h1)

∑
x:x1=1

exp

∑
i,j ̸=1

w
(2)
i,j xixj +

∑
i̸=1

h
(2)
i xi


= exp(h1)

∑
x

exp

∑
i,j ̸=1

w
(2)
i,j xixj +

∑
i̸=1

h
(2)
i xi


= exp(h1)

∑
x

E2(x) = exp(h1)Z2.

Moreover,

Pr
P1

[x1 = 1] =
1

Z1

∑
x:x1=1

E1(x) or Z1 =
1

PrP1
[x1 = 1]

∑
x:x1=1

E1(x) .

Combining the above, we have that

Z1 =
1

PrP1
[x1 = 1]

∑
x:x1=1

E1(x) = Z2
exp(h1)

PrP1
[x1 = 1]

.

This equality yields a natural recursive algorithm for computing Z1, whereby the computation of Z1

is reduced to the computation of Z2 by making use of the algorithm M that estimates the marginal
PrP1

[x1 = 1]. This continues until we reach in the recursion some Ising model Pn over the variable
xn. At this point the computation of Zn is trivial, as

Zn = exp
(
h(n)
n

)
+ exp

(
−h(n)

n

)
.
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We will now bound the approximation and confidence errors of this algorithm. Note that

Z1 = Z2
exp(h1)

PrP1
[x1 = 1]

= · · · = Zn

exp(h1) · exp
(
h
(2)
2

)
· . . . · exp

(
h
(n−1)
n−1

)
PrP1

[x1 = 1] ·PrP2
[x2 = 1] · . . . ·PrPn−1

[xn−1 = 1]

whereby each atomic marginal in the denominator is approximated with a (1 + ε0) ratio for ε0 := ε/n
by making use of M . This yields the desired approximation ratio of

(1 + ε0)
n−1 ≤ (1 + ε0)

n ≤ 1 + n · ε0 = 1 + n · ε
n
= 1 + ε.

We similarly argue for the confidence ratio δ0 := δ/n that yields the desired confidence ratio of 1− δ.
That is, the outlined reduction is approximation preserving. What is left is to bound the running time
of this recursive procedure. Let T (n) be the running time in question. We have that

T (n) ≤ T (n− 1) + tM (n, 1/ε0, 1/δ0) +O(1)

or T (n) = O(n · tM (n, 1/ε0, 1/δ0)) = O(poly(n, 1/ε0, 1/δ0)) . This concludes the proof.
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