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ABSTRACT

We introduce TOPOFORMER, a lightweight and scalable framework for graph
representation learning that encodes topological structure into attention-friendly
sequences. At the core of our method is Topo-Scan, a novel module that decom-
poses a graph into a short, ordered sequence of topological tokens by slicing over
node or edge filtrations. These sequences capture multi-scale structural patterns,
from local motifs to global organization, and are processed by a Transformer to
produce expressive graph-level embeddings. Unlike traditional persistent homol-
ogy pipelines, Topo-Scan is parallelizable, avoids costly diagram computations,
and integrates seamlessly with standard deep learning architectures. We provide
theoretical guarantees on the stability of our topological encodings and demonstrate
state-of-the-art performance across graph classification and molecular property
prediction benchmarks. Our results show that TOPOFORMER matches or exceeds
strong GNN and topology-based baselines while offering predictable and efficient
compute. This work opens a new path for parallelizable and unifying approaches
to graph representation learning that integrate topological inductive biases into
attention frameworks.

1 INTRODUCTION

Graphs are powerful data structures for modeling relational data in biology, chemistry, and social
networks. While recent advances in graph learning have produced strong task-specific models, most
architectures lack the generalization of foundation models in vision and language (Radford et al.,
2021; Bubeck et al., 2023). Achieving such general-purpose capability in graphs is difficult due to
their irregular, non-Euclidean structure (Wu et al., 2020), which complicates the design of transferable
inductive biases.

Topological Data Analysis (TDA) provides a principled approach by encoding global and local
structure in a way that is stable to perturbations and insensitive to node identity (Hensel et al., 2021;
Pham et al., 2025). In principle, Persistent Homology (PH) offers a canonical summary of how
connectivity and cycles evolve across scales, and has proven useful across domains (Skaf et al.,
2022; Obayashi et al., 2022; Shultz, 2023). In practice, however, PH pipelines depend on persistence
diagrams, which require expensive global reductions and a subsequent vectorization step (e.g., images,
landscapes, curves) whose design can materially affect downstream performance. On graphs, common
sublevel/superlevel filtrations also tend to early-saturate, high-valued vertices activate early, quickly
filling the complex and suppressing late-emerging features. These computational and modeling
frictions have slowed the adoption of PH in graph representation learning, despite the clear promise
of topological signals for multi-resolution structure.

To overcome these barriers, we develop a lightweight yet expressive alternative that bypasses full
persistence diagrams while retaining multi-resolution topological information in a form consumable
by transformers. We introduce TOPOFORMER, a scalable framework that integrates topological
descriptors with attention architectures. At its core is Topo-Scan, a module that converts a graph into
a short, ordered sequence of topological tokens across multiple resolutions. These sequences are
directly consumable by attention mechanisms (Vaswani et al., 2017), enabling efficient graph-level
representations within the same token-based interface used by large-scale transformer models. We
therefore view TOPOFORMER as a step toward topology-aware graph foundation models, rather than
a full foundation model itself, and leave large-scale pretraining on heterogeneous graph corpora
to future work. TOPOFORMER achieves strong performance on graph classification and molecular
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property prediction under unified evaluation protocols, with theoretical guarantees on the stability of
its topological encodings. Our Contributions are as follows:
• We introduce a scalable method for turning topological structure into attention-ready sequences, en-

abling transformers to process graphs without relying on node embeddings or heavy preprocessing.

• We propose a new framework that bridges topological data analysis and deep learning, capturing
both local and global graph structure through a unified attention mechanism.

• We conduct a comprehensive evaluation across diverse graph learning tasks, demonstrating strong
performance on both graph classification and molecular property prediction benchmarks.

• We provide theoretical guarantees on the robustness of our representations and show that our
approach offers predictable and efficient compute, making it practical for large-scale applications.

2 MOTIVATION AND BACKGROUND

This section reviews recent work and highlights the need to integrate advanced topological methods
with modern ML to overcome limitations in graph representation learning.

Persistent Homology for Graphs. Persistent Homology (PH) was first defined for filtered
simplicial complexes in the early 2000s (Edelsbrunner et al., 2002; Zomorodian & Carlsson, 2005).
Early applications centered on point clouds X ⊂ RN , where Vietoris–Rips filtrations generate
nested complexes ∆1(X ) ⊂ ∆2(X ) ⊂ · · · , allowing topological features to be tracked across
scales (Carlsson, 2009). The persistence diagram PDk(X ) = {[bi, di)} records births and deaths of
k-dimensional features, with longer intervals (di − bi) interpreted as more persistent and thus more
structurally significant (Dey & Wang, 2022).

PH has since been applied to graphs and images. For graphs, two principal approaches are used. Power
(distance) filtrations treat nodes as a point cloud with graph distances as pairwise distances, then
build a Rips filtration (Aktas et al., 2019), which is typically computationally heavy. A more practical
alternative in graph learning is sublevel filtrations, where a scalar node/edge function f induces
nested subgraphs that are lifted to simplicial complexes via cliques (upper–star extension is standard).
A key interpretability difference follows: in power filtrations, bar lengths reflect geometric scale; in
sublevel filtrations they reflect differences in f rather than physical size, so “long bars ⇒ important
features” need not hold universally. Poorly chosen f may yield many short-lived features or early
saturation , while task-aligned or learnable filtrations can mitigate these effects (Hofer et al., 2020).
Rather than viewing this as an intrinsic weakness, we take it as motivation to design fixed-budget,
stable summaries that integrate smoothly with modern ML (See App. C.8 for discussion).

The standard PH pipeline for graphs has three main steps (Coskunuzer & Akçora, 2024): filtration,
persistence computation, and vectorization. Given a graph G = (V, E), a function f : V → R
with thresholds {αi}Ni=1 induces subgraphs G1 ⊆ · · · ⊆ GN , where Gi contains vertices {v ∈
V | f(v) ≤ αi}. Lifting each Gi to its clique complex Ĝi yields a filtration {Ĝi}. Persistence
diagrams PDk(G, f) = {(bj , dj)} record births and deaths of Hk(Ĝi) and are typically vectorized
via persistence images, landscapes, or Betti curves (Ali et al., 2022).

In recent years, the ML community has increasingly recognized the value of topological encodings
for graph-level tasks, with PH-based methods showing strong results across domains (Immonen
et al., 2024; Demir et al., 2022; Verma et al., 2024; Loiseaux et al., 2024; Horn et al., 2021; Chen
et al., 2024b). Despite this promise, two bottlenecks hinder broader adoption: (1) the computational
overhead of persistence computations in large pipelines (Otter et al., 2017), and (2) the difficulty of
choosing vectorizations that align with downstream objectives (Ali et al., 2022). Our TOPOFORMER
framework addresses both by producing a compact sequence of stable, low-cost topological tokens
that feed directly into attention layers, thereby bypassing full persistence diagrams and bespoke
vectorizations while remaining compatible with efficient graph-specific computations.

Recent methods learn neural approximations of persistence based topological features to reduce the
cost of exact PH. RipsNet (de Surrel et al., 2022) estimates Rips persistence diagrams for point clouds
directly from raw data, while Yan et al. (2022) approximate graph topological features with a GNN.
Our approach is complementary: instead of approximating persistence diagrams, Topo Scan bypasses
global PH and directly builds short interlevel topological sequences tailored to Transformer encoders.
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Transformers. Transformers (Vaswani et al., 2017) underpin transferable models in language and
vision (Devlin, 2018; Dosovitskiy et al., 2020) by learning from ordered token sequences with long-
range dependencies. On graphs, adapting attention is challenging due to variable size, permutation
invariance, and irregular connectivity. Our design sidesteps these issues: Topo-Scan yields a short,
1D ordered sequence of topological tokens with a fixed channel width, so positional encodings
and attention operate in their native regime, without graph-specific heavy machinery. This makes
transformers a natural, efficient backend for multi-resolution structural signals. By contrast, recent
graph transformer models such as Graphormer (Ying et al., 2021), GPS (Rampášek et al., 2022),
and related architectures operate directly on node tokens and inject structure via shortest-path or
Laplacian-based positional encodings and attention biases. In TOPOFORMER, each graph is first
compressed into a short sequence of topological tokens, so attention runs on a fixed-length, purely
topological sequence rather than on all nodes of the original graph.

Molecular Property Prediction. Molecular property prediction (MPP) is central to drug discovery
(ADMET). Classical pipelines use engineered fingerprints with RF/SVMs (Cereto-Massagué et al.,
2015); deep learning extends to MLPs on fingerprints, sequence models on SMILES (Rong et al.,
2020), and GNNs on molecular graphs (Wieder et al., 2020), with recent 3D methods trading accuracy
for higher compute and sensitivity to rotations (Gasteiger et al., 2021; Li et al., 2022b). Despite
progress, DL does not always surpass strong classical baselines on realistic benchmarks (Janela
& Bajorath, 2022; Valsecchi et al., 2022), motivating transformer variants (Sultan et al., 2024),
geometric models (Liu et al., 2022b), and topological approaches (Demir et al., 2022; Loiseaux
et al., 2023). Evaluation protocols also vary (e.g., scaffold vs. random splits), affecting reported
generalization. Our approach unifies robust topological structure with a scalable attention backend,
providing an effective, split-agnostic representation for MPP.

3 TOPO-TRANSFORMERS

TDA captures multi-scale structural patterns while offering robustness to noise, making it attractive for
representation learning. However, the standard Persistent Homology pipeline, consisting of filtration
construction, persistence diagram computation, and vectorization, introduces inefficiencies and lacks
adaptability, particularly in graph settings. While persistence diagram computation is standardized,
vectorization remains ad hoc and significantly impacts model performance Ali et al. (2022). Our goal
is to develop an efficient and scalable alternative to this workflow for graph representation learning.
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Figure 1: Topo-Scan. Topo-Scan decomposes a graph into
sequential topological slices via node and edge filtrations.
The top row shows node-based filtrations; the bottom row,
edge-based ones.

Our first insight is that the strict nested-
ness condition required in PH is not always
necessary for graphs. Unlike point clouds,
graphs inherently encode structural relation-
ships that permit more flexible and direct
extraction of topological features. Building
on this observation, we bypass persistence
diagrams and vectorization by directly ex-
tracting topological sequences from struc-
tured graph slices. This shift enables effi-
cient and adaptable pattern extraction and
forms the foundation of a scalable learning
framework.

Topo-Scan. Traditional sublevel filtrations on graphs often saturate rapidly, and once most nodes
join the subgraph at low thresholds, little new structure emerges and important patterns at larger scales
are lost. Topo-Scan overcomes this by first imposing a directional hierarchy via a scalar function
f : V → R, then slicing the graph into a sequence of overlapping subgraphs along increasing values
of f . Rather than waiting for a single threshold to engulf the entire graph, each slice captures fresh
topological information, such as connectivity changes and emerging loops, without early collapse.
We compute basic invariants (e.g. Betti numbers) on each slice to form a compact, ordered signature
sequence. Feeding these ordered descriptors into a transformer lets the model attend to structure at
every scale, ensuring no signal is lost to premature saturation (See Fig. 2 for a toy example).

Let f : V → R be a filtration function defined on the vertices, with thresholds α0 = minv∈V f(v) <
α1 < · · · < αN = maxv∈V f(v). In most cases, the thresholds are selected either as evenly spaced
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Figure 2: Topo-Scan vs. PH. This toy example highlights the key differences between the Topo-Scan filtration
and standard PH filtration, where node values indicate filtration function values. In PH, early-activated nodes
quickly saturate the graph, suppressing the emergence of later topological features. As shown, PH yields
relatively uninformative barcodes with β0 = ⟨1, 2, 1, 1, 1⟩ and β1 = ⟨0, 0, 0, 0, 0⟩, while Topo-Scan captures
richer topological dynamics, producing β0 = ⟨2, 1, 1, 2, 4⟩ and β1 = ⟨0, 0, 1, 1, 0⟩.

values or based on quintiles. Next, for each αi, we define Vi = {vr ∈ V | αi ≤ f(vr) ≤ αi+m}
and Gi as the induced subgraph Gi = (Vi, Ei), where Ei = {ers ∈ E | vr, vs ∈ Vi}. The clique
complex of Gi, denoted Ĝi, forms a sequence {Ĝi} called slicing. We call this process Topo-Scan,
which decomposes graphs into topological slices, similar to medical scans revealing structural layers.
Leveraging a hierarchical structure, it adapts to node and edge filtrations, weighted graphs, and diverse
relations, capturing local and global topological patterns for robust, scalable representation learning.
It remains robust by tracking short-lived features effectively and is scalable through parallelized slice
extraction.

The resolution (N) determines the number of slices, while the thickness (m) specifies the range of
nodes included in each slice. After constructing {Ĝi}, we compute four outputs for each slice: β0(Ĝi)

(Betti-0, connected components), β1(Ĝi) (Betti-1, cycles/holes), |Vi| (node count), and |Ei| (edge
count). These outputs form ordered sequences of size N , such as β̂k(G) = {βk(Ĝi)}Ni=1 for k = 0, 1.
While β̂k(G) are the primary topological outputs, {|Vi|} and {|Ei|} serve as normalization factors
(see Figure 1). These sequences are concatenated into a sequence (vector) Γ(G) of length 4N where
N is the number of slices.

(a) IMDB-B - Betti-0 (b) IMDB-M - Betti-0

Figure 3: PH vs. Topo-Scan. Average Betti-0 counts under
degree filtration with 100 thresholds on IMDB-B and IMDB-
M. Standard PH saturates early, causing a sharp decline near
the end of the curve. Topo-Scan avoids early saturation and
continues to reveal late-emerging features, often surpassing
PH counts at higher thresholds.

A key distinction from PH lies in activation:
PH includes all nodes up to a threshold,
causing early saturation in dense graphs,
while Topo-Scan uses a sliding window to
preserve late-emerging features and capture
fine structure (see Fig. 3 and App. C.8).
Slice thickness m controls locality, allow-
ing flexibility across datasets. Its localized
design ensures robustness to noise and en-
ables parallelization, making it ideal for
scalable ML workflows.

Vectorization Choice. Among many pos-
sible vectorizations, we deliberately use
a very low-dimensional token per slice,
(β0, β1, |Vi|, |Ei|). Global vectorizations such as persistence images or landscapes aggregate in-
formation over the entire filtration into a single feature vector, which largely destroys the sequential
structure that Topo-Scan is designed to expose. In contrast, our Betti-based tokens preserve how
components and cycles evolve across slices; richer per-slice invariants could be plugged in, but we
focus on this minimal choice to isolate the benefit of the sequential representation.

TOPOFORMER. We use the ordered sequences of topological features in Transformers, which
excel at capturing sequential structures and complex dependencies through self-attention mechanisms,
making them well-suited for tasks requiring order and contextual understanding. While traditional PH
processes a sequence of simplicial complexes {∆i}, this sequential structure is often lost during the
persistence diagram and vectorization stages, where outputs are transformed into unordered vectors.
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Figure 4: TopoFormer Flowchart: Given an input graph G, sequential substructures are extracted via
Topo-Scan. Each substructure is encoded into a four-dimensional topological signature. These sequences are
processed by a transformer model, and outputs from multiple filtration functions are fused using attention-based
concatenation. A final prediction layer maps the representation to the target graph property.

Topo-Scan preserves the sequential nature of topological features and aligns them with transformers’
ability to model positional relationships.

ML Model. Our transformer architecture (Fig. 4) consists of an embedding layer that processes
input sequences, a transformer encoder that captures hierarchical dependencies through self-attention
mechanisms, and a fully connected classification head that maps learned representations to output
predictions. To enhance generalization and mitigate overfitting, we integrate regularization techniques,
such as dropout and weight decay, ensuring robustness across diverse graph learning tasks. Formally,
given an input sequence x ∈ Rm×T×D, where m is the number of graphs, T the sequence length, and
D the token dimensionality, the sequence is embedded via E, with positional encoding P added. This
processed sequence is then passed through a multi-layer transformer encoder, producing an output
representation z, which is flattened and normalized before being classified via a fully connected layer.

Expanding this model, we introduce a dual-transformer framework with an integrated multi-layer
perceptron (MLP) classifier to handle diverse input modalities. The model processes three distinct
inputs: X1 and X2 through independent transformers T1 and T2, and X3 through an MLP M. Their
respective outputs z1, z2, and z3 are combined using a learnable weighted sum, allowing the model
to adaptively balance feature contributions:

zcombined = α · z1 + β · z2 + (1− α− β) · z3
where α and β are learned during training. The aggregated feature vector is then batch-normalized and
passed through a fully connected layer to produce the final classification output: ŷ = FC(zcombined)
where ŷ ∈ RC represents the class probabilities, with C being the number of output classes. Model
details are given in Appendix C.

3.1 STABILITY OF TOPO-SCAN SEQUENCES

A useful graph vectorization should be robust: small changes in the filtration signal should not cause
large changes in the output sequence. We formalize this for Topo-Scan on the fixed clique complex Ĝ
of G = (V,E) using upper–star extensions of node functions.

Setup. Let f, g : V → R be filtration functions, extended to Ĝ by the upper–star rule ĥ(σ) =
maxv∈σ h(v). Fix a shared threshold grid α0 < · · · < αN , window width m, stride s, and windows
It = [αts, αts+m] for t = 0, . . . , T−1, where T = ⌊(N − m)/s⌋ + 1. For k ∈ {0, 1}, the t-th
Topo-Scan token is the interlevel Betti number

β̂h
k (t) := dim Hk

(
(Ĝ)hIt

)
, h ∈ {f, g}.

5
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Theorem 3.1 (Discrete ℓ1 stability of Topo-Scan). There exists C = C(Ĝ, {αi},m, s) such that for
k ∈ {0, 1}, ∥∥β̂k(G, f)− β̂k(G, g)

∥∥
1
≤ C dB

(
Mf

k ,M
g
k

)
,

where Mh
k denotes the k-dimensional interlevel (level-set) persistence module of the upper–star

filtration induced by h on Ĝ, and dB is the bottleneck distance between such modules.
Corollary 3.2. For upper–star filtrations on a fixed complex, interlevel modules satisfy
dB(M

f
k ,M

g
k ) ≤ ∥f − g∥∞. Hence ∥β̂k(G, f)− β̂k(G, g)∥1 ≤ C ∥f − g∥∞.

Outline. Each token counts classes surviving exactly over It; under a δ bottleneck matching, only
classes within δ of the interval boundary can change their contribution, so per-window changes are
O(δ) and summing over windows yields the discrete ℓ1 bound with a constant depending on the
window schedule and the (finite) bar complexity of Ĝ. Full details and references are in Appendix B.

Beyond stability, the Topo-Scan sequences β̂k(G, h) are closely related to classical PH invariants: they
can be viewed as a discrete sampling of the rank invariant / Betti curve of the interlevel module Mh

k
along our window schedule. Thus, Topo-Scan provides a coarse but structured, Transformer-ready
discretization of the same homological information underlying barcodes and stable-rank summaries;
see Remark B.3 for further discussion.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We report the TOPOFORMER’ performance in two graph learning tasks: graph classifi-
cation and molecular property prediction (MPP).

Graph Classification Datasets. We use nine graph classification benchmark datasets: (i) molecular
graphs from BZR, MUTAG and COX2 (Kriege et al., 2012); (ii) biological graphs PROTEINS (Borg-
wardt et al., 2005); and (iii) social graphs, including IMDB-Binary, IMDB-Multi, REDDIT-Binary,
and REDDIT-Multi-5K (Yanardag et al., 2015). We also include a large-scale dataset, OGBG-
MOLHIV, from Open Graph Benchmark (Hu et al., 2020b). Dataset statistics are provided in Table 1.

Table 1: Graph classification datasets.

Datasets #Graphs |V| |E| Classes
BZR 405 35.75 38.36 2
COX2 467 41.22 43.45 2
MUTAG 188 17.93 19.79 2
PROTEINS 1113 39.06 72.82 2
IMDB-B 1000 19.77 96.53 2
IMDB-M 1500 13.00 65.94 3
REDDIT-B 2000 429.63 497.75 2
REDDIT-5K 4999 508.52 594.87 5
OGBG-MOLHIV 41127 25.5 27.5 2

MPP Datasets. For molecular prop-
erty prediction (MPP), we employ seven
datasets from MoleculeNet (Wu et al.,
2018): BBBP (blood-brain barrier pene-
tration), Tox21, ToxCast, ClinTox (toxic-
ity prediction), SIDER (adverse drug re-
actions), HIV (replication inhibition), and
BACE (β-secretase 1 inhibitors). Dataset
statistics are provided in Table 3 (top rows).

Model Setup. We use Topo-Scan to
generate topological signature sequences,
which are fed to Transformer classifiers. Each filtration (20 thresholds, width 2) yields four sequences
of length 19 (Betti-0, Betti-1, node count, edge count), giving 76 features per filtration. For graph
classification, we use Ollivier–Ricci curvature and Heat Kernel Signature; and for molecular property
prediction including the OGBG-MOLHIV dataset, we use atomic weight and Ollivier–Ricci curvature.
Independent Transformers process each filtration, and their outputs are fused by attention before a
final linear layer.

For MPP, we use TOPOFORMER with the standard molecular fingerprints, processed by a two-layer
MLP and combined with topological features via attention, yielding TOPOFORMER∗. We report
10-fold CV accuracy on graph classification, scaffold-split AUCs over three runs for MPP (Fang et al.,
2023a), and use the standard split for OGBG-MOLHIV.

Hyperparameters. For model optimization, we employed the Adam optimizer with a learning
rate of 0.001. We also use standard regularization techniques—dropout (0.5), weight decay (1e-4),
and batch normalization—commonly employed in transformer training. The transformer model
architecture was designed with a hidden dimension of 32. Hyperparameters are given in App. C.5.
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Table 2: Graph Classification. Accuracy on eight benchmark datasets using 10-fold CV. Baseline results are
taken from the respective papers using the same setting. We mark the 1st (blue), 2nd (purple), and 3rd (green)
per column. The last two columns report the average deviation (AvD) from the best-performing model and the
average rank (AvR) across all datasets.

Model BZR COX2 MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B REDDIT-5K AvD↓ AvR↓
6 GNNs (Errica et al., 2020) – – 80.42±2.07 75.80±3.70 71.20±3.90 49.10±3.50 89.90±1.90 56.10±1.60 6.0 8.5
PersLay (Carrière et al., 2020) – 80.90± NA 89.80± NA 74.80± NA 71.20± NA 48.80± NA – 55.60± NA 5.2 8.7
DMP (Bodnar et al., 2021) – – 84.00±8.60 75.30±3.30 73.80±4.50 50.90±2.50 86.20±6.80 51.90±2.10 6.1 8.3
FC-V (O’Bray et al., 2021) 85.61±0.59 81.01±0.88 87.31±0.66 74.54±0.48 73.84±0.36 46.80±0.37 89.41±0.24 52.36±0.37 5.7 9.2
SubMix (Yoo et al., 2022) 86.34±2.00 84.68±3.70 80.99±0.60 67.80±2.00 70.30±1.40 46.47±2.50 – – 8.4 11.5
G-Mix (Han et al., 2022) 84.15±2.30 83.83±2.10 81.96±0.60 66.28±1.10 69.40±1.10 46.40±2.70 – – 9.1 12.8
RGCL (Li et al., 2022a) 84.54±1.67 79.31±0.68 87.66±1.01 75.03±0.43 71.85±0.84 49.31±0.42 90.34±0.58 56.38±0.40 5.2 8.0
AutoGCL (Yin et al., 2022) 86.27±0.71 79.31±0.70 88.64±1.08 75.80±0.36 72.32±0.93 50.60±0.80 88.58±1.49 56.75±0.18 4.7 7.0
WWLS (Fang et al., 2023b) 88.02±0.61 81.58±0.91 88.30±1.23 75.35±0.74 75.08±0.31 51.61±0.62 – – 4.5 5.2
PGOT (Qian et al., 2024) 87.32±3.90 82.98±5.21 92.63±2.58 73.21±2.59 62.90±3.05 51.33±1.76 – – 6.1 7.5
EMP (Chen et al., 2024a) – – 88.79±0.63 72.78±0.54 74.44±0.45 48.01±0.42 91.03±0.22 54.41±0.32 4.8 7.5
EPIC (Heo et al., 2024) 88.78±2.30 85.53±1.60 82.44±0.70 69.06±1.00 71.70±1.00 47.93±1.30 – – 6.9 9.0
MP-HSM (Loiseaux et al., 2024) – 77.10±3.00 85.60±5.30 74.60±2.10 74.80±2.50 47.90±3.20 – – 6.9 10.1
TopoGCL (Chen et al., 2024b) 87.17±0.83 81.45±0.55 90.09±0.93 77.30±0.89 74.67±0.32 52.81±0.31 90.40±0.53 – 3.5 4.3
DASP (Ye et al., 2025) 89.40±3.10 84.80±4.60 91.90±8.60 77.20±3.10 81.40±3.60 51.20±2.20 – 57.60±1.60 1.6 2.8
TOPOFORMER 92.36±4.11 83.93±4.03 94.68±4.30 77.64±3.64 78.90±3.31 55.40±4.78 91.50±1.89 57.99±1.94 0.5 1.5

Computational Complexity. Classical PH requires global boundary–matrix reductions with
cubic worst-case cost and poor parallelism (Otter et al., 2017). TOPOFORMER skips persistence
diagrams entirely: instead of global reductions, it computes β0 and β1 per slice on the clique-complex
2-skeleton. β0 uses union–find on the 1-skeleton, while β1 is derived from sparse edge–triangle
operators after triangle enumeration (no cycle-rank identity due to clique complexes). This yields
O(|Vt| + |Et| + Tt) per slice, aggregated as O(L

∑
t(|Vt| + |Et| + Tt)) across k slices and L

filtrations. Since slices are independent, Betti computations are fully parallelizable. By bypassing
PD computation and vectorization, TOPOFORMER achieves multi-fold runtime and memory gains
while retaining task-relevant topological features (Appendix C.3). In Appendix C.6, we further show
that TOPOFORMER consistently outperforms classical PH across multiple filtration functions and
vectorization schemes in the graph classification task.

Implementation and Runtime. We implemented our approach in Python and conducted ex-
periments on a 12th Gen Intel Core i7-1270P vPro processor (E-cores up to 3.50 GHz, P-cores
up to 4.80 GHz) with 32GB LPDDR5-6400MHz RAM. Topo-Scan feature extraction took 269.38
seconds for OGBG-MOLHIV/HIV and 29.51 seconds for REDDIT-5K; other datasets were faster.
The remaining model runtime was negligible. More timeruns and a comparison with PH can be found
at Appendix C.3. Our code is available at the link 1.

4.2 RESULTS

Graph Classification Baselines. We evaluate our method against 20 state-of-the-art baselines
spanning several categories. These include: GNN-based models such as GCN, DGCNN, DiffPool,
ECC, GIN, and GraphSAGE (with the best results reported by Errica et al. (2020)); topological
methods including PersLay, DMP, FC-V, WWLS, MP-HSM, and EMP; GNNs with data augmentation
such as SubMix, G-Mix, and EPIC; contrastive learning methods including RGCL, AutoGCL, and
TopoGCL; and prototype-based methods such as PGOT. We further include the recent graph kernel
method DASP (Ye et al., 2025). A complete list of baselines is provided in Table 2.

Graph Classification Results. In graph classification, TOPOFORMER attains the best or second-
best accuracy on 7 out of 8 benchmarks (Table 2). Aggregating across datasets, it achieves an
average deviation (AvD) of 0.5 from the best model and an average rank (AvR) of 1.5, demonstrating
consistent top-tier performance. Notably, TOPOFORMER establishes new state-of-the-art on BZR,
MUTAG,PROTEINS, IMDB-M, REDDIT-B, and REDDIT-5K, while remaining highly competitive
elsewhere. It also surpasses common pooling-based methods on these datasets (see Table 12). On
the large-scale OGBG-MOLHIV benchmark (Table 4), TOPOFORMER* reaches an AUC within
∼2 points of the strong Graphormer baseline, underscoring both its scalability and the strength
of topological signals as an inductive bias in graph learning. For this table, we restrict baselines
to peer-reviewed published methods reported in the literature, rather than including unpublished
leaderboard entries in (Hu et al., 2020b).

1https://anonymous.4open.science/r/TOPOFORMER-B0E3
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Table 3: SOTA MPP Models. ROC AUC comparison on molecular property prediction with scaffold splitting.
We mark the 1st (blue), 2nd (purple), and 3rd (green) per column. The last two columns report the average
deviation (AvD) from the best-performing model and the average rank (AvR) across all datasets.

Model BBBP Tox21 ToxCast SIDER ClinTox BACE HIV AvD↓ AvR↓
# Molecules 2,039 7,831 8,577 1,427 1,480 1,513 41,913
# Task 1 12 617 27 2 1 1

N-GRAM (Liu et al., 2019) 91.2±3.0 76.1±2.7 – 63.2±0.5 87.5±2.7 79.1±1.3 78.7±0.4 8.5 8.4
PT-GNN (Hu et al., 2020a) 70.8±1.5 78.7±0.4 65.7±0.6 62.7±0.8 72.6±1.5 84.5±0.7 79.9±0.7 12.4 8.7
CMPNN (Song et al., 2020) 92.7±1.7 80.3±1.3 70.8±1.3 61.0±3.6 89.8±0.8 86.7±0.2 78.2±2.2 6.1 6.2
MGSSL (Zhang et al., 2021) 70.5±1.1 74.0±1.4 64.1±0.7 59.2±0.6 80.7±2.1 79.7±0.8 79.5±1.1 13.5 11.7
GEM (Fang et al., 2022) 70.5±2.0 78.1±0.6 68.6±0.2 63.2±1.5 90.3±0.7 87.9±1.0 81.3±0.3 8.9 6.6
GROVER (Rong et al., 2020) 86.8±2.2 82.0±1.6 56.8±3.4 61.2±2.5 70.3±13.7 82.8±3.6 68.2±1.1 13.5 9.9
GraphMVP (Liu et al., 2022a) 72.4±1.6 76.5±0.4 63.1±0.4 63.9±1.2 79.1±2.8 81.2±0.9 77.0±1.2 12.7 10.4
MolCLR (Wang et al., 2022) 72.6±1.3 77.2±0.6 65.9±2.1 61.3±6.6 89.8±2.7 88.5±2.2 77.4±0.6 9.9 7.8
MolCLR-2 (Wang et al., 2022) 72.4±0.7 78.4±0.6 69.1±1.2 59.7±3.4 88.0±4.0 85.0±2.4 77.8±5.5 10.2 8.6
KANO (Fang et al., 2023a) 96.0±1.6 83.7±1.3 73.2±1.6 65.2±0.8 94.4±0.3 93.1±2.1 85.1±2.2 1.6 2.0
MV-Mol (Luo et al., 2024) 73.6±0.2 80.3±0.6 70.0±0.4 67.3±0.0 95.6±1.6 88.2±0.4 81.4±0.3 6.5 3.6
MolFuse (Zheng et al., 2024) 74.3±1.3 77.6±0.4 64.1±0.3 69.5±1.0 95.5±3.3 87.2±1.3 78.6±0.9 7.9 6.2
MORE (Son et al., 2025) 71.9±0.9 75.6±0.5 64.6±0.6 60.9±0.6 81.0±0.7 82.8±1.3 77.0±0.7 12.6 11.1

TOPOFORMER∗ 89.5±1.3 82.7±0.5 75.3±0.5 63.1±0.7 96.5±0.6 95.9±0.3 81.2±0.8 2.5 2.8

Table 4: ROC AUC results for OGBG-MOLHIV
dataset.

Model ROC AUC
GIN-VN (Xu et al., 2018) 77.80±1.82

HGK-WL (Togninalli et al., 2019) 79.05±1.30

WWL (Borgwardt et al., 2020) 75.58±1.40

PNA (Corso et al., 2020) 79.05±1.32

DGN (Beaini et al., 2021) 79.70±0.97

GraphSNN (Wijesinghe et al., 2021) 79.72±1.83

GCN-GNorm (Cai et al., 2021) 78.83±1.00

Graphormer (Ying et al., 2021) 80.51±0.53
Cy2C-GCN (Choi et al., 2022) 78.02±0.60

GAWL (Nikolentzos et al., 2023) 78.34±0.39

LLM-GIN (Zhong et al., 2024) 79.22±NA

GMoE-GIN (Wang et al., 2024) 76.90±0.90

TopER (Tola et al., 2025) 80.21±0.15

TOPOFORMER∗ 78.19 ±0.19

MPP Baselines. We compare against strong
supervised, self-supervised, and contrastive meth-
ods for molecular property prediction (MPP). Su-
pervised: CMPNN (message passing on molec-
ular graphs). Predictive self-supervision: N-
GRAM, PT-GNN, GROVER, MGSSL, GEM. Con-
trastive/augmentation and 3D: GraphMVP (with
3D), MolCLR, MolCLR-2. Knowledge-aware /
prompts: KANO. Recent multi-view/fusion mod-
els: MV-Mol (multi-view molecular representations),
MORE (modality-aware molecular representation
learning), and MolFuse (fusion of heterogeneous
molecular signals). See Table 3 for full references.

MPP Results. On molecular property predic-
tion, TOPOFORMER shows strong adaptability when
paired with Extended Connectivity Fingerprints.
Against state-of-the-art supervised, contrastive, and
fusion baselines, TOPOFORMER∗ achieves the best ROC AUC on ToxCast, ClinTox, and BACE, and
is the runner-up on Tox21 (Table 3). It remains competitive on HIV, trailing the leader by only a small
margin. Aggregating across all seven benchmarks, TOPOFORMER attains the second-lowest average
deviation from the column best (AvD = 2.5) and the second-lowest average rank (AvR = 2.8),
confirming consistent top-tier performance alongside recent SOTA models such as KANO, MV-Mol,
and MolFuse. We also benchmarked against hybrid classical (HC) models (Appendix A.3), where
TOPOFORMER achieves the best result on four out of seven datasets and highly competitive results on
others (Table 8). These findings highlight that transforming topology into compact, attention-ready
tokens yields a robust and adaptable molecular predictor.

We further report Hybrid Classical baselines combining fingerprints, SMILES, and graph features
with standard learners in Table 8. See Appendix A.3 for details of these models.

4.3 ABLATION STUDIES

We conduct four ablation studies, as follows.

TOPOFORMER vs. PH (Table 5): We compare TOPOFORMER with two persistent homology models
using the same filtration functions and thresholds. PH-MLP uses sublevel filtrations with Betti
vectorization followed by an MLP, while PH-TR replaces the MLP with a Transformer, treating
Betti vectors as sequences. TOPOFORMER instead uses our proposed Topo-Scan to directly extract
topological sequences. PH-TR outperforms PH-MLP, showing that sequential encodings preserve
richer information than static features. TOPOFORMER further improves on PH-TR, indicating that
Topo-Scan captures more expressive structure than standard PH filtrations.
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Table 5: TOPOFORMER vs. PH: Accuracy results for three topological models using degree centrality,
Ollivier-Ricci and HKS filtrations. The PH-MLP model utilizes Betti vectors derived from regular sublevel
filtrations combined with an MLP, while PH-TR applies transformers to the same vectors. The TOPOFORMER
uses Betti sequences generated via the Topo-Scan on the same filtration function and applies transformers.

Filtration Model BZR COX2 MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B
PH-MLP 82.71±6.51 76.44±5.39 84.06±4.65 68.37±3.97 65.70±4.03 45.07±2.59 89.50±2.87

Degree PH-TR 86.43±4.33 78.15±5.19 86.11±5.23 77.54±2.64 75.00±2.11 50.67±3.57 92.30±1.77
TOPOFORMER 91.10±5.14 80.27±5.24 92.54±5.12 77.45±4.02 74.20±5.01 50.33±1.52 89.75±2.18

PH-MLP 85.45±3.36 78.16±5.09 84.06±5.21 65.50±4.26 68.00±3.55 44.87±3.65 85.65±2.62

O.Ricci PH-TR 88.62±5.40 78.16±5.73 87.61±5.70 77.27±5.08 72.20±6.24 48.00±4.33 90.65±1.08

TOPOFORMER 90.38±5.50 80.72±6.44 92.54±4.47 77.90±3.17 74.70±4.95 51.53±3.49 91.90±2.73

PH-MLP 84.96±4.42 78.19±4.34 84.09±5.72 70.80±4.70 71.10±5.28 47.93±3.20 88.10±1.67

HKS PH-TR 89.60±5.84 79.89±4.66 94.12±5.42 77.18±3.15 76.80±3.97 53.60±3.31 87.25±1.95

TOPOFORMER 90.62±4.91 83.95±2.99 95.32±5.58 77.35±2.86 77.90±5.72 54.07±2.54 90.05±2.41

Effect of molecular fingerprints (Table 7): We evaluate TOPOFORMER and Extended-Connectivity
Fingerprints (ECFPs) both independently and in combination, including integration with PubChem
descriptors. While topological and fingerprint models perform moderately on their own, their
combination consistently outperforms individual baselines, suggesting that topological features
complement domain-specific descriptors.

Sensitivity to width parameter (Table 6): We analyze how the sliding window size influences the
performance of Topo-Scan. See Appendix C.5 for further details.

Table 6: Width Parameter. Performance comparison for different window width parameters across
datasets.

BZR COX2 MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B

Degree Centrality
m = 2 89.89±3.74 78.36±4.93 92.02±7.24 77.28±5.93 74.20±3.36 51.53±3.34 86.60±2.97

m = 3 88.64±5.30 78.38±5.04 90.41±5.53 76.92±3.62 73.20±3.39 51.13±3.08 86.90±2.31

m = 4 88.86±4.33 78.16±6.07 92.57±5.63 76.91±3.28 74.10±3.93 49.67±5.36 85.85±2.85

O. Ricci
m = 2 90.60±3.69 78.60±4.79 89.91±3.86 77.26±4.29 79.10±3.78 54.53±3.52 91.40±1.24

m = 3 89.14±4.70 78.15±5.73 91.02±6.45 77.72±3.36 78.80±3.79 53.73±4.06 89.95±2.24

m = 4 88.39±6.44 78.17±5.05 89.85±6.40 77.35±4.05 78.10±3.14 53.87±5.27 89.65±2.37

HKS
m = 2 90.62±4.91 83.95±2.99 95.32±5.58 77.35±2.86 77.90±5.72 54.07±2.54 90.05±2.41

m = 3 91.09±4.28 85.01±4.84 95.23±3.89 78.17±4.54 76.90±3.48 53.60±3.30 88.80±1.86

m = 4 90.63±4.09 83.75±5.09 95.12±6.05 78.07±2.84 77.00±4.62 53.40±3.51 89.00±1.80

Single vs. multiple filtration functions (Table 13): We test several node based and edge based
functions to study how filtration choice affects performance. We observe that single-filtration
TopoFormer (for example, using only HKS or only Ollivier–Ricci) already achieves strong results,
while combining filtrations yields modest but consistent improvements on some datasets. This
indicates that multiple filtrations are a flexible way to incorporate complementary structural signals
rather than a requirement for good performance.

Discussion. TOPOFORMER delivers consistently strong performance across a broad range of
graph classification benchmarks, outperforming state-of-the-art baselines and achieving the best
overall accuracy on most datasets. These results demonstrate the model’s ability to extract essential
structural information through topological patterns while producing fixed-size sequential representa-
tions. Such representations are particularly well-suited for Graph Foundation Models, which require
consistent and transferable embeddings across graphs of varying sizes and domains. Table 2 further
reveals that among the six topological baselines (PersLay, DMP, FC-V, EMP, MP-HSM, TopoGCL),
TOPOFORMER achieves the best performance, despite being architecturally simpler and more compu-
tationally lightweight. This supports our design philosophy that robust topological summaries, when
properly structured, can outperform more complex pipelines.

Crucially, TOPOFORMER departs from the standard GNN paradigm of first learning node embeddings
followed by global pooling. While effective, this node-centric strategy treats graphs as unstructured
point clouds in latent space, requiring repeated updates as embeddings evolve, often at the cost of
coherence and efficiency (Mesquita et al., 2020; Liu et al., 2023). In contrast, topological models
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treat graphs as structured wholes and directly encode global patterns. By bypassing intermediate
node embeddings, TOPOFORMER provides a streamlined and principled approach for learning stable,
transferable graph-level representations.

Limitations and future work. Our focus in this work is on a streamlined, graph-level instantiation
of TOPOFORMER, which also suggests several natural extensions. We restrict attention to low-
dimensional homology (H0, H1) on a fixed clique complex with a small set of standard filtrations
(degree, curvature, HKS); incorporating richer per-slice invariants or learnable filtrations could
further boost expressivity while keeping the same Topo-Scan + Transformer backbone. Likewise, we
concentrate on widely used graph-classification and molecular benchmarks, leaving node-/edge-level
tasks and more heterogeneous settings (e.g., temporal or citation graphs) to future work. Finally,
Topo-Scan is designed as a lightweight, scan-style summary that complements rather than replaces full
persistent homology, and we see developing additional theory and applications for such summaries as
an interesting direction for the TDA community.

5 CONCLUSION

Fixed-size, transferable representations remain a central challenge in graph learning. We introduce
TOPOFORMER, a scalable framework that encodes multi-scale topological structure into attention-
ready sequences. By replacing full persistence diagrams with lightweight, slice-wise invariants via
Topo-Scan, our method integrates seamlessly with transformer architectures while offering theoretical
stability guarantees. TOPOFORMER achieve state-of-the-art results across graph classification and
molecular property prediction tasks, with predictable compute and strong generalization. Looking
ahead, we aim to extend this framework toward graph foundation models by combining topological
and spectral signals through large-scale self-supervised pretraining, and by adapting to dynamic and
heterogeneous graphs via learnable filtrations.
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neighbourhood aggregation for graph nets. NeurIPS, 33:13260–13271, 2020.

Baris Coskunuzer and Cüneyt Gürcan Akçora. Topological methods in machine learning: A tutorial
for practitioners. arXiv preprint arXiv:2409.02901, 2024.

Thibault de Surrel, Felix Hensel, Mathieu Carrière, Théo Lacombe, Yuichi Ike, Hiroaki Kurihara,
Marc Glisse, and Frédéric Chazal. Ripsnet: a general architecture for fast and robust estimation
of the persistent homology of point clouds. In Topological, algebraic and geometric learning
workshops 2022, pp. 96–106. PMLR, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Andac Demir, Baris Coskunuzer, Yulia Gel, Ignacio Segovia-Dominguez, Yuzhou Chen, and Bulent
Kiziltan. Todd: Topological compound fingerprinting in computer-aided drug discovery. NeurIPS,
35:27978–27993, 2022.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Tamal Krishna Dey and Yusu Wang. Computational Topology for Data Analysis. Cambridge
University Press, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, and Sylvain Gelly. An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification. Discrete &
computational geometry, 28(4):511–533, 2002.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. In ICLR, 2020.

Xiaomin Fang, Lihang Liu, Jieqiong Lei, Donglong He, Shanzhuo Zhang, Jingbo Zhou, Fan Wang,
Hua Wu, and Haifeng Wang. Geometry-enhanced molecular representation learning for property
prediction. Nature Machine Intelligence, 4(2):127–134, 2022.

Yin Fang, Qiang Zhang, Ningyu Zhang, Zhuo Chen, Xiang Zhuang, Xin Shao, Xiaohui Fan, and
Huajun Chen. Knowledge graph-enhanced molecular contrastive learning with functional prompt.
Nature Machine Intelligence, 5(5):542–553, 2023a.

Zhongxi Fang, Jianming Huang, Xun Su, and Hiroyuki Kasai. Wasserstein graph distance based on
l1–approximated tree edit distance between weisfeiler–lehman subtrees. In AAAI, volume 37, pp.
7539–7549, 2023b.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2083–2092. PMLR, June 2019. URL https:
//proceedings.mlr.press/v97/gao19a.html.

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph
neural networks for molecules. NeurIPS, 34:6790–6802, 2021.

Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation for
graph classification. In ICML, pp. 8230–8248. PMLR, 2022.

Felix Hensel, Michael Moor, and Bastian Rieck. A survey of topological machine learning methods.
Frontiers in Artificial Intelligence, 4:52, 2021.

Jaeseung Heo, Seungbeom Lee, Sungsoo Ahn, and Dongwoo Kim. Epic: Graph augmentation with
edit path interpolation via learnable cost. In IJCAI, 2024.

Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph filtration
learning. In ICML, pp. 4314–4323. PMLR, 2020.

Shion Honda, Shoi Shi, and Hiroki R Ueda. Smiles transformer: Pre-trained molecular fingerprint
for low data drug discovery. arXiv preprint arXiv:1911.04738, 2019.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borgwardt.
Topological graph neural networks. In ICLR, 2021.

W Hu, B Liu, J Gomes, M Zitnik, P Liang, V Pande, and J Leskovec. Strategies for pre-training
graph neural networks. In ICLR, 2020a.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. NeurIPS,
33:22118–22133, 2020b. URL https://ogb.stanford.edu.

12

https://proceedings.mlr.press/v97/gao19a.html
https://proceedings.mlr.press/v97/gao19a.html
https://ogb.stanford.edu


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Johanna Immonen, Amauri Souza, and Vikas Garg. Going beyond persistent homology using
persistent homology. NeurIPS, 36, 2024.

Tiago Janela and Jürgen Bajorath. Simple nearest-neighbour analysis meets the accuracy of compound
potency predictions using complex machine learning models. Nature Machine Intelligence, 4(12):
1246–1255, 2022.

Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Zhe Wang, Chao Shen,
Dongsheng Cao, Jian Wu, and Tingjun Hou. Could graph neural networks learn better molecular
representation for drug discovery? a comparison study of descriptor-based and graph-based models.
Journal of cheminformatics, 13:1–23, 2021.

Talia B Kimber, Maxime Gagnebin, and Andrea Volkamer. Maxsmi: maximizing molecular property
prediction performance with confidence estimation using smiles augmentation and deep learning.
Artificial Intelligence in the Life Sciences, 1:100014, 2021.

Nils Kriege et al. Subgraph matching kernels for attributed graphs. In ICML, pp. 291–298, 2012.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In ICML, pp. 3734–3743.
PMLR, 2019.

Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, and Tat-Seng Chua. Let invariant
rationale discovery inspire graph contrastive learning. In ICML, pp. 13052–13065. PMLR, 2022a.

Zhen Li, Mingjian Jiang, Shuang Wang, and Shugang Zhang. Deep learning methods for molecular
representation and property prediction. Drug Discovery Today, 27(12):103373, 2022b.

Chuang Liu, Yibing Zhan, Jia Wu, Chang Li, Bo Du, Wenbin Hu, Tongliang Liu, and Dacheng Tao.
Graph pooling for graph neural networks: progress, challenges, and opportunities. In Proceedings
of the Thirty-Second International Joint Conference on Artificial Intelligence, pp. 6712–6722,
2023.

Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and Jian Tang. Pre-
training molecular graph representation with 3d geometry. In ICLR Workshop on Geometrical and
Topological Representation Learning, 2022a.

Shengchao Liu et al. N-gram graph: Simple unsupervised representation for graphs, with applications
to molecules. NeurIPS, 32, 2019.

Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical
message passing for 3d molecular graphs. In ICLR, 2022b.

David Loiseaux, Luis Scoccola, Mathieu Carrière, Magnus Bakke Botnan, and Steve Oudot. Stable
vectorization of multiparameter persistent homology using signed barcodes as measures. NeurIPS,
2023.

David Loiseaux, Luis Scoccola, Mathieu Carrière, Magnus Bakke Botnan, and Steve Oudot. Stable
vectorization of multiparameter persistent homology using signed barcodes as measures. NeurIPS,
36, 2024.

Yizhen Luo, Kai Yang, Massimo Hong, Xing Yi Liu, Zikun Nie, Hao Zhou, and Zaiqing Nie. Learning
multi-view molecular representations with structured and unstructured knowledge. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2082–2093,
2024.

Yao Ma, Suhang Wang, Charu C. Aggarwal, and Jiliang Tang. Graph convolutional networks with
eigenpooling. arXiv:1904.13107, 2019.

Diego Mesquita, Amauri Souza, and Samuel Kaski. Rethinking pooling in graph neural networks.
NeurIPS, 33:2220–2231, 2020.

Giannis Nikolentzos et al. Graph alignment kernels using weisfeiler and leman hierarchies. In
International Conference on Artificial Intelligence and Statistics, pp. 2019–2034. PMLR, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ippei Obayashi, Takenobu Nakamura, and Yasuaki Hiraoka. Persistent homology analysis for
materials research and persistent homology software: Homcloud. journal of the physical society of
japan, 91(9):091013, 2022.

Leslie O’Bray et al. Filtration curves for graph representation. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1267–1275, 2021.

Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A roadmap
for the computation of persistent homology. EPJ Data Science, 6:1–38, 2017.

Phu Pham, Quang-Thinh Bui, Ngoc Thanh Nguyen, Robert Kozma, Philip S Yu, and Bay Vo.
Topological data analysis in graph neural networks: Surveys and perspectives. IEEE Transactions
on Neural Networks and Learning Systems, 2025.

Chen Qian, Huayi Tang, Hong Liang, and Yong Liu. Reimagining graph classification from a
prototype view with optimal transport: Algorithm and theorem. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2444–2454, 2024.

Alec Radford et al. Learning transferable visual models from natural language supervision. In ICML,
pp. 8748–8763. PMLR, 2021.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of Chemical Informa-
tion and Modeling, 50(5):742–754, 2010.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. NeurIPS, 33:12559–12571, 2020.

Christopher Shultz. Applications of topological data analysis in economics. Available at SSRN
4378151, 2023.

Yara Skaf et al. Topological data analysis in biomedicine: A review. Journal of Biomedical
Informatics, 130:104082, 2022.

Yeongyeong Son, Dasom Noh, Gyoungyoung Heo, Gyoung Jin Park, and Sunyoung Kwon. More:
Molecule pretraining with multi-level pretext task. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 20531–20539, 2025.

Ying Song, Shuangjia Zheng, Zhangming Niu, Zhang-Hua Fu, Yutong Lu, and Yuedong Yang.
Communicative representation learning on attributed molecular graphs. In IJCAI, volume 2020,
pp. 2831–2838, 2020.

Afnan Sultan, Jochen Sieg, Miriam Mathea, and Andrea Volkamer. Transformers for molecular
property prediction: Lessons learned from the past five years. Journal of Chemical Information
and Modeling, 64(16):6259–6280, 2024.

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
Wasserstein weisfeiler-lehman graph kernels. In NeurIPS, pp. 6439–6449, 2019.

Astrit Tola, Funmilola Mary Taiwo, Cuneyt Gurcan Akcora, and Baris Coskunuzer. Toper: Topologi-
cal embeddings in graph representation learning. NeurIPS, 2025.

Cecile Valsecchi, Magda Collarile, Francesca Grisoni, Roberto Todeschini, Davide Ballabio, and
Viviana Consonni. Predicting molecular activity on nuclear receptors by multitask neural networks.
Journal of Chemometrics, 36(2):e3325, 2022.

A Vaswani et al. Attention is all you need. NeurIPS, 2017.

Yogesh Verma, Amauri H Souza, and Vikas Garg. Topological neural networks go persistent,
equivariant, and continuous. In ICML, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Haotao Wang et al. Graph mixture of experts: Learning on large-scale graphs with explicit diversity
modeling. NeurIPS, 36, 2024.

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive
learning of representations via graph neural networks. Nature Machine Intelligence, 4(3):279–287,
2022.

Yu Guang Wang, Ming Li, Zheng Ma, Guido Montúfar, Xiaosheng Zhuang, and Yanan Fan. Haar
graph pooling. In Hal III Daumé and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pp. 9952–9962. PMLR, July 2020. URL https://proceedings.mlr.press/v119/
wang20m.html.

Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas
Seidel, and Thierry Langer. A compact review of molecular property prediction with graph neural
networks. Drug Discovery Today: Technologies, 37:1–12, 2020.

Daniel S Wigh, Jonathan M Goodman, and Alexei A Lapkin. A review of molecular representation in
the age of machine learning. Wiley Interdisciplinary Reviews: Computational Molecular Science,
12(5):e1603, 2022.

Asiri Wijesinghe et al. A new perspective on" how graph neural networks go beyond weisfeiler-
lehman?". In ICLR, 2021.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Jun Xia, Lecheng Zhang, Xiao Zhu, Yue Liu, Zhangyang Gao, Bozhen Hu, Cheng Tan, Jiangbin
Zheng, Siyuan Li, and Stan Z Li. Understanding the limitations of deep models for molecular
property prediction: Insights and solutions. NeurIPS, 36:64774–64792, 2023.

Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li, Zhaojun
Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, et al. Pushing the boundaries of molecular
representation for drug discovery with the graph attention mechanism. Journal of medicinal
chemistry, 63(16):8749–8760, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? ICLR, 2018.

Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, Yusu Wang, and Chao Chen. Neural approximation
of graph topological features. Advances in neural information processing systems, 35:33357–33370,
2022.

Pinar Yanardag et al. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 1365–1374, 2015.

Jingbo Yang, Yiyang Cai, Kairui Zhao, Hongbo Xie, and Xiujie Chen. Concepts and applications of
chemical fingerprint for hit and lead screening. Drug discovery today, 27(11):103356, 2022.

Chun Wei Yap. Padel-descriptor: An open source software to calculate molecular descriptors and
fingerprints. Journal of Computational Chemistry, 32(7):1466–1474, 2011.

Wei Ye, Shuhao Tang, Hao Tian, and Qijun Chen. Beyond histogram comparison: Distribution-aware
simple-path graph kernels. IEEE Transactions on Artificial Intelligence, 2025.

Yihang Yin, Qingzhong Wang, Siyu Huang, Haoyi Xiong, and Xiang Zhang. Autogcl: Automated
graph contrastive learning via learnable view generators. In AAAI, volume 36, pp. 8892–8900,
2022.

15

https://proceedings.mlr.press/v119/wang20m.html
https://proceedings.mlr.press/v119/wang20m.html


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Chengxuan Ying et al. Do transformers really perform badly for graph representation? NeurIPS, 34:
28877–28888, 2021.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural
Information Processing Systems, volume 31, pp. 4800–4810. Curran Associates, Inc., 2018.

Jaemin Yoo et al. Model-agnostic augmentation for accurate graph classification. In Proceedings of
the ACM Web Conference 2022, pp. 1281–1291, 2022.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph self-
supervised learning for molecular property prediction. NeurIPS, 34:15870–15882, 2021.

Yan Zheng, Song Wu, Junyu Lin, Yazhou Ren, Jing He, Xiaorong Pu, and Lifang He. Cross-view
contrastive fusion for enhanced molecular property prediction. In Proccedings of the Thirty-Third
International Joint Conference on Artificial Intelligence, volume 2, 2024.

Zhiqiang Zhong, Kuangyu Zhou, and Davide Mottin. Benchmarking large language models for
molecule prediction tasks. arXiv:2403.05075, 2024.

Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete & Computational
Geometry, 33(2):249–274, 2005.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Appendix

A TOPOFORMER∗: TOPOFORMER FOR MPP

A.1 MOLECULAR FINGERPRINTS

Molecular fingerprints are widely used in computational chemistry and machine learning to represent
molecular structures as fixed-length numerical vectors (Cereto-Massagué et al., 2015). They encode
features such as atomic connectivity and substructural patterns, enabling efficient similarity search
and predictive modeling. Popular methods include ECFP (Extended Connectivity Fingerprints) and
PubChemFP, both extensively applied in drug discovery, virtual screening, and bioinformatics (Yang
et al., 2022).

ECFP Fingerprints. Extended Connectivity Fingerprints (ECFP) capture structural features
by iteratively hashing local atomic environments up to a specified radius (Rogers & Hahn, 2010).
Unlike traditional hashed fingerprints, ECFP preserves substructural detail, making it effective for
similarity search, QSAR modeling, and property prediction. It is invariant to atom ordering while
retaining connectivity, enabling fine-grained molecular feature analysis. For a recent overview of
ECFP fingerprints and their role in modern biochemical ML pipelines, see (Wigh et al., 2022).

A.2 TOPOFORMER∗ MODEL

For Molecular Property Prediction Task, we employ a hybrid model, TOPOFORMER∗, combining
ECFP Fingerprints and our TOPOFORMER Model. This hybrid model shows the versatility of our
TOPOFORMER model on its effective integration with complementary information (Table 7). We give
the flowchart of our hybrid model in Figure 5. In our hybrid model, we used the same experimental
setup for the TOPOFORMER component. For the MLP component, we employed a two-layer MLP
with a hidden dimension of 200, ensuring that its output dimension matches the output dimension of
the TOPOFORMER model. The model was optimized using the Adam optimizer with a learning rate
of 0.01 and a weight decay of 1e-4. Both the MLP and TOPOFORMER components were trained in an
end-to-end manner, allowing the model to leverage both topological signatures and complementary
graph information, ultimately leading to improved performance.

Table 7: Performance comparison of standalone models (TOPOFORMER and FP-MLP) and the hybrid model
(TOPOFORMER∗) in random splitting (8:1:1).

PH-TR TOPOFORMER FP-MLP PH+ECFP+TR TOPOFORMER∗

BACE 72.41±3.15 83.29±2.14 90.29±2.67 90.60±2.99 91.60±1.73
HIV 69.29±1.65 75.81±0.23 83.26±1.01 83.97±1.51 85.10±0.49
BBBP 83.37±3.90 94.54±1.01 89.68±3.46 93.47±2.53 95.90±0.28
ClinTox 75.89±6.60 83.42±2.33 76.34±6.54 82.04±7.12 86.20±3.83
SIDER 62.91±3.49 62.10±1.44 65.30±0.99 66.99±1.85 66.80±0.29

Tox21 68.24±1.60 80.87±0.19 77.89±1.54 79.03±1.21 81.50±1.85
ToxCast 64.74±2.29 73.37±1.42 74.69±1.33 75.73±1.59 78.40±1.57

A.3 HYBRID CLASSICAL MPP BASELINES

We refer to the classical models combined with modern ML models as Hybrid Classical (HC) Models.
The first family of HC baseline models consists of Fingerprinting models (Jiang et al., 2021), which
use vectorized molecular fingerprints as input to traditional machine learning models, including
SVM, XGB, RF, and MLP. The input fingerprints are a concatenation of 881-dimensional PubChem
fingerprints (PubChemFP), 307-dimensional substructure fingerprints (SubFP), and 206-dimensional
MOE 1-D and 2-D descriptors (Yap, 2011). The second family of baseline models comprises SMILES
models, which treat SMILES strings as sequential input to 1D CNN (Kimber et al., 2021), a 3-layer
bidirectional GRU (Cho et al., 2014), and a pre-trained SMILES transformer (TRSF) (Honda et al.,
2019). The third family is GNN models which use 2D graph-based representations of compounds,
where atom and bond features are encoded using one-hot schemes and fed into GCN, MPNN, GAT,
and AFP models (Xiong et al., 2019). Another baseline is the SPN model, using SphereNet (Liu
et al., 2022b), which employs 3D graphs of compounds as input.
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Fingerprint

Property
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Property

Topo-Scan using f_1

Topo-Scan using f_2

Attention Based Concatenation

Figure 5: TOPOFORMER∗: To successfully integrate complementary graph information, such as
ECFP, with our TOPOFORMER model, we employ a MLP. The MLP output is combined with the
TOPOFORMER model using an attention mechanism, and the combined representation is then passed
through a graph prediction network to perform the final prediction task.

Table 8: Hybrid Classical MPP Models. The ROC AUC results of ML models for molecular property
prediction tasks with random splitting (8:1:1). The baseline results are reported from (Xia et al., 2023). The best
and the second best performances are given in bold, and underlined, respectively.

Fingerprinting Models SMILES Models GNN Models Ours
Dataset SVM XGB RF CNN RNN TRSF MLP GCN MPNN GAT AFP SPN TOPOFORMER∗

BBBP 91.3 92.6 92.3 89.7 76.0 69.3 89.7 91.8 91.5 87.2 90.2 90.5 96.6
Tox21 82.0 83.7 83.1 81.2 73.7 76.8 79.9 84.6 82.1 84.5 82.7 82.5 81.5
ToxCast 72.5 78.5 77.8 73.5 67.8 78.0 78.1 76.7 78.8 77.2 76.8 77.2 78.4
SIDER 62.6 63.8 64.4 59.1 51.5 64.1 61.7 62.3 60.3 62.0 61.3 61.3 66.8
ClinTox 87.9 91.9 93.0 88.8 68.5 96.3 93.0 88.9 86.8 89.8 87.9 91.2 86.2
BACE 88.6 89.6 89.0 81.5 55.9 83.5 88.7 88.0 84.6 88.6 87.9 88.2 91.6
HIV 81.7 83.9 82.0 82.6 73.3 74.8 79.1 83.4 81.4 81.2 81.8 81.8 85.1

B PROOFS OF STABILITY THEOREMS

We work on the fixed clique complex Ĝ of G = (V,E). For a node function h : V → R, we use the
upper–star extension ĥ(σ) = maxv∈σ h(v) and the associated sublevel filtration on Ĝ. Throughout,
k ∈ {0, 1} is the homological dimension used in our tokens.

Preliminaries. For a ≤ b, define the interlevel (level-set) subcomplex Ĝh
[a,b] := {σ ∈ Ĝ :

a ≤ minv∈σ h(v) and maxv∈σ h(v) ≤ b}. The associated pointwise finite-dimensional interlevel
persistence module is the functor Mh

k : (a, b) 7→ Hk(Ĝ
h
[a,b]). Given a shared grid α0 < · · · < αN ,

window width m, and stride s, the Topo-Scan token at window t is

β̂h
k (t) = dim Mh

k

(
αts, αts+m

)
, t = 0, . . . , T−1, T =

⌊
N−m

s

⌋
+ 1.

We write dB(M
f
k ,M

g
k ) for the bottleneck distance between the interval decompositions (barcodes)

of the interlevel modules Mf
k and Mg

k .

Two stability lemmas.
Lemma B.1 (Interlevel stability). (Botnan & Lesnick, 2018, Thm 1.1 & 1.2) For k ≥ 0, the interlevel
modules of the upper–star filtrations induced by f, g : V → R on the fixed clique complex Ĝ satisfy

dB
(
Mf

k ,M
g
k

)
≤ ∥f − g∥∞.
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Lemma B.2 (Lipschitzness of interval rank). (Bauer & Lesnick, 2014; Bakke Bjerkevik, 2021) Let
M,N be interval-decomposable, p.f.d. modules with dB(M,N) ≤ δ. For any interval I = [a, b],∣∣dimM(a, b)− dimN(a, b)

∣∣ ≤ BM (I, δ) + BN (I, δ),

where BM (I, δ) counts bars in Bar(M) whose endpoints lie within δ of the boundary {a, b} (and
similarly for N ).

Theorem 3.1. With the setup above, there exists C = C(Ĝ, {αi},m, s) such that
T−1∑
t=0

∣∣β̂f
k (t)− β̂g

k(t)
∣∣ ≤ C dB

(
Mf

k ,M
g
k

)
.

Proof of Theorem 3.1. Fix t and write It = [αts, αts+m]. By Lemma B.2, there exists a finite
constant C0(Ĝ, It) such that |dimMf

k (It) − dimMg
k (It)| ≤ C0(Ĝ, It) dB(M

f
k ,M

g
k ). Summing

over t gives
T−1∑
t=0

∣∣β̂f
k (t)− β̂g

k(t)
∣∣ ≤

( T−1∑
t=0

C0(Ĝ, It)
)
dB(M

f
k ,M

g
k ) := C dB(M

f
k ,M

g
k ).

On a fixed finite complex and fixed grid, the C0(Ĝ, It) are finite and can be uniformly bounded,
yielding C = T C0.

Corollary 3.2. For upper–star filtrations on a fixed complex, dB(M
f
k ,M

g
k ) ≤ ∥f−g∥∞ (Lemma B.1),

hence ∥β̂k(G, f)− β̂k(G, g)∥1 ≤ C ∥f − g∥∞.

Proof of Theorem 3.1. By Theorem 3.1, we have ∥β̂k(G, f)− β̂k(G, g)∥1 ≤ C dB(M
f
k ,M

g
k ).

By Lemma B.1 (interlevel/level-set stability on the fixed clique complex), dB(M
f
k ,M

g
k ) ≤ ∥f−g∥∞.

Combining the two inequalities yields the claim.

Connection to classical sublevel stability. The inequality dB ≤ ∥f − g∥∞ is classical for sublevel
filtrations on a fixed space (Cohen-Steiner et al., 2007). Our Lemma B.1 is the level-set (interlevel)
analogue on the fixed clique complex, following algebraic stability for zigzag/level-set modules
(e.g., Botnan & Lesnick, 2018). We use this interlevel version to handle windowed intervals [a, b]
appearing in Topo-Scan.

Shared thresholds. The theorem assumes a shared grid {αi}. If thresholds are chosen separately (e.g.,
per-function quantiles), a monotone reparameterization of the filtration axis induces an additional
term proportional to the grid displacement, which can be absorbed into C.
Remark B.3 (Relation to PH invariants and stable ranks). Our stability theorem focuses on the ℓ1
robustness of the discrete Topo-Scan sequences β̂k(G, h), but these sequences implicitly encode
familiar PH objects. For a fixed filtration function h, the map t 7→ β̂h

k (t) can be viewed as a sampled
version of the rank invariant (a, b) 7→ rankHk

(
(Ĝ)h[a,b]

)
associated with the interlevel module Mh

k .
In this sense, Topo-Scan produces a coarse, structured discretization of the same information that
barcodes and stable vectorizations of persistence diagrams, such as persistence landscapes, silhouettes
and persistence images (Chazal et al., 2014; Adams et al., 2017), summarize in continuous form.
Similarly, Graph Filtration Learning (Hofer et al., 2020) can be seen as learning the filtration function
h, while our work fixes h and instead changes the representation from global barcodes to local
interlevel sequences. A full expressivity comparison and formal information-loss bounds relative to
complete barcodes are interesting directions for future work.

C MORE ON TOPOFORMER

C.1 BASE MODEL: TRANSFORMER

Our TOPOFORMER model is designed for classification tasks using sequential inputs, harnessing
transformers for efficient feature extraction. The architecture includes an embedding layer, a trans-
former encoder, and a fully connected (FC) classification head, with regularization techniques applied
to mitigate overfitting.
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Let x = (x1, x2, . . . , xT ) ∈ RN×T×D represent the input sequence, where N is number of graphs,
T is the sequence length, and D is the dimensionality of each input token. The input sequence is first
passed through an embedding layer E : RD → RH , where H denotes the embedding dimension.
In addition, a positional encoding matrix P ∈ R1×T×H is added to the embeddings to encode the
positional information of the sequence, resulting in a sequence of embedded vectors et = E(xt)+Pt

for t = 1, 2, . . . , T , where Pt is the positional encoding for position t.

The sequence of embeddings is then passed through a multi-layer transformer encoder, where the
encoder operates on the embedded sequence E(x) + P ∈ RT×B×H , with B representing the
batch size. The transformer encoder generates a new sequence of output representations z =
(z1, z2, . . . , zT ) ∈ RT×B×H . After processing through the encoder, the output sequence is permuted
and reshaped to a flattened vector of size B × (T ·H), ensuring compatibility with subsequent fully
connected layers.

The flattened representation zflat ∈ RB×(T ·H) is then passed through a batch normalization
layer, BN(zflat), which normalizes the activations across the batch to stabilize the training pro-
cess. A dropout layer D(·) is then applied to the normalized output to regularize the model and
mitigate overfitting. The final classification output is obtained through a fully connected layer
FC : RB×(T ·H) → RH .

C.2 DUAL TRANSFORMER WITH MULTI-LAYER PERCEPTRON CLASSIFIER

This model combines multiple sources of input data through a hybrid architecture that integrates
two independent base models and a multi-layer perceptron (MLP). This model is designed to handle
diverse input modalities by leveraging the strengths of both transformers and MLPs for feature
extraction and classification.

Let X1 ∈ RN×T1×D1 , X2 ∈ RN×T2×D2 , and X3 ∈ RN×L represent the three distinct input graph
encoding, where Ti denotes the sequence length, Di the dimensionality of the inputs for each modality
and L the dimension of fingerprints. Each input is processed through its respective component: the
first sequence X1 is passed through transformer T1, the second sequence X2 through transformer T2,
and the third sequence X3 through an MLP M.

The output of the first transformer T1, denoted z1 ∈ RT1×B×H , is obtained by passing X1 through
the transformer encoder. Similarly, the output of the second transformer T2, denoted z2 ∈ RT2×B×H ,
is obtained by processing X2. Finally, the output of the MLP M is denoted z3 ∈ RB×H .

The outputs z1, z2, and z3 are then combined through a learnable weighted sum. Specifically, the
combined feature vector zcombined is computed as:

zcombined = α · z1 + β · z2 + (1− α− β) · z3

where α and β are learnable parameters that control the contribution of each modality to the final
representation. This weighted combination allows the model to adaptively learn the most relevant
contribution of each input sequence.

The combined feature vector zcombined is then passed through a batch normalization layer
BN(zcombined) to normalize the activations, improving training stability. A final fully connected
layer FC produces the classification output: ŷ = FC(zcombined) where ŷ ∈ RC represents the
predicted class probabilities, with C being the number of possible output classes.

C.3 RUNTIME ANALYSIS

To assess the computational efficiency of our method, we report the total runtime across two key
stages: (i) topological signature extraction using Topo-Scan (via Degree Centrality and Ollivier-Ricci
curvature), and (ii) model training using the transformer-based classifier. Table 9 presents a detailed
breakdown of runtimes (in minutes) for five benchmark datasets.

As expected, Degree Centrality is extremely fast to compute and contributes negligible overhead.
Ollivier-Ricci curvature, while more computationally intensive, remains tractable even for large
graphs, as evidenced by reasonable runtimes on datasets such as REDDIT-5K and OGBG-MOLHIV.
Transformer training times scale smoothly with dataset size and remain within practical limits.
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Table 9: Runtimes. Total runtime (in minutes) per dataset.
The second and third columns report the time to compute
scalar filtration values and Topo-Scan vectorizations for de-
gree centrality and O.Ricci curvature, respectively, and the
final column shows the Transformer training time.

Dataset Degree C. O. Ricci Transformer
IMDB-B 0.51 5.04 3.05
IMDB-M 0.49 7.62 4.57
REDDIT-B 5.30 23.70 6.10
REDDIT-5K 36.74 109.98 15.65
OGBG-MOLHIV 14.70 339.06 21.67

Overall, our method maintains scalability
while offering strong performance, demon-
strating the feasibility of integrating topo-
logical signatures into deep graph models
at scale.

TopoScan vs. PH. We report in Table 10
the runtime for Topo-Scan and standard PH
on four benchmark datasets with degree
centrality filtration (already computed), us-
ing the same backend (pyflagser) for both
pipelines. For Topo-Scan, we invoke the un-
weighted flagser routine, since our method
only requires Betti numbers on unweighted clique complexes. For PH, we use the weighted flagser
routine, which constructs a full filtration and computes persistence diagrams.

Table 10: Runtime for PH vs. Topo-Scan. Run-
time (in seconds) per dataset for computing topo-
logical features using the same backend (pyflagser).

Dataset Clus. Coeff. Topo-Scan PH
IMDB-B 0.947 9.67 135.48
IMDB-M 0.969 17.81 234.30
REDDIT-B 0.048 12.29 24.25
REDDIT-5K 0.027 29.51 43.92

The clustering coefficient column serves as a proxy
for graph density and hence clique complexity.
On highly clustered graphs such as IMDB-B and
IMDB-M (coefficients ≈ 0.95–0.97), PH is roughly
13–14× slower than Topo-Scan, reflecting the com-
binatorial explosion of cliques and the cost of global
boundary-matrix reductions, whereas on the sparser
REDDIT datasets the gap is smaller but still consis-
tent (about 2× on REDDIT-B and 1.5× on REDDIT-
5K). These results empirically confirm that Topo-
Scan achieves multi-fold runtime savings over stan-
dard PH pipelines on dense graphs while remaining uniformly more efficient across all tested datasets.

Table 11: Runtimes (in seconds) for PH-based baselines (Per-
sLay, TopoGCL) and Topo-Scan on IMDB-B and REDDIT-B.

Method IMDB-B REDDIT-B Notes
PersLay 97.02 454.78 PH-based layer on degree input
TopoGCL 435.49 4010.08 Only topological component
Topo-Scan 15.16 290.00 Filtration + Topo-Scan

Comparison with other methods. We
also compare the runtimes of two PH-based
baselines, PersLay (with degree centrality
input) and TopoGCL (using only the topol-
ogy derived component), against Topo-Scan
on IMDB-B and REDDIT-B (Table 11). All
times are reported in seconds. For Topo-
Scan, we include both the scalar filtration
computation and Topo-Scan feature extrac-
tion. On IMDB-B, Topo-Scan is about 6 times faster than PersLay and around 29 times faster than
the topological part of TopoGCL; on REDDIT-B, it remains faster than PersLay and roughly 14 times
faster than TopoGCL. These results further support the practical efficiency of Topo-Scan compared
with PH-based pipelines.

C.4 COMPARISON WITH POOLING METHODS

Table 12 compares TOPOFORMER with six representative graph pooling methods designed to
adapt GNNs to graph-level tasks. DiffPool (Ying et al., 2018) learns a soft assignment matrix that
hierarchically clusters nodes in a differentiable, end-to-end manner. Top-KPooling with Graph
U-Nets (Top-K) (Gao & Ji, 2019) ranks nodes using a learnable projection score and retains the top-k
fraction to coarsen the graph. EigenPool (EigenGCN) (Ma et al., 2019) projects node features onto
the leading eigenvectors of the graph Laplacian to preserve global spectral properties. SAGPool (Lee
et al., 2019) computes attention scores through a GNN layer, pruning low-importance nodes and
re-wiring the remaining graph. MinCutPool (Bianchi et al., 2020) casts pooling as a relaxed spectral
clustering problem by optimizing a minimum-cut objective to form node clusters. HaarPool (Wang
et al., 2020) applies a Haar wavelet transform to graph signals and performs pooling by selecting
key wavelet coefficients. Our model TOPOFORMER takes a different approach by integrating
multiscale topological filtrations with a transformer-based attention mechanism, enabling the pooling
of substructures across scales and yielding robust higher-order graph representations. As shown in
Table 12, TOPOFORMER consistently outperforms all baselines, achieving the best accuracy on six
out of seven datasets and ranking second on the remaining one.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 12: Comparison with Pooling Methods. Accuracy results of six baseline pooling methods
and TOPOFORMER on seven graph classification benchmark datasets.

Model BZR COX2 MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B
Top-K 79.40±1.20 80.30±4.21 67.61±3.36 69.60±3.50 73.17±4.84 48.80±3.19 79.40±7.40

MinCutPool 82.64±5.05 80.07±3.85 79.17±1.64 76.52±2.58 70.77±4.89 49.00±2.83 87.20±5.00

DiffPool 83.93±4.41 79.66±2.64 79.22±1.02 73.63±3.60 68.60±3.10 45.70±3.40 79.00±1.10

EigenGCN 83.05±6.00 80.16±5.80 79.50±0.66 74.10±3.10 70.40±3.30 47.20±3.00 N/A
SAGPool 82.95±4.91 79.45±2.98 76.78±2.12 71.86±0.97 74.87±4.09 49.33±4.90 84.70±4.40

HaarPool 83.95±5.68 82.61±2.69 90.00±3.60 73.23±2.51 73.29±3.40 49.98±5.70 N/A

TOPOFORMER 92.36±4.11 83.93±4.03 94.68±4.30 77.64±3.64 78.90±3.31 55.40±4.78 91.50±1.89

C.5 TOPO-SCAN HYPERPARAMETERS

In the Topo-Scan algorithm, two key hyperparameters play a crucial role: the width parameter,
which controls the thickness of slices, and the filtration function, which defines the hierarchical
importance of nodes or edges. To determine the optimal hyperparameter settings, we conducted
extensive experiments to validate their impact on model performance.

Width Parameter Selection. To determine the optimal width parameter m, we conducted experi-
ments using degree centrality and Ollivier-Ricci curvature as filtration functions for the Topo-Scanner
on graph classification datasets. We evaluated m = 2, 3, and 4, extracting the corresponding Topo-
Scanner feature vectors and using them as inputs to a transformer model. The results presented in
Table 6 indicate that, for most of the datasets, the Topo-Scanner features achieve the best performance
when m = 2 for both filtration functions. Based on this experimental analysis, we select m = 2 as
the optimal parameter for our model.

Multiple Filtrations. Different filtration functions impose distinct hierarchical orderings on nodes
(or edges), enabling our model to capture diverse topological patterns in the induced sequences.
This allows the Topo-Scan process to effectively integrate domain-specific information. To fully
leverage multiple filtrations, TOPOFORMER applies separate transformers for each filtration function
and combines their outputs using a learnable attention mechanism. This mechanism dynamically
assigns higher weights to the most relevant topological signatures, ensuring optimal feature selection
and enhanced performance. As shown in Table 13, TOPOFORMER employing multiple functions
consistently outperforms models using a single filtration function, demonstrating the advantages of
multiple filtrations. This approach enhances model robustness and stability by incorporating diverse
topological perspectives.

Table 13: Filtration Functions. Performance comparison of single filtration and multiple filtrations
with TOPOFORMER across different datasets. The best values in each column are highlighted in bold.

Filtrations MUTAG PROTEINS BZR COX2 IMDB-B IMDB-M REDDIT-B
Degree only 92.02±7.24 77.28±5.93 89.89±3.74 78.36±4.93 74.20±3.36 51.53±3.34 86.60±2.97

O. Ricci only 89.91±3.86 77.26±4.29 90.60±3.69 78.60±4.79 79.10±3.78 54.53±3.52 91.40±1.24

HKS Only 95.32±5.58 77.35±2.86 90.62±4.91 83.95±2.99 76.90±5.72 54.07±2.54 90.05±2.41

Deg.+O.Ricci 93.01±5.29 78.35±4.22 91.12±4.68 81.80±5.40 78.80±3.65 53.87±3.52 90.65±2.12

HKS+O.Ricci 94.68±4.30 77.64±3.64 92.36±4.11 83.93±4.03 78.90±3.31 55.40±4.78 91.50±1.89
HKS+Degree 95.26±3.88 78.08±2.34 91.09±5.53 83.71±4.38 77.30±2.41 52.60±2.25 89.90±2.35

C.6 TOPOFORMER VS. PH WITH DIFFERENT VECTORIZATIONS

TOPOFORMER consistently outperforms Persistent Homology methods in both accuracy and compu-
tational efficiency. As shown in Table 14, we compare against the best PH results reported in (Cai &
Wang, 2020), which evaluates 16 combinations of four filtration functions (degree, O.Ricci, Fiedler,
closeness centrality) and four vectorization techniques (Sliced Wasserstein, Pervec, Filvec, SW-p)
per dataset. TOPOFORMER achieves higher accuracy on all six benchmarks.
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Table 14: Accuracy results for TOPOFORMER (HKS) vs. Persistent Homology in graph classification
tasks. In PH row, we report the best performance of 16 combinations with four filtration functions
combined with four vectorizations.

BZR COX2 PROTEINS IMDB-B IMDB-M
PH (Best of 16 comb) 88.4±0.6 82.0±0.6 74.0±0.4 69.5±0.5 46.5±0.3

TOPOFORMER 90.6±4.9 82.0±4.6 77.4±2.9 77.9±3.4 54.1±2.5

Table 15: TOPOFORMER vs. PH Performance Comparison: Accuracy of three topological models
under seven filtrations: Degree, Ollivier-Ricci, HKS, Betweenness centrality, Closeness centrality, Eigenvector
centrality, and Forman-Ricci curvature. The last column reports the average accuracy improvements of our
models PH-TR and TOPOFORMER over the classical TDA pipeline PH-MLP for the same filtration function.

Filtration Model BZR COX2 MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B Av.Imp.
PH-MLP 82.71±6.51 76.44±5.39 84.06±4.65 68.37±3.97 65.70±4.03 45.07±2.59 89.50±2.87 –

Degree PH-TR 86.43±4.33 78.15±5.19 86.11±5.23 77.54±2.64 75.00±2.11 50.67±3.57 92.30±1.77 4.91
TOPOFORMER 91.10±5.14 80.27±5.24 92.54±5.12 77.45±4.02 74.20±5.01 50.33±1.52 89.75±2.18 6.26

PH-MLP 85.45±3.36 78.16±5.09 84.06±5.21 65.50±4.26 68.00±3.55 44.87±3.65 85.65±2.62 –
O.Ricci PH-TR 88.62±5.40 78.16±5.73 87.61±5.70 77.27±5.08 72.20±6.24 48.00±4.33 90.65±1.08 4.40

TOPOFORMER 90.38±5.50 80.72±6.44 92.54±4.47 77.90±3.17 74.70±4.95 51.53±3.49 91.90±2.73 6.85

PH-MLP 84.96±4.42 78.19±4.34 84.09±5.72 70.80±4.70 71.10±5.28 47.93±3.20 88.10±1.67 –
HKS PH-TR 89.60±5.84 79.89±4.66 94.12±5.42 77.18±3.15 76.80±3.97 53.60±3.31 87.25±1.95 4.75

TOPOFORMER 90.62±4.91 83.95±2.99 95.32±5.58 77.35±2.86 77.90±5.72 54.07±2.54 90.05±2.41 6.30

Betweenness
PH-MLP 84.95±4.19 80.99±6.35 89.94±7.93 71.61±1.85 68.10±2.55 43.80±1.74 79.10±2.88 –
PH-TR 85.43±4.13 81.60±6.00 90.52±5.62 74.13±2.95 69.90±3.48 45.40±1.79 84.05±2.33 1.79
TOPOFORMER 87.41±4.07 80.74±6.15 90.99±6.61 76.73±2.67 73.90±3.73 51.47±2.96 86.55±2.30 4.19

Closeness
PH-MLP 84.21±2.19 79.07±6.56 88.94±7.20 74.39±3.19 65.30±4.61 47.47±3.93 66.85±2.98 –
PH-TR 87.43±4.83 79.65±4.98 89.94±6.25 75.93±3.32 69.70±4.60 50.47±3.72 77.20±3.31 3.44
TOPOFORMER 85.13±8.36 81.17±5.28 90.88±6.65 77.64±4.36 73.20±2.20 51.07±3.02 86.40±2.22 5.61

Eigenvector
PH-MLP 83.97±3.46 80.56±6.04 89.39±6.64 67.20±5.87 66.70±2.61 47.40±3.00 79.40±3.21 –
PH-TR 87.41±4.21 79.88±6.04 91.57±5.70 70.53±4.60 72.40±4.48 50.13±3.44 89.25±1.40 3.79
TOPOFORMER 90.59±5.63 82.87±3.35 90.99±6.61 77.35±2.78 76.10±3.63 51.00±2.14 91.85±1.43 6.59

F. Ricci
PH-MLP 82.46±3.94 80.13±5.86 87.81±6.21 73.95±4.12 66.60±3.75 45.53±3.36 73.70±3.78 –
PH-TR 86.18±6.06 81.97±6.62 91.99±4.63 76.09±4.04 70.80±4.47 50.67±2.59 77.20±2.21 3.53
TOPOFORMER 88.41±6.04 81.02±6.46 92.08±5.67 77.81±3.80 79.40±3.69 54.47±3.34 88.95±1.94 7.42

C.7 TOPOFORMER VS PH PERFORMANCE

Table 15 extends our ablation (Table 5) from three to seven filtration functions and compares three
topological pipelines under the same filtration function: the classical PH-MLP baseline (sublevel
PH + Betti vector + MLP), our PH-TR variant (same Betti vectors but processed as sequences by a
Transformer), and TOPOFORMER (Topo-Scan sequences with sliding-window interlevel filtrations).
Across all seven filtrations, replacing the MLP with a Transformer already yields consistent gains: PH-
TR improves over PH-MLP by roughly 2–4 accuracy points on average (see the “Av.Imp.” column),
confirming that treating Betti curves as ordered sequences is beneficial even without changing the
underlying filtration.

TOPOFORMER further improves on PH-TR for almost every filtration, typically adding another 1–3
points on most datasets and yielding average gains of 6–7 points over PH-MLP. The effect is especially
pronounced on more challenging benchmarks such as IMDB-M and REDDIT-B, where sliding-
window interlevel slices capture richer late-emerging structure than standard sublevel PH. Importantly,
this pattern holds not only for the three filtrations used in the main text (degree, Ollivier–Ricci, HKS)
but also for the four additional ones (betweenness, closeness, eigenvector centrality, Forman–Ricci
curvature), indicating that the benefit of Topo-Scan is robust to the choice of scalar function. Together,
these results support our central claim: the main performance gains come from the Topo-Scan
sequential representation (and its integration with Transformers), rather than from a particular hand-
picked filtration function.

C.8 EARLY SATURATION IN PH FILTRATIONS AND TOPO-SCAN

Goal. We compare classical PH (sub/superlevel on a fixed clique-complex 2–skeleton) with Topo-
Scan to show how PH frequently early–saturates on graphs, i.e., after a relatively small portion of the
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(a) BZR - Betti-0 (b) MUTAG - Betti-0 (c) PROTEINS - Betti-0

Figure 6: PH vs. Topo-Scan. Normalized average Betti-0 values over 20 thresholds of the degree-centrality
filtration on (a) BZR, (b) MUTAG, and (c) PROTEINS. Under the classical PH pipeline, feature counts decline
monotonically with increasing threshold, whereas Topo-Scan maintains elevated values at higher thresholds,
revealing late-emerging topological features that PH alone misses.

threshold range, new features cease to appear, whereas Topo-Scan continues to surface structure by
sliding windows over the same signal.

Protocol. For each dataset and filtration function f (e.g., degree or Ollivier–Ricci), we fix a
common grid of T thresholds and evaluate both methods on the same clique-complex 2–skeleton
(upper–star from nodes). PH: sublevel filtration evaluated at the same grid points; Betti counts are
read at each threshold. Topo-Scan: window width m and stride s define T overlapping slices whose
vertex sets correspond to consecutive value ranges in the same grid. Betti counts are computed per
slice. To make cross-dataset plots visually comparable, we report (i) normalized Betti-0 curves when
scales differ markedly (Fig. 6) and (ii) unnormalized Betti-0 when PH and Topo-Scan share similar
ranges (Fig. 3). Betti-1 frequency barplots are shown to illustrate higher-order behavior (Fig. 7).

How to read the figures. A positive Betti-0 value at a position means additional connected
components are present in that slice/threshold; persistent nonzero values toward the right side of the
horizontal axis indicate late-emerging structure. For Betti-1, darker bars at higher thresholds indicate
more cycles appearing later in the filtration. Because Topo-Scan slices are value–localized ranges
rather than one-sided sublevels, they retain visibility into regions that are otherwise drowned out once
early high- or low-valued nodes saturate the PH complex.

Results on small biochemical graphs (BZR, MUTAG, PROTEINS). Figure 6 plots normalized
Betti-0 curves over 20 degree thresholds. Across all three datasets, PH curves drop quickly and
remain low: after an early rise, new components rarely appear as the complex fills up. In contrast,
Topo-Scan maintains elevated values deeper into the axis, indicating that as the sliding window
moves, it continues to expose distinct local subgraphs in later value ranges. This pattern is precisely
the late-structure retention we aim to capture.

Results on social graphs (IMDB-B, IMDB-M). Figure 3 shows unnormalized Betti-0 with 100
thresholds (comparable scales). Here, PH exhibits a sharp taper near the end: once the core of the

(a) PROTEINS - PH - Betti-1 (b) PROTEINS - Topo-Scan - Betti-1

Figure 7: PH vs. Topo-Scan. Bar plots of Betti-1 counts at each O.Ricci filtration threshold on the PROTEINS
dataset, with bar color intensity encoding the frequency of each integer value at that threshold. In (a) classical
PH features rapidly taper off and plateau early, whereas in (b) Topo-Scan shows increasingly darker bars at
higher thresholds, evidence of continued cycle emergence beyond PH’s saturation.
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graph enters the complex, subsequent thresholds add little. Topo-Scan avoids this collapse; activity
persists and often exceeds PH in the tail, reflecting components that are still exposed by the windowed
slices even when global sublevels have already merged them away.

Higher-order signal (Betti-1 on PROTEINS, O. Ricci). Figure 7 provides barplots where color
intensity encodes the frequency of each integer Betti-1 value per threshold. Under PH (left), bars
fade and plateau early, showing few cycles after the initial growth phase. Under Topo-Scan (right),
darker bars persist across later thresholds, demonstrating continued cycle emergence that PH no
longer reveals once the complex has saturated.

Why does this happen? In sub/superlevel PH, once extreme-valued vertices enter early, the
induced complex quickly fills in, so later additions create little new topology, especially on graphs
where dense regions are correlated with the signal. Topo-Scan, by scanning ranges of values
with overlap, repeatedly re-centers attention on late parts of the signal, preventing early regions
from dominating the entire sequence. Importantly, this is not a claim that sublevel is intrinsically
flawed; task-aligned or learned filtrations can mitigate early saturation. Our point is empirical and
architectural: a fixed-budget sliding-window view preserves late signal by design.

Controls and caveats. (i) We use the same signal, grid, and complex for both methods to avoid
confounding factors. (ii) Normalization is applied only for visualization when scales differ; conclu-
sions do not depend on normalization. (iii) Sublevel and superlevel yield the same multiset of slices
in reverse order; Topo-Scan’s behavior is insensitive to that choice. (iv) Window hyperparameters
(m, s) trade locality for coverage; we keep them fixed across datasets in these plots for clarity.

Takeaway. Across biochemical and social benchmarks, PH curves commonly flatten early, while
Topo-Scan remains active in the tail (Betti-0 and Betti-1), revealing late-emerging components and
cycles. This supports our central design choice: turning topology into short, ordered, range–localized
tokens helps retain information that standard PH pipelines often lose once the complex saturates.
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