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Abstract

Thompson sampling (TS) is a popular heuristic
for action selection, but it requires sampling
from a posterior distribution. Unfortunately,
this can become computationally intractable in
complex environments, such as those modeled
using neural networks. Approximate posterior
samples can produce effective actions, but only
if they reasonably approximate joint predictive
distributions of outputs across inputs. Notably,
accuracy of marginal predictive distributions
does not suffice. Epistemic neural networks
(ENNs) are designed to produce accurate joint
predictive distributions. We compare a range
of ENNs through computational experiments
that assess their performance in approximating
TS across bandit and reinforcement learning
environments. The results indicate that ENNs
serve this purpose well and illustrate how the
quality of joint predictive distributions drives
performance. Further, we demonstrate that the
epinet — a small additive network that esti-
mates uncertainty — matches the performance
of large ensembles at orders of magnitude lower
computational cost. This enables effective ap-
plication of TS with computation that scales
gracefully to complex environments.

1 INTRODUCTION

Thompson sampling (TS) is one of the oldest heuristics
for action selection in reinforcement learning [Thomp-
son, 1933, Russo et al., 2018]. It has also proved to be
effective across a range of environments [Chapelle and
Li, 2011]. At a high level, it says to ‘randomly select an
action, according to the probability it is optimal.’ This
approach naturally balances exploration with exploita-

tion, as the agents favours more promising actions, but
does not disregard any action that has a chance of
being optimal. However, in its exact form, TS requires
sampling from a posterior distribution, which becomes
computationally intractable for complex environments
[Welling and Teh, 2011].

Approximate posterior samples can also produce per-
formant decisions [Osband et al., 2019]. Recent analysis
has shown that, if a sampled model is able to make
reasonably accurate predictions it can drive good de-
cisions [Wen et al., 2022]. But these results stress the
importance of joint predictive distributions — or joint
predictions, for short. In particular, accurate marginal
predictive distributions do not suffice.

Epistemic neural networks (ENNs) are designed to
make good joint predictions [Osband et al., 2021]. ENNs
were introduced with a focus on classification problems,
but we will show in this paper that the techniques re-
main useful in producing regression models for decision
making. This paper empirically evaluates the perfor-
mance of approximate TS schemes that use ENNs to
approximate posterior samples. We build upon deep
Q-networks [Mnih et al., 2015], but using ENNs to rep-
resent uncertainty in the state-action value function.
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Figure 1: Performance of an approximate TS agent in a
neural bandit using different ENNs. Epinet beats large
ensembles at fraction of computational cost (Section 5).
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Figure 1 offers a preview of our results. Among ENNs
we consider are ensembles of base models [Osband
and Van Roy, 2015, Lakshminarayanan et al., 2017]
and a single base model enhanced with the recently
proposed epinet, which is a small additive network
that estimates uncertainty. We find that, using an
epinet, we can outperform large ensembles at
orders of magnitude lower computational cost.
More generally, we find that ENNs that produce better
joint predictions in synthetic classification problems
also perform better in decision problems.

1.1 KEY CONTRIBUTIONS

We introduce ENN-DQN, which unifies algorithms
that combine DQN and approximate TS. We release
open-source library for all our experiments at
enn_acme (Section 4). This provides a valuable resource
for clear and reproducible research in the field and the
first extensive investigation into the effectiveness of
posterior samples in deep RL. Our work builds on the
existing acme library for RL [Hoffman et al., 2020].

We demonstrate a clear empirical relationship
between quality of joint predictions produced
by an ENN and the performance of resulting
decisions. ENNs that offer better joint prediction tend
to produce better decisions in our benchmark tasks.
Interestingly, this is true not only for bandit environ-
ments of the neural testbed [Osband et al., 2022], but
also in bsuite benchmark reinforcement learning tasks
designed to highlight key aspects of decision making
[Osband et al., 2020].

Importantly, we show that epinets outperform
large ensembles, but at orders of magnitude
lower computational cost. This holds even for re-
gression models, as in temporal difference (TD) learn-
ing, not just classification. These results are significant
since prior work on ENNs had focused only on the
quality of joint predictions [Osband et al., 2021]. We
show that these results also extend to empirical decision
making with deep learning systems.

1.2 RELATED WORK

This paper builds on a long literature around TS for
efficient exploration [Thompson, 1933, Lai et al., 1985,
Russo and Van Roy, 2014]. Much of this work has been
focused on extending and refining performance guar-
antees around particular problem classes, where exact
Bayesian inference allows for efficient generalization
between states and actions. From bandits with struc-
ture [Russo and Van Roy, 2013], to MDPs [Osband
et al., 2013] or MDPs with generalization [Osband and
Van Roy, 2014b,a, Gopalan and Mannor, 2015].

However, in complex environments, even planning with
full information may be intractable [Silver et al., 2016].
For this reason, so-called deep reinforcement learning
(RL) algorithms use neural networks to directly assess
the value and/or policy functions [Mnih et al., 2015].
Most of these schemes employ simple dithering schemes
for exploration, such as epsilon-greedy or boltzmann
exploration. There are relatively few approximate TS
schemes that have modified these algorithms to attempt
to combine the best of this deep RL with so-called ‘deep
exploration’ [Osband et al., 2019].

Bootstrapped DQN [Osband et al., 2016] maintains an
ensemble of networks as a proxy for neural network un-
certainty, but this is just one particular approach pop-
ular in the Bayesian deep learning community. Other
popular approaches include dropout [Gal and Ghahra-
mani, 2016], variational inference [Blundell et al., 2015],
or even stochastic Langevin MCMC [Welling and Teh,
2011]. However, research in this area has focused mainly
on supervised learning tasks [Izmailov et al., 2021],
with relatively little attention paid to the use of these
Bayesian network in driving effective decision making.
Our work fits into a wider literature of approximate
Thompson sampling approaches for deep reinforcement
learning [Zhang et al., 2020, Dai et al., 2022].

2 PROBLEM FORMULATION

This section outlines the notation and problem setting.
We begin with a review of the family of sequential
decision problems we will consider. Next, we provide a
quick overview on epistemic neural networks, which can
make joint predictions without being Bayesian. Finally,
we introduce the ENN-DQN variant that allows for an
approximate of Thompson sampling.

2.1 REINFORCEMENT LEARNING

We consider the problem of learning to optimize a ran-
dom finite-horizon Markov decision problem (MDP)
M∗=(S,A,R∗,P ∗,s̄,ρ) over repeated episodes of interac-
tion, where S is the state space, A is the action space,
s̄ ∈ S is the terminal state, and ρ is the initial state dis-
tribution. At the start of each episode the initial state
s1 is drawn from the distribution ρ. In each time pe-
riod h = 1, 2, ... within an episode, the agent observes
a state sh ∈ S. If sh ≠ s̄, the agent also selects an
action ah ∈ A, receives a reward rh+1 ∼ R∗(·|sh, ah),
and transitions to a new state sh+1 ∼ P ∗(·|sh, ah). An
episode terminates once the agent arrives at the ter-
minal state s̄. We use H to denote the horizon of an
episode. Note that H is a random variable in general1

1More precisely, H is a stopping time.
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and the agent arrives at s̄ in period H+1. The agent is
given knowledge about S, A, s, and ρ, but is uncertain
about R∗ and P ∗. The unknown MDP M∗, together
with reward function R∗ and transition function P ∗,
are modeled as random variables [Lu et al., 2021].

A policy µ : S → A maps a state s ∈ S to an action
a ∈ A. For each MDP M with state space S and action
space A, and each policy µ, we define the associated
state-action value function as:

QM
µ (s,a) :=Eµ

[∑H
h=1rh+1

∣∣∣s1 =s,a1 =a,M∗ =M
]
,

(1)
where the subscript µ next under the expectation is
a shorthand for indicating that actions over periods
h=2,...,H are selected according to the policy µ. Let
V M

µ (s) :=QM
µ (s,µ(s)). We say a policy µM is optimal

for the MDPM if µM (s)∈argmaxµV
M

µ (s) for all s∈S.
To simplify the exposition, we assume that under any
MDP M and any policy µ, H<∞ with probability 1.

We use k to index the episode, and we use Hk to denote
the history of observations made prior to episode k. An
RL algorithm is a deterministic sequence of functions,
{πk|k = 1, 2, . . .}, each mappingHk to a probability dis-
tribution πk(·|Hk) over policies, from which the agent
samples a policy µk for the kth episode. Denote the
regret of a policy µk over episode k by

∆k :=
∑

s∈S ρ(s)(V M∗

µ∗ (s)− V M∗

µk
(s)), (2)

where µ∗ is an optimal policy for M∗. We define the
expected regret incurred by an RL algorithm π up to
episode K as

Regret(K,π) := Eπ

[∑K
k=1 ∆k

]
, (3)

where the subscript π under the expectation indicates
that policies are generated through algorithm π. Note
that the expectation in (3) is over the random transi-
tions and rewards, the possible randomization in the
learning algorithm π, and also the unknown MDP M∗

based on the agent designer’s prior distribution.

2.2 EPISTEMIC NEURAL NETWORKS

We construct RL agents based on epistemic neural
networks (ENN) [Osband et al., 2021]. A conventional
neural network is specified by a parameterized func-
tion class f , which produces an output fθ(x) given
parameters θ and an input x. An ENN is specified by
a parameterized function class f and a reference dis-
tribution PZ . The output fθ(x, z) of an ENN depends
additionally on an epistemic index z, sampled from
the reference distribution PZ . Variation of the network
output with z indicates uncertainty that might be re-
solved by future data. All conventional neural networks

can be written as ENNs, but this more general framing
allows an ENN to represent the kinds of uncertainty
necessary for effective sequential decision-making [Wen
et al., 2022]. In particular, it allows for an ENN to
represent useful joint predictions.

Consider a classification problem. Given inputs
x1, . . . , xτ , a joint prediction assigns a probability
P̂1:τ (y1:τ ) to each class combination y1, . . . , yτ . Impor-
tantly, and unlike ‘standard’ deep learning classification
problems, these predictions are made jointly and not
independently for each input. For insight into how this
distinction can be critical for decision making we refer
to Wen et al. [2022], Osband et al. [2022].

Epistemic neural networks output class logits for each
input, but can also express nuanced joint predictions
by integrating over the epistemic index.

P̂ENN
1:τ (y1:τ ) =

∫
z

PZ(dz)
τ∏

t=1
softmax (fθ(xt, z))yt

.

(4)
This sort of nuanced joint prediction share many simi-
larities with Bayesian neural networks (BNNs), which
maintain a posterior distribution over plausible neural
nets. However, unlike BNNs, ENNs do not necessarily
ascribe Bayesian semantics to the unknown parame-
ters of interest, and they do not generally update with
Bayes rule. All BNNs can be expressed as ENNs; for
example, an ensemble of K networks fθ1 , .., fθK

can
be written as an ENN f̃ with reference distribution
PZ = Unif({1, ..,K}) and f̃θ(x, z) := fθz (x) [Osband
and Van Roy, 2015, Lakshminarayanan et al., 2017].
However, there are some ENNs that cannot be ex-
pressed naturally as BNNs.

2.3 THE EPINET

One such example of novel ENNs is the epinet: a small
additional network designed to estimate uncertainty
[Osband et al., 2021]. An epinet is added to a base
network: a conventional NN with base parameters ζ
that takes input x and outputs µζ(x). The epinet acts
on a subset of features ϕζ(x) derived from the base net-
work, as well as an epistemic index z sampled from the
standard normal in DZ dimensions. For concreteness,
you might think of µ as a large neural network and ϕ
as the last layer features. For epinet parameters η, this
produces a combined output:

fθ(x,z)︸ ︷︷ ︸
ENN

= µζ(x)︸ ︷︷ ︸
base net

+ση(sg[ϕζ(x)],z)︸ ︷︷ ︸
epinet

. (5)

The ENN parameters θ = (ζ, η) include those of the
base network and epinet2. The epinet ση has a simple

2The “stop gradient” notation sg[·] indicates the argu-
ment is treated as fixed when computing a gradient. For



MLP-like architecture, with an internal prior function
designed to create an initial variation in index z [Os-
band et al., 2018]. That means, for x̃ := sg[ϕζ(x)],

ση(x̃, z)︸ ︷︷ ︸
epinet

= σL
η (x̃, z)︸ ︷︷ ︸

learnable

+σP (x̃, z)︸ ︷︷ ︸
prior net

. (6)

The prior network σP represents prior uncertainty and
has no trainable parameters. The learnable network σL

η

can adapt to the observed data with training. We refer
readers to the original paper of Osband et al. [2018]
for an overview of this prior function technique.

This paper focuses on simple neural networks based
around MLPs with ReLU activation. Let C denote the
number of classes and DZ denote the index dimension.
The learnable network σL

η (ϕζ(x), z) = gη([ϕζ(x), z])T z,
where gη(·) is an MLP with outputs in RDZ ×C , and
[ϕζ(x), z] is concatenation of ϕζ(x) and z. The prior
network σP is a mixture of an ensemble of DZ particles
sampled from the distribution of the data generating
model that acts directly on the input x (Section 4).

2.4 ENN-DQN

We now motivate and develop ENN-DQN, a novel
DQN-type agent for large-scale RL problems with value
function approximation. Specifically, it uses an ENN
to maintain a probability distribution over the state-
action value function Q∗, which may be thought of as
an approximate posterior of the optimal state-action
value function. We consider ENNs fθ(s, a) ∈ ℜ|A| that
take a state and an epistemic index, and output a
real value for each action in A, similar to an DQN.
ENN-DQN selects actions using Thompson sampling
(TS). It can be viewed as a value-based approximate
TS algorithm via ENN.

Similar to existing work on ENNs [Osband et al., 2022],
the agent needs to define a loss function to update
the ENN parameters. In general, for a given ENN
fθ, a target ENN fθtarget , and an observed dataset D,
the agent updates its ENN of the state-action value
function by minimizing

L(θ, θtarget,D) =
Ez∼PZ

[∑
d∈D ℓ(d, z; θ, θtarget)

]
+ ψ(θ), (7)

where ℓ(d, z; θ, θtarget) is the loss associated with the
observed transition d = (s, a, r, s′) as well as the epis-
temic index z, and ψ(θ) is a regularization term. In
this paper we use ψ(θ) = λ∥θ∥2

2 for some λ > 0, which
corresponds to a Gaussian prior over θ. We will discuss
the specific choices of ℓ at the end of this section. Note
that the target ENN is necessary for the stability of

example, ∇θfθ(x, z) = [∇ζµζ(x), ∇ηση(ϕζ(x), z)].

learning in many problems, as discussed in [Mnih et al.,
2015].

We optimize L through stochastic gradient descent. At
each gradient step, we sample a mini-batch of data
D̃ and a batch of indices Z̃ from Pz, and we take a
gradient step with respect to the loss

L̃(θ, θtarget, D̃, Z̃) =
|D|
|D̃|

1
|Z̃|

∑
z∈Z̃

∑
d∈D̃

ℓ(d, z; θ, θtarget) + ψ(θ). (8)

Algorithm 1 describes the ENN-DQN agent. Specifi-
cally, at each episode k, the agent samples an epistemic
index zk and takes actions greedily with respect to
the associated state-action value function fθ(·, zk). The
agent updates the ENN parameters θ in each episode
according to (8), and it updates the target parameters
θtarget periodically.

Algorithm 1 ENN-DQN agent
Input: initial parameters θ0, ENN for action-value
function fθ(s = ·, z = ·) with reference distribution PZ .
1: θtarget ← θ0
2: initialize buffer
3: for episode k = 1, 2, ... do
4: sample index zk ∼ Pz

5: h← 1
6: observe sk,1
7: while sk,h ̸= s̄ do
8: apply ak,h ∈ arg maxa fθ(sk,h, zk)a

9: observe rk,h+1, sk,h+1
10: buffer.add((sk,h, ak,h, rk,h+1, sk,h+1))
11: θ, θtarget ← update(buffer, θ, θtarget)
12: h← h+ 1

Finally, we discuss the choices of data loss function
ℓ. Note that the choices of ℓ are usually problem-
dependent. For bandit problems with discrete rewards,
such as either the finite Bernoulli bandits we consider
in Section 3, or the neural bandit we consider in Sec-
tion 5, we use the classic cross-entropy loss. For general
RL problems, such as the ones we consider in Section 6,
we use the quadratic temporal difference (TD) loss

ℓ(d, z; θ, θtarget) =(
fθ(s, z)a − r − γmax

a′
fθtarget(s′, z)a′

)2
,

where γ ∈ [0, 1] is a discount factor chosen by the agent
which reflects its planning horizon. Our next section
examines the performance of this style of agent in a
simplistic decision problem.



3 ANALYSIS IN BANDITS

The quality of decision-making in RL relies crucially
on the quality of joint predictions. As established in
[Wen et al., 2022], accurate joint predictions are both
necessary and sufficient for effective decision-making
in bandit problems. To help build intuition, we present
a simple, didactic bandit example in this section.
Example 1 (Bandit with one unknown action). Con-
sider a bandit problem with A actions. The rewards for
actions 1, .., A−1 are known to be independently drawn
from Bernoulli(0.5). The final action A is determinis-
tic, but either rewards 0 or 1 and both environments
are equally likely.

The optimal strategy to maximize the cumulative re-
ward in Example 1 is to first select the uncertain action
A and, if that is rewarding, then pick that one for all
future timesteps, otherwise default to any of the first
1, .., A−1. Exact Thompson sampling algorithm will in-
cur an O(1) regret in this example. However, depending
on the quality of ENN approximation, approximate TS
based on an ENN can sometimes do much worse. To see
it, note that action A is indistinguishable from other
actions based on marginal predictions. Consequently,
any agent making decisions only based on marginal
predictions cannot perform better than a random guess
and will incur an O(A) regret in Example 1.

On the other hand, the results of Wen et al. [2022]
show that suitably-accurate joint predictions, that is
predictions over the possible rewards r1, .., rτ for τ time
steps into the future do suffice to ensure good decision
performance of a variant of approximate TS algorithm
(see Theorem 5.1 of that paper). Indeed, for Example 1
even τ = 2 will suffice, as the agent can distinguish
the informative action A that has all probability on
either both rewards being rewarding, or both being
non-rewarding if it is selected.

The remainder of this paper will show that the sort of
stylized and theoretical issue highlighted by Example 1
actually shows up in real problems with deep reinforce-
ment learning. We will go on to see that the ENNs that
perform better joint prediction, are the ones that drive
more effective decision making.

4 BENCHMARK ENNS

Our results build on open-source implementations of
Bayesian deep learning, tuned for performance in the
Neural Testbed [Osband et al., 2022]. Table 1 shows
the agents we consider. This section will review the key
results and evaluation of these agents in Neural Testbed
benchmark, then outline the open-source libraries that
we release together with our paper submission.

4.1 NEURAL TESTBED

The Neural Testbed sets a prediction problem gen-
erated by a random neural network. The generative
model is a simple 2-layer MLP with ReLU activations
and 50 hidden units in each layer. We outline the agent
implementations in Table 1, together with the hyperpa-
rameters that were tuned for their performance. Since
we are taking open-source implementations we do not
re-tune the settings for either testbed or decision prob-
lem, except where explicitly mentioned.

For our epinet agent, we initialize base network µζ(x)
as per the baseline mlp agent. The agent architecture
follows Section 2.3 and we tune the index dimension
and hidden widths for performance and compute. After
tuning, we chose epinet hidden layer widths (15, 15),
with an index dimension of 8 and standard Gaussian
reference distribution.

Figure 2: Evaluating quality of marginal and joint pre-
dictions on the Neural Testbed.

Figure 2 shows the results of evaluating these bench-
mark agents on the Neural Testbed in both marginal
(τ = 1) and joint (τ = 10) predictions over 10 random
seeds, each seed working over many internal generative
model instances. After tuning, most of the agents per-
form similarly in terms of marginal predictions, and
are statistically indistinguishable from the well-tuned
baseline MLP at 2 standard errors. However, once we
look at joint predictions, we can see significant differ-
ences in agent performance. Importantly, the epinet
matches the performance of large ensembles, but at
orders of magnitude lower computational cost. In the
rest of this paper we will see that this difference in
joint prediction is highly correlated with the resultant
agent performance in decision problems.



Table 1: Summary of benchmark agents, taken from Neural Testbed [Osband et al., 2022].

agent description hyperparameters
mlp Vanilla MLP L2 decay
ensemble ‘Deep Ensemble’ [Lakshminarayanan et al., 2017] L2 decay, ensemble size
dropout Dropout [Gal and Ghahramani, 2016] L2 decay, network, dropout rate
hypermodel Hypermodel [Dwaracherla et al., 2020] L2 decay, prior, index dimension
ensemble+ Ensemble + prior functions [Osband et al., 2018] L2 decay, ensemble size, prior scale
epinet Last-layer epinet [Osband et al., 2021] L2 decay, network, prior, index dimension

4.2 OPEN-SOURCE CODE

As part of our research effort we release all code neces-
sary to reproduce our experimental results. These do
not require access to specialized hardware, and can be
run on typical cloud computing for less than 10 USD.
Our code builds principally on two existing opensource
libraries enn [Osband et al., 2021] and acme [Hoffman
et al., 2020]. These provide frameworks for ENN and
RL agent design, respectively.

To run our experiments on Neural Bandit, we make mi-
nor edits to the neural_testbed library [Osband et al.,
2022], which we anonymize as part of our submission.
Our main contribution comes in the enn_acme library,
that contains the ENN-DQN algorithm, together with
the experiments and implementation details. This li-
brary allows for simple comparison between different
Bayesian (and non-Bayesian) ENNs for use in deep RL
experiments. We believe that it will provide a useful
base for future research in the area.

5 NEURAL BANDIT

In this section we present an empirical evaluation of the
ENNs from Table 1 on a ‘neural bandit’ problem. We
begin by describing the environment, which is derived
from the open-source Neural Testbed for evaluating
joint predictions [Osband et al., 2022]. Then, we review
the agent structure, with the details of the ENN-DQN
variant we employ. Finally, we review the results which
show that ENNs that perform better in joint prediction
tend to drive better decisions.

5.1 ENVIRONMENT

The neural bandit [Osband et al., 2022] is an environ-
ment where rewards are generated by neural-network-
based generating processes. We take the 2-layer MLP
generative model from the Neural Testbed (Section 4).
We consider N = 1000 actions, drawn i.i.d. from a
100-dimensional standard normal distribution. At each
timestep, the reward of selecting an action a is gener-
ated by first forwarding the vector a through the MLP,
which gives 2 logit outputs. The reward ∈ {0, 1} is then

sampled according to the class probabilities obtained
from applying softmax to the logits. Our agents re-
use the ENN architectures from Section 4 to estimate
value functions that predict immediate rewards (i.e.
apply discount factor 0). We run the agents for 50,000
timesteps and average results over 30 random seeds.

We consider this problem as a simple sanitised problem
where we have complete control over the generative
model, but also know that a deep learning architecture
is appropriate for inference. We hope that this clean
and simple proof of concept can help to facilitate un-
derstanding. This problem represents a neural network
variant of the finite armed bandit problem of Section 3.

5.2 AGENTS

We run the ENN-DQN agents for all of the ENNs of
Table 1. Since the problem is only one timestep we
train with the cross-entropy loss on observed rewards.
We apply an L2 weight decay scheme that anneals
with 1/N for N observed datapoints. As outlined in
Table 1 we tune the L2 decay for each of these agents
to maximize performance.

We use a replay buffer of size 10,000 and update
the ENN parameters after each observation with one
stochastic gradient step computed using a batch of
128 observations from the replay buffer and a batch
of i.i.d index samples from PZ . To compute the gradi-
ent, epinet agent used a batch of 5 index samples and
other agents used the respective default values specified
in https://github.com/deepmind/neural_testbed.
We use Adam optimizer [Kingma and Ba, 2015] with a
learning rate of 0.001 for updating the ENN parameters
based on the gradient.

5.3 RESULTS

The results of Figure 1 clearly show that, the epinet
leads to lower total regret than other ENNs. These
results are particularly impressive once you compare
the computational costs of the epinet against the other
methods. Figure 3 looks at the average regret through
time over the 50,000 steps of interaction. We can clearly

https://github.com/deepmind/enn
https://github.com/deepmind/acme
https://github.com/deepmind/neural_testbed
https://github.com/deepmind/enn_acme
https://github.com/deepmind/neural_testbed


see that the epinet leads to better regret at all stages
of learning. These results are significant in that they
are some of the first to actually show the benefits of
epinet in an actual decision problem.
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Figure 3: Regret through time for different ENNs.

The scatter plots of Figure 4 report the correlation
between prediction quality on the Neural Testbed and
bandit performance. The multiple points for any given
agent represent results generated with different random
seeds. The plot titles provide the estimated correlation,
together with bootstrapped confidence intervals at the
5th and 95th percentiles. Concretely, ‘correlation=-0.01
(-0.23, 0.21) in Figure 4a means that the correlation is
estimated at -0.01, but the bootstrapped distribution
of correlation estimates has a 5th percentile at -0.23
and a 95th percentile at 0.21. However, examining the
corresponding correlation of 0.73 in Figure 4b, with
confidence intervals at (0.65, 0.81) we can see that
agents with accurate joint predictions tend to perfom
better in the neural bandit. These results mirror the
previous results of Osband et al. [2022], but now include
the epinet agent, which continues to follow this trend.

6 BEHAVIOUR SUITE FOR RL

This section repeats the evaluation of Section 5, but in
reinforcement learning problems with long-term conse-
quences. We review the set of environments and bench-
marks included in bsuite [Osband et al., 2020]. Next,
we provide implementation details of our ENN-DQN
algorithms. Finally, we present the results which, at a
high level, mirror those of the bandit setting.

6.1 ENVIRONMENT

The behaviour suite for reinforcement learning, or
bsuite for short, is a collection of environments
carefully-designed to investigate core capabilities of
RL agents [Osband et al., 2020]. We repeat our anal-
ysis of ENNs applied to these environments. We use
the ENNs from Section 5 to estimate value functions
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(a) Marginal quality is not correlated with performance.
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Figure 4: Relating bandit performance to prediction
quality in the Neural Testbed.

with discount γ = 0.99. For all agents using prior func-
tions (ensemble+, hypermodel, and epinet) we scale
the value prior to have mean 0 and variance 1 based
on the observations over the first 100 timesteps under
a random action policy.

We choose to work with bsuite since these are chal-
lenging environments designed by RL researchers and
not given by neural network generative models. In ad-
dition, these problems are created with particularly
challenging issues in exploration, credit assignment
and memory that do not arise in the neural testbed.
Evaluating on these extreme, but simple, tasks allows
us to stress test our methodology.

6.2 AGENTS

We run the ENN-DQN agents for all of the ENNs of
Table 1. All agents use a replay buffer of size 10,000
and update the ENN parameters after each interaction
with the environment. Each update consists of taking a
step in the direction of the gradient of the loss function,
Equation (1), using a batch of 128 observations from the



replay buffer and a batch of 20 i.i.d index samples from
the reference distribution. We make use of discount
factor γ = 0.99 for all ENN agents in our experiments.

For epinet we use a similar architecture to Section 4
but only a single-hidden layer epinet with 50 hidden
units along with a 2-hidden layer MLP base model,
2-dimensional normal Gaussian distribution as the ref-
erence distribution.

We use a single set of hyperparameters for all the bsuite
environments. However, different bsuite environments
have different maximum possible rewards, and a single
value of prior scale might not suffice for all the environ-
ments. To overcome this, we first run a uniform random
action policy, which samples actions with equal prob-
ability from the set of possible actions, for 100 time
steps. We use this data to scale the output of the prior
value functions to have a mean 0 and variance 1 for
all the agents which use prior functions (hypermodel,
ensemble+, and epinet). The supplementary mate-
rial presents a detailed breakdown of performance of
different agents across environments.

6.3 RESULTS

In bsuite, an agent is assigned a score for each ex-
periment. Figure 5 plots the “bsuite loss”, which we
define to be one minus the average score against com-
putational cost. Once again, epinet performs similarly
with large ensembles, but at orders of magnitude less
computational cost. Empirically, we observe the biggest
variation with ENN design in the ‘DeepSea’ environ-
ments designed to test efficient exploration. Here, only
the epinet and ensemble+ agents are able to consis-
tently solve large problem sizes. We include a more
detailed breakdown of agent performance by compe-
tency in the supplementary material.

1 3 10 30 100
normalized computational cost (FLOPs)

0.450

0.475

0.500

0.525

0.550

bs
ui

te
 lo

ss

enn
dropout
mlp
ensemble
hypermodel

epinet

ensemble+

Figure 5: Evaluating performance and computational
costs on bsuite reinforcement learning benchmark.

The scatter plots of Figure 6 report the correlation
between prediction quality on the Neural Testbed and

bsuite performance. The multiple points for any given
agent represent results generated with different random
seeds. The plot titles provide the estimated correlation,
together with bootstrapped confidence intervals at the
5th and 95th percentiles, just as in Figure 6. Once again,
our results mirror those of the Neural Testbed. Agents
that produced accurate joint predictions performed
well in the bsuite. However, the quality of marginal
predictions showed no strong relation with performance
on bsuite.

These results are significant for several reasons. First,
we show that the high level observation that joint pre-
diction quality relates to decision performance extends
beyond synthetic neural network generative models.
Further, these results occur even when we move be-
yond the simple classification setting of one-step re-
wards, towards a multi-step TD learning algorithm.
Taken together, these provide a broader form of robust-
ness around the efficacy of learning with epinet, and
the importance of predictions beyond marginals.
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(a) Marginal quality is not correlated with performance.
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Figure 6: Relating bsuite performance to prediction
quality in the Neural Testbed.



7 CONCLUSION

This paper investigates the use of different epistemic
neural networks to drive approximate Thompson sam-
pling in decision problems. We find that, on average,
ENNs that perform better in joint prediction on the
Neural Testbed also tend to perform better in deci-
sion problems. These results are particularly significant
in that they appear to be somewhat robust to the
structure of the environment’s generative model, with
predictive power even when the tasks are very different
from a 2-layer ReLU MLP.

Importantly, our experiments show that novel ENN
architectures such as the epinet are able to match or
even outperform existing approaches at orders of mag-
nitude lower computational cost. This is the first paper
to extend those results from the somewhat synthetic
task of joint prediction, to actual decision making. We
believe that this work, together with the open source
code, can help set a base for future research into effec-
tive ENN architectures for better decision making in
large deep learning systems.
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