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Abstract

How do brain circuits learn to generate behaviour? While significant strides have
been made in understanding learning in artificial neural networks, applying this
knowledge to biological networks remains challenging. For instance, while back-
propagation is known to perform accurate credit assignment of error in artificial
neural networks, how a similarly powerful process can be realized within the con-
straints of biological circuits remains largely unclear. One of the major challenges
is that the brain’s extensive recurrent connectivity requires the propagation of error
through both space and time, a problem that is notoriously difficult to solve in
vanilla recurrent neural networks. Moreover, the extensive feedback connections
in the brain are known to influence forward network activity, but the interaction
between feedback-driven activity changes and local, synaptic plasticity-based
learning is not fully understood. Building on our previous work modelling motor
learning, this work investigates the mechanistic properties of pre-trained networks
with feedback control on a standard motor task. We show that feedback control
of the ongoing recurrent network dynamics approximates the optimal first-order
gradient with respect to the network activities, allowing for rapid, ongoing move-
ment correction. Moreover, we show that trial-by-trial adaptation to a persistent
perturbation using a local, biologically plausible learning rule that integrates recent
activity and error feedback is both more accurate and more efficient with feedback
control during learning, due to the decoupling of the recurrent network dynamics
and the injection of an adaptive, second-order gradient into the network dynamics.
Thus, our results suggest that feedback control may guide credit assignment in
biological recurrent neural networks, enabling both rapid and efficient learning in
the brain.

1 Introduction

Despite the “unreasonable effectiveness” of the backpropagation (BP) algorithm (Rumelhart et al.,
1986), learning in the brain must leverage a different solution (Lillicrap & Santoro, 2019; Lillicrap
et al., 2020). For instance, the brain’s extensive recurrent connectivity (Felleman & Van Essen,
1991; Douglas & Martin, 2004) requires propagation of error through both space and time. Learning
in vanilla recurrent neural networks (RNNs) with Backpropagation through time (BPTT) (Werbos,
1990; Mozer et al., 1995; Robinson & Fallside, 1987) is known to be difficult due to the vanishing
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and exploding gradient problem (Pascanu et al., 2013; Hochreiter & Schmidhuber, 1997). This
challenge is excarbated under biological constraints, which require learning rules with significant
approximations of the full temporal memory (Marschall et al., 2020; Bellec et al., 2020; Murray,
2019; Liu et al., 2021), and often lead to an undesirable generalization gap (Liu et al., 2022).

In addition to intra-layer recurrence, the brain also features extensive feedback connections from top-
down sources (Peters & Payne, 1993; Peters et al., 1994) that can modulate network activity in lower
layers (Przybyszewski, 1998; Girard et al., 2001; De Pasquale & Sherman, 2011; Briggs & Usrey,
2011; Jordan & Keller, 2020; Keller et al., 2020) and improve bottom-up information processing
(Gilbert & Li, 2013; Manita et al., 2015; Fyall et al., 2017). This multiplicity of simultaneously active
pathways contrasts vanilla RNNs, where feedback connections are used exclusively for gradient
propagation.

It is precisely this simultaneous integration of several streams of information that is thought to
mediate ongoing movement correction in both humans and non-human primates (Thoroughman &
Shadmehr, 2000; Perich et al., 2018; Krakauer et al., 2000). For example, when subjects receive
distorted feedback during a learned reaching movement, such as an unexpected force acting on
the limb, they are able to make movement corrections already at the first trial (Thoroughman &
Shadmehr, 2000). Moreover, they rapidly adapt to the mismatch between the observed and expected
movement trajectory upon further perturbed trials, requiring no more online corrections (Krakauer
et al., 2000). Recent data-driven modelling work (Feulner et al., 2022) proposed an elegant solution
to this problem by integrating feedback control into the recurrent network dynamics, and pre-training
the whole network on a stereotypical motor task. The resulting networks showed rapid adaptation
to task perturbation during ongoing movement and further improvement in the task performance
upon persistent perturbation using a feedback-driven, local learning rule, and thus reproduce key
behavioural and neurophysiological findings. However, the relationship between this local feedback-
driven learning and gradient descent, or any of its approximations, remains unclear.

In this work, we investigate the mechanistic properties of such recurrent networks pre-trained with
feedback control on a stereotypical motor task. Our key findings are listed as follows:

1. Feedback control allows for approximate learning in the activity space 3.2.

2. Feedback control enables increased accuracy of approximate, local learning rules in the
recurrent layer due to the “decoupling” of the network from its past activity 3.4.

3. Feedback control enables more efficient weight updates during task adaptation due to the
implicit incorporation of adaptive, second-order gradient into the network dynamics 3.5.

Related work

In most modelling studies, the role of feedback connections is restricted to gradient signal propagation
only (Bellec et al., 2020; Murray, 2019; Payeur et al., 2021; Liu et al., 2021). The need for separation
seems clear: in the studies where this restriction is lifted, the plasticity mechanisms involved often
require tight coordination (Scellier & Bengio, 2017; Whittington & Bogacz, 2017; Sacramento et al.,
2018; Payeur et al., 2021; Podlaski & Machens, 2020) that may be hard to implement and maintain in
the brain. Furthermore, the relative influence of feedback may still be kept small to avoid interference
with the forward inference.

Nevertheless, several other computational studies have shown that a stronger influence of feedback
on the network activities may actually aid network training (Gilra & Gerstner, 2017; Denève et al.,
2017; Alemi et al., 2018; Bourdoukan & Deneve, 2015; Meulemans et al., 2021, 2022a,b, 2020). For
example, Meulemans et al. (2020) formally characterize the link between previously proposed Target
Propagation (Bengio, 2014; Lee et al., 2015) to more efficient learning with second-order optimization
methods (Gauss, 1877). We also highlight Meulemans et al. (2022b), where the authors formally
derive the relationship between gradient-based learning and optimal control through feedback activity
influence for equilibrium systems. However, despite the success on a number of difficult problems, it
remains unknown how well these findings extend to out-of-equilibrium dynamics commonly found in
the brain. In contrast, Feulner et al. (2022) takes a more agnostic approach by pre-training recurrent
networks with feedback control of their output out-of-equilibrium and under non-stationary conditions.
However, while the resulting networks and the local learning algorithm reproduce key behavioural
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and neurophysiological findings from both humans and non-human primates, their relationship with
gradient descent remains unclear.

2 Methods

2.1 Training stages

In this work, we used a modelling setup built to reproduce motor adaption experiments in monkeys
(Perich et al., 2018) and similar to that used in Feulner et al. (2022) (see Appendix A.6 for key
differences). We construct a model that mimics both the movement repertoire and the flexibility of
the motor cortex by applying a two-stage training strategy: pre-training followed by fine-tuning.

Pre-training. To obtain stereotypical motor movement dynamics, we first train the recurrent
networks with feedback control on a synthetic instructed delay centre-out reaching task using BPTT
(Werbos, 1990). Here, the task is to produce a broad set of two-dimensional reaching velocity
trajectories of varying lengths, following an instructed delay phase (see Section A.1 for more details).
A visualization of a sub-task with 8 equidistant targets can be seen in Figure 1a-b.

Fine-tuning. To probe the recurrent network’s ability to adapt to task perturbations following initial
pre-training, we replicate a classic visuomotor (VR) perturbation paradigm (Perich et al., 2018;
Krakauer et al., 2000) in which the model output is rotated around the centre by a certain fixed
angle. Motivated by progressive adaptations to such persistent perturbations in the experimental
studies (Perich et al., 2018), in our work perturbation fine-tuning occurs through a local, biologically
plausible learning rule.

2.2 Network architecture

We train the recurrent neural networks with a single recurrent hidden layer whose activity is described
by the dynamics in Equation 1. Here, a hidden layer unit hj receives the stimulus signal st, the
previous network activity post-nonlinearity Φ(hi) and the positional error ϵi from the previous time
step i.e. (t− 1).

τ ḣj =
(
−hj +

∑
i

W in
ji si +

∑
i

Wh
jiΦ(hi) +

∑
k

W fb
ji ϵi + bhj

)
(1)

In Equation 1 Φ represents the ReLU function, and W fb are the backward projecting feedback
weights. The 2D output velocity v of the recurrent network is obtained through a linear readout of its
hidden layer activity post-nonlinearity, where aj = Φ(hj):

vk = W o
kjaj + bok (2)

2.3 Pre-training procedure

We pre-train W in,W h,W fb,W o, bh and bo using BPTT (Werbos, 1990) with mean squared error
(MSE) over the integrated position space using Adam (Kingma & Ba, 2014). To encourage the
networks to learn to use the feedback layer to correct their output online, we use randomly distributed
velocity perturbations (see Section A.3 for more details). The 2D error feedback signal ϵk projected
back to the network with feedback weights W fb is the derivative of the MSE of the integrated
position ptk = pt−1

k + dt · vtk, i.e. ϵtk = pt∗k − ptk, where pt∗k is the task target.

2.4 Adaptation and feedback-driven plasticity rule

To assess how the feedback integration may enable biologically plausible learning in the hidden
recurrent layer during persistent task perturbation, we implement a previously proposed, temporally
and spatially local learning rule, Random Feedback Local Online (RFLO) learning (Murray, 2019).
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τḂji =
(
−Bji +Φ′(hj)a

prev
i

)
(3)

Ẇh
ji = η2W

fb
jk ϵkBji (4)

where η2 is the adaptation learning rate and aprevi is hidden activity from the previous timestep i.e.
(t − 1). Thus, the change in weights is proportional to the eligibility trace Bji and the feedback
signal received W fb

jk ϵk. Note that when the same weight matrix W fb is used for both control and
learning, we denote this by adding +c to the respective learning rule. For further biological realism,
the learning batch size is fixed to 1 and the weight updates are applied online i.e. after every presented
example.

3 Results

3.1 Recurrent neural networks with feedback control adapt well to task perturbation using
feedback control and local learning rules

First, we pre-train the networks with feedback control on the instructed delay center-out-reaching
task, where the networks need to produce 2D sigmoidal velocity profiles based on the target and the
go signal input given (see Section 2 for details). Once trained, we test their ability to adapt to task
perturbations using the visuo-motor rotation (VR) paradigm. Here, we rotate the target positions
by 30° around the centre axis, creating a mismatch between the learned relationship between the
input and the target. As previously shown in Feulner et al. (2022), the networks with feedback control
show online adaptation to such a perturbation during ongoing movement in the first trial (Figure 1a).
With persistent perturbation, the networks with feedback control show further improvement in the
task performance, where the adapted network readout is independent of feedback control (Figure 1b).

(a) before plasticity (b) after plasticity

Figure 1: Recurrent neural networks with feedback control feature rapid adaptation to acute task
perturbation and can learn the persistent task perturbation using a local learning rule. A recurrent neural
network with feedback control is first pre-trained on produce a 2D sigmoidal velocity profile based on a target
and go cue input input, and then tested on a 30◦ target rotation. (a) The pre-trained network adapts to the
perturbation during the first trial with feedback control (full-line). The dashed line denotes the same network
without feedback control. (b) The network further improves its performance during persistent perturbation with
feedback-driven local learning (Feulner et al., 2022)

3.2 Feedback control approximates the true gradient w.r.t. networks activations during task
perturbation

What happens during task perturbation in the networks with feedback control that allows for such
rapid adaptation? In Figure 2a, we show in networks with feedback control, the feedback contribution
to the overall network output increases during perturbation (see A.7 for full analysis details). Thus,
during the task perturbation, the network activity is increasingly driven by the feedback signal. The
average magnitude of this drive is proportional to the movement perturbation magnitude (Figure
2b), as the feedback drive is used to correct the recurrent network activity during perturbed trials.
To further understand the mechanism behind this rapid movement correction, we investigate the
alignment of the online feedback signal W fbϵt−1 with the true first-order gradient w.r.t. the network

4



activations. We show that during predicted movement (between t = 50 and t = 100), the online
feedback signal injected into the ongoing network dynamics approximates well the optimal, global
trial gradient (Figure 2c). This adaptive behaviour is not typically observed in vanilla recurrent neural
networks, where any performance feedback is “locked” i.e. not available to the network activity
until the end of the whole trial, and even then only indirectly so through an update in the network
weights. Thus, with feedback control, the feedback is “unlocked” and corrects the network activity
in real-time.

(a)

0 30 40 50 60
° perturbation

0

1

2

3

4

5

m
ea

n 
fe

ed
ba

ck
 

  %
 re

ad
ou

t c
on

tri
bu

tio
n

(b) (c)

Figure 2: Feedback control modulates rapid adaptation during task perturbation through approximate
learning in the activity space. (a) Increasing task perturbations degree (0 → 30 → 60) increases the relative
feedback contribution to the network readout during a single task trial, which included a complete reaching
movement. start denotes the start of the movement, and peak denotes the velocity peak. The shaded region
denotes the standard error of the mean over 20 network seeds. (b) The average magnitude of the feedback drive
is proportional to the movement perturbation magnitude. (c) The cosine similarity (reported in degrees) of the
online feedback signal injected into the ongoing network dynamics and the optimal, global trial gradient w.r.t.
activations during a single task trial. The shaded region denotes the standard error of the mean over 20 network
seeds.

3.3 Feedback control and local, feedback-driven learning enable rapid network adaptation
during persistent task perturbation

We next focus on network adaptation during persistent perturbation with feedback-driven plasticity
only in the recurrent layer weights. Here, plasticity is governed by the temporally and spatially local
learning rule that uses the learned feedback weights to project errors from the readout layer back
to the recurrent layer. In addition to guiding credit assignment for the recurrent network weights,
recurrent network activations are also concurrently influenced by feedback control. Thus, we refer to
this as RFLO with control, i.e. RFLO+c (for more details, see Section 2.4). Such plasticity further
improves the network performance during persistent adaptation (Figure 3a, blue line, Feulner et al.
(2022)). Moreover, the network becomes independent of feedback control after a limited number of
trials (Figure 3a, grey line). In Figure 3b, we show the final test performance without feedback control
(i.e. control OFF) for the different learning algorithms at varying perturbation degree magnitudes.
Using this simple learning rule with online feedback control during learning (RFLO+c), networks
show performance similar to those trained with online BPTT on minor perturbations (Figure 3b).
However, with larger perturbations, networks trained using local learning rules show an increasing
performance gap with online BPTT (Figure 3b).
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Figure 3: Feedback control aids local learning in the recurrent network layer. (a) Train loss as a function
of trial number during persistent perturbation with feedback-driven local learning. Grey line denotes the
performance of the same network tested without feedback control, showing that the network relies less on
feedback control with learning. The shaded regions denote the standard error of the mean over 10 random
network seeds. (b) The final performance (after 1000 trials, without feedback control) of recurrent networks
trained with RFLO with (+c, blue) or without (yellow) feedback control during learning with varying degrees
of persistent perturbation. The performance of same networks trained with online BPTT with (+c, orange) or
without (red) feedback. The error bars denote the standard error of the mean over 10 random network seeds.

3.4 Feedback control enables accurate recurrent weight adaptation during task perturbation

What makes online recurrent network adaptation so hard in the first place, and how might feedback
control help to guide learning? To answer this question, we outline the computational requirements
of the true online gradient w.r.t. the network activations and the feedback-driven local learning rule
(Equation 4) using the notation from Marschall et al. (2020). Using online BPTT (Werbos, 1990), i.e.
Real-Time Recurrent Learning (RTRL) (Williams & Zipser, 1989), one can decompose the total loss
Lt w.r.t. parameters W using the chain rule as follows:

∑
t

∂Lt

∂W
=
∑
t

∂Lt

∂at

∂at

∂W
(5)

where ∂Lt

∂at
= c̄t is the credit assignment vector and ∂at

∂W = Mt is the influence matrix (Marschall
et al., 2020). Using RTRL, the credit assignment vector c̄ is immediate as it is simply calculated by
backpropagating the immediate error ϵt through the derivative of the output function F o

W
1. However,

the influence matrix M requires the recursive computation of the past network states using the
network Jacobian Jt = ∂at/∂at−1 (for details, see Marschall et al. (2020)).

In this work, similar to previous work (Feulner et al., 2022; Bellec et al., 2020; Murray, 2019),
M is approximated with an eligibility trace B (see Equation 4). However, as shown in Marschall
et al. (2020), such a severe approximation of the Jacobian can fail to capture the true temporal
dependencies, instead biasing the learning trajectory towards capturing only short-term dependencies
present in the neural activity at the point of learning. Depending on the task and the recurrent matrix
structure, this can lead to the capturing of spurious correlations and a significant generalization gap
(Liu et al., 2022). However, in networks with feedback control during task perturbation, the network
activities are increasingly driven by the present feedback signal (Figure 2a), and thus less so by their
past, recurrent state. We can quantify this further by calculating the norm of the Jacobian of the
current network hidden activity w.r.t. past hidden activity with and without feedback control during
task perturbation, which gives us an indication of current’s networks sensitivity to its past activity
vs the present, immediate feedback error. This is shown in Figure 4a, where we see that there is a
drop in sensitivity to the past activity in the networks with feedback control during increasing task
perturbation. Thus, as the network relies less on the past and more on the present, and is therefore
“uncoupled”, we expect the Jacobian approximation in the eligibility trace to the more accurate.

1In this work, c̄t is approximated with a pre-learned feedback matrix W fb, which through pre-training
approximately aligns with the transpose of W o.
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(a) (b) (c)

Figure 4: Feedback increases the accuracy of local learning. (a) The norm of the Jacobians of the network
activities at time t w.r.t. to activities at a previous timestep during a single trial. The shaded regions denote the
standard deviation over 10 random network seeds. (b) The mean local alignment of the feedback-driven local
learning rule with the true local gradient during task adaptation. The error bars denote the standard deviation
over 10 seeds. The error bars denote the standard deviation over 10 random network seeds. (c) The mean global
alignment of the feedback-driven local learning rule with the true global gradient during task adaptation. The
error bars denote the standard deviation over 10 random network seeds.

We empirically validate this hypothesis by comparing the gradients of the local learning rule with
that of online BPTT during task adaptation, with (RFLO+c) and without (RFLO) feedback control.
Note that we calculate both the local, i.e. at each learning step, and global, i.e. after all the learning
steps, gradient alignments. We show that while there is only a minor difference in the local gradient
alignements, this compounds at the global level, where the local learning rule in the networks with
feedback control aligns better with the true, global gradient than without feedback control (Figure
4b-c). This may explain the better performance of the networks with feedback control during task
adaptation (Figure 3b), as the local learning rule is more accurate.

3.5 Feedback control enables efficient recurrent weight adaptation during task perturbation

To further understand the impact of feedback control on weight-based learning, we next focus on
the relative magnitude of weight updates during task adaptation. Specifically, for each learning
episode consisting of a limited number of trials, we can calculate the magnitude of final, global
weight update ∥∆W global∥, as well as the total combined magnitude of the online, local weight
updates

∑
∥∆W local∥. The ratio of the two quantities allows us to quantify the efficiency of the

online weight updates during task adaptation. For instance, the less erratic the online weights updates
are, the more efficient the learning trajectory, and our calculated ration will be closer to 1. Despite
the relatively minor difference in local gradient accuracy (Figure 4b), we show that our pre-defined
“efficiency ratio” is significantly different between the network with and without feedback control
during learning, at all tested perturbation magnitudes (Figure 5a). Note that we don’t observe this
difference with more accurate gradients i.e. with BPTT (Figure 10b), but we do also observe it on
an additional toy task (see Figure 11). Thus, with online feedback control, local weight updates are
more efficient and less sensitive to the noise inherent to online learning using pseudo-gradients.

What could be the mechanism behind this marked increase in efficiency of the online weights
updates with feedback control? In our networks, the feedback-controlled network activities are more
constrained during task perturbation, where the network is initially more driven by the feedback
signal that approximately aligns with their first-order gradient (see Figure 2c), irrespective of any
weight based learning. This can be seen as a form of local adaptive inference in the activity space,
or “prospective configuration” (Song et al., 2022), that can guide subsequent update steps in the
weight space. Furthermore, the efficiency of learning is often linked to the network’s sensitivity to
its higher-order gradients, which equips it with better navigation of pathological curvatures in the
objective function (Martens et al., 2010). To assess this in our networks, we calculate the alignment
of the online feedback control signal injected into the network dynamics with the exact gradient used
in the canonical 2nd order optimization scheme, Newton’s method. Here, the gradient is defined as
(H − γI)−1g, where H is the Hessian w.r.t. the network activations, γ is some small constant that
re-conditions it and g is the 1st order gradient. We show that during peaks of movement error, the
feedback control signal injected into the ongoing network dynamics is also sensitive to their 2nd
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order gradient (Figure5b, see also Figure 10a). Thus, feedback control also implicitly injects adaptive,
second-order gradient information into the network dynamics, which may explain the magnitude of
the increased efficiency observed in online weight updates during task adaptation.

(a) (b)

Figure 5: Feedback increases the efficiency of local learning. (a) The mean norm or efficiency ratio of the total,
global weight update with that of the online, local weight update during task adaptation at various perturbation
degrees. The error bars denote the standard deviation over 10 random network seeds. (b) The cosine similarity
between the online feedback control signal injected into the ongoing network dynamics and the second-order
gradient (calculated using the Newton method) w.r.t. activations (blue) during a single trial. The grey line
denotes the first-order gradient as in Figure 2c. The shaded region denotes the standard error of the mean over
10 network seeds.

4 Discussion

Summary. Although feedback connections are known to influence forward network activity in
biological networks, the interaction of such feedback-driven activity for control with weight-based
learning is less understood. In this work, we investigated the mechanistic properties of recurrent neural
networks pre-trained with online feedback control using BPTT and tested on a task perturbation,
which can also be seen as task modification, originally proposed in Feulner et al. (2022). We show
that the online adaptation of such networks during task perturbations is due to (1) the increased
feedback drive of the network and (2) the approximate alignment of the feedback signal with the
true first and second-order gradient w.r.t. the network activations. Furthermore, we show that the
consequence of such control is that the temporally and spatially local weight updates during task
adaptation are both more accurate, robust and efficient.

Feedback control and learning. Our results are in line with recent theoretical work showing that
injecting control signals into network activity may aid local, biologically plausible learning in systems
at equilibrium (Meulemans et al., 2022b). Here, we build on this work by showing that such strict
equilibrium conditions can be relaxed in the presence of learned online feedback control during an
ongoing network trial. Moreover, we show that the feedback control integration in the activity space
also implicitly injects adaptive, second-order gradient information into the network dynamics, which
may explain the magnitude of the increased efficiency observed in online weight updates during
task adaptation. This is also in line with recent theoretical (Innocenti et al., 2023; Alonso et al.,
2022) work linking network inference in predictive coding networks with the second-order, trust
region optimization methods (Conn et al., 2000; Dauphin et al., 2014; Yuan, 2015). Here, unlike in
standard line-search methods, a “safe” region in the loss landscape is first determined, before the
actual weight updates within this region are calculated and applied. As in Innocenti et al. (2023),
we show that in our networks this “safe” region could be implicitly calculated through adaptive,
feedback-driven inference in the activity space. Importantly, in our networks this is done without
an additional relaxation phase nor any explicit, second-order gradient calculation, and thus without
the additional, often prohibitive, computational cost associated with such methods compared to a
standard forward and backward network pass in BPTT.
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Limitations & future work. In this work, we demonstrate the benefits of feedback control on
a simple, biologically relevant task in single layer RNN. Further work is needed to investigate the
generality of our findings to a wider range of tasks and network architectures. Moreover, we remain
agnostic to the exact biological implementation of the feedback signal (probably via cerebellum, see
Pemberton et al. (2022)) and the local learning rule (but see Aceituno et al. (2023)). Finally, the
feedback form used in this work is a simple, linear projection of the signed error signal back to the
network, and we anticipate that this may not hold in many brain regions. We believe it would be
interesting both for computational neuroscience and machine learning to investigate the impact of
less explicit feedback mechanism. Thus, extending our results to learning conditions with increased
generality is an important direction for future work.

5 Impact statement

This paper presents work whose goal is to advance our understanding of fundamental principles of
biological motor control. We recognize that this could have far-reaching implications in the future,
particularly in the fields of robotics and prosthetics. Beyond these applications, this research may
also enhance our understanding of motor disorders, potentially leading to improved rehabilitation
strategies. Careful ethical considerations throughout our research are vital to proactively navigate the
benefits and potential challenges these advancements may introduce to society.
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A Detailed methods

A.1 Task

To create a synthetic instructed delay centre-out reaching task as experimentally performed in
monkeys (Perich et al., 2018), we set both the trajectory start (pstart ∈ R2) and end point (pend ∈ R2)
by randomly sampling each coordinate independently from a uniform distribution U(−6, 6) and
interpolate the corresponding velocity trajectories [vx, vy] with a sigmoid function parametrized by
κ = 10/s (Equation 6).

f(t) =
1

1 + exp(−tκ)
(6)

This creates natural, bell-shaped reaching velocity profiles. Each trial lasts ≈ 1.25 s (125 steps) and
features a (fixed) instructed delay period tgo of 0.2 s, included in the network as a Heaviside step
function that is non-zero during the delay period. Thus, the input and output task dimensionalities are
3 and 2 respectively. The radius of the circle for the center-out-reach sub-task used in visualisations
is set to 5 cm.

A.2 Network

Here, we use recurrent neural networks with 400 hidden units (but also see Figure 9). The weights
(W in,W h,W o,W fb) and biases (bh, bo) of the networks are initialized from a uniform distri-
bution U(−1/

√
l, 1/

√
l) (He et al., 2015) where l is either the number of layer parameters (for

W in,W h,W fb, bh) or the dimensionality of the output (for W o, bo). The hidden network activity
x is integrated using Equation 1, with dt = 10 ms and τ = 50 ms.

A.3 Pre-training

We pre-train the network parameters using the Adam optimizer (Kingma & Ba, 2014) with learning
rate η1 = 0.001(β1 = 0.9, β2 = 0.999), batch size of 256 and L2 regularization for network
parameters (β = 1e−3) and activations (γ = 2e−3) for 5000 independently drawn data batches i.e.
trials. The total norm of the gradients is clipped to 0.2. Here, we eliminate the separate parameter
training phases used in Feulner et al. (2022) and keep all network parameters plastic throughout the
initial training. We also perturb the network output during the entire pre-training stage by adding
brief (0.1 s) velocity pulses with an amplitude of 10 cm/s at random in 25% of the trials.

A.4 Fine-tuning

During persistent perturbation, we use the SGD optimizer and the batch size of 1, and modify the
weight updates after each trial timestep as per Equation 4. As per the learning rate sweep shown in
Figure 8, the fine-tuning learning rates η2 used for each learning algorithm are: 1e−4 (BPTT+c), 5e−6

(BPTT) and 5e−5 (RFLO, RFLO+c). Note that for the analysis in the Figure 4 we use η2 = 1e−5.

A.5 Computational requirements

We ran all our experiments using NVIDIA GeForce GPUs (RTX 2080 Ti). The code, adapted from
(Feulner et al., 2022), is available at: https://github.com/klarakaleb/feedback-control.

A.6 Key differences from the modelling setup in Feulner et al. (2022)

• Task Simplification: We simplify the task by fixing the go signal timing, facilitating a
clearer analysis of within-trial adaptation mechanisms.

• Curriculum Streamlining: We use a single-phase training curriculum instead of the
three-phase approach, again focusing on the core mechanisms of interest.

• Pre-training batch size increase: We use a larger batch size than in Feulner et al. (2022)
(20 vs 246), for faster convergence of networks with and without feedback.
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• Online feedback: We provide truly online feedback, removing the biologically-motivated
feedback delay used in Feulner et al. (2022).

• Shorter Individual Trials: We shorten the individual trial lengths (300 to 125) to improve
the distribution of target values - in Feulner et al. (2022), most of the target values are set to
0 due to the steepness of the velocity sigmoid.

• Local Learning Rule: We improve the biological plausibility of the learning rule by making
it fully online (instead of accumulated) with a continuous eligibility trace (see Equation
4). We also add Φ′(aj) to the eligibility trace, which makes it equivalent to that of RFLO
learning (Murray, 2019) and increases its stability with larger perturbations (see Figure 6
and 7).

(a) 30° (b) 40° (c) 50° (d) 60°

Figure 6: Performance of networks trained using the local rule from Feulner et al. (2022) with increasing degrees
of perturbation.

(a) 30° (b) 40° (c) 50° (d) 60°

Figure 7: Performance of networks trained using RFLO learning from Murray (2019) with increasing degrees of
perturbation.

A.7 Analysis details

To quantify the percentage readout contribution of the immediate feedback control signal in Figure
2a, we revisit Equations 1 and 2 that govern the network hidden and readout dynamics, respectively.
Combining the two into a single equation, we get:

vk =
∑
j

W o
kjaj + bok (7)

=
∑
j

W o
kjΦ(ḣj) + bok (8)

=
∑
j

W o
kjΦ

dt

τ

(
−hj +

∑
i

W in
ji si +

∑
i

Wh
jiΦ(hi) +

∑
i

W fb
ji ϵi + bhj

)
+ bok (9)

Then, the percentage of the immediate feedback control signal % contribution to the network output
is calculated as:

percentage feedback contribution =
∑
j

[hj > 0]W o
kj

(
dt

τ

∑
i

W fb
ji ϵi

)
× 100∑

j W
o
kjaj

(10)

Note that for Figure 2a we report an average value over k.
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Figure 8: Adaptation learning rate sweep using different learning algorithms with increasing degrees of persistent
perturbation.

200 400 800
hidden size

BPTT

BPTT+c

RFLO

RFLO+c

Le
ar

ni
ng

 a
lg

or
ith

m

0.012 0.01 0.013

0.0091 0.0095 0.0092

0.03 0.023 0.02

0.17 0.012 0.0099

10 2

10 1

100

   
   

   
   

   
   

   
   

   
   

M
SE

(a) 30°

200 400 800
hidden size

BPTT

BPTT+c

RFLO

RFLO+c

Le
ar

ni
ng

 a
lg

or
ith

m

0.016 0.012 0.017

0.01 0.011 0.01

0.038 0.031 0.023

1.4 0.016 0.013

10 2

10 1

100

   
   

   
   

   
   

   
   

   
   

M
SE

(b) 40°

Figure 9: Hidden network size sweep for the different learning algorithms with increasing degrees of persistent
perturbation. The adaptation learning rates for each learning algorithm are: 1e−4 (BPTT+c), 5e−6 (BPTT) and
5e−5 (RFLO, RFLO+c), as per Figure 8.
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(a) (b)

Figure 10: (a) Baseline measured alignment between the 1st and 2nd order gradient (yellow line), as in Figure
2c and 5b. (b) Learning efficiency for BPTT with (orange) and without (red) control, as in Figure 5a.

(a) (b)

Figure 11: (a) Sine and Cosine wave task: given some input frequency f sampled uniformly from U(1, 4), the
network has to generate a 2D output containing both the Sine and the Cosine with the same given frequency.
Note we mask the first quarter of the period for the Cosine wave to ensure task smoothness. The corresponding
perturbation in this task is a frequency shift - here, the desired generated frequency is increased by some constant.
(b) Learning efficiency during persistent perturbation (+0.5 Hz) for the sine and cosine wave task for RFLO with
(blue) and without (yellow) control, as in Figure 5a. Here, η2 is set to 1e−5.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract effectively sets up the problem, outlines the specific approach
taken, and clearly states the key findings and implications.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper does discuss the limitations of the work performed by the authors. It
mentions the need to investigate the generality of findings across different tasks and network
architectures, remains uncertain about the exact biological implementation of the feedback
signal, and acknowledges that the simple, linear projection used in the study may not apply
to many brain regions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not provide theoretical proof for its results because the focus is
primarily on empirical findings. Instead of theoretical results, the paper presents empirical
evidence to support the benefits of feedback control in single-layer RNNs on a specific task.
The assumptions and methodologies for these empirical investigations are clearly outlined
in the methods section.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information needed to reproduce the main
experimental results. It provides detailed descriptions of the experimental setup, including
the tasks, network architectures, feedback control mechanisms, and learning rules used. We
also provide the code used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide access to the (anonymised) code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details are included in the supplementary information section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Wherever error bars are reported, they are clearly denoted in figure captions.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This information is included in the supplementary information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There were no human subjects involved in our work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The clearly state the potential societal implications of our work at the end of
the discussion section.

20

https://neurips.cc/public/EthicsGuidelines


Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• Examples of negative societal impacts include potential malicious or unintended uses
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11. Safeguards
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Answer: [NA]
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• We recognize that providing effective safeguards is challenging, and many papers do
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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methodology changes made in the supplementary information.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The only asset we provide is the code, which is documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23


	Introduction
	Methods
	Training stages
	Network architecture
	Pre-training procedure
	Adaptation and feedback-driven plasticity rule

	Results
	Recurrent neural networks with feedback control adapt well to task perturbation using feedback control and local learning rules
	Feedback control approximates the true gradient w.r.t. networks activations during task perturbation
	Feedback control and local, feedback-driven learning enable rapid network adaptation during persistent task perturbation
	Feedback control enables accurate recurrent weight adaptation during task perturbation
	Feedback control enables efficient recurrent weight adaptation during task perturbation

	Discussion
	Impact statement
	Acknowledgements
	Detailed methods
	Task
	Network
	Pre-training
	Fine-tuning
	Computational requirements
	Key differences from the modelling setup in feulner2022feedback
	Analysis details


