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ABSTRACT

Residual (skip-connected) architectures such as ResNets are widely used, yet the
extent and structure of their inference-time redundancy remain unclear. We repur-
pose post-training block ablation as a diagnostic probe: we ablate residual blocks
by replacing them with identity mappings, then measure the resulting accuracy
drop on a small training “probe” slice, yielding a block-level saliency map that we
evaluate out of sample on ImageNet. Across ResNet-50, our stage-aware analyses
show that simple magnitude or energy proxies are weak or inconsistent predic-
tors of, indicating that large activation does not imply importance; redundancy is
better explained by low novelty relative to the skip path. We characterize struc-
ture using stage-wise distributions, and we assess practical trade-offs by one-shot
identity replacement of those blocks with optional short finetuning, reporting real-
istic latency-accuracy behavior on CPU and GPU while preserving topology. The
methodology is architecture-agnostic and readily extends to other modern skip-
connected families (for example, ConvNeXt and ViT). These findings provide a
simple, evidence-based way to localize redundancy, and to guide architecture-
preserving simplifications at inference.

1 INTRODUCTION

Modern deep networks are substantially overparameterized: redundant capacity helps optimization
and generalization, yet much of it may be unused or unnecessary at inference (Frankle & Carbin,
2019; Neyshabur et al., 2019). Residual (skip-connected) architectures such as ResNets (He et al.,
2016) epitomize this trade-off. Identity shortcuts stabilize training and enable depth, but they also
raise a basic post-hoc question: after convergence, which residual blocks are still necessary for
inference?

We address this question with a simple, architecture-preserving diagnostic. For a trained residual
block Bi(x) = Fi(x) + x, we construct an identity-ablated variant Babl

i (x) = x and measure the
out-of-sample accuracy drop on ImageNet. The resulting one-number readout per block,

δi = αbase − αabl
i ,

constitutes a necessity map of the trained network (low δi ⇒ dispensable at inference). We compute
selections on a small, fixed probe slice of the training data and evaluate on validation to avoid
overfitting the diagnostic. The procedure alters neither topology nor training; it is a measurement
tool, not an optimization method.

A widespread heuristic equates large activations with importance. Many pruning and scoring tech-
niques lean on magnitude—norms, energy/gain, or first/second-order surrogates (Li et al., 2017; He
et al., 2017; Molchanov et al., 2017; 2019; Lin et al., 2020; Ding et al., 2021; Shen et al., 2022). Our
analyses show that in skip-connected networks this intuition is unreliable: magnitude is not neces-
sity. On ResNet-50/ImageNet, simple magnitude or “energy” proxies (e.g., E∥y∥, E∥y − x∥, gain)
are weak or inconsistent predictors of δ once we respect stage/depth. Global correlations can appear
nontrivial, but stage-aware and stage-normalized statistics reveal that raw activation size overesti-
mates importance under identity skips. A more faithful explanation of necessity is novelty relative
to the skip path, not absolute magnitude.

We further examine how necessity evolves during training. Using checkpoints saved from a con-
ventional ImageNet training, we compute δ-maps at multiple epochs on the same probe indices and
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Figure 1: Overview of our post-training residual block pruning pipeline. The method consists of four
stages: (1) saliency evaluation by ablating each residual block’s main path to compute importance
scores, (2) threshold-based pruning where low-saliency blocks are selected for removal, (3) identity-
based replacement of the selected blocks, and (4) full-model finetuning to recover any accuracy lost
from structural modifications. This pipeline operates entirely post-hoc and requires no modification
to the original training process.

track their structure over time. Two robust patterns emerge: (i) later stages become increasingly
prunable (lower median δ), and (ii) the δ ranking stabilizes as optimization proceeds (higher Jac-
card/Kendall agreement). Together with prior views of ResNets as ensembles of short paths (Veit
et al., 2016) and results on stochastic layer skipping during training (Huang et al., 2016; Fan et al.,
2019), these measurements yield a post-hoc account of redundancy: it emerges with convergence.

Finally, we translate the diagnostic into practice. Replacing the K lowest-δ blocks with identity—
optionally followed by a short recovery finetune—produces transparent latency–accuracy trade-offs
on CPU and GPU while preserving the original computation graph. Because identity replacements
keep interfaces intact, this approach is easy to deploy and extends naturally to other skip-connected
families (e.g., ConvNeXt (Liu et al., 2022) and ViT (Dosovitskiy et al., 2021)).

Contributions.

• Post-training diagnostic of block necessity. Identity ablations yield δ-maps that localize
inference-time utility without re-training or topology changes.

• Magnitude is not necessity. Stage-aware analyses show activation energy/gain are weak
or inconsistent predictors of δ; necessity aligns better with novelty relative to the skip path.

• Redundancy emerges during training. Across epochs, later stages become safer to ablate
and the δ ranking stabilizes, indicating redundancy formation with convergence.

• Topology-preserving trade-offs. One-shot identity replacement of low-δ blocks (optional
short finetuning) yields realistic latency–accuracy curves on commodity hardware.

2 RELATED WORK

We situate our study within three strands: (i) overparameterization and why inference-time necessity
can differ from training-time capacity; (ii) skip connections and dynamic skipping, which suggest
resilience and potential redundancy in residual architectures; and (iii) structured pruning and proxy
scoring, where magnitude- or curvature-based heuristics are commonly used. Our contribution is a
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post-training, topology-preserving diagnostic: identity ablations that directly measure block neces-
sity without re-optimization. This lens complements compression-oriented methods by prioritizing
measurement over modification.

Overparameterization and post-hoc necessity. Modern deep networks are intentionally overpa-
rameterized: excess capacity improves optimization dynamics and often generalization, while leav-
ing room for sparsity at inference (Frankle & Carbin, 2019; Neyshabur et al., 2019). A large body
of work studies when and why small subnetworks can match the performance of their dense parents
(e.g., lottery tickets and re-initialization effects) (Frankle & Carbin, 2019). These perspectives speak
to capacity during training, but they do not directly measure which components of a trained model
are still necessary for inference. Our work is complementary: we provide a post-training, topology-
preserving diagnostic that quantifies block necessity via identity ablations, without re-optimization.

Skip connections, redundancy, and dynamic skipping. Residual networks introduce identity
shortcuts that enable extremely deep models by stabilizing gradient flow (He et al., 2016). Sev-
eral lines of evidence suggest structured redundancy in these architectures. ResNets can behave
like ensembles of short paths, implying that not all blocks are equally critical (Veit et al., 2016).
Training-time stochastic skipping (Stochastic Depth; LayerDrop) shows that randomly omitting
blocks during optimization often preserves accuracy (Huang et al., 2016; Fan et al., 2019). Learned,
input-dependent skipping (conditional computation) further gates blocks at inference for efficiency,
e.g., SkipNet and BlockDrop (Wang et al., 2018; Wu et al., 2018). These approaches demonstrate
resilience to missing computation during training or under learned policies. In contrast, our goal is a
post-hoc, measurement-driven account: we assess which blocks remain necessary after convergence
by replacing transformations with identity and reading out the accuracy drop.

Structured pruning and magnitude/proxy scoring. A parallel literature removes channels or
blocks to shrink models. Many criteria are based on magnitude: ℓ1/ℓ2 norms of filters or activa-
tions (Li et al., 2017; He et al., 2017; Liu et al., 2017), rank/entropy of features (Lin et al., 2020), or
first/second-order surrogates such as Taylor scores and Fisher-based importance (Molchanov et al.,
2017; 2019). Later works specialize these ideas for residual networks (e.g., ResRep, LayerPrune)
and typically couple pruning with finetuning to recover accuracy (Ding et al., 2021; Shen et al.,
2022). While effective for compression, these methods often conflate activation magnitude with
functional necessity—a mismatch that can be amplified by identity skips. Our experiments make
this precise: when depth and stage are respected, simple magnitude or “energy” proxies (e.g., E∥y∥,
E∥y − x∥, gain) are weak or inconsistent predictors of the post-training necessity measured by
identity ablations. In other words, magnitude is not necessity in skip-connected models.

3 METHODOLOGY

3.1 SETTING AND DATA SPLITS

We study trained residual networks with blocks Bi(x) = Fi(x) + x, where Fi is the transformation
branch and x the skip input. Blocks are grouped into stages S1, . . . ,Sm (e.g., the standard four
ResNet stages). We use two disjoint sets: PROBE (a fixed subset of the training set) for computing
selections/statistics, and EVAL (the validation set) for reporting accuracy. Unless stated otherwise,
selections are computed once on probe and evaluated out of sample on eval.

3.2 POST-TRAINING BLOCK NECESSITY VIA IDENTITY ABLATION

For each block i, we form an identity-ablated variant that disables only the main branch:

Babl
i (x) = x (skip preserved; any downsample projection kept). (1)

Let αbase be Top-1 accuracy of the unmodified model on the probe and αabl
i the accuracy of the model

where only block i is identity-ablated. The necessity of block i is the accuracy drop

δi = αbase − αabl
i . (2)

Low δi indicates dispensability at inference.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Identity replacement and finetuning. Given a budget K, we replace the K lowest-δ̂ blocks glob-
ally. After replacement, we finetune the model to recover accuracy; the training recipe (number of
epochs, learning-rate peak/decay) is experiment-dependent and reported alongside each result.

3.3 MAGNITUDE PROXIES AND THE “MAGNITUDE IS NOT NECESSITY” CLAIM

To test whether simple activation magnitude predicts necessity, we compute proxy scores with for-
ward hooks on the probe:

Output energy: Ex∼PROBE[∥y∥F ] ,
Residual energy: Ex∼PROBE[∥y − x∥F ] , (3)

Input energy: Ex∼PROBE[∥x∥F ] ,

Gain: Ex∼PROBE

[
∥y∥F

∥x∥F + ε

]
, ε > 0.

Where Bi denotes residual block i. For an input activation tensor x entering Bi, the block output
is y = Bi(x) = x + Fi(x), where Fi is the transformation. We measure “energie” with forward
hooks: (i) Output energy uses the post-block tensor y; (ii) Residual energy uses the residual branch
Fi(x) = y − x; (iii) Input energy uses the pre-block tensor x. The norm ∥ · ∥F is the Frobenius
(elementwise ℓ2) norm over all channels and spatial/sequence positions of a sample; expectations
E[·] are taken as simple averages over the fixed probe slice. The gain is a scale-normalized proxy
E
[
∥y∥F /(∥x∥F + ε)

]
with a small ε > 0 for numerical stability.

We then relate these proxies to δ using the following statistics:

1. Global Spearman (ρ): rank correlation between a proxy and δ over all prunable blocks.

2. Per-stage Spearman (ρ): rank correlation computed within each stage Ss separately. Tests
whether the proxy tracks necessity when depth/scale are held fixed.

3. Stage-normalized ranks: rank-transform each variable within its stage, pool the ranks
across stages, and recompute Spearman. Provides a single summary that removes be-
tween–stage scale effects.

3.4 EMERGENCE DURING TRAINING: RANKING STABILITY

Our central question is whether the ordering of block necessity becomes predictable as training
proceeds. For each checkpoint e ∈ E we form the necessity vector d(e) = (δ

(e)
1 , . . . , δ

(e)
N ) over the

N prunable blocks (Sec. 3.2). We then assess stability in two complementary ways:

Set stability of the “least-K”. Let leastK(e) ⊆ {1, . . . , N} denote the indices of the K lowest
entries of d(e). We quantify overlap with a checkpoint epoch e⋆ using the Jaccard index

JK(e, e⋆) =

∣∣∣leastK(e) ∩ leastK(e⋆)
∣∣∣∣∣∣leastK(e) ∪ leastK(e⋆)
∣∣∣ .

We report JK(e, e+1) (adjacent checkpoints). Rising JK curves indicate that the identity–safe set
becomes stable early.

Rank stability of the full ordering. Let r(e) ∈ {1, . . . , N}N be the rank permutation that sorts
d(e) ascending (1 = safest block to prune). We measure concordance with a reference ordering r(e

⋆)

via Kendall’s τ and Spearman’s ρ:

τ(e, e⋆) = Kendall
(
r(e), r(e

⋆)
)
, ρ(e, e⋆) = Spearman

(
r(e), r(e

⋆)
)
.

Kendall’s τ counts pairwise agreement; Spearman’s ρ is Pearson’s correlation on ranks.

4
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Algorithm 1: Post-Training Residual Block Replacement
Input: Pretrained ResNet model M , validation set V , pruning threshold τ
Output: Pruned model M ′

Compute baseline accuracy: αbase ← Accuracy(M,V) ;
for each residual block Bi in M do

Temporarily ablate transformation: Fi(x)← 0 ;
Compute ablated accuracy: αi ← Accuracy(M,V) ;
Compute saliency: δi ← αbase − αi ;
Restore transformation: revert Fi(x) ;

for each residual block Bi do
if δi < τ then

Replace Fi(x)← 0 (i.e., make block a skip) ;

3.5 ADVANTAGES AND DESIGN CONSIDERATIONS

The framework is post-training and architecture-preserving: it requires no sparsity regularizers and
no channel surgery. Decisions are grounded in an interpretable, one-number diagnostic per block
(Eq. 2). Finetuning after identity replacement is lightweight and experiment-dependent. Practically,
identity replacements deliver hardware-visible latency/throughput gains while keeping the original
topology, easing integration into existing inference pipelines.

4 EXPERIMENTAL SETUP

This section summarizes the choices that are shared across experiments. We describe the models
and data we use, how we form fixed probe and eval splits, the checkpoints used to study training
dynamics, and the computation of our diagnostic quantities (δ and magnitude proxies). We then
detail how identity replacement and finetuning are applied, and conclude with the timing protocol
for latency/throughput measurements.

Datasets and splits. We use ImageNet-1k and CIFAR-10. ImageNet evaluation uses the standard
resize-shorter= 256 then 224×224 center crop; CIFAR-10 uses the conventional single-crop test
with dataset mean/variance normalization.

Models. We report ImageNet results on ResNet-50 and training–dynamics on ResNet-101;
CIFAR-10 uses ResNet-56. To test generality, we also evaluate ConvNeXt-Tiny and ViT-Tiny.

Hardware. All ImageNet experiments were run on 4×NVIDIA A100 (40 GB) GPUs with dis-
tributed data parallelism; CIFAR-10 runs used a single A100.

Timing protocol. We measure GPU forward latency/throughput with synthetic (B, 3, 224, 224)
inputs. Each run performs warmup steps. We report images/s and ms/batch as the median over R
repeats.

5 MAGNITUDE IS NOT NECESSITY

Magnitude-based heuristics are ubiquitous in pruning: large weights, BN scales, or activations are
often treated as proxies for “importance” (Li et al., 2017; He et al., 2017; Liu et al., 2017; Lin et al.,
2020; Molchanov et al., 2017; 2019). We test this claim in residual networks by correlating simple
activation–magnitude proxies (Def. 3) with post-training block necessity (Eq. 2). All proxy scores
are computed once on PROBE, a fixed, class-balanced 10% subsample of the training set, while
necessity is always evaluated out-of-sample on the full validation set.

Global aggregates can mislead. Panel 2a shows an apparently strong positive association between
output energy and when all blocks are pooled. Yet both axes shift systematically across stages

5
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(a) Global (all blocks) (b) Within a stage (e.g., layer3) (c) Stage-normalized (z-scores
within stage)

Figure 2: Magnitude is not necessity. (a) Aggregating over all blocks suggests a positive associa-
tion between output magnitude and necessity (ρ≈ 0.77 in this run), but points cluster by stage. (b)
Holding stage/depth fixed (e.g. layer3) the trend weakens or flips (ρ≈−0.70 here). (c) After rank-
or z-normalizing within stage and pooling, the association is consistently negative (ρ≈−0.56): un-
usually large-magnitude blocks for their stage tend to be less necessary. Numbers vary slightly by
seed; patterns are stable.

(earlier stages have larger spatial maps and channel widths), and the cloud decomposes into stage-
specific clusters. The global statistic is therefore driven by between-stage scale differences rather
than a consistent within-stage relationship.

Within-stage, magnitude is a poor predictor. Comparing like with like (Panel 2b) weakens or even
reverses the apparent trend: within a fixed stage/depth, larger output magnitude does not reliably
indicate greater necessity. To pool fairly across stages, Panel 2c z-scores each variable within its
stage,

z(vi) =
vi − µs

σs
for block i ∈ Ss,

so points reflect how many stage-specific standard deviations a block lies above/below its peers.
This removes coarse scale due to stage resolution/width. Under this normalization, the associa-
tion remains weak and tends negative, reinforcing that raw magnitude is not a reliable indicator of
necessity.

Interpretation. In skip-connected architectures, raw activation size can conflate activity with nov-
elty relative to the skip. A block may emit large outputs that mostly mirror its input; such blocks
appear “big” by magnitude yet contribute little by necessity. Hence, magnitude alone is an unreli-
able indicator for block selection under identity skips. It can be used as a complementary signal, but
decisions should not rely on it without stage-/depth-aware controls and direct necessity (δ) measure-
ments.

6 REDUNDANCY EMERGENCE DURING TRAINING

We ask whether which residual blocks are safe to replace becomes predictable as optimization pro-
ceeds. At a set of saved checkpoints E = {e1, . . . , eT } (ResNet-101: e010, e030, e050, e070,
e090, e100), we compute per-block necessity on a fixed, class-balanced PROBE slice (10% of
training): for block i at epoch e, δ(e)i is the top-1 drop after identity-ablating that block (Eq. 2). Col-
lecting δ(e) = {δ(e)i }Ni=1 yields a time series of necessity maps (epoch× depth) and a full ranking
of blocks at each checkpoint (ascending δ).

Stability metrics. We quantify temporal stability in two complementary ways: (i) full-order
agreement via Kendall’s τ and Spearman’s ρ between the complete rankings induced by δ(e); (ii)
top-K identity via the Jaccard index between the “least-K” sets leastK(e) = arg leastK δ(e) across
adjacent epochs. The first asks whether the global ordering converges; the second asks whether the
identity of the safest blocks locks in.

6
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(a) Adjacent-pair Kendall’s τ (full ranking). (b) Adjacent-pair Jaccard (least-K, K=5).

Figure 3: Ranking stability emerges over training. (a) Full-order agreement rises through mid/late
training. (b) Membership of the bottom-K set stabilizes, indicating the identity of “safest-to-
replace” blocks becomes predictable.

Figure 4: Across-epoch agreement. Spear-
man correlations between full δ-based rankings at
milestones show convergence by late epochs.

Findings. We observe clear emergence of struc-
ture. Full-order correlations (Fig. 3a; 4) increase
from early to mid/late training, indicating conver-
gence of the global necessity ordering. Concur-
rently, the Jaccard overlap of least-K sets (Fig. 3b)
rises and remains high by the last milestones, show-
ing that the identity of the safest blocks stabilizes. A
complementary δ heatmap (appendix) reveals spa-
tial organization (e.g., low-δ concentration within
mid/late layer3), while certain early/late blocks
remain persistently high-δ. Together, these results
support the claim that training organizes residual ca-
pacity into a stable, stage-localized pattern, making
one-shot post-training selection of least-K blocks
feasible and predictable.

7 FROM ANALYSIS TO DEPLOYMENT

Stable saliency structure observed earlier makes the set of low-saliency residual blocks predictable
by mid/late training. We turn this into a one-shot, post-training recipe: compute δ once, select
the K lowest-saliency residual blocks (“least-K”), replace their transformations by identity, and
optionally run a short finetune—no channel surgery, no re-architecture. The emphasis here is on
how the analysis converts into practical, deployment-oriented gains with minimal effort, rather than
incremental leaderboard margins.

Table 1: CIFAR-10 (ResNet-56). Accuracy
change is relative to the unpruned baseline;
FLOPs reduction (%)—higher is better ( ↑ ).

Method Acc.∆ (%)FLOPs ↑ (%)
HRank Lin et al. (2020) −2.5 74.1
ResRep Ding et al. (2021) −1.0 77.8
FPGM He et al. (2019) −0.3 52.6
DepGraph Fang et al.
(2023)

+0.1 61.0

Geometric He et al. (2020) −0.3 41.0
Ours −1.1 73.8

Baseline sanity check (Table 2). On ImageNet
with ResNet-50, pruning a small number of resid-
ual blocks yields substantial, predictable effi-
ciency gains for modest accuracy cost. For ex-
ample, pruning K=6 cuts latency from 4.02ms
to 2.68ms (≈ 33%) and boosts throughput from
248 to 373 img/s (≈ 50%) at only 0.5 pp top-
1 drop. Pushing to K=7 reaches 2.44ms and
410 img/s (about 39% faster, +65% throughput)
with a 1.2 pp drop. These trends confirm that our
analysis converts cleanly into real, controllable
speedups.

Positioning vs. structured pruning (Tables1 and 4). Relative to representative structured meth-
ods, our block-level least-K offers competitive accuracy–efficiency with far less engineering. For
instance, on CIFAR-10 (ResNet-56), our 73.8% FLOPs cut at −1.1 pp sits in the same ballpark as

7
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Table 2: Performance of our method on ResNet-50 (ImageNet) under varying pruning thresholds.
Arrows indicate desirable direction of improvement.

Pruned Blocks Top-1 Accuracy (%) ↑ Latency (ms) ↓ Throughput (img/s) ↑
0 (Baseline) 75.7 4.02 248
5 75.5 2.92 341
6 75.2 2.68 373
7 74.5 2.44 410

Table 3: ViT: Top-1 accuracy (%) with/without finetuning and parameter count (M) vs. pruned
blocks K. Baseline shows the unpruned model. Finetuning uses 30 epochs.

K Ours LayerPrune

No FT FT Params (M) No FT FT Params (M)

0 79.7 N/A 22.0 79.7 N/A 22.0
6 72.2 78.3 17.3 0.4 49.0 16.1
8 67.1 75.2 15.5 0.3 42.9 13.8
10 44.5 77.4 13.7 0.2 41.2 12.0

HRank (74.1%, −2.5 pp) and ResRep (77.8%, −1.1 pp) (Table 1). On ImageNet, K=7 achieves
a 39.3% latency reduction with a 1.2 pp drop—on par with LayerPrune6–Imprint’s ≈ 40% at
1.4 pp—while K=6 delivers 33.3% at just 0.5 pp (Table 4). The aim here is to highlight convertibil-
ity and deployment value, not incremental leaderboard margins.

Beyond ResNets. The same least-K post-training recipe applies without modification to other
residual-style architectures. On ConvNeXt-Tiny and ViT-Small, we compute δ once on a small
PROBE slice, replace the K lowest-saliency blocks with identity. Both models exhibit the same
predictable accuracy–efficiency trade-offs under one-shot pruning and further gains with brief fine-
tuning; see Table 5 and Table 6 (ConvNeXt), and Table 3 (ViT) for full results.

8 ROBUSTNESS AND SENSITIVITY

How much probe data is needed? A practical question for the diagnostic is how much probe data
is required to recover a reliable block ordering. We recompute the per-block necessity ordering
while shrinking the probe budget over a grid of ratios {1.0, 0.10, 0.05, 0.01} and a class-balanced
stratified split that uses two samples per class. The heatmap in Fig. 5 summarizes rank trajectories:
rows are blocks (sorted by the full-budget reference), columns are budgets, and color encodes rank
with stage boundaries overlaid. The picture is simple: the ordering is essentially unchanged across
two orders of magnitude of ablation data; stage structure is preserved; visible differences are minor,
within-stage swaps.

Table 4: Comparison of structured pruning methods on ResNet-50 with ImageNet. We report ac-
curacy drop relative to each method’s baseline and latency reduction with batch size 1. All latency
values are from LayerPrune Elkerdawy et al. (2020).

Method Accuracy Drop (%) Latency Reduction (%, bs=1)↓
ThiNet Luo et al. (2017) 4.1 10.8
HRank Lin et al. (2020) 4.2 11.9
Channel pruning He et al. (2017) 3.9 3.5
LayerPrune6–Imprint Elkerdawy et al. (2020) 1.4 40.0
LayerPrune2 Elkerdawy et al. (2020) 0.3 30.8

Ours (5 blocks) 0.2 27.4
Ours (6 blocks) 0.5 33.3
Ours (7 blocks) 1.2 39.3

8
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Figure 5: Ranking stability emerges over training. Spearman correlations between δ-based block rankings
at milestones.

Quantifying stability. We compare the rank vectors at each reduced budget to the full-budget
reference using Pearson correlation. Agreement is effectively perfect at 10%, 5%, and 1% (r = 1.00
in all three) and remains very high for the stratified split (r = 0.97). Together with the visual
evidence, these results support the lightweight-probe design: a small, fixed probe slice suffices
to recover the salient δ̂ structure, while keeping compute modest when sweeping checkpoints or
architectures.

9 CONCLUSION

We examined residual networks through three lenses and turned the insights into a simple recipe.
(i) Magnitude vs. necessity: large norms are unreliable; δ-based ablations better capture block ne-
cessity. (ii) Emergence of redundancy: saliency rankings stabilize by mid/late training, preserve
stage structure, and remain robust even with 1% probe data. (iii) Pruning structure: replacing the K
least-salient blocks with identity (least-K) is a post-training, architecture-preserving step requiring
only a single saliency pass and an optional short finetune.

Across ImageNet (ResNet-50, ConvNeXt-Tiny and ViT-Small) and CIFAR-10 (ResNet-56), this
converts analysis into predictable efficiency gains (lower latency / FLOPs) at small, controllable
accuracy costs, while staying compatible with standard inference engines and avoiding channel
surgery.

9
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APPENDIX

A CONVNEXT-TINY: PREDICTABLE POST-TRAINING PRUNING

We apply the same least-K recipe to ConvNeXt-Tiny: compute δ once on a 10% PROBE slice, rank
blocks, and replace the K lowest-saliency blocks with identity. Evaluation uses the full ImageNet-1k
validation set.

Table 5: Accuracy and parameter count vs. number of pruned blocks K under one-shot pruning
(no finetuning). Top-1 in %, Params in millions (M).

Method Metric K=3 K=5 K=7

Ours Top-1 (%) 79.2 73.0 54.0
Params (M) 26.7 24.3 23.0

LayerPrune Top-1 (%) 78.3 67.3 53.2
Params (M) 24.9 23.5 23.3

Table 6: ConvNeXt: finetuned accuracy (%). Only 30 epochs of finetuning were used for all runs.

K Acc. (LayerPrune) Acc. (Ours)

3 78.9 80.7
5 78.5 78.4
7 77.2 77.0

12
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B HARDWARE AND EVALUATION SETUP

Inference Benchmarking Protocol. To evaluate latency and throughput, we measured single-
image inference performance using synthetic inputs on both CIFAR-10 and ImageNet. All bench-
marks were conducted using a batch size of 1 to simulate real-time, low-latency inference scenarios.
Latency was measured using Python wall-clock timing with torch.cuda.synchronize() to
ensure accurate GPU timing.

Each measurement included:

• 30 warm-up iterations (not timed) to stabilize kernel selection via cuDNN autotuning.

• 100 timed forward passes for performance averaging.

• 100 independent benchmarking repeats to compute min, max, mean, and median statistics.

Throughput and Latency Reporting. All throughput values are reported in images per second
(img/s), while latency is reported in milliseconds per image (ms/img). The final reported numbers
in the main paper correspond to the median values across the 100 benchmarking repeats for each
model configuration.

C QUALITATIVE COMPARISON OF PRUNING METHODS

We provide a qualitative comparison of structured pruning methods evaluated on ResNet-50 with
ImageNet. The Type column indicates whether pruning is applied during training or as a post-
training step, while the Iterative column reflects whether the method relies on progressive, multi-
step pruning. Our method stands out for its simplicity: a non-iterative, post-training approach that
requires no retraining schedule or specialized optimization objectives.

Table 7: Overview of pruning methods evaluated on ResNet-50 with ImageNet. We report pruning
granularity, application stage, and whether the method is applied iteratively.

Method Granularity Type Iterative
HRank Lin et al. (2020) Channel During-Train ✓
ResRep Ding et al. (2021) Channel During-Train ✓
FPGM He et al. (2019) Channel Post-Train –
DepGraph Fang et al. (2023) Channel+Group During-Train ✓
Geometric He et al. (2020) Channel During-Train –
Channel pruning He et al. (2017) Channel During-Train ✓
DepthShrinker Fu et al. (2022) Block During-Train ✓
LayerPrune (Imprint) Elkerdawy et al. (2020) Block Post-Train –
ThiNet Luo et al. (2017) Channel Post-Train ✓
Ours Block Post-Train –

D TRAINING AND FINETUNING DETAILS

Optimizer and Loss. For both CIFAR-10 and ImageNet experiments, finetuning was performed
using the AdamW optimizer with standard cross-entropy loss. Weight decay regularization was
applied, using values tuned for each dataset.

CIFAR-10 Setup. We finetuned the pruned ResNet-56 models on CIFAR-10 for 30 epochs with a
batch size of 256. The learning rate was set to 0.001 and scheduled using cosine decay with linear
warm-up over the first 10% of epochs. A weight decay of 0.05 was used. All model parameters were
unfrozen during finetuning, and training was conducted in full-precision (FP32) without mixed-
precision acceleration. Data augmentation included random cropping with 4-pixel padding and
horizontal flipping, followed by normalization using the standard CIFAR-10 statistics.
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ImageNet Setup (ResNet-50). For ImageNet, pruned ResNet-50 models were finetuned for 100
epochs using 4 NVIDIA A100 GPUs in distributed data parallel mode. Each GPU processed a batch
size of 256, resulting in an effective batch size of 1024. The learning rate was set to 0.0005 with
cosine decay and a 10% linear warm-up phase. A weight decay of 0.1 was used. As with CIFAR-10,
all layers were trainable and no early stopping or learning rate restarts were applied. Training was
done using full-precision computation.

ImageNet Setup (ViT). For ViT we finetune pruned DeiT-S/16 for 30 epochs in multi-GPU DDP
(per-GPU batch size 256; learning rate scales with global batch as lreff = lr × global batch

256 ; e.g.,
1.25×10−4 → 5×10−4 for 4×256). We use AdamW (weight decay 0.05), cosine decay with a
learning-rate floor (lrmin = 1×10−5, scaled with global batch), and no warmup. Label smoothing
is 0.1. Layer-wise learning-rate decay is enabled (decay 0.75) with a ×10 head LR multiplier; no
weight decay on norms/bias/pos embed. Stochastic depth is disabled; models run in channels-last
format. Mixup/CutMix are enabled via timm and ramped down over the final 20% of epochs. An
exponential moving average (EMA, decay 0.9999) is maintained and applied for validation.

ImageNet Setup (ConvNeXt-Tiny). We finetune pruned ConvNeXt-Tiny for 30 epochs in multi-
GPU DDP with per-GPU batch size 256 (global batch scales the learning rate as lreff = lr ×
global batch

256 ; in our runs lr = 1.0×10−4 at global batch 256). We use AdamW (weight decay 0.05),
a cosine schedule (no warmup; warmup ratio 0.0), mixed-precision (AMP), and standard ImageNet
preprocessing (224×224, bicubic resize to 256, center crop, mean/std normalization). Models run
in channels-last format; label smoothing is 0.0. An EMA of weights (decay 0.999) is maintained
and applied for validation.

Evaluation. Model selection and reporting were based solely on top-1 accuracy. Evaluation was
performed on the full validation set using torch.no grad() mode, with no test-time augmenta-
tion or ensembling.

E SALIENCY ANALYSIS ACROSS DATASETS

Figure 6 shows block-wise saliency scores for ResNet-101 on CIFAR-10 and ImageNet. We observe
a consistent trend across both datasets: the first block of each stage (e.g., layer2.0, layer3.0,
layer4.0) tends to be highly salient, highlighting its structural importance. At the same time,
differences in dataset complexity reveal how overparameterization affects redundancy. CIFAR-10,
being a simpler task than ImageNet, allows clearer identification of blocks that contribute mini-
mally—such as layer3.7 through layer3.9—where disabling the main path has almost no
impact on accuracy. These observations reinforce the utility of our method in revealing interpretable
patterns of redundancy, particularly when scaling large models to less demanding tasks.

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. This work studies post-training simplification of standard
vision backbones using publicly available datasets (ImageNet-1k, CIFAR-10) under their respective
licenses. It does not involve human subjects, personal or sensitive data, or demographic attributes,
and we are not aware of ethical, legal, or privacy concerns arising from the methodology. As with any
pruning technique, downstream deployments should re-evaluate accuracy (and potential shifts across
subpopulations) on the target distribution and comply with local data-use policies. We disclose no
conflicts of interest or external sponsorship influencing the results.

REPRODUCIBILITY STATEMENT

The experimental setup and assumptions (datasets, model variants, evaluation protocol) are de-
scribed in §4; robustness and probe construction are detailed in §8; and full experiment settings
(seeds, split definitions, and pruning/finetuning schedules) are collected in App. D. At submission
time we are not releasing code; at camera-ready we will provide an evaluation package (environ-
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Figure 6: Block-wise saliency scores for ResNet-101 on CIFAR-10 and ImageNet. Each bar repre-
sents the drop in top-1 accuracy when the main path of the corresponding residual block is disabled.
Our method reveals consistent structural redundancy in later blocks across datasets.

ment specification, scripts, and precomputed saliency scores / least-K indices) referenced from the
supplement, along with a README that maps each command to the tables and figures in the paper.
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