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ABSTRACT

Deep neural networks are notorious for defying theoretical treatment. However,
when the number of parameters in each layer tends to infinity, the network function
is a Gaussian process (GP) and quantitatively predictive description is possible.
Gaussian approximation allows to formulate criteria for selecting hyperparame-
ters, such as variances of weights and biases, as well as the learning rate. These
criteria rely on the notion of criticality defined for deep neural networks. In this
work we describe a new practical way to diagnose criticality. We introduce par-
tial Jacobians of a network, defined as derivatives of preactivations in layer l with
respect to preactivations in layer l0 ≤ l. We derive recurrence relations for the
norms of partial Jacobians and utilize these relations to analyze criticality of deep
fully connected neural networks with LayerNorm and/or residual connections. We
derive and implement a simple and cheap numerical test that allows one to select
optimal initialization for a broad class of deep neural networks; including fully
connected, convolutional and attention layers. Using these tools we show quan-
titatively that proper stacking of the LayerNorm (applied to preactivations) and
residual connections leads to an architecture that is critical for any initialization.
Finally, we apply our methods to analyze the MLP-Mixer architecture and show
that it is everywhere critical.

1 INTRODUCTION

When the number of parameters in each layer becomes large, the functional space description of
deep neural networks simplifies dramatically. The network function, f(x), in this limit, is a Gaussian
process (Neal, 1996; Lee et al., 2018) with a kernel – sometimes referred to as neural network
Gaussian process (NNGP) kernel (Lee et al., 2018) – determined by the network architecture and
hyperparameters (e.g depth, precise choices of layers and the activation functions, as well as the
distribution of weights and biases). Similar line of reasoning was earlier developed for recurrent
neural networks (Molgedey et al., 1992). Furthermore, for special choices of parameterization and
MSE loss function, the training dynamics under gradient descent can be solved exactly in terms of
the neural tangent kernel (NTK) (Jacot et al., 2018; Lee et al., 2019). A large body of work was
devoted to the calculation of the NNGP kernel and NTK for different architectures, calculation of
the finite width corrections to these quantities, and empirical investigation of the training dynamics
of wide networks (Novak et al., 2018b; Xiao et al., 2018; Hron et al., 2020; Dyer & Gur-Ari, 2019;
Andreassen & Dyer, 2020; Lewkowycz & Gur-Ari, 2020; Aitken & Gur-Ari, 2020; Geiger et al.,
2020; Hanin, 2021; Roberts et al., 2022; Yaida, 2020; Shankar et al., 2020; Arora et al., 2019b;a;
Lee et al., 2020; Yang et al., 2018; Yang & Hu, 2021; Yang, 2019b;a; Matthews et al., 2018; Garriga-
Alonso et al., 2018; Allen-Zhu et al., 2019; Tsuchida et al., 2021; Martens et al., 2021).

One important result that arose from these works is that the network architecture determines the most
appropriate initialization of the weights and biases (Poole et al., 2016; Schoenholz et al., 2016; Lee
et al., 2018). To state this result, we consider networks with/without LayerNorm (Ba et al., 2016)
and residual connections (He et al., 2016); the preactivations for which can be defined as follows

hl+1
i (x) =

Nl∑
j=1

wl+1
ij ϕ(h̃l

j(x)) + bl+1
i + µhl

i(x) , (1)

1



Under review as a conference paper at ICLR 2023

where h̃l
j = LayerNorm(hl

j) and the parameter µ controls the strength of residual connections. For
the input layer: h1

i (x) =
∑N0

j=1 w
1
ijxj + b1i . In the (l + 1)-th layer, weights wl+1

ij ∈ RNl+1×Nl and
biases bl+1

i ∈ RNl+1×1 are taken from normal distributions N (0, σ2
w/N

l) and N (0, σ2
b ), respec-

tively. Hyperparameters σw and σb need to be tuned. ϕ(·) is the activation function and x ∈ RN0×1

is the input. For results discussed in this work, x can be sampled from either a realistic (i.e. highly
correlated) dataset or a high entropy distribution.

For a network of depth L, the network function is given by f(x) = hL(x). Different network ar-
chitectures and activation functions, ϕ, lead to different “optimal” choices of (σw, σb). The optimal
choice can be understood, using the language of statistical mechanics, as a critical point (or mani-
fold) in the σb–σw plane. The notion of criticality becomes sharp as the network depth, L, becomes
large. Criticality ensures that both NNGP and the norm of gradients remain O(L0) as the network
gets deeper (Roberts et al., 2022). Very deep networks will not train unless initialized critically,
since the gradients explode or vanish exponentially. Moreover, high trainability does not imply that
the trained model has a great performance (test accuracy) after training.

1.1 RESULTS

Here we focus on two main results of this work: (i) empirical method to check criticality of a neural
network and (ii) an architecture based on layer normalization and residual connections that is critical
for any initialization. First we introduce the notion of a partial Jacobian.

Definition 1.1. Let hl
i(x) be preactivations of a neural network f(x). The partial Jacobian J l0,l

ij is
defined as derivative of preactivations at layer l with respect to preactivations at layer l0 ≤ l

J l0,l
ij (x) =

∂hl
j(x)

∂hl0
i (x)

. (2)

The partial Jacobian is a random matrix with vanishing mean at initialization. We introduce a deter-
ministic measure of the magnitude of J l0,l

ij — its squared Frobenius norm, averaged over parameter-
initializations.

Definition 1.2. Let J l0,l
ij be a partial Jacobian of a neural network f(x). Averaged partial Jacobian

norm (APJN) is defined as

J l0,l(x) ≡ Eθ

 1

Nl

Nl∑
j=1

Nl0∑
i=1

(
∂hl

j(x)

∂hl0
i (x)

)2
 , (3)

where Eθ indicates averaging over parameter-initializations.

In what follows, we show that criticality, studied previously in literature, occurs when APJN either
remains finite, or varies algebraically as l becomes large. To prove this we derive the recurrence
relation for J l0,l(x) in the limit Nl → ∞ and analyze it at large depth. Algebraic behaviour of APJN
with depth is characterized by an architecture-dependent critical exponent, ζ, so that J l0,l(x) ≈ l−ζ .
Such behaviour is familiar from statistical mechanics when a system is tuned to a critical point
(Cardy, 1996). Away from criticality, there are two phases: ordered and chaotic. In the ordered phase
APJN vanishes exponentially with depth, whereas in the chaotic phase APJN grows exponentially

J l0,l ≈ cl0e
± l

ξ . (4)

Here ξ is the correlation length. It characterizes how fast gradients explode or vanish.

Theorem 1.3 (Main result). Let f(x) be a deep MLP network with Lipschitz continuous activation
ϕ(·). Assume that the LayerNorm is applied to preactivations and there are residual connections
with strength µ acting according to (1). In the limit Nl → ∞ the correlation length is bounded from
below for σ2

b < ∞

ξ ≥ 1

| log
[
(1− µ2)AB + µ2

]
|
, (5)
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where the non-negative constants A and B are given by

A = Eθ

[
1

Nl

Nl∑
k=1

ϕ′(h̃l
k)

2

]
, B = Eθ

[
1

Nl

Nl∑
k=1

ϕ(h̃l
k)

2

]
, (6)

where ϕ′(·) is the derivative of ϕ(·). When µ = 1, the correlation length diverges and the network
is critical for any initialization, with ζ = O(1).

In practice Theorem 1.3 means that different choices of initialization bear no effect on trainability
of the network provided that LayerNorm and residual connections are arranged as stated.

1.2 RELATED WORK

Some of our results were either surmised or obtained in a different form in the literature. We find
that LayerNorm ensures that NNGP kernel remains finite at any depth as suggested in the original
work of Ba et al. (2016). LayerNorm also alters the criticality of J l0,l(x). It was noted in Xu et al.
(2019) that LayerNorm (applied to preactivations) regularizes the backward pass. We formalize this
observation by showing that LayerNorm (applied to preactivations) dramatically enhances correla-
tion length (which is not the case for LayerNorm applied to activations). This can be seen from
Theorem 1.3, setting µ = 0. When residual connections of strength 1 are combined with erf (or
any other erf-like activation function, e.g. tanh), the neural network enters a subcritical phase with
enhanced correlation length (see Theorem 4.3). A version of this result was discussed in Yang &
Schoenholz (2017). When residual connections are introduced on top of LayerNorm, the correlation
length ξ is further increased. If residual connections have strength 1 the network enters a critical
phase for any initialization. Importance of correct ordering of LayerNorm, residual connections and
attention layers was discussed in Xiong et al. (2020). Several architectures with the same order of
GroupNorm and residual connections were investigated in Yu et al. (2021).

The partial Jacobian has been used to study generalization bounds in Arora et al. (2018). The
Jacobian norm (i.e. ||J0,l

ij ||2) of trained feed-forward neural networks was studied in Novak et al.
(2018a), where it was correlated with generalization. Partial Jacobians with l0 = l− 1 were studied
in the context of RNNs (Chen et al., 2018; Can et al., 2020), where they were referred to as state-to-
state Jacobians.

As the aspect ratio (L/N ) of the network approaches 1, the finite width corrections to the Jacobian
become more prominent. On the other hand, even with small aspect ratio, the effect of the spectral
density of Jacobian becomes important as the depth L becomes very large. Pennington et al. (2018)
study the spectrum of the input-output Jacobian for MLPs. Xiao et al. (2018) extend the analysis to
CNNs, showing that very deep vanilla CNNs can be trained by achieving “dynamical isometry”.

2 RECURRENCE RELATIONS

Here we derive the infinite width recurrence relations for the APJN and the norm of preactivations.
We use (1) in its simplest form, which has no LayerNorm and µ = 0.
Definition 2.1. We define averaged covariance of preactivations as follows

Kl(x, x′) = Eθ

[
1

Nl

Nl∑
i=1

hl
i(x)h

l
i(x

′)

]
. (7)

Lemma 2.2. When Nl → ∞ for l = 1, . . . , L− 1, the expectation value over parameter initializa-
tions for a general function of preactivations: O(hl(x)), can be expressed as the averaging over the
Gaussian process hl(x) with covariance Kl(x, x′).

Eθ

[
O(hl

i(x))
]
=

1√
2πKl(x, x)

∫
dhlO(hl

i(x))e
− (hl

i(x))2

2Kl(x,x) . (8)

This result has been established in Lee et al. (2018). Note that the density in (8) only depends on the
diagonal part of the covariance matrix, Kl(x, x). We will refer to Kl(x, x) as NNGP kernel.
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Remark 2.3. In the infinite width limit the means appearing in (10)-(12) are self-averaging and,
therefore, deterministic. They converge in distribution to their averages over parameterizations.

1

Nl

Nl∑
i=1

ϕ(hl
i)

2 Nl→∞−−−−→ Eθ

[
1

Nl

Nl∑
i=1

ϕ(hl
i)

2

]
= Eθ

[
ϕ(hl

i)
2
]
. (9)

When performing analytic calculations we use the infinite width convention; whereas in our finite-
width experiments we explicitly average over initializations of θl.
Theorem 2.4. With Lemma 2.2, in the infinite width limit, the NNGP kernel Kl+1(x, x) is determin-
istic, and can determined recursively via

Kl+1(x, x) = σ2
wEθ

[
1

Nl

Nl∑
i=1

ϕ(hl
i(x))

2

]
+ σ2

b . (10)

Theorem 2.5. Let f(x) be an MLP network with a Lipschitz continuous activation function ϕ(x).
In the infinite width limit, APJN J l0,l+1(x) is deterministic and satisfies a recurrence relation

J l0,l+1(x) = χl
JJ l0,l(x) , (11)

where the factor χl
J is given by

χl
J = Eθ

[
σ2
w

Nl

Nl∑
i=1

(
ϕ′(hl

i(x))
)2]

. (12)

Theorem 2.4 is due to Lee et al. (2018). Theorem 2.5 is new and is valid only in the limit of infinite
width. The proof is in Appendix B. We will drop the explicit dependence on x to improve readability.

The expectation values that appear in (10)-(12) are evaluated using (8). When the integrals can
be taken analytically, they lead to explicit equations for the critical lines and/or the critical points.
Details of these calculations as well as the derivation of (10)-(12) can be found in the Appendix. A
subtlety emerges in (11) when l0 = 0, where a correction of the order O(N−1

0 ) arises for non-scale
invariant activation functions. This subtlety is discussed in the Appendix B.

When the depth of the network becomes large, the l-dependence of the expectation values that appear
in (7), (12) saturate to a (possibly infinite) constant value; which means that Kl, J l0,l and χl

J have
reached a fixed point. We denote the corresponding quantities as K⋆,J l0,⋆, χ⋆

J . The existence of a
fixed point is not obvious and should be checked on a case by case basis. Fixed point analysis for
Kl was done in Poole et al. (2016) for bounded activation functions and in Roberts et al. (2022) for
the general case. The stability is formulated in terms of

χ⋆
K =

∂Kl+1

∂Kl

∣∣∣
Kl=K⋆

. (13)

The norm of preactivations remains finite (or behaves algebraically) when χ⋆
K = 1.

Eq. (11) nicely expresses J l0,l+1 as a linear function of J l0,l. The behaviour of J l0,l+1 at large
l is determined by χl

J . When χl
J > 1 partial Jacobians diverge exponentially, while for χl

J < 1
partial Jacobians vanish exponentially. Neural networks are trainable only up to a certain depth
when initialized O(1) away from criticality, which is determined by the equation

χ⋆
J = 1 . (14)

Eq. (14) is an implicit equation on σb, σw and generally outputs a critical line in σb–σw plane.
The parameter χ⋆

J has to be calculated on a case-by-case basis using either (12) or the method
presented in the next section. Everywhere on the critical line, J l0,l saturates to a constant or behaves
algebraically.

When the condition χ⋆
K = 1 is added, we are left with a critical point1. This analysis of criticality at

infinite width agrees with Roberts et al. (2022), where χ⊥ is to be identified with χ⋆
J ; and Schoen-

holz et al. (2016); Martens et al. (2021), where their analysis based on the equivalent χ1 or C ′(1)
only works for bounded activation functions. In particular, condition (14) together with χ⋆

K = 1
ensures that NTK is O(1) at initialization.

1Scale-invariant activation functions are more forgiving: away from the critical point Kl scales algebraically
with l.
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2.1 EMPIRICAL DIAGNOSTIC OF CRITICALITY

APJN J l0,l provides a clear practical way to diagnose whether the network is critical or not. Proper
choice of l0 and l allows us to minimize the non-universal effects and cleanly extract χ⋆

J .

Recurrence relation (11), supplemented with the initial condition J l0,l0+1 = χl0
J , can be formally

solved as

J l0,l =

l−1∏
ℓ=l0

χℓ
J . (15)

We would like to obtain an estimate of χ⋆
J as accurately as possible. To that end, imagine that for

some l′ > l0 the fixed point has been essentially reached and χl′

J ≈ χ⋆
J . Then the APJN

J l0,l = (χ⋆
J )l−l′−1 ·

l′∏
ℓ=l0

χℓ
J (16)

depends on the details of how the critical point is approached; which are encoded in the last factor.

Proposition 2.6. If the network f(x) is homogeneous, i.e., consists of a (possibly complex) block of
layers, periodically repeated L times. Then the penultimate APJN provides an accurate estimate of
χ⋆
J :

J L−2,L−1
∣∣∣
L→∞

= χ⋆
J . (17)

This is a direct consequence of combining (10) and (12) as L goes to infinity. See Figure 4 in
Appendix C for numerical justification.

Proposition 2.6 is the central result of this section and will be heavily used in the remainder of this
work.

Note that for deep networks, away from criticality, APJN takes form

J l0,l ≈ cl0e
± l

ξ , ξ = | logχ⋆
J |−1 , (18)

where cl0 is a non-universal constant that depends on l0. If the sign in (18) is positive (χ⋆
J > 1)

the network is in the chaotic phase, while when the sign is negative (χ⋆
J < 1) the network is in the

ordered phase. ξ has the meaning of correlation length: on the depth scale of approximately kξ the
gradients remain appreciable, and hence the network with the depth of ≈ kξ will train.

We used (17) to map out the σb–σw phase diagrams of various MLP architectures. The partial
Jacobians are calculated numerically with Nl = 500, L = 50 and averaged over initializations. The
details are further elaborated in Appendix A. The location of the critical line agrees remarkably well
with our infinite width calculations. Results are presented in Fig. 1. One fortunate outcome of both
theory and experiment is that when LayerNorm is applied to preactivations, ReLU networks can
still be initialized using He initialization (He et al., 2015) which, in our convention, is (

√
2, 0).

At criticality, χ⋆
J = 1 and the correlation length diverges; indicating that gradients can propagate

arbitrarily far. A more careful analysis of non-linear corrections shows that APJN can exhibit alge-
braic behaviour with depth and can still vanish in the infinite depth limit, but much slower than the
ordered phase.

2.2 SCALING AT A CRITICAL POINT

At criticality χl
J saturates to a fixed value χ⋆

J = 1. If we are interested in J l0,l with l− l0 = O(L)

then it is essential to know how exactly χl
J approaches 1.

Theorem 2.7. Assume that deep neural network f(x) is initialized critically. Then l → ∞ asymp-
totics of APJN is given by

J l0,l(x) = O(l−ζ) , (19)

where ζ is the critical exponent Roberts et al. (2022). Critical exponents can be determined analyti-
cally in the limit of infinite width. (For a detailed discussion, see Appendix C.)
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3 LAYER NORMALIZATION

The fact that critical initialization is concentrated on a single point (σ⋆
w, σ

⋆
b ) may appear unsettling

because great care must be taken to initialize the network critically. The situation can be substantially
improved by utilizing the normalization techniques known as LayerNorm (Ba et al., 2016) and
GroupNorm (Wu & He, 2018). Our results apply to GroupNorm verbatim in the case when the
number of groups is much smaller than the width. LayerNorm can act either on preactivations or
on activations (discussed in the Appendix B). Depending on this choice, criticality will occur on
different critical lines in σb–σw plane. When LayerNorm is applied to preactivations the correlation
length is enhanced, allowing to train much deeper networks even far away from criticality.

The LayerNorm applied to preactivations takes the following form
Definition 3.1 (Normalized preactivations).

h̃l
i =

hl
i − E[hl]√

E[(hl)2]− E[hl]2
Nl→∞−−−−→ 1√

Kl
hl
i , (20)

where we have introduced E[hl] = 1
Nl

∑Nl

i=1 h
l
i. In the limit of infinite width E[hl] = 0 and

E[(hl)2] = Kl, defined according to (7).

Normalized preactivations, h̃l
i, are distributed according to N (0, 1) for all l, σw, σb. The norms are,

therefore, always finite and the condition χ⋆
K = 1 is trivially satisfied. This results in a critical line

rather than a critical point.

The recurrence relations (10)-12 for the NNGP and partial Jacobians are only slightly modified

Kl+1 = σ2
wEθ

[
1

Nl

Nl∑
i=1

ϕ(h̃l
i)

2

]
+ σ2

b , χl
J =

σ2
w

Kl
Eθ

[
1

Nl

Nl∑
i=1

ϕ′(h̃l
i)

2

]
. (21)

Assuming that the value of χl
J at the fixed point is χ⋆

J , the network is critical when (14) holds.

χl
J (21) changes very slowly with l and is also bounded from below, as elaborated in the next section.

Thus, χ⋆
J remains close to 1 for a very wide range of hyperparameters. Consequently, the correlation

length is large even away from criticality. This leads to much higher trainability of deep networks
with LayerNorm on preactivations even away from criticality.

4 RESIDUAL (SKIP) CONNECTIONS

Adding residual connections between the network layers is a widely used technique to facilitate the
training of deep networks. Originally introduced (He et al., 2016) in the context of convolutional
neural networks (LeCun et al., 1998) (CNNs) for image recognition, residual connections have since
been used in a variety of networks architectures and tasks.

Consider (1) with non-zero µ and without LayerNorm layers. Then the recurrence relations (10)-(12)
for the NNGP kernel and χl

J are modified as follows

Kl+1 = σ2
wEθ

 1

Nl

Nl∑
j=1

ϕ(hl
j)

2

+ σ2
b + µ2Kl , χl

J = σ2
wEθ

[
1

Nl

Nl∑
k=1

ϕ′(hl
k)

2

]
+ µ2 . (22)

Remark 4.1. When µ < 1, the fixed point value of NNGP kernel is scaled by (1−µ2)−1. For µ = 1,
the critical point is formally at (0, 0).
Remark 4.2. For µ = 1, (22) implies that χl

J ≥ 1, where the equality holds on the σw = 0 axis.
Consequently, APJN exponentially diverges as a function of depth l for all σw > 0. In this case, σw

needs to be taken sufficiently close to 0 to ensure trainability at large depths.

When µ < 1, residual connections amplify the chaotic phase and decrease the correlation length
away from criticality for unbounded activation functions.

Solving the recurrence relations (22) for erf activation, we find an effect observed in Yang & Schoen-
holz (2017) for tanh activation. They noted that tanh-like MLP networks with skip connections
”hover over the edge of chaos”. We quantify their observation as follows.
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Figure 1: χ⋆
J phase diagrams for ReLU (first row), erf (second row) and GELU (third row); with

residual connections of variable strengths µ = {0.0, 0.9, 1.0}. Both cases: without LayerNorm
(first three columns) and with LayerNorm (last three columns) are shown. The solid lines indicate
the critical lines obtained through infinite width limit calculations; while the stars indicate the critical
points. The dotted lines in the rightmost column correspond to the critical lines for µ < 1 case. For
networks with LayerNorm and µ = 1, χ⋆

J = 1 holds on the entire σb–σw plane, for all activation
functions that we considered. We also note that for erf activation, the case µ = 1 without LayerNorm
is subcritical and has a large correlation length.

Theorem 4.3. Let f(x) be a deep MLP network with erf activation function and residual connec-
tions of strength µ = 1. Then in the limit Nl → ∞

• The NNGP kernel Kl linearly diverges with depth l.

• χl
J approaches 1 from above (as can be seen from Fig. 1) : χl

J ≈ 1 + c̃/
√
l, where

c̃ = 2σ2
w/(π

√
σ2
w + σ2

b ) is a non-universal constant.

• APJN diverges as a stretched exponential : J l0,l = O(e
√

l
λ ), where λ = 1/(4c̃2) is the

new length scale.

We will refer to this case as subcritical. Although χ⋆
J reaches 1, the APJN still diverges with depth

faster than any power law. The growth is controlled by the new scale λ. To control the gradient
we would like to make λ large, which can be accomplished by decreasing σw. In this case the
trainability is enhanced (see Fig. 2). Similar results hold for tanh activation function (Yang &
Schoenholz, 2017), however in that case there is no explicit expression for c̃.

5 RESIDUAL CONNECTIONS + LAYERNORM

In practice, it is common to use a combination of residual connections and LayerNorm.

Using (1), the recurrence relations (10)-(12) for the NNGP and partial Jacobians are modified as
follows

Kl+1 = σ2
wEθ

 1

Nl

Nl∑
j=1

ϕ(h̃l
j)

2

+ σ2
b + µ2Kl , χl

J =
σ2
w

Kl
Eθ

[
1

Nl

Nl∑
k=1

ϕ′(h̃l
k)

2

]
+ µ2 . (23)

Remark 5.1. For µ < 1, (23) implies that the fixed point value of NNGP kernel is scaled by 1− µ2.
Moreover, residual connections do not shift the phase boundary. The interference between residual
connections and LayerNorm brings χl

J closer to 1 on the entire σb–σw plane (as can be seen from
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Figure 2: Trainability (Training Accuracy) of deep MLP networks (Nl = 500, L = 50) featuring
ReLU (first row), erf (second row) and GELU (third row); with residual connections of variable
strengths µ = {0.0, 0.9, 1.0}. Both cases: without LayerNorm (first three columns) and with Lay-
erNorm (last three columns) are shown. Cases with LayerNorm and µ = 1 (last column) train at all
values of σ2

w and σ2
b we considered, in agreement with theory.

Fig. 1). Therefore the correlation length ξ is improved in both the phases, allowing for training of
deeper networks. At criticality, Jacobians linearly diverge with depth.

As was mentioned before, the combination of LayerNorm and residual connections dramatically
enhances correlation length, leading to a more stable architecture. This observation is formalized by
Theorem 1.3. The proof leverages the properties of solutions of (23) close to the fixed point, and is
fleshed out in Appendix E.
Remark 5.2. When µ = 1, the correlation length diverges for any initialization.

Remark 5.2 provides an alternative perspective on architecture design. On the one hand, given a
neural network architecture one can use (17) to initialize it critically. Alternatively, one can add extra
layers, such as a combination of residual connections and LayerNorm, to ensure that the network is
always critical and will train well no matter which initialization scheme is used.
Remark 5.3. When µ = 1, the condition χ⋆

J = 1 holds on the entire σb − σw and for any activation
function ϕ (see Fig. 1). NNGP kernel diverges linearly, while APJN diverges algebraically with the
critical exponent of ζ = O(1). The exact value of the critical exponent depends on the activation
function and the ratio σb

σw
. The trainability is dramatically enhanced as can be seen from Fig. 2.

Remark 5.4. Networks with BatchNorm (Ioffe & Szegedy, 2015), used in conjunction with residual
connection of strength µ = 1, also enjoy this everywhere criticality and enhanced trainability (Yang
et al., 2018; He et al., 2022).

6 MLP-MIXER

MLP-Mixer architecture is a recent example of MLP approach to computer vision (Tolstikhin et al.,
2021). Its main ingredients are: patches, MLP layers, LayerNorm and residual connections. As
such it can be analyzed using the tools and results presented above. The detailed summary of the
MLP-Mixer is presented in the Appendix F, while here we will state the results.

When µ = 1 the MLP-Mixer is everywhere critical due to the interaction between LayerNorm and
residual connections. When µ < 1 we can identify a critical line by numerically evaluating χ⋆

J
using (17). The phase diagrams are presented in Fig. 3.

To illustrate the importance of critical initialization we trained MLP-Mixer at µ = 1 for various
initializations, including a highly unconventional σ2

b = 10, σ2
w = 10. While the final performance
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varies by a few percent, the network trains well at a large depth of L = 100 mixer blocks. We also
trained MLP-Mixer at µ = 0.5. In this case, the model trains well at L = 100 when initialized
critically; while far away from the critical line (σ2

b = 10, σ2
w = 10) it starts training after 30 epochs,

and the gap between it and critical initialization is larger than µ = 1 cases. The learning curves are
presented in Fig. 3. We emphasize that we were interested in trainability and, consequently, did not
tune the hyperparameters to achieve the best generalization.
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Figure 3: from left to right: (1)(2) µ = 0.5 and µ = 1.0 phase diagrams plotted using χ⋆
J from

repeating Mixer Layers of the GELU MLP-Mixer. Black line indicates the empirical phase bound-
ary. Stars indicate points we selected to train on CIFAR-10. (σ2

w = 10, σ2
b = 10) point is outside

the phase diagrams. (3)(4) µ = 0.5 and µ = 1 MLP-Mixer training curves. Solid and dashed lines
indicate training and validation accuracies, respectively. All the networks are L = 100 blocks deep,
except for one, which is L = 32 blocks deep; all networks have 10 million parameters.

7 CONCLUSIONS

We have introduced partial Jacobians and their averaged norms as a tool to analyze the propagation
of gradients through deep neural networks at initialization. Using APJN evaluated close to the
output, J L−2,L−1 ≈ χ⋆

J , we have introduced a very cheap and simple empirical test for criticality.
We have also shown that criticality formulated in terms of partial Jacobians is equivalent to criticality
studied previously in literature (Poole et al., 2016; Roberts et al., 2022; Martens et al., 2021). APJN
will play an important role in quantifying the criticality of inhomogeneous (i.e. no periodic stacking
of blocks) networks.

We have investigated homogeneous architectures that include fully-connected layers, normalization
layers and residual connections. In the limit of infinite width, we showed that (i) in the presence
of LayerNorm, the critical point generally becomes a critical line, making the initialization prob-
lem much easier, (ii) LayerNorm applied to preactivations enhances correlation length leading to
improved trainability, (iii) combination of µ = 1 residual connections and erf activation function
enhances correlation length driving the network to a subcritical phase with APJN growing according
to a stretched exponential law, (iv) combination of residual connections and LayerNorm drastically
increases correlation length leading to improved trainability, (v) when µ = 1 and LayerNorm is
applied to preactivations the network is critical on the entire σb–σw plane.

We have considered the example of a modern high performance architecture — the MLP-Mixer.
We showed that it is critical everywhere and is not sensitive to initialization at µ = 1 due to the
interaction between LayerNorm and residual connections. We have also studied MLP-Mixer at
µ = 0.5 and showed that it is critical along a line (as expected for an architecture with LayerNorm).
We demonstrated empirically that deep (100 blocks) MLP-Mixer trains for a variety of initializations
at µ = 1 but only trains well close to the critical line for µ = 0.5.

Our work shows that an architecture can be designed to have a large correlation length leading to a
guaranteed trainability with SGD for any initialization scheme.

8 ETHICS STATEMENT

We have read the Code of Ethics; have adhered to it while writing this paper; and will adhere to it
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9 REPRODUCIBILITY STATEMENT

We provide the details of all the experiments in Appendix A; including hyperparameter choices,
GPU specifications and GPU hours. We also provide the source code in the Supplementary Material.
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A EXPERIMENTAL DETAILS

We implemented our methods using PyTorch (Paszke et al., 2019) hooks and an efficient Jacobian
approximate algorithm (Hoffman et al., 2019).

Figure 1: All the phase diagrams were plotted using χL−1
J generated from networks with L = 50

and Nl = 500. We used hooks to obtain the gradients that go into calculating χL−1
J . χL−1

J data was
averaged over 100 different parameter-initializations. Inputs were generated from a normal Gaussian
distribution and have dimension 28 × 28. Generating the data for the figure took approximately 2
days on Google Colab Pro (single Tesla P100 GPU).

Figure 2: In all cases, networks are trained for 10 epochs using stochastic gradient descent with
CrossEntropy loss. We used the Fashion MNIST dataset Xiao et al. (2017). All networks had depth
L = 50 and width Nl = 500. The learning rates were logarithmically sampled within (10−5, 1).
Generating the data for the figure took approximately 12 days on Google Colab Pro (single Tesla
P100 GPU).

Figure 3: (a)(b)We made the phase diagram for MLP-Mixer with 30 blocks and averaged over 100
different parameter-initializations. (c)(d)We used network with L = 100, patch size 4 × 4, hidden
size C = 128, two MLP dimensions Ntm = Ncm = 256. The L = 32 point has doubled widths. All
networks have 10 million parameters. Notice that for all Mixer Layers we used NTK initialization.
We trained all cases on CIFAR-10 dataset using vanilla SGD paired with CSE. Batch size bs = 256,
weight decay λ = 10−4 was selected from {10−5, 10−4}, mixup rate α = 0.8 was selected from
{0.4, 0.8}. We also used RandAgument and horizontal flip with default settings in PyTorch. For
all cases we searched learning rates within {0.005, 0.01, 0.05, 0.1, 0.2, 0.5}. We also tried a linear
warm-up schedule for first 3000 iterations, but we did not see any improvement in performances.
Generating the data for the figure took approximately 4 days on Google Colab Pro (single Tesla
P100 GPU).

B TECHNICAL DETAILS FOR JACOBIANS AND LAYERNORM

We will drop the dependence of hl
i(x) on x throughout the Appendices. It should not cause any

confusion since we are always considering a single input.

B.1 NNGP KERNEL

First, we derive the recurrence relation for the NNGP kernel Eq.(10). As mentioned in
main text, weights and biases are initialized (independently) from standard normal distribution
N (0, σ2

w/fanin). We then have

Eθ[w
l
ijw

l
mn] =

σ2
w

Nl−1
δimδjn and Eθ[b

l
ib

l
j ] = σ2

bδij (24)

by definition.

We would like to prove Theorem 2.4, as a consequence of Lemma 2.2. The proof of Lemma 2.2 can
be found in Roberts et al. (2022).

13



Under review as a conference paper at ICLR 2023

Proof of Theorem 2.4. One can prove this by definition with Lemma 2.2.

Kl+1 ≡ 1
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B.2 JACOBIANS

Next, we prove Theorem 2.5.

Proof of Theorem 2.5. We start from the definition of the partial Jacobian (l > l0)

J l0,l+1 ≡ 1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

∂hl+1
i

∂hl0
j

∂hl+1
i

∂hl0
j


=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

(
Nl∑
k=1

∂hl+1
i

∂hl
k

∂hl
k

∂hl0
j

)(
Nl∑

m=1

∂hl+1
i

∂hl
m

∂hl
m

∂hl0
j

)
=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k,m=1

(
wl+1

ik ϕ′(hl
k)
) (

wl+1
im ϕ′(hl

m)
)( ∂hl

k

∂hl0
j

∂hl
m

∂hl0
j

)
=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k,m=1

wl+1
ik wl+1

im ϕ′(hl
k)ϕ

′(hl
m)

∂hl
k

∂hl0
j

∂hl
m

∂hl0
j


=

1

Nl+1

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k=1

σ2
w

Nl
Eθ

[
ϕ′(hl

k)ϕ
′(hl

k)
∂hl

k

∂hl0
j

∂hl
k

∂hl0
j

]

=
σ2
w

Nl

Nl∑
k=1

Eθ

ϕ′(hl
k)ϕ

′(hl
k)

Nl0∑
j=1

∂hl
k

∂hl0
j

∂hl
k

∂hl0
j

 . (26)

In the infinite width limit, the sum over neurons in a layer self-averages due to the law of large
numbers. Also the distribution of hl+1

i is independent of hl
i. This allows us to represent the expec-

tation value of a product as product of expectation values. (This holds for l0 ̸= 0. We will show
momentarily that the l0 = 0 case acquires corrections due to finite input width N0). Thus we have

J l0,l+1 = σ2
wEθ[ϕ

′(hl
k)ϕ

′(hl
k)]Eθ

 1

Nl

Nl∑
k=1

Nl0∑
j=1

∂hl
k

∂hl0
j

∂hl
k

∂hl0
j


= σ2

wEθ

[
ϕ′(hl

k)ϕ
′(hl

k)
]
J l0,l

=⇒ J l0,l+1 = χl
JJ l0,l , (27)
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where in the first line we used Lemma 2.2. The first integral is taken over the distribution of hl
k, and

the second integral is taken over the distribution of hl−1
k . χl

J is defined by Eq.(12).

The critical line is defined by requiring χ⋆
J = 1, where critical points are reached by further requir-

ing χ⋆
K = 1.

As we mentioned in main text, l0 = 0 is subtle since the input dimension is fixed N0, which can
not be assumed to be infinity. Even though for dataset like MNIST, usually N0 is not significantly
smaller than width Nl. We show how to take finite O(N−1

0 ) correction into account by using one
example.

Lemma B.1. Consider a one hidden layer network with a finite input dimension N0. In the infinite
width limit, the Jacobian is still deterministic and the first step of the recurrence relation is modified
to:

J 0,2 =

(
χ1
J +

2σ2
w

N0
χ1
∆

N0∑
k

1

N0
h0
kh

0
k

)
J 0,1 , (28)

where J 0,1 = σ2
w.

Proof.

J 0,2 =
1

N2
Eθ

 N2∑
i=1

N0∑
j=1

∂h2
i

∂h0
j

∂h2
i

∂h0
j


=

1

N2
Eθ

 N2∑
i=1

N0∑
j=1

N1∑
k,m=1

w2
ikw

2
imϕ′(h1

k)ϕ
′(h1

m)
∂h1

k

∂h0
j

∂h1
m

∂h0
j


=

1

N2

N2∑
i=1

N0∑
j=1

N1∑
k,m=1

Eθ[w
2
ikw

2
imw1

kjw
1
mjϕ

′(h1
k)ϕ

′(h1
m)]

=

N0∑
j=1

N1∑
k=1

σ2
w

N1
Eθ[w

1
kjw

1
kjϕ

′(h1
k)ϕ

′(h1
k)]

=σ2
w

(
χ1
J +

2σ2
w

N0
χ1
∆

N0∑
k

1

N0
h0
kh

0
k

)

=

(
χ1
J +

2σ2
w

N0
χ1
∆

N0∑
k

1

N0
h0
kh

0
k

)
J 0,1 , (29)

where to get the result we used integrate by parts, then explicitly integrated over w1
ij .

We defined a new quantity χl
∆.

Definition B.2 (Coefficient of Finite Width Corrections).

χl
∆ =

σ2
w

Nl

Nl∑
i=1

Eθ[ϕ
′′(hl

i)ϕ
′′(hl

i) + ϕ′′′(hl
i)ϕ

′(hl
i)] . (30)

Remark B.3. Notice that the correction to J 0,2 is order O(N−1
0 ). If one calculate the recurrence re-

lation for deeper layers, the correction to J 0,l will be O(
∑l

l′=0 N
−1
l′ ), which means the contribution

from hidden layers can be ignored in infinite width limit.

The J 0,2 example justified factorization of the integral when we go from the last line of Eq.(26) to
Eq.(27).

Finally, the full Jacobian in infinite width limit can be written as
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Theorem B.4 (Partial Jacobian). The partial Jacobian of a given network can be written as

J 0,l = σ2
w

(
χ1
J +

2σ2
w

N0
χ1
∆

N0∑
k

1

N0
h0
kh

0
k

)
l−1∏
l′=2

χl′

J , (31)

where any partial Jacobian with l0 > 0 does not receive an O(N−1
0 ) correction.

B.3 LAYERNORM ON PRE-ACTIVATIONS

Definition B.5 (Layer Normalization).

h̃l
i =

hl
i − E[hl]√

E[(hl)2]− E[hl]2
γl
i + βl

i , (32)

where γl
i and βl

i are learnable parameters.
Remark B.6. With only LayerNorm, the (1) is simplified to

hl+1
i =

Nl∑
j=1

wl+1
ij ϕ(h̃l

j) + bl+1
i . (33)

Remark B.7. In the limit of infinite width, using the law of large numbers, the average over neurons
E [· · · ] can be replaced by the average of parameter-initializations Eθ [· · · ]. Additionally, in this
limit, the preactivations are i.i.d. Gaussian distributed : hl ∼ N (0,Kl).

E
[
hl
]
= Eθ

[
hl
]
= 0 , (34)

E
[(
hl
)2]

= Eθ

[(
hl
)2]

= Kl . (35)

The normalized preactivation then simplifies to the form of Eq.(20).
Remark B.8. At initialization, the parameters γl

i and βl
i take the values 1 and 0, respectively. This

leads to the form in equation (20). In infinite width limit it has the following form

h̃l
i =

hl
i − Eθ[h

l]√
Eθ[(hl)2]− Eθ[hl]2

. (36)

Lemma B.9. With LayerNorm on preactivations, the gaussian average is modified to

Eθ

[
O(h̃l

i)
]
=

1√
2π

∫
dh̃l

i O(h̃l
i) e

− (h̃l
i)

2

2 . (37)

Proof. By definition h̃l
i is sampled from a standard normal distribution N (0, 1), then use Lemma 2.2

to get the final form.

Theorem B.10. In the infinite width limit the recurrence relation for the NNGP kernel with Layer-
Norm on preactivations is

Kl+1 =
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(h̃l

j)ϕ(h̃
l
j)
]
+ σ2

b . (38)

Proof.

Kl+1 =
1

Nl+1

Nl+1∑
i=1

Eθ

[
hl+1
i hl+1

i

]
=

1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

wl+1
ij ϕ(h̃l

j) + bl+1
i

( Nl∑
k=1

wl+1
ik ϕ(h̃l

k) + bl+1
i

)
=
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(h̃l

j)ϕ(h̃
l
j)
]
+ σ2

b . (39)
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Theorem B.11. In the infinite width limit the recurrence relation for partial Jacobian with Layer-
Norm on preactivations is

J l0,l+1 = χl
JJ l0,l , (40)

where χl
J =

σ2
w

NlKl

∑Nl

i=1 Eθ

[
ϕ′(h̃l

i)
2
]
.

Proof.

J l0,l+1 =
1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

∂hl+1
i

∂hl0
j

∂hl+1
i

∂hl0
j


=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

(
Nl∑
k=1

∂hl+1
i

∂h̃l
k

∂h̃l
k

∂hl
k

∂hl
k

∂hl0
j

)(
Nl∑

m=1

∂hl+1
i

∂h̃l
m

∂h̃l
m

∂hl
m

∂hl
m

∂hl0
j

)
=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k,m=1

(
wl+1

ik ϕ′(h̃l
k)

1√
Kl

)(
wl+1

im ϕ′(h̃l
m)

1√
Kl

)(
∂hl

k

∂hl0
j

∂hl
m

∂hl0
j

)
=

σ2
w

NlKl

Nl∑
k=1

Eθ

ϕ′(h̃l
k)ϕ

′(h̃l
k)

Nl0∑
j=1

∂hl
k

∂hl0
j

∂hl
k

∂hl0
j


=

σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]
J l0,l

= χl
JJ l0,l , (41)

B.4 LAYERNORM ON ACTIVATIONS

The general definition of LayerNorm on activations is given as follows.
Definition B.12 (LayerNorm on Activations).

ϕ̃(hl
i) =

ϕ(hl
i)− E[ϕ(hl)]√

E[ϕ(hl)2]− E[ϕ(hl)]2
γl
i + βl

i . (42)

Remark B.13. The recurrence relation for preactivations (Eq.(1)) gets modified to

hl+1
i =

Nl∑
j=1

wl+1
ij ϕ̃(hl

j) + bl+1
i . (43)

Remark B.14. At initialization, the parameters γl
i and βl

i take the values 1 and 0, respectively. This
leads to the form

ϕ̃(hl
i) =

ϕ(hl
i)− E[ϕ(hl)]√

E[ϕ(hl)2]− E[ϕ(hl)]2

=
ϕ(hl

i)− Eθ

[
ϕ(hl)

]√
Eθ [ϕ(hl)2]− Eθ [ϕ(hl)]

2
,

(44)

where the first line follows from the fact that at initialization, the parameters γl
i and βl

i take the
values 1 and 0 respectively. In the second line, we have invoked the infinite width limit.
Remark B.15. Evaluating Gaussian average in this case is similar to cases in previous section. The
only difference being that the averages are taking over the distribution hl−1 ∼ N (0,Kl−1 = σ2

w +
σ2
b ). Again this can be summarized as

Eθ

[
O(hl

i)
]
=

1√
2π(σ2

w + σ2
b )

∫
dhl

i O(hl
i) e

− (hl
i)

2

2(σ2
w+σ2

b
) . (45)
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Next, we calculate the modifications to the recurrence relations for the NNGP kernel and Jacobians.
Theorem B.16. In the infinite width limit the recurrence relation for the NNGP kernel with Layer-
Norm on activations is

Kl+1 = σ2
w + σ2

b . (46)

Proof.

Kl+1 =
1

Nl+1

Nl+1∑
i=1

Eθ

[
hl+1
i hl+1

i

]
=

1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

wl+1
ij ϕ̃(hl

j) + bl+1
i

( Nl∑
k=1

wl+1
ik ϕ̃(hl

k) + bl+1
i

)
=

σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ̃(hl

j)
2
]
+ σ2

b

=
σ2
w

Nl

Nl∑
j=1

Eθ


 ϕ(hl

j)− Eθ

[
ϕ(hl)

]√
Eθ [ϕ(hl)2]− Eθ [ϕ(hl)]

2

2
+ σ2

b

=
σ2
w

Nl

Nl∑
j=1

Eθ

[(
ϕ(hl

j)− Eθ

[
ϕ(hl)

])2]
Eθ [ϕ(hl)2]− Eθ [ϕ(hl)]

2 + σ2
b

= σ2
w + σ2

b . (47)

Theorem B.17. In the infinite width limit the recurrence relation for partial Jacobian with Layer-
Norm on activations is

J l0,l+1 = χl
JJ l0,l , (48)

where χl
J ≡ σ2

w

Eθ[ϕ′(hl)2)]
Eθ[ϕ(hl)2]−Eθ[ϕ(hl)]2

.

Proof.

J l0,l+1 =
1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

∂hl+1
i

∂hl0
j

∂hl+1
i

∂hl0
j


=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

(
Nl∑
k=1

∂hl+1
i

∂hl
k

∂hl
k

∂hl0
j

)(
Nl∑

m=1

∂hl+1
i

∂hl
m

∂hl
m

∂hl0
j

)
=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k,m=1

(
wl+1

ik ϕ̃′(hl
k)

)(
wl+1

im ϕ̃′(hl
m)
)( ∂hl

k

∂hl0
j

∂hl
m

∂hl0
j

)
=

σ2
w

Nl

Nl∑
k=1

Nl0∑
j=1

Eθ

ϕ̃′(hl
k)ϕ̃

′(hl
k)

Nl0∑
j=1

∂hl
k

∂hl0
j

∂hl
k

∂hl0
j


=

σ2
w

Nl

Nl∑
k=1

Eθ

[
ϕ̃′(hl

k)
2
]
J l0,l

= σ2
w

Eθ

[
ϕ′(hl)2

]
Eθ [ϕ(hl)2]− Eθ [ϕ(hl)]

2J
l0,l

= χl
JJ l0,l , (49)
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C CRITICAL EXPONENTS

To prove Theorem 2.7, we first need to find the critical exponent of the NNGP kernel Roberts et al.
(2022).
Lemma C.1. In the infinite width limit, consider a critically initialized network with a activation
function ϕ. The scaling behavior of the fluctuation δKl ≡ Kl − K⋆ in non-exponential. If the
recurrence relation can be expand to leading order δKl as δKl+1 ≈ δKl − cn(δKl)n for n ≥ 2.
The solution of δKl is

δKl =
1

cn(n− 1)
l−ζK , (50)

where ζK = 1
n−1 .

Remark C.2. The constant cn and the order of first non-zero term n is determined by the choice of
activation function.

Proof. We can expand the recurrence relation for the NNGP kernel (10) to second order of δKl =
Kl −K⋆ on both side.

δKl+1 ≈ δKl − cn(δKl)n . (51)

Use power law ansatz δKl = A l−ζK then

(l + 1)−ζK = l−ζK − cnA l−nζK . (52)

Multiply lζK on both side then use Taylor expansion ( l
l+1 )

ζK ≈ 1− ζK
l

ζK
l

= cnAl−(n−1)ζK . (53)

For arbitrary l, the only non-trivial solution of the equation above is

A =
1

cn(n− 1)
and ζK =

1

n− 1
. (54)

Proof of Theorem 2.7. We will assume c2 ̸= 0. Then use Lemma C.1, we can expand χl
J in terms

of δKl. To leading order l−1

χl
J ≈1− d1δKl

=1− d1
c2

l−1 . (55)

Consider a sufficiently large l. In this case O(l−1) approximation is valid. We write recurrence
relations of Jacobians as

J l0,l =

l−1∏
l′=l0

(
1− d1

c2
l′−1

)
J l0,l0

≈ cl0 · l−ζ . (56)

When cn = 0 for all n ≥ 2, from Lemma C.1 we have δKl = 0. Thus the Jacobian saturates to
some constant.

We checked the scaling empirically by plotting J 0,l vs. l in a log–log plot and fitting the slope.
These results are presented in Fig.4. The agreement with infinite width calculation (following sec-
tions) is excellent. 2

2We note that for this particular experiment, we used NTK parameterization for MLP. However, we empha-
size that this does not affect the results.
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Figure 4: log–log plot of the partial Jacobian J 0,l vs. l for erf, ReLU and erf together with GELU
(with LayerNorm applied to preactivations and residual connections of strength 1) activation func-
tions. The critical exponents predicted from the infinite width analysis are in agreement with the
data. The fluctuations get larger towards the output because the aspect ratio (i.e. L/Nl) approaches
1/4.

D RESIDUAL CONNECTIONS

Definition D.1. We define residual connections by the modified the recurrence relation for preacti-
vations (Eq.(1))

hl+1
i =

Nl∑
j=1

wl+1
ij ϕ(hl

j) + bl+1
i + µhl

i , (57)

where the parameter µ controls the strength of the residual connection.
Remark D.2. Note that this definition requires Nl+1 = Nl. We ensure this by only adding residual
connections to the hidden layers, which are of the same width. More generally, one can introduce a
tensor parameter µij .
Remark D.3. In general, the parameter µ could be layer-dependent (µl). But we suppress this
dependence here since we are discussing self-similar networks.
Theorem D.4. In the infinite width limit, the recurrence relation for the NNGP kernel with residual
connections is changed by an additional term controlled by µ

Kl+1 =
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(hl

j)ϕ(h
l
j)
]
+ σ2

b + µ2Kl . (58)

Proof.

Kl+1 =
1

Nl+1

Nl+1∑
i=1

Eθ

[
hl+1
i hl+1

i

]
=

1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

wl+1
ij ϕ(hl

j) + bl+1
i + µhl

i

( Nl∑
k=1

wl+1
ik ϕ(hl

k) + bl+1
i + µhl

i

)
=

1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

Nl∑
k=1

wl+1
ij wl+1

ik ϕ(hl
j)ϕ(h

l
k) + bl+1

i bl+1
i + µ2hl

ih
l
i


=

1

Nl+1

Nl+1∑
i=1

Eθ

σ2
w

Nl

Nl∑
j=1

ϕ(hl
j)ϕ(h

l
j) + σ2

b

+ µ2 1

Nl+1

Nl+1∑
i=1

Eθ

[
hl
ih

l
i

]
=

σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(hl

j)ϕ(h
l
j)
]
+ σ2

b + µ2Kl , (59)
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where we used the fact Nl+1 = Nl to get the last line.

Theorem D.5. In the infinite width limit, the recurrence relation for partial Jacobians with residual
connections has a simple multiplicative form

J l0,l+1 = χl
JJ l0,l , (60)

where the recurrence coefficient is shifted to χl
J = σ2

wEθ

[
ϕ′(hl

k)ϕ
′(hl

k)
]
+ µ2.

Proof.

J l0,l+1 ≡ 1

Nl+1
Eθ
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j
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∂hl
k

∂hl0
j

∂hl
k

∂hl0
j


=
(
σ2
wEθ

[
ϕ′(hl

k)ϕ
′(hl

k)
]
+ µ2

)
J l0,l

J l0,l+1 = χl
JJ l0,l . (61)

E RESIDUAL CONNECTIONS WITH LAYERNORM ON PREACTIVATIONS
(PRE-LN)

We recall the recurrence relation (1):

hl+1
i =

Nl∑
j=1

wl+1
ij ϕ(h̃l

j) + bl+1
i + µhl

i . (62)

Theorem E.1. In the infinite width limit, the recurrence relation for the NNGP kernel is then modi-
fied to

Kl+1 =
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(h̃l

j)ϕ(h̃
l
j)
]
+ σ2

b + µ2Kl . (63)
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Proof.

Kl+1 =
1

Nl+1

Nl+1∑
i=1

Eθ

[
hl+1
i hl+1

i

]
=

1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

wl+1
ij ϕ(h̃l

j) + bl+1
i + µhl

i

( Nl∑
k=1

wl+1
ik ϕ(h̃l

k) + bl+1
i + µhl

i

)
=
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(h̃l

j)ϕ(h̃
l
j)
]
+ σ2

b + µ2Kl . (64)

Remark E.2. For µ < 1, the recursion relation has a fixed point

K⋆ =
σ2
w

Nl⋆(1− µ2)

Nl⋆∑
j=1

Eθ

[
ϕ(h̃l⋆

j )ϕ(h̃l⋆

j )
]
+

σ2
b

1− µ2
. (65)

where the average here is exactly the same as cases for LayerNorm applied to preactivations without
residue connections. l⋆ labels some very large depth l.
Remark E.3. For µ = 1 case, the solution of (63) is

Kl = K0 +

l∑
l′=1

σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(h̃l′

j )ϕ(h̃
l′

j )
]
+ σ2

b

 . (66)

which is linearly growing since the expectation does not depend on depth. K0 is the NNGP kernel
after the input layer.
Theorem E.4. In the infinite width limit, the recurrence relation for Jacobians changes by a constant
shift in the recursion coefficient.

J l0,l+1 = χl
JJ l0,l , (67)

where for this case

χl
J =

σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]
+ µ2 . (68)

Proof.

J l0,l+1 =
1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

∂hl+1
i

∂hl0
j

∂hl+1
i

∂hl0
j


=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

(
Nl∑
k=1

∂hl+1
i

∂h̃l
k

∂h̃l
k

∂hl
k

∂hl
k

∂hl0
j

)(
Nl∑

m=1

∂hl+1
i

∂h̃l
m

∂h̃l
m

∂hl
m

∂hl
m

∂hl0
j

)
=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k,m=1

(
wl+1

ik ϕ′(h̃l
k)√

Kl
+ µδik

)(
wl+1

im ϕ′(h̃l
m)√

Kl
+ µδik

)(
∂hl

k

∂hl0
j

∂hl
m

∂hl0
j

)
= Eθ

( σ2
w

NlKl

Nl∑
k=1

ϕ′(h̃l
k)ϕ

′(h̃l
k) + µ2

)Nl0∑
j=1

∂hl
k

∂hl0
j

∂hl
k

∂hl0
j


=

(
σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]
+ µ2

)
J l0,l

= χl
JJ l0,l , (69)
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Remark E.5. One can directly use results from cases without residue connections. We will momen-
tarily see that the phase boundary does not change with residual connections when µ < 1. However,
the correlation length decays way slower when the network is initialized far from criticality.
Remark E.6. As we mentioned above µ = 1 needs extra care. Plug in the result (66) and µ = 1 we
find out that

χl
J |µ=1 =

σ2
w

∑Nl

k=1 Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]

NlK0 +
∑l

l′=1

(
σ2
w

∑Nl

j=1 Eθ

[
ϕ(h̃l

j)ϕ(h̃
l
j)
]
+Nlσ2

b

) + 1

∼ 1 +O

(
1

l

)
, (70)

which leads to power law behaved Jacobians at large depth. Where the exponent ζ is not universal.

Recall that ξ = | logχ⋆
J |−1, then Theorem 1.3 is a summary of (68) and (70) in l → ∞ limit.

F MLP-MIXER

In this section we would like to analyze an architecture called MLP-Mixer Tolstikhin et al. (2021),
which is based on multi-layer perceptrons (MLPs). A MLP-Mixer (i) chops images into patches,
then applies affine transformations per patch, (ii) applies several Mixer Layers, (iii) applies pre-
head LayerNorm, Global Average Pooling, an output affine transformation. We will explain the
architecture by showing forward pass equations.

Suppose one has a single input with dimension (Cin, Hin,Win). We label it as xµi, where the Greek
letter labels channels and the Latin letter labels flattened pixels.

First of all the (i) is realized by a special convolutional layer, where kernel size f is equal to the
stride s. Then first convolution layer can be written as

h0
µi =

f2∑
j=1

Cin∑
ν=1

W 0
µν;jxν,j+(i−1)s2 + b0µi , (71)

where f is the size of filter and s is the stride. In our example f = s. Notice in PyTorch both bias
and weights are sampled from a uniform distribution U(−

√
k,
√
k), where k = (Cinf

2)−1.

Eθ[W
0
µν;iW

0
ρσ;j ] =

1

3Cinf2
δµρδνσδij , (72)

Eθ[b
0
µib

0
νj ] =

1

3Cinf2
δµνδij . (73)

Notice that the output of Conv2d: h0
µi ∈ RC×Np , where C stands for channels and Np =

HinWin/f
2 stands for patches, both of them will be mixed later by Mixer layers.

Next we stack l Mixer Layers. A Mixer Layer contains LayerNorms and two MLPs, where the
first one mixed patches i, j (token mixing) with a hidden dimension Ntm, the second one mixed
channels µ, ν (channel-mixing) with a hidden dimension Ncm. Notice that for Mixer Layers we use
the standard parameterization.

• First LayerNorm. It acts on channels µ.

h̃6l
µi =

h6l
µi − EC [h

6l
ρi]√

VarC [h6l
ρi]

, (74)

where we defined a channel mean EC [h
6l
ρi] ≡ 1

C

∑C
ρ=1 h

6l
ρi and channel variance VarC ≡

EC

[(
h6l
ρi

)2]− (EC [h
6l
ρi]
)2

.

• First MlpBlock. It mixes patches i, j, preactivations from different channels share the same
weight and bias.
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– 6l + 1: Linear Affine Layer.

h6l+1
µj =

Np∑
k=1

w6l+1
jk h̃6l

µk + b6l+1
j . (75)

– 6l + 2: Affine Layer.

h6l+2
µi =

Ntm∑
j=1

w6l+2
ij ϕ(h6l+1

µj ) + b6l+2
i , (76)

where Ntm stands for hidden dimension of ”token mixing”.
– 6l + 3: Residual Connections.

h6l+3
µi = h6l+2

µi + µh6l
µi . (77)

• Second LayerNorm. It again acts on channels µ.

h̃6l+3
µi =

h6l+3
µi − EC [h

6l+3
ρi ]√

VarC [h
6l+3
ρi ]

. (78)

• Second MlpBlock. It mixes channels µ, ν, preactivations from different patches share the
same weight and bias.

– 6l + 4: Linear Affine Layer.

h6l+4
νi =

C∑
ρ=1

w6l+4
νρ h̃6l+3

ρi + b6l+4
ν . (79)

– 6l + 5. Affine Layer.

h6l+5
µi =

Ncm∑
ν=1

w6l+5
µν ϕ(h6l+4

νi ) + b6l+5
µ . (80)

– 6l + 6. Residual Connections.

h6l+6
µi = h6l+5

µi + µh6l+3
µi . (81)

Suppose the network has L Mixer layers. After those layers the network has a pre-head LayerNorm
layer, a global average pooling layer and a output layer. The pre-head LayerNorm normalizes over
channels µ can be described as the following

h̃6L
µi =

h6L
µi − EC [h

6L
ρi ]√

VarC [h6L
ρi ]

. (82)

Global Average Pool over patches i.

hp
µ =

1

Np

Np∑
i=1

h̃6L
µi . (83)

Output Layer

fµ =

C∑
ν=1

wµνh
p
ν + bµ . (84)

We plotted phase diagram using the following quantity from repeating Mixer Layers:

χ⋆
J = lim

L→∞

 1

NpC

Np∑
i=1

C∑
µ=1

Eθ

 C∑
ρ=1

Np∑
k=1

∂h6L
µi

∂h6L−6
ρk

∂h6L
µi

∂h6L−6
ρk

 . (85)
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G RESULTS FOR SCALE INVARIANT ACTIVATION FUNCTIONS

Definition G.1 (Scale invariant activation functions).
ϕ(x) = a+ xΘ(x) + a− xΘ(−x) , (86)

where Θ(x) is the Heaviside step function. ReLU is the special case with a+ = 1 and a− = 0.

G.1 NNGP KERNEL

First evaluate the average using Lemma 2.2

Eθ

[
ϕ(hl

i)ϕ(h
l
i)
]
=

1√
2πKl

∫
dhl

i

(
a2+ + a2−

) (
hl
i

)2
e−

(hl
i)

2

2Kl

=
a2+ + a2−

2
Kl . (87)

Thus we obtain the recurrence relation for the NNGP kernel with scale invariant activation function.

Kl+1 =
σ2
w(a

2
+ + a2−)

2
Kl + σ2

b . (88)

Finite fixed point of the recurrence relation above exists only if

χ⋆
K =

σ2
w(a

2
+ + a2−)

2
≤ 1 . (89)

As a result
σ2
w ≤ 2

a2+ + a2−
. (90)

For σ2
w = 2

a2
++a2

−
case, finite fixed point exists only if σ2

b = 0.

G.2 JACOBIAN(S)

The calculation is quite straight forward, by definition

χl
J =σ2

wEθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]

=
σ2
w√

2πKl

∫
dhl

i

[
a+Θ(hl

i)− a−Θ(hl
i)
]2

e−
(hl

i)
2

2Kl

=
σ2
w(a

2
+ + a2−)

2
, (91)

where we used the property xδ(x) = 0 for Dirac’s delta function to get the first line.

Thus the critical line is defined by

σw =

√
2

a2+ + a2−
. (92)

For ReLU with a+ = 1 and a− = 0, the network is at critical line when

σw =
√
2 , (93)

where the critical point is located at

(σw, σb) = (
√
2, 0) . (94)

G.3 CRITICAL EXPONENTS

Since the recurrence relations for the NNGP kernel and Jacobians are linear. Then from Lemma C.1
and Theorem 2.7

ζK = 0 and ζ = 0 . (95)
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G.4 LAYERNORM ON PRE-ACTIVATIONS

Use Lemma B.9 and combine all known results for scale invariant functions

χl
J =

σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

=
σ2
w(a

2
+ + a2−)

σ2
w(a

2
+ + a2−) + 2σ2

b

. (96)

For this case,
χl
J ≤ 1 (97)

is always true. The equality only holds at σb = 0 line.

G.5 LAYERNORM ON ACTIVATIONS

First we substitute Kl−1 = σ2
w + σ2

b into known results

Eθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]
=

a2+ + a2−
2

, (98)

Eθ

[
ϕ(hl

i)ϕ(h
l
i)
]
=

a2+ + a2−
2

(σ2
w + σ2

b ) . (99)

There is a new expectation value we need to show explicitly

Eθ

[
ϕ(hl

i)
]
=

1√
2π(σ2

w + σ2
b )

∫ ∞

−∞
dhl

iϕ(h
l
i)e

− 1
2h

l
i(σ

2
w+σ2

b )
−1hl

i

=
1√

2π(σ2
w + σ2

b )

∫ ∞

0

dhl
i(a+ − a−)h

l
ie

− (hl
i)

2

2(σ2
w+σ2

b
)

= (a+ − a−)

√
σ2
w + σ2

b

2π
. (100)

Thus

χl
J =

σ2
w

σ2
w + σ2

b

·
π(a2+ + a2−)

π(a2+ + a2−)− (a+ − a−)2
. (101)

The critical line is defined by χ⋆
J = 1, which can be solved as

σb =

√
(a+ − a−)2

π(a2+ + a2−)− (a+ − a−)2
σw . (102)

For ReLU with a+ = 1 and a− = 0

σb =

√
1

π − 1
σw

≈0.683σw . (103)

G.6 RESIDUAL CONNECTIONS

The recurrence relation for the NNGP kernel can be evaluated to be

Kl+1 =
σ2
w(a

2
+ + a2−)

2
Kl + σ2

b + µ2Kl . (104)

The condition for the existence of fixed point

χ⋆
K =

σ2
w(a

2
+ + a2−)

2
+ µ2 ≤ 1 (105)
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leads us to

σ2
w ≤ 2(1− µ2)

a2+ + a2−
. (106)

For σ2
w = 2(1−µ2)

a2
++a2

−
, finite fixed point exists only if σ2

b = 0. (Diverges linearly otherwise)

The recurrence coefficient for Jacobian is evaluated to be

χ⋆
J =

σ2
w(a

2
+ + a2−)

2
+ µ2 . (107)

The critical line is defined as

σw =

√
2(1− µ2)

a2+ + a2−
. (108)

The critical point is located at
(√

2(1−µ2)
a2
++a2

−
, 0
)

.

For ReLU, the critical point is at
(√

2(1− µ2), 0
)

.

G.7 RESIDUAL CONNECTIONS WITH LAYERNORM ON PREACTIVATIONS (PRE-LN)

Again use Lemma B.9 and combine all known results for scale invariant functions

χ⋆
J = lim

l→∞

(
σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

+ µ2

)

=
σ2
w(a

2
+ + a2−)(1− µ2)

σ2
w(a

2
+ + a2−) + 2σ2

b

+ µ2

= 1− 2σ2
b (1− µ2)

σ2
w(a

2
+ + a2−) + 2σ2

b

(109)

Similar to the case without residue connections

χl
J ≤ 1 (110)

is always true. The equality only holds at σb = 0 line for µ < 1.

Notice there is a very special case µ = 1, where the whole σb − σw plane is critical.

H RESULTS FOR ERF ACTIVATION FUNCTION

Definition H.1 (erf activation function).

ϕ(x) =
2√
π

∫ x

0

e−t2dt . (111)

H.1 NNGP KERNEL

To evaluate Lemma 2.2 exactly, we introduce two dummy variables λ1 and λ2Williams (1997).

Eθ

[
ϕ(λ1h

l
i)ϕ(λ2h

l
i)
]
=

∫
dλ1

∫
dλ2

d2

dλ1dλ2
Eθ

[
ϕ(λ1h

l
i)ϕ(λ2h

l
i)
]

=

∫
dλ1

∫
dλ2

∫
dhl

i

4√
2π3Kl

(
hl
i

)2
e−(λ

2
1+λ2

2+
1

2Kl )(h
l
i)

2

=

∫
dλ1

∫
dλ2

4Kl

π (1 + 2Kl(λ2
1 + λ2

2))

=
2

π
arcsin

(
2Klλ1λ2

1 + 2Kl(λ2
1 + λ2

2)

)
. (112)
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We use the special case where λ1 = λ2 = 1.

Thus the recurrence relation for the NNGP kernel with erf activation function is

Kl+1 =
2σ2

w

π
arcsin

(
2Kl

1 + 2Kl

)
+ σ2

b . (113)

As in scale invariant case, finite fixed point only exists when

χ⋆
K =

4σ2
w

π

1

(1 + 2K⋆)
√
1 + 4K⋆

≤ 1 . (114)

Numerical results show the condition is satisfied everywhere in σb − σw plane, where χ⋆
K = 1 is

only possible when K⋆ = 0.

H.2 JACOBIANS

Follow the definition

χl
J = σ2

wEθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]

=
4σ2

w√
2π3Kl

∫
dhl

i e
−2(hl

i)
2

e−
(hl

i)
2

2Kl

=
4σ2

w

π

1√
1 + 4Kl

. (115)

To find phase boundary χ⋆
J = 1, we need to combine Eq.(113) and Eq.(115) and evaluate them at

K⋆.

K⋆ =
2σ2

w

π
arcsin

(
2K⋆

1 + 2K⋆

)
+ σ2

b , (116)

χ⋆
J =

4σ2
w

π

1√
1 + 4K⋆

= 1 . (117)

One can solve equations above and find the critical line

σb =

√
16σ4

w − π2

4π2
− 2σ2

w

π
arcsin

(
16σ4

w − π2

16σ4
w + π2

)
. (118)

Critical point is reached by further requiring χ⋆
K = 1. Since χ⋆

K ≤ χ⋆
J , the only possible case is

K⋆ = 0, which is located at

(σw, σb) =

(√
π

4
, 0

)
. (119)

H.3 CRITICAL EXPONENTS

We show how to extract critical exponents of the NNGP kernel and Jacobians of erf activation
function.

Critical point for erf is at (σb, σw) = (0,
√

π
4 ), with K⋆ = 0. Now suppose l is large enough such

that the deviation of Kl from fixed point value K⋆ is small. Define δKl ≡ Kl − K⋆. Eq.(113) can
be rewritten as

δKl+1 =
1

2
arcsin

(
2δKl

1 + 2δKl

)
≈δKl − 2(δKl)2 .

(120)

From Lemma C.1
A =

1

2
and ζK = 1 . (121)
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Next we analyze critical exponent of Jacobians by expanding (115) around K⋆ = 0 critical point
(σb, σw) = (0,

√
π
4 ).

To leading order l−1 we have

χl
J ≈1− 2δKl

≈1− 1

l
.

(122)

Thus the recurrence relation for partial Jacobian, at large l, takes form

J l0,l+1 =

(
1− 1

l

)
J l0,l . (123)

At large l

J l0,l = cl0 l
−1 , (124)

with a non-universal constant cl0 .

The critical exponent is
ζ = 1 , (125)

which is the same as ζK.

H.4 LAYERNORM ON PRE-ACTIVATIONS

Use Lemma B.9, we have

χl
J =

σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

=
4σ2

w√
5
[
2σ2

w arcsin
(
2
3

)
+ πσ2

b

] . (126)

The critical line is then defined by

σb =

√
2

π

[
2√
5
− arcsin

(
2

3

)]
σw

≈ 0.324σw . (127)

H.5 LAYERNORM ON ACTIVATIONS

Due to the symmetry of erf activation function Eθ

[
ϕ(hl

i)
]
= 0, we only need to modify our known

results.

Eθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]
=

4

π

1√
1 + 4(σ2

w + σ2
b )

, (128)

Eθ

[
ϕ(hl

i)ϕ(h
l
i)
]
=

2

π
arcsin

(
2(σ2

w + σ2
b )

1 + 2(σ2
w + σ2

b )

)
. (129)

Thus

χl
J =

2σ2
w√

1 + 4(σ2
w + σ2

b )
· 1

arcsin
(

2(σ2
w+σ2

b )

1+2(σ2
w+σ2

b )

) , (130)

where the phase boundary is defined by the transcendental equation χl
J = 1.
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H.6 RESIDUAL CONNECTIONS

The recurrence relation for the NNGP kernel can be evaluated to be

Kl+1 =
2σ2

w

π
arcsin

(
2Kl

1 + 2Kl

)
+ σ2

b + µ2Kl . (131)

Finite fixed point only exists when

χ⋆
K =

4σ2
w

π

1

(1 + 2K⋆)
√
1 + 4K⋆

+ µ2 ≤ 1 . (132)

Notice that χ⋆
K ≤ χ⋆

J still holds, where the equality holds only when K⋆ = 0.

The recurrence coefficient for Jacobian is evaluated to be

χ⋆
J =

4σ2
w

π

1√
1 + 4K⋆

+ µ2 . (133)

The critical line is defined as

σb =

√
16σ4

w − π2(1− µ2)2

4π2(1− µ2)
− 2σ2

w

π
arcsin

(
16σ4

w − π2(1− µ2)2

16σ4
w + π2(1− µ2)2

)
. (134)

Critical point is reached by further requiring χ⋆
K = 1. Since χ⋆

K ≤ χ⋆
J , the only possible case is

K⋆ = 0, which is located at

(σw, σb) =

(√
π(1− µ2)

4
, 0

)
. (135)

Note that for µ = 1, one needs to put extra efforts into analyzing the scaling behavior. First we
notice that Kl monotonically increases with depth l – the recurrence relation for the NNGP kernel
at large l (or large Kl) is

Kl+1 ≈ σ2
w + σ2

b +Kl , (136)
which regulates the first term in (133).

For µ = 1 at large depth

χl
J ∼ 1 +

4σ2
w

π
√

C0 + 4(σ2
w + σ2

b )l
. (137)

Here C0 is a constant that depends on the input.

We can approximate the asymptotic form of logJ l0,l as follows

logJ l0,l = log

(
l∏

l′=l0

χl′

J

)

=

l∑
l′=l0

log

(
1 +

4σ2
w

π
√
C0 + 4(σ2

w + σ2
b )l

′

)

≈
∫ l

l0

dl′ log

(
1 +

4σ2
w

π
√
C0 + 4(σ2

w + σ2
b )l

′

)
∼ 2c̃

√
l +O(log l) , (138)

where c̃ =
2σ2

w

π
√

σ2
w+σ2

b

.

We conclude that at large depth, the APJN for µ = 1, erf networks can be written as

J l0,l ∼ O
(
e2c̃

√
l+O(log l)

)
. (139)

This result checks out empirically, as shown in Figure 5.3

3We used NTK parameterization for this experiment. However, we emphasize that it does not affect the
final result.
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Figure 5: log(J l0,l)-
√
l for µ = 1, σ2

b = 0, erf.

H.7 RESIDUAL CONNECTIONS WITH LAYERNORM ON PREACTIVATIONS (PRE-LN)

Use Lemma B.9 and results we had without residue connections for erf with LayerNorm on preac-
tivations.

χ∗
J = lim

l→∞

(
σ2
w

NlKl

Nl∑
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[
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k)ϕ
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The critical line is then defined by

σb =

√
2

π

[
2√
5
− arcsin

(
2

3

)]
σw

≈ 0.324σw .

(141)

I RESULTS FOR GELU ACTIVATION FUNCTION

Definition I.1 (GELU activation function).

ϕ(x) =
x

2

[
1 + erf

(
x√
2

)]
=
x

2

[
1 +

2√
π

∫ x√
2

0

e−t2dt

]
. (142)
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I.1 NNGP KERNEL

Use Lemma 2.2 for GELU
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, (143)

where from the third line to the fourth line we used integrate by parts twice, and to get the last line
we used results from erf activations.

Thus the recurrence relation for the NNGP kernel is
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[
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4
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(Kl)2

π(1 +Kl)
√
1 + 2Kl

]
σ2
w + σ2

b . (144)

As a result
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. (145)

I.2 JACOBIANS

Follow the definition
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, (146)

where we dropped odd function terms to get the third line, and to get the last line we used known
result for erf in the second term, integrate by parts in the third term.

Here to get the critical line is harder. One can use the recurrence relation for the NNGP kernel at
fixed point K⋆ and χ⋆

J = 1

K⋆ =
σ2
w

4
K⋆ +

σ2
w

2π

[
arcsin

(
K⋆

1 +K⋆

)
+

σ2
wK⋆

π(1 +K⋆)
√
1 + 2K⋆

]
K⋆ + σ2

b , (147)

χ⋆
J =

σ2
w

4
+

σ2
w

2π

[
arcsin

(
K⋆

1 +K⋆

)
+

K⋆(3 + 5K⋆)

(1 +K⋆)(1 + 2K⋆)
3
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]
= 1 . (148)
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Cancel the arcsin term, σw and σb then can be written as a function of K⋆

σw = 2

[
1 +

2K⋆(3 + 5K⋆)

π(1 +K⋆)(1 + 2K⋆)
3
2

+
2

π
arcsin

(
K⋆

1 +K⋆

)]− 1
2

, (149)

σb =
K⋆

√
2π(1 + 2K⋆)

3
4

σw . (150)

One can then scan K⋆ to draw the critical line.

In order to locate critical point, we further require χ⋆
K = 1. To locate the critical point, we solve

χ⋆
J − χ⋆

K = 0 instead. We have

σ2
w[(K⋆)3 − 3(K⋆)2 − 2K⋆]

2π(1 +K⋆)2(1 + 2K⋆)
3
2

= 0 , (151)

which has two non-negative solutions out of three

K⋆ = 0 and K⋆ =
3 +

√
17

2
. (152)

One can then solve σb and σw by plugging corresponding K⋆ values.
(σw, σb) = (2, 0) , for K⋆ = 0 , (153)

(σw, σb) ≈ (1.408, 0.416) , for K⋆ =
3 +

√
17

2
. (154)

I.3 CRITICAL EXPONENTS

GELU behaves in a different way compare to erf. First we discuss the K⋆ = 0 critical point, which
is located at (σb, σw) = (0, 2). We expand Eq.(144), and keep next to leading order δKl = Kl −K⋆

δKl+1 ≈ δKl +
6

π
(δKl)2 . (155)

From Lemma C.1
A = −π

6
and ζK = 1 , (156)

which is not possible since δKl ≥ 0 for this case. This result means scaling analysis is not working
here.

Next, we consider the other fixed point with K⋆ = 3+
√
17

2 at (σb, σw) = (0.416, 1.408). Expand the
NNGP kernel recurrence relation again.

δKl+1 ≈ δKl + 0.00014(δKl)2 . (157)

Following the same analysis, we find
δKl ≈ −7142.9 l−1 . (158)

Looks like scaling analysis works for this case, since K⋆ > 0. The solution shows that the critical
point is half-stableRoberts et al. (2022). If Kl < K⋆, the fixed point is repealing, while when Kl >
K⋆, the fixed point is attractive. However, the extremely large coefficient in the scaling behavior of
δKl embarrasses the analysis. Since for any network with a reasonable depth, the deviation δKl is
not small.

Now we can expand χl
J at some large depth, up to leading order l−1.

χl
J ≈ 1− 66.668

l
. (159)

Then
δJ l0,l ≈ cl0 l

−66.668 , (160)
where cl0 is a positive non-universal constant.

Critical exponent
ζ = 66.668 . (161)

Which in practice is not traceable.
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I.4 LAYERNORM ON PRE-ACTIVATIONS

Use Lemma B.9, we have
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The critical line is then at

σb =
(
6
√
3π
)− 1

2

σw

≈0.175σw . (163)

I.5 LAYERNORM ON ACTIVATIONS

First we need to evaluate a new expectation value
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where we used integrate by parts to get the result.

The other integrals are modified to
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Eθ

[
ϕ(hl

i)ϕ(h
l
i)
]
=

σ2
w + σ2

b

4
+

σ2
w + σ2

b

2π
arcsin

(
σ2
w + σ2

b

1 + σ2
w + σ2

b

)
+

(σ2
w + σ2

b )
2

π(1 + σ2
w + σ2

b )
√

1 + 2(σ2
w + σ2

b )
.

(166)

One can then combine those results to find χl
J
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(167)

The critical line defined by χl
J = 1, one can numerically solve it by scanning over σb and σw.

I.6 RESIDUAL CONNECTIONS

The recurrence relation for the NNGP kernel is
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Fixed point exists if
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The recurrence coefficient for Jacobian is
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Phase boundary is shifted

σw = 2
√
1− µ2

[
1 +

2K⋆(3 + 5K⋆)

π(1 +K⋆)(1 + 2K⋆)
3
2

+
2

π
arcsin

(
K⋆

1 +K⋆

)]− 1
2

, (171)
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4

σw . (172)

One can again scan over K⋆ to draw the critical line.

In order to locate critical point, we further require χ⋆
K = 1. To locate the critical point, we solve

χ⋆
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K = 0 instead. We have
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= 0 , (173)

which has two non-negative solutions out of three

K⋆ = 0 and K⋆ =
3 +

√
17

2
. (174)

One can then solve σb and σw by plugging corresponding K⋆ values.

(σw, σb) = (2
√
1− µ2, 0) , for K⋆ = 0 , (175)
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. (176)

I.7 RESIDUAL CONNECTIONS WITH LAYERNORM ON PREACTIVATIONS (PRE-LN)

Use Lemma B.9 and results we had without residue connections for GELU.
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The critical line is then at

σb =
(
6
√
3π
)− 1

2

σw

≈0.175σw ,
(178)

just like without residue connections.

J ADDITIONAL EXPERIMENTAL RESULTS

In the following training results, we used NTK parameterization for the linear layers in the MLP. We
emphasize that this choice has little effect on the training and convergence in this case, compared to
standard initialization.

In figure 6, we compare the performance of deep MLP networks with and without LayerNorm. We
note that the case with LayerNorm applied to preactivations continues to train at very large value
of σ2

w. In all cases, networks are trained using stochastic gradient descent with MSE. We used the
Fashion MNIST datasetXiao et al. (2017). All networks had depth L = 50 and width Nl = 500.
The learning rates were logarithmically sampled
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• within (10−8, 106) for ReLU, (10−5, 10) for LN-ReLU and ReLU-LN;
• within (10−5, 1) for erf, LN-erf and erf-LN;
• within (10−8, 10) for GELU, (10−3, 10) for LN-GELU and GELU-LN, where λmax is the

largest eigenvalue of NTK for each σw.
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Figure 6: Performance of deep MLP networks at and away from criticality, with and without Layer-
Norm. The blue plateau, corresponding to LayerNorm applied to preactivations, continues to train
at very large values of σ2

w without the need to tune the learning rate.

In figure 7, we showed empirically that the critical exponent of partial Jacobians are vanished for erf
with LayerNorm.
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Figure 7: log− log plot of partial Jacobian J 0,l vs. l for (A) LN-erf and (B) erf-LN.

In figure 8, we tested 6k samples from CIFAR-10 datasetKrizhevsky et al. (2009) with kernel re-
gression based on neural tangents library Novak et al. (2019) Lee et al. (2019) Novak et al. (2020).
Test accuracy from kernel regression reflects the trainability (training accuracy) with SGD in or-
dered phase. We found that the trainable depth is be predicted by the correlation length cξ with
LayerNorm applied to preactivations, where the prefactor c = 28. The prefactor we had is the same
as vanilla cases in Xiao et al. (2020). The difference is from the fact that they used log10 and we
used loge.

In figure 9, we explore the broad range in σ2
w of the performance of MLP network with erf activation

function and LayerNorm on preativations. The network has depth L = 50 and width Nl = 500; and
is trained using SGD on Fashion MNIST. The learning rates are chosen based on a logarithmic scan
with a short training time.
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Figure 8: Test accuracy for LayerNorm applied to preactivations. σ2
b = 0.5 for all cases. Correlation

lengths calculated using analytical results of χl
J .
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Figure 9: Training performance of MLP networks with erf activation function; and LayerNorm
applied to preactivations. It continues to train for several orders of magnitude of σ2

w (with learning-
rate tuning).
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