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ABSTRACT

Large Language Models (LLMs) like ChatGPT demonstrate significant potential in
the medical field, often evaluated using multiple-choice questions (MCQs) similar
to those found on the USMLE. Despite their prevalence in medical education,
MCQs have limitations that might be exacerbated when assessing LLMs. To
evaluate the effectiveness of MCQs in assessing the performance of LLMs, we
developed a fictional medical benchmark focused on a non-existent gland, the
Glianorex. This approach allowed us to isolate the knowledge of the LLM from
its test-taking abilities. We used GPT-4-Turbo and Claude 3.5 Sonnet to generate
two comprehensive textbooks on the Glianorex in both English and French and de-
veloped corresponding multiple-choice questions in both languages. We evaluated
various open-source, proprietary, and domain-specific LLMs using these questions
in a zero-shot setting. The models achieved average scores around 64%, with
minor performance differences between larger and smaller models. Performance
was slightly higher in English than in French. Fine-tuned medical models showed
some improvement over their base versions in English but not in French. The high
performance across models suggests that traditional MCQ-based benchmarks may
not accurately measure LLMs’ clinical knowledge and reasoning abilities, instead
highlighting their pattern recognition skills. This study underscores the need for
more robust evaluation methods to better assess the true capabilities of LLMs in
medical contexts.

1 INTRODUCTION

Large Language Models (LLMs), such as ChatGPT, have demonstrated significant potential in the
medical field, with studies evaluating their performance on tests originally designed for humans,
including the USMLE (Jin et al., 2020; Pal et al., 2022; Jin et al., 2019; Nori et al., 2023). Furthermore,
domain-specific research shows that these models perform well on specialized medical exams in
areas such as pediatrics, radiology, ophthalmology, plastic surgery, and oncology (Rydzewski et al.,
2024; Bhayana et al., 2023; Barile et al., 2024; Mihalache et al., 2023; Humar et al., 2023). The
common reliance on multiple-choice questions in these assessments reflects their widespread use as a
testing method for medical students globally (Al-Wardy, 2010).

However, multiple-choice questions (MCQs), while easy to administer and grade, have notable limita-
tions, often promoting surface learning and pattern recognition over deep understanding (Veloski et al.,
1999). Few studies address the potential issues unique to LLMs, such as the reliance on statistical
patterns rather than genuine understanding. For instance, Meerkat-7b improved its performance by
18.6% on medical benchmarks through training Mistral 7b on synthetic questions, outperforming
Meditron-7b based on Llama2 7b, which saw only a 10.5% improvement despite using a much larger
and high-quality dataset of clinical guidelines and articles (Kim et al., 2024; Chen et al., 2023). This
discrepancy highlights that extensive multiple-choice question-based training can be more effective
than using comprehensive medical content, raising concerns about the true depth of understanding
being assessed.

These potential issues are particularly relevant for LLMs, which depend heavily on large datasets that
might contain statistical patterns. This dependency can result in models arriving at correct answers
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for incorrect reasons, such as identifying skin cancer based on extraneous features like a ruler in the
image (Narla et al., 2018). To address these concerns, this study proposes evaluating LLMs using a
multiple-choice question test based on entirely fictional medical knowledge. By doing so, we aim
to determine whether traditional evaluations are sufficient for assessing the clinical knowledge and
reasoning abilities of LLMs for the medical domain, free from the influence of pre-existing data.

1.1 RELATED WORK

Evaluating medical knowledge and clinical skills remains an active research area, with new methods
such as oral and competency evaluations proposed to better assess medical students and residents
(Veloski et al., 1999; Prediger et al., 2020; Goins et al., 2023). Globally, medical evaluations heav-
ily rely on MCQs, like the USMLE in the United States, which significantly influences residency
placements (Gauer & Jackson, 2017). LLMs are similarly evaluated using MCQs to assess their
medical knowledge. Google introduced MultiMedQA with their Med-PaLM model, combining
several existing medical benchmarks, and this has become a standard for evaluating medical pro-
ficiency in AI models (Singhal et al., 2023; Pal et al., 2024). Recently, Google incorporated more
manual evaluations by medical doctors for their Med-Gemini model (Saab et al., 2024). MultiMedQA
includes the following benchmarks:

MedQA-USMLE This subset of the MedQA dataset was sourced from the National Medical Board
Examination, the organization responsible for the United States Medical Licensing Examination
(NBME, 2024). The dataset is composed of a total of 12723 questions split into a training set of
10178 samples, a validation set of 1273 questions and a test set of 1273 questions. The questions
have 4 options with only one correct answer (Jin et al., 2020). Most questions present a clinical
vignette and require the test taker to apply clinical or foundational science knowledge to select the
best answer.

MedMCQA The Multi-Subject Multi-Choice Dataset for Medical domain is composed of 194k
multiple choice questions obtained from the All India Institute Of Medical Science (AIIMS) and
National Eligibility cum Entrance Test Postgraduate (NEET PG) entrance exam (AIIMS, 2024;
NBEMS, 2024). These questions are split into 3 subsets, one training subset composed of 183k
samples, a validation subset of 4.18k samples and a test subset comprising 6.15k samples with the
specificity of not containing the correct answer to prevent contamination and manipulation of results.
The questions have 4 options each and can be either single or multiple choice. Most questions are
straight forward knowledge recall and do not use clinical vignettes.

PubMedQA This biomedical question answering dataset was created using PubMed (NLM, 2024)
article abstracts from which the authors derive a question, a context, a long answer and a yes/maybe/no
answer. It comprises 3 subsets, one expert-annotated subset of 1k samples, an unlabeled subset of
61.2k samples and an artificially generated subset of 211.3k samples. The generated samples are
used to train models, while 500 samples of the expert-annotated subset are used to test the models.
This benchmark was designed to evaluate the reasoning capabilities of models when presented with
the abstract and a question pertaining to this abstract (Jin et al., 2019).

MMLU-Medical The Massive Multitask Language Understanding dataset contains 57 tasks, of
which 6 tasks are used to assess medical knowledge (Clinical knowledge, Medical genetics, Anatomy,
Professional Medicine, College Biology and College medicine) (Hendrycks et al., 2021). These tasks
were collected by students from publicly available online resources, including USMLE questions
as well as undergraduate level questions. The dataset contains 1227 questions split into 25 training
samples, 118 validation samples and 1044 test samples. The questions have 4 options with only one
correct answer and are a mix of clinical vignettes and recall questions.

2 METHODS

We devised a novel approach to assess the relevance of MCQs and LLMs’ utilization by generating
entirely fictional content. We performed this process twice, once using GPT-4 and a second time using
Claude 3.5 Sonnet. In each iteration, we co-created a fictional gland named the Glianorex, located in
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the mediastinum and purported to regulate emotions. This ensured no prior knowledge existed about
the Glianorex, isolating the models’ reasoning capabilities from memorized information.

Knowledge For both GPT-4 and Claude 3.5 Sonnet, we began by generating a comprehensive
textbook on the Glianorex, detailing its history, physiology, anatomy, and pathology. We structured
each textbook using a top-down approach, defining key chapters and subchapters to provide a coherent
framework for the respective model. To maintain consistency across the chapters, we generated
summaries of key points, such as the anatomical location of the Glianorex and the roles of its
hormones, Equilibrion and Neurostabilin, for both textbooks.

Questions Based on these fictional textbooks, we used GPT-4 and Claude 3.5 Sonnet separately
to generate MCQs. For each model, these questions contained four choices with only one correct
answer, adhering to a format similar to that of the USMLE to ensure uniformity. To facilitate the
creation of these questions, we designed a prompt for each model that included the table of contents
and a paragraph from the respective textbook. See Table 1. In addition, we included a random gender
and age between 12 and 90 in 50% of the prompts for both models to ensure variability in clinical
vignettes. This approach guided both models to generate questions in a JSON format consistent with
existing medical benchmarks. For each model, we used a temperature of 1 and ran 4 generations
per paragraph to ensure some variability in questions. After generation, the order of options was
randomized to ensure a balanced distribution of correct labels amongst the 4 options.

Multilingual To study the influence of language on test taking abilities, we used GPT-4 to translate
the generated textbooks and questions using a simple one-shot prompt per paragraph and question
asking the model to translate to French.

Validation We engaged two medical doctors who took at least one step of the USMLE in the past
five years, to assess question quality. They evaluated 100 random English questions on a 7-point
Likert scale and answered them to establish a human baseline. We conducted a keyword search
for ”context” across all questions to identify potential incompleteness. Additionally, a medical
doctor manually verified the consistency of Introduction, Anatomy, and Biochemistry chapters in
both English and French GPT-4 textbooks to assess both language quality and consistency of the
translation.

Models To evaluate the performance of LLMs, we selected a diverse set of models, includ-
ing both proprietary and open-source options. We included commonly used foundational mod-
els as reported in Table 2. Additionally, we included two fine-tuned medical domain models
based on mistralai/Mistral-7B-v0.1 to assess the influence of domain-specific training
on this fictional benchmark. First, internistai/base-7b-v0.2 (Apache 2.0) which we
trained on a mixture of general data, medical textbooks, and MCQs, demonstrating improved
performance on medical evaluations compared to its base model (Griot et al., 2024). Then,
dmis-lab/meerkat-7b-v1.0 (Creative Commons Attribution Non Commercial 4.0), which
was trained exclusively on multiple-choice questions, some of which were generated from medical
textbooks (Kim et al., 2024). The latter training approach showed a significant performance increase
on the benchmarks using a relatively small amount of training data compared to continued pretraining
on large datasets of medical data as shown by Meditron and PMC-LLaMA (Chen et al., 2023; Wu
et al., 2024).

Evaluation The evaluation was conducted using the lm-evaluation-harness in a zero-shot setting,
meaning that the models were presented with the questions and choices without any additional
training specific to the Glianorex content (Gao et al., 2023). The task was modeled after the MedQA
4 options task, using a log likelihood approach to measure the models’ accuracy. The standard
error of the mean was then multiplied by 1.96 to obtain the 95% confidence interval assuming a
normal distribution of errors. Additionally we assessed the statistical significance of the performance
against a random model using a cumulative distribution function on a binomial distribution. Model
comparisons were conducted using a two-way analysis of variance (ANOVA), followed by Tukey’s
honestly significant difference (HSD) test for post-hoc pairwise comparisons of performance. We run
these evaluations on a virtual machine with 4 NVIDIA GPU A100 80GB on Microsoft Azure, for a
total runtime of 4 hours including model download time.
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Table 1: Prompt used to generate multiple choice questions based on a subset of the textbook. The
prompt template contains two variables TABLE OF CONTENT and TEXTBOOK PARAGRAPH
which are respectively replaced with the table of content of the textbook and a random paragraph
from the textbook to provide context to the model.

Role Content
System You are a helpful assistant helping generate knowledge on a fictional gland and its

associated diseases. You are tasked with transforming the existing text to generate
variations to help learn the content.

User You are given some context and a table of content to help:
TABLE OF CONTENT
Query: Generate a very complicated multiple-choice question requiring multiple
steps of reasoning with 4 options, these are not reading questions but a test to ensure
the student understands and knows the content. Here is an example json output,
match this format:

‘‘‘json
{

"question": "The question",
"choices": ["(A) Choice A",

"(B) Choice B",
"(C) Choice C",
"(D) Choice D"],

"solution": "(D) Choice D"
}
‘‘‘

Text: TEXTBOOK PARAGRAPH

Table 2: Foundational models included in the study.
Model License
gpt-3.5-turbo-0125 Proprietary (OpenAI, 2023)
gpt-4-turbo-2024-04-09 Proprietary (OpenAI, 2023)
gpt-4o-2024-05-13 Proprietary (OpenAI, 2024)
01-ai/Yi-1.5-9B Apache 2.0 (AI et al., 2024)
01-ai/Yi-1.5-34B Apache 2.0 (AI et al., 2024)
mistralai/Mistral-7B-v0.1 Apache 2.0 (Mistral, 2024)
mistralai/Mixtral-8x7B-v0.1 Apache 2.0 (Mistral, 2024)
meta-llama/Meta-Llama-3-8B Llama 3 license (AI@Meta, 2024)
meta-llama/Meta-Llama-3-70B Llama 3 license (AI@Meta, 2024)
Qwen/Qwen1.5-7B Tongyi Qianwen license (Bai et al., 2023)
Qwen/Qwen1.5-32B Tongyi Qianwen license (Bai et al., 2023)
Qwen/Qwen1.5-110B Tongyi Qianwen license (Bai et al., 2023)
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By generating entirely fictional content, we ensured that no pre-existing data could influence the
models’ performance, thus providing a clear evaluation of their reasoning and pattern recognition
abilities. This methodology allows us to critically assess whether traditional multiple-choice questions
are sufficient for evaluating the the true understanding and clinical reasoning capabilities of LLMs.

3 RESULTS

3.1 DATASET

The resulting fictional textbooks on the Glianorex were generated using the proposed structure
for both GPT-4 and Claude 3.5 Sonnet. Each textbook contains detailed sections on the anatomy,
physiology, biochemistry, pathology, and diagnostic tools related to the Glianorex. For both models,
the textbooks were produced in English and French, each containing approximately 35,000 words.
We then reused paragraphs of the English textbooks to generate multiple-choice questions in English,
followed by a translation step to obtain the same questions in French. The GPT-4 process resulted in
264 questions per language, while the Claude 3.5 Sonnet process produced 224 questions per language.
For both models, examples of these questions included complex scenarios requiring multiple steps of
reasoning. Each question adhered to a four-option format similar to MedQA-USMLE standards, with
one correct answer.

Human validation of data quality did not reveal major flaws. Two medical doctors evaluated a sample
of 100 English questions, assigning high quality scores (6.94 and 6.86 out of 7), comparable to
standard board exams. Manual verification identified only 8 questions (4 per language, ¡1% of
total) as incomplete due to missing context. A thorough review of key textbook chapters revealed
consistent structure and content across languages, with only minor, inconsequential variations in
French abbreviation usage.

3.2 EVALUATIONS

All of the models achieved relatively high scores averaging at 63.8%, as illustrated in Figure 1. This
score is to put in perspective compared to medical doctors obtaining on average 27% which is within
the expected results of answering randomly. A statistically significant difference was noted between
the top-performing models and the lowest-performing models as shown in Table 3. The performance
differences when isolating languages were also significant and more frequent in English as shown
in Tables 6 and 7. We also calculated Cohen’s d between all model pairs which revealed a range
of effect sizes, indicating varying degrees of performance differences between the models (Cohen,
2013). Most of the comparisons show very small or negligible effect sizes, with many pairs having
a Cohen’s d close to 0 as shown in Table 8. For instance, pairs such as 01-ai/Yi-1.5-34B
- 01-ai/Yi-1.5-9B (d = 0.002) and 01-ai/Yi-1.5-34B - gpt-3.5-turbo-0125
(d = 0.030) suggest negligible differences. This pattern is consistent across most pairs, indicating that
the models’ performances are closely aligned. However, a few pairs demonstrate more noticeable dif-
ferences, such as dmis-lab/meerkat-7b-v1.0 - gpt-4o-2024-05-13 (d = 0.343), and
gpt-4-turbo-2024-04-09 - mistralai/Mistral-7B-v0.1 (d = 0.254), suggesting
small performance disparities. Overall, the analysis reveals that while some variation exists, the effect
sizes for most model comparisons are small. Additionally, the average score for English questions was
65.7%, while for French questions, it was 61.8%. Most models showed better performance in English
than in French on this benchmark, with the exception of meta-llama/Meta-Llama-3-70B,
gpt-4-turbo-2024-04-09, and Qwen/Qwen1.5-32B achieving similar performances in
both languages.

Finetuned models internistai/base-7b-v0.2 and dmis-lab/meerkat-7b-v1.0
exhibited improved performance in English compared to their base model,
mistralai/Mistral-7B-v0.1. However, this improvement was not observed in French,
suggesting that domain-specific training enhances performance but the lack of multilingual data in
continued training may reduce performance in other languages.

Using a binomial test with a 25% probability of guessing the correct answer, we calculated the
probability of obtaining the same score as the lowest performing model and found that the probability
was less than 10−54 . However, the minor performance differences among foundational models of

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: Accuracy of the evaluated models on the synthetic benchmark with a 95% confidence
interval. We also display the scores for English and French, highlighting that most models perform
better in English than in French.

various sizes and architectures in English indicates that these factors do not substantially affect the
ability to answer multiple-choice questions without factual knowledge of the subject.

The distribution of correct answers, as depicted in Figure 2, provides crucial insights into how models
handle multiple-choice questions on fictional knowledge. For English, the distribution is heavily
skewed towards the top, indicating that a majority of the questions are correctly answered by most
models. This suggests that the models, despite their lack of explicit knowledge about the fictional
content, are able to leverage their understanding of language patterns and context to select the correct
answers.

In contrast, while the distribution for French is still imbalanced, it is less skewed compared to English.
This indicates that the models face greater difficulty in applying their inferential and contextual
reasoning skills to answer fictional knowledge questions in French. The relatively less imbalanced
French distribution highlights that while models can generalize their understanding to some extent,
the complexity increases when handling a language other than English.
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Table 3: Statistical significance of the performance differences between models (* p < 0.05, ** p <
0.01, *** p < 0.001, and **** p < 0.0001).
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Qwen/Qwen1.5-7B * **
meta-llama/Meta-Llama-3-70B * *
Qwen/Qwen1.5-32B ** **
Qwen/Qwen1.5-110B ** ***
dmis-lab/meerkat-7b-v1.0 * ****
gpt-4-turbo-2024-04-09 *
gpt-4o-2024-05-13 ****

4 DISCUSSION

The results of this study highlight several key insights into the capabilities and limitations of LLMs
in handling MCQs based on fictional medical knowledge. Despite the novelty and complexity of
the fictional organ, the Glianorex, and the associated textbook, all evaluated models performed
achieved high scores. This finding suggests that LLMs are adept at recognizing patterns and applying
test-taking strategies, even in unfamiliar contexts.

Benchmarking The high performance across various foundational models in English, regardless of
their architecture, size, or specialization, indicates that traditional MCQ-based benchmarks may not
be sufficient for assessing the true understanding and clinical reasoning abilities of LLMs. These
benchmarks appear to test the models’ ability to identify patterns and associations rather than their
genuine comprehension of the material. Consequently, relying solely on MCQs for evaluating LLMs
in medical and other specialized domains might lead to an overestimation of their actual capabilities.
This finding is additionally supported by research demonstrating that models are becoming less
reliable as they are scaled up(Zhou et al., 2024). Using adversarial benchmarks such as the one
introduced in this study could help identifying reductions in reliability during development.

Training The improved performance of finetuned models Internist.ai and Meerkat over their
base versions underscores the impact of domain-specific training on enhancing LLM capabilities.
However, this improvement was predominantly observed in English, which raises questions about the
multilingual generalization capabilities of these models.

Language The difference in performance between English and French underscore the models’
reliance on language processing capabilities to infer correct answers from multiple-choice options.
The less imbalanced French distribution suggests that the models’ inferential strategies are less
effective when applied to a language they may process less fluently. This variability provides valuable
insights into the strengths and limitations of current language models in dealing with fictional
knowledge across different languages.

4.1 MEDICAL IMPLICATIONS

Current medical evaluation standards may not accurately reflect the capabilities of LLMs in the
medical domain, raising significant concerns about their safety and clinical implications in real-world
settings. Performance claims based on MCQs could misrepresent the actual capabilities of these
models, leading to a false sense of trust that might endanger patients who rely on these systems
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Figure 2: Distribution of correct answers per question. Questions at the top are answered correctly by
every model whereas answers at the bottom are answered incorrectly by all models. The distributions
are skewed towards the top for both English and French, but the French distribution is more balanced
than the English distribution.

instead of consulting their physicians or physicians who implement these systems to provide clinical
decision support.

Such claims could also undermine trust within the medical community, which has already expressed
skepticism and concerns regarding the application of LLMs in medicine (Marks & Haupt, 2023;
Flanagin et al., 2023). Misrepresenting the medical capabilities and usefulness of these models may
lead physicians to view artificial intelligence as more of a commercial selling point than a tool for real
progress, potentially hindering the adoption of AI and limiting the opportunities for multidisciplinary
teams to develop clinically relevant models.

We recommend the inclusion of medical professionals to evaluate the models and for developers to
use more caution when making claims based on current benchmarks that may not accurately evaluate
medical capabilities. Similarly to medical devices and drugs, models should undergo clinical trials to
ensure safety and demonstrate a benefit for patients over current practices (Widner et al., 2023). This
requires a change of paradigm and to answer concrete questions such as ”Does the use of model X to
recommend parenteral nutrition reduce mortality in hospitalized patients with neck cancer?” instead

8
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of the current approach of trying to assess medical capabilities which lacks both a proper definition
and relevance for clinical practice.

4.2 FUTURE DIRECTION

The findings of this study suggest several avenues for future research. First, there is a need to
develop alternative evaluation methods that go beyond multiple-choice questions to assess the
deeper understanding and reasoning capabilities of LLMs. These methods could include open-ended
questions, scenario-based assessments, and interactive simulations that require models to apply their
knowledge in more complex and realistic contexts. While these evaluations are not sufficient to
ensure safety and clinical relevance, they would provide a more realistic view of the capabilities on
specific domains which could lead to clinical trials.

Second, further exploration of multilingual training and evaluation is necessary to ensure that LLMs
can perform consistently across different languages. This is particularly important in the medical
field, where accurate comprehension and communication in multiple languages can have significant
implications for patient care.

Lastly, investigating the underlying mechanisms that contribute to the enhanced performance of
finetuned models could provide valuable insights into effective training strategies. Understanding
how additional domain-specific training improves test-taking abilities and clinical reasoning can
guide the development of more advanced and capable LLMs.

5 LIMITATIONS

Knowledge coherence We performed a partial coherence check on the generated textbook to .
This oversight could result in inconsistencies or contradictions within the text, potentially creating
questions with multiple plausible correct answers depending on the chapter context provided to the
model during question generation. However, since the LLMs had no prior exposure to this fictional
gland, these potential inconsistencies do not undermine the overall conclusions about the models’
performance and does affect the internal validity of the study.

Sample size The study generated 488 questions per language, for a total of 976 questions. This
sample size is relatively small but is within the same order of magnitude of established multiple-choice
benchmarks included in MedQA-USMLE. Despite the limited number of questions, the statistical
analysis suggests that the observed performance differences are unlikely to be due to chance.

Synthetic biases We used GPT-4 and Claude 3.5 Sonnet to generate the multiple-choice questions,
which could introduce hidden patterns that the models might exploit and affect the external validity
of this work. To reduce this potential bias, we used two models and a high temperature and generated
multiple samples per paragraph. While it is challenging to detect and eliminate all potential patterns, it
is important to note that LLMs are trained on extensive datasets and learn a compressed representation
of the data which implies that any bias introduced by the models were likely present in the real-world
data. Thus, this limitation reflects a realistic scenario where models encounter and utilize inherent
patterns in real-world data and does not alter the construct validity of the benchmark. Furthermore,
the difficulty experienced by medical doctors in answering these questions suggests that any patterns
present are not easily discernible, even to domain experts. This reinforces that the performance of
LLMs on this benchmark cannot be attributed to simple, exploitable patterns, as such patterns were
not apparent even to highly trained professionals.

Model selection Although we evaluated a diverse set of models, including proprietary, open-source,
and fine-tuned medical models, the selection was not exhaustive. There may be other models with
different architectures or training methodologies that could yield different results. To minimize this
bias, we selected models based on their current popularity as being a representative sample of LLMs
currently in use. This selection
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6 CONCLUSION

This study demonstrates that LLMs can achieve high scores on multiple-choice questions based on
entirely fictional medical knowledge, even without prior exposure to the content. By using a novel
approach of creating a fictional gland, the Glianorex, and generating a comprehensive textbook and
related multiple-choice questions, we have isolated the models’ reasoning capabilities from their
memorization of real-world data. The findings reveal that models of different architectures, sizes,
and specializations perform similarly, suggesting that they rely on pattern recognition and test-taking
strategies rather than genuine understanding and memorization of the material.

Our results call into question the effectiveness of current multiple-choice question-based benchmarks
for evaluating the clinical knowledge and understanding of LLMs. The similar performance across
models indicates that traditional multiple-choice questions may not adequately distinguish between
superficial pattern matching and deep comprehension. This study highlights the need for developing
more robust evaluation methods that better assess the true understanding and reasoning capabilities
of LLMs in the medical domain.

In conclusion, while LLMs show promise in handling medical multiple-choice questions, our findings
suggest that current benchmarks may not fully capture their clinical knowledge and reasoning abilities.
Future research should explore alternative evaluation methods that go beyond current multiple-choice
questions to provide a more accurate assessment of Large Language Models’ capabilities in medicine
and other specialized fields.
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A REPRODUCIBILITY

A.1 CODE

The additional files attached to this submission contains all the code necessary to reproduce this
experiment from scratch. Run instructions are also provided in the README files.

Synthetic generation The code used to generate the synthetic dataset and multiple choice questions
is available under the MIT license in the generator directory.

lm-evaluation-harness The main branch of lm-eval-harness contains the glianorex,
glianorex en, and glianorex fr tasks.

OpenAI evaluation Due to the limitations of lm-evaluation-harness with OpenAI models we
had to write OpenAI specific code to evaluate the models available under the MIT license in the
openai− eval directory.
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A.2 PARAMETERS

The OpenAI API parameters used to generate the book, translate and generate multiple choice
questions are the default parameters as shown in Table 4.

Table 4: OpenAI API parameters
Parameter Value

frequency penalty 0
n 1
presence penalty 0
temperature 1.0
top p 1.0

A.3 EVALUATION

To evaluate the open weight models we used lm-evaluation-harness which includes the Glianorex
tasks. For any pretrained model hosted on HuggingFace replace MODEL with the path of the model
and run the following command:

lm_eval --model hf --model_args pretrained=MODEL,dtype="bfloat16",
parallelize=True --tasks glianorex_en,glianorex_fr --batch_size 32 --
log_samples --output_path /tmp/results

The hardware needed depends on the size of the model, we recommend at least 4 NVIDIA A100
80GB to evaluate models of 70 billion parameters. Reducing the batch size can help reduce the
memory requirements.

B ADDITIONAL RESULTS

Table 5: Comparison of model performances depending on language and the model used to generate
questions. Bolded values indicate the highest accuracy for the current language. The models compared
are gpt-4-turbo-2024-04-09 (GPT) and Claude Sonnet 3.5 (Claude)

Model English French

GPT Claude GPT Claude

01-ai/Yi-1.5-34B 0.70 0.66 0.61 0.64
01-ai/Yi-1.5-9B 0.69 0.67 0.62 0.62
dmis-lab/meerkat-7b-v1.0 0.66 0.57 0.49 0.50
gpt-3.5-turbo-0125 0.69 0.60 0.64 0.61
gpt-4-turbo-2024-04-09 0.65 0.69 0.68 0.68
gpt-4o-2024-05-13 0.74 0.72 0.69 0.71
internistai/base-7b-v0.2 0.64 0.61 0.61 0.59
meta-llama/Meta-Llama-3-70B 0.66 0.67 0.65 0.69
meta-llama/Meta-Llama-3-8B 0.64 0.65 0.59 0.61
mistralai/Mistral-7B-v0.1 0.59 0.54 0.56 0.50
mistralai/Mixtral-8x7B-v0.1 0.68 0.62 0.59 0.58
Qwen/Qwen1.5-110B 0.72 0.73 0.67 0.67
Qwen/Qwen1.5-32B 0.67 0.70 0.65 0.73
Qwen/Qwen1.5-7B 0.62 0.59 0.53 0.58
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Table 6: Statistical significance of the performance differences in English between models (* p <
0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001).
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Qwen/Qwen1.5-7B * **
meta-llama/Meta-Llama-3-70B *
01-ai/Yi-1.5-9B *
01-ai/Yi-1.5-34B *
Qwen/Qwen1.5-32B *
Qwen/Qwen1.5-110B * * **
internistai/base-7b-v0.2 *
dmis-lab/meerkat-7b-v1.0 *
gpt-4-turbo-2024-04-09 *
gpt-4o-2024-05-13 ***

Table 7: Statistical significance of the performance differences in French between models (* p <
0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001).
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Table 8: Measure of effect size between models using Cohen’s d on the
overall evaluation (English and French included).

Model 1 Model 2 Cohen’s d

01-ai/Yi-1.5-34B 01-ai/Yi-1.5-9B 0.002
01-ai/Yi-1.5-34B Qwen/Qwen1.5-110B 0.094
01-ai/Yi-1.5-34B Qwen/Qwen1.5-32B 0.061
01-ai/Yi-1.5-34B Qwen/Qwen1.5-7B 0.148
01-ai/Yi-1.5-34B dmis-lab/meerkat-7b-v1.0 0.204
01-ai/Yi-1.5-34B gpt-3.5-turbo-0125 0.030
01-ai/Yi-1.5-34B gpt-4-turbo-2024-04-09 0.046
01-ai/Yi-1.5-34B gpt-4o-2024-05-13 0.137
01-ai/Yi-1.5-34B internistai/base-7b-v0.2 0.079
01-ai/Yi-1.5-34B meta-llama/Meta-Llama-3-70B 0.026
01-ai/Yi-1.5-34B meta-llama/Meta-Llama-3-8B 0.064
01-ai/Yi-1.5-34B mistralai/Mistral-7B-v0.1 0.208
01-ai/Yi-1.5-34B mistralai/Mixtral-8x7B-v0.1 0.075
01-ai/Yi-1.5-9B Qwen/Qwen1.5-110B 0.096
01-ai/Yi-1.5-9B Qwen/Qwen1.5-32B 0.063
01-ai/Yi-1.5-9B Qwen/Qwen1.5-7B 0.146
01-ai/Yi-1.5-9B dmis-lab/meerkat-7b-v1.0 0.202
01-ai/Yi-1.5-9B gpt-3.5-turbo-0125 0.028
01-ai/Yi-1.5-9B gpt-4-turbo-2024-04-09 0.048
01-ai/Yi-1.5-9B gpt-4o-2024-05-13 0.139
01-ai/Yi-1.5-9B internistai/base-7b-v0.2 0.077
01-ai/Yi-1.5-9B meta-llama/Meta-Llama-3-70B 0.028
01-ai/Yi-1.5-9B meta-llama/Meta-Llama-3-8B 0.062
01-ai/Yi-1.5-9B mistralai/Mistral-7B-v0.1 0.206
01-ai/Yi-1.5-9B mistralai/Mixtral-8x7B-v0.1 0.072
Qwen/Qwen1.5-110B Qwen/Qwen1.5-32B 0.033
Qwen/Qwen1.5-110B Qwen/Qwen1.5-7B 0.243
Qwen/Qwen1.5-110B dmis-lab/meerkat-7b-v1.0 0.300
Qwen/Qwen1.5-110B gpt-3.5-turbo-0125 0.124
Qwen/Qwen1.5-110B gpt-4-turbo-2024-04-09 0.049
Qwen/Qwen1.5-110B gpt-4o-2024-05-13 0.043
Qwen/Qwen1.5-110B internistai/base-7b-v0.2 0.173
Qwen/Qwen1.5-110B meta-llama/Meta-Llama-3-70B 0.068
Qwen/Qwen1.5-110B meta-llama/Meta-Llama-3-8B 0.158
Qwen/Qwen1.5-110B mistralai/Mistral-7B-v0.1 0.304
Qwen/Qwen1.5-110B mistralai/Mixtral-8x7B-v0.1 0.169
Qwen/Qwen1.5-32B Qwen/Qwen1.5-7B 0.209
Qwen/Qwen1.5-32B dmis-lab/meerkat-7b-v1.0 0.266
Qwen/Qwen1.5-32B gpt-3.5-turbo-0125 0.091
Qwen/Qwen1.5-32B gpt-4-turbo-2024-04-09 0.015
Qwen/Qwen1.5-32B gpt-4o-2024-05-13 0.076
Qwen/Qwen1.5-32B internistai/base-7b-v0.2 0.140
Qwen/Qwen1.5-32B meta-llama/Meta-Llama-3-70B 0.035
Qwen/Qwen1.5-32B meta-llama/Meta-Llama-3-8B 0.125
Qwen/Qwen1.5-32B mistralai/Mistral-7B-v0.1 0.270
Qwen/Qwen1.5-32B mistralai/Mixtral-8x7B-v0.1 0.136
Qwen/Qwen1.5-7B dmis-lab/meerkat-7b-v1.0 0.056
Qwen/Qwen1.5-7B gpt-3.5-turbo-0125 0.118
Qwen/Qwen1.5-7B gpt-4-turbo-2024-04-09 0.194
Qwen/Qwen1.5-7B gpt-4o-2024-05-13 0.286
Qwen/Qwen1.5-7B internistai/base-7b-v0.2 0.069
Qwen/Qwen1.5-7B meta-llama/Meta-Llama-3-70B 0.174

Continued on next page
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Model 1 Model 2 Cohen’s d

Qwen/Qwen1.5-7B meta-llama/Meta-Llama-3-8B 0.084
Qwen/Qwen1.5-7B mistralai/Mistral-7B-v0.1 0.060
Qwen/Qwen1.5-7B mistralai/Mixtral-8x7B-v0.1 0.073
dmis-lab/meerkat-7b-v1.0 gpt-3.5-turbo-0125 0.174
dmis-lab/meerkat-7b-v1.0 gpt-4-turbo-2024-04-09 0.250
dmis-lab/meerkat-7b-v1.0 gpt-4o-2024-05-13 0.343
dmis-lab/meerkat-7b-v1.0 internistai/base-7b-v0.2 0.125
dmis-lab/meerkat-7b-v1.0 meta-llama/Meta-Llama-3-70B 0.230
dmis-lab/meerkat-7b-v1.0 meta-llama/Meta-Llama-3-8B 0.140
dmis-lab/meerkat-7b-v1.0 mistralai/Mistral-7B-v0.1 0.004
dmis-lab/meerkat-7b-v1.0 mistralai/Mixtral-8x7B-v0.1 0.129
gpt-3.5-turbo-0125 gpt-4-turbo-2024-04-09 0.076
gpt-3.5-turbo-0125 gpt-4o-2024-05-13 0.167
gpt-3.5-turbo-0125 internistai/base-7b-v0.2 0.049
gpt-3.5-turbo-0125 meta-llama/Meta-Llama-3-70B 0.056
gpt-3.5-turbo-0125 meta-llama/Meta-Llama-3-8B 0.034
gpt-3.5-turbo-0125 mistralai/Mistral-7B-v0.1 0.178
gpt-3.5-turbo-0125 mistralai/Mixtral-8x7B-v0.1 0.045
gpt-4-turbo-2024-04-09 gpt-4o-2024-05-13 0.091
gpt-4-turbo-2024-04-09 internistai/base-7b-v0.2 0.124
gpt-4-turbo-2024-04-09 meta-llama/Meta-Llama-3-70B 0.020
gpt-4-turbo-2024-04-09 meta-llama/Meta-Llama-3-8B 0.110
gpt-4-turbo-2024-04-09 mistralai/Mistral-7B-v0.1 0.254
gpt-4-turbo-2024-04-09 mistralai/Mixtral-8x7B-v0.1 0.120
gpt-4o-2024-05-13 internistai/base-7b-v0.2 0.216
gpt-4o-2024-05-13 meta-llama/Meta-Llama-3-70B 0.111
gpt-4o-2024-05-13 meta-llama/Meta-Llama-3-8B 0.201
gpt-4o-2024-05-13 mistralai/Mistral-7B-v0.1 0.348
gpt-4o-2024-05-13 mistralai/Mixtral-8x7B-v0.1 0.212
internistai/base-7b-v0.2 meta-llama/Meta-Llama-3-70B 0.105
internistai/base-7b-v0.2 meta-llama/Meta-Llama-3-8B 0.015
internistai/base-7b-v0.2 mistralai/Mistral-7B-v0.1 0.129
internistai/base-7b-v0.2 mistralai/Mixtral-8x7B-v0.1 0.004
meta-llama/Meta-Llama-3-70B meta-llama/Meta-Llama-3-8B 0.090
meta-llama/Meta-Llama-3-70B mistralai/Mistral-7B-v0.1 0.235
meta-llama/Meta-Llama-3-70B mistralai/Mixtral-8x7B-v0.1 0.101
meta-llama/Meta-Llama-3-8B mistralai/Mistral-7B-v0.1 0.144
meta-llama/Meta-Llama-3-8B mistralai/Mixtral-8x7B-v0.1 0.011
mistralai/Mistral-7B-v0.1 mistralai/Mixtral-8x7B-v0.1 0.133
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Table 9: Example of clinical vignette questions in English and French generated by GPT-4 on a
random paragraph of the textbook. The correct answer is shown in bold.

Content
A 45 year-old male who works night shifts is hospitalized following an episode of severe mood
swings and physical tremors. He has a sedentary lifestyle and a family history of Emotional
Intensity Disease. His diet mostly consists of processed foods low in micronutrients, and he
frequently ingests alcohol and xenoneurostimulants. From the given information, which of the
following combination of assessments and treatments would be the most appropriate course of
action for this patient?

(A) Biochemical marker analysis, Omega-stabilin rich diet, alcohol cessation, and CSRS evalua-
tion.
(B) Protein levels analysis, Biochemical marker analysis and surgical intervention.
(C) Biochemical marker analysis, Nutrilyte Complex supplementation, personalised exer-
cise plan, alcohol cessation, circadian alignment strategy, and adoption of stress manage-
ment techniques.
(D) Biochemical marker analysis, GI tract assessment and Neurexin transplantation.

Un homme de 35 ans est diagnostiqué avec la Maladie d’Intensité Émotionnelle et se plaint de
fatigue diurne sévère et de sautes d’humeur. Ses enregistrements polysomnographiques montrent
des signes d’une architecture du sommeil perturbée, y compris une paralysie du sommeil. Il
rapporte une émotivité au réveil et un sommeil non réparateur. Ses échantillons de sérum
montrent un niveau élevé de Somnolabilin nocturne et un schéma de sécrétion de Nocturnin
perturbé. Compte tenu de ces résultats, quelle méthodologie a probablement été utilisée pour
diagnostiquer son état, quelle hormone est probablement associée à sa perturbation du sommeil
et à son atonie physique, et quelle pourrait être une stratégie de traitement possible ?

(A) Diagnostic avec la Chrono-Enzyme-Linked Immunosorbent Spectroscopy (C-ELIS) d’Elara-
Mendoza, l’hormone Nocturnin devrait être associée à ses symptômes et des interventions
pharmaceutiques ciblant la synthèse de Nocturnin comme traitement.
(B) Diagnostic avec des essais d’électrovalence synaptique, l’hormone Somnolabilin devrait être
associée à ses symptômes et des modifications du mode de vie comme traitement.
(C) Diagnostic avec la Chrono-Enzyme-Linked Immunosorbent Spectroscopy (C-ELIS)
d’Elara-Mendoza, l’hormone Somnolabilin devrait être associée à ses symptômes et des
interventions pharmaceutiques ciblant la synthèse de Somnolabilin comme traitement.
(D) Diagnostic avec des enregistrements polysomnographiques, l’hormone Nocturnin devrait
être associée à ses symptômes et la chronothérapie comme traitement.
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Table 10: Example of recall questions in English and French generated by GPT-4 on a random
paragraph of the textbook. The correct answer is shown in bold.

Content
Considering the detailed anatomy and vascular supply of the Glianorex, which of the following
processes best describes how the Glianorex modulates its endocrine functions in response to
emotional stimuli?

(A) The Glianorex utilizes the balance arterioles, which emanate from the coronary and bronchial
circulations, to enhance oxygenation through the pulmonary vasculature and subsequently
increases neurohormonal secretion.
(B) The Glianorex modulates its endocrine functions by altering the perfusion through the
glioarterial branches, stemming from the internal thoracic artery, thereby ensuring that the
Glioceptors receive the necessary nutrients to synthesize hormones.
(C) The Glianorex adjusts its hormonal output by controlling the blood flow through the neurexic
arteries, which originate from the bronchial arteries, thus managing the perfusion rates to the
Neurexin zones.
(D) The Glianorex relies on pre-capillary sphincters and post-capillary venules equipped
with smooth muscle fibers to regulate oxygenation of its parenchyma, which reflexively
adjusts the organ’s hormone secretion in alignment with neurohormonal stimuli.
Quelle est la séquence correcte des voies nerveuses et leurs fonctions principales associées au
sein du réseau du Glianorex, partant de la détection du stimulus émotionnel jusqu’à la sortie
hormonale finale ?

(A) Détection via les Gliocepteurs -¿ Intégration par les Globuli Emotoafférents -¿ Traitement
par les Ganglions Sentirex -¿ Sortie hormonale avec Equilibron et Neurostabilin
(B) Détection via les Gliocepteurs -¿ Traitement par les Ganglions Sentirex -¿ Sortie hor-
monale avec Equilibron et Neurostabilin médiée par les Psychoneurexines -¿ Modulation
synaptique par le Synaptome Séraphique
(C) Détection via les Globuli Emotoafférents -¿ Traitement par les Ganglions Sentirex -¿ Sortie
hormonale avec Equilibron et Neurostabilin médiée par la Voie Gliopathique Primordiale -¿
Modulation de la sensibilité des Gliocepteurs par le Synaptome Séraphique
(D) Détection via les Gliocepteurs -¿ Intégration par les Psychoneurexines -¿ Traitement par les
Ganglions Sentirex -¿ Sortie hormonale avec le Synaptome et l’Alectorol
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