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Abstract

Fair representation learning (FRL) is a popular class of methods that can replace
the original dataset with a debiased synthetic one, which is then to be used to train
fair classifiers. However, recent work has shown that prior methods achieve worse
accuracy-fairness tradeoffs than originally suggested, dictating the need for FRL
methods that provide provable bounds on unfairness of any downstream classi-
fier, a challenge yet unsolved. In this work we address this challenge and propose
Fairness with Restricted Encoders (FARE), the first FRL method with provable
fairness guarantees. Our key insight is that restricting the representation space
of the encoder enables us to derive fairness guarantees, while allowing empiri-
cal accuracy-fairness tradeoffs comparable to prior work. FARE instantiates this
idea with a tree-based encoder, a choice motivated by advantages of decision trees
when applied in our setting. Crucially, we develop and apply a practical statisti-
cal procedure that computes a high-confidence upper bound on the unfairness of
any downstream classifier. In our experimental evaluation on several datasets we
demonstrate that FARE produces tight upper bounds, often comparable with em-
pirical results of prior methods, establishing the practical value of our approach.

1 Introduction

It has been repeatedly shown that machine learning systems deployed in real-world applications
propagate training data biases, producing discriminatory predictions that can negatively affect pop-
ulation subgroups [1–7]. These observations have forced regulators into action, leading to directives
[8, 9] which demand parties aiming to deploy such systems to ensure fairness [10] of their predic-
tions. Mitigation of unfairness has become a key concern for organizations, with the highest increase
in perceived relevance over the last year, out of all potential risks of artificial intelligence [11, 12].

Synthetic data via fair representation learning A promising approach that attempts to address
this issue is fair representation learning (FRL) [13–19]—a long line of work that preprocesses
the data using an encoder f , transforming each datapoint x ∈ X into a debiased representation
z. FRL can be viewed as a form of synthetic data generation that transforms input dataset into a
new, debiased dataset. The key promise of FRL is that this debiased dataset can be given to other
parties, who want to solve a prediction task without being aware of fairness (or potentially even
being fine with discriminating), while ensuring that any downstream classifier they train on these
representations has favorable fairness. However, recent work [20, 21, 16] has demonstrated that
for some FRL methods it is possible to train significantly more unfair classifiers than originally
claimed. This illuminates a major drawback of all existing work—their claim about fairness of the
downstream classifiers holds only for the models they considered during the evaluation, and does
not guarantee favorable fairness of other downstream classifiers trained on z. This is insufficient for
critical applications where fairness is enforced by regulations, leading to our key question:
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Restricted encoder

Input dataset Representations

Figure 1: Overview of our provably fair representation learning method, FARE. The input dataset is
transformed into fair representations using a restricted encoder. Our method can compute a provable
upper bound T on unfairness of any classifier g ∈ G trained on these representations.

Can we create an FRL method that provably bounds the unfairness of any downstream classifier?

The most prominent prior attempt to tackle this question, and the work most closely related to ours,
is FNF [19]; we discuss other related work in Section 2. Assuming two groups s = 0 and s = 1
based on the sensitive attribute s, FNF shows that knowing the input distribution for each group can
lead to an upper bound on unfairness of any downstream classifier. While this work is an important
step towards provable fairness, the required assumption is unrealistic for most machine learning
settings, and represents an obstacle to applying the approach in practice. Thus, the original problem
of creating FRL methods that provide fairness guarantees remains largely unsolved.

This work: provably fair representation learning We propose FARE (Fairness with Restricted
Encoders, Fig. 1)—the first FRL method that offers provable upper bounds on the unfairness of any
downstream classifier g trained on its representations, without unrealistic prior assumptions. Our key
insight is that using an encoder with restricted representations, i.e., limiting possible representations
to a finite set {z1, . . . ,zk}, allows us to derive a practical statistical procedure that computes a high-
confidence upper bound on the unfairness of any g, detailed in Section 4. FARE instantiates this idea
with a suitable encoder based on fair decision trees, leading to a practical end-to-end FRL method
which produces debiased representations augmented with strong fairness guarantees.

More concretely, FARE takes as input the set of samples {x(1), . . . ,x(n)} from the input distribution
X (left in Fig. 1), and partitions the input space into k cells (middle plane, k = 3 in this example)
using the decision tree encoder. Finally, all samples from the same cell i are transformed into the
same representation zi (right). As usual in FRL, training a downstream classifier on representations
leads to lower empirical unfairness, while slightly sacrificing accuracy on the prediction task.

However, the main advantage of FARE comes from the fact that using a restricted set of repre-
sentations allows us to, using the given samples, estimate the distribution of two sensitive groups
in each cell, i.e., compute an empirical estimate of the conditional probabilities P (s = 0|zi) and
P (s = 1|zi) (solid color orange bars) for all zi. Further, we can use confidence intervals to obtain
upper bounds on these values that hold with high probability (transparent bars). As noted above, this
in turn leads to the key feature of our method: a tight upper bound T on the unfairness of any g ∈ G,
where G is the set of all downstream classifiers that can be trained on the resulting representations.
As we later elaborate on, increasing the number of samples n makes the bounds tighter. Given the
current trend of rapidly growing datasets, this further illustrates the practical value of FARE.

In our experimental evaluation in Section 5 we empirically demonstrate that on real datasets FARE
produces tight upper bounds, i.e., the unfairness of any downstream classifier trained on FARE
representations is tightly upper-bounded, which was not possible for any of the previously proposed
FRL methods. Moreover, these downstream classifiers are able to achieve comparable empirical
accuracy-fairness tradeoffs to methods from prior work. We believe this work represents a major
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step towards solving the important problem of generating debiased synthetic data that provably
prevents training of discriminatory machine learning models.

Main contributions The key contributions of our work are:

• A practical statistical procedure that, for restricted encoders, upper-bounds the unfairness
of any downstream classifier trained on their representations.

• An end-to-end FRL method FARE, that instantiates this approach with a fair decision tree
encoder, and applies the said statistical procedure to augment the synthetic dataset with a
tight provable upper bound on unfairness of any downstream classifier.

• An extensive experimental evaluation in several settings, demonstrating favorable empirical
fairness results, as well as tight upper bounds on unfairness (which were out of reach for
prior work), often comparable to empirical results of existing FRL methods.

2 Related Work

We discuss related work on FRL, and prior attempts to obtain guarantees. See Appendix A for an
additional discussion of literature on fair decision trees and provable fairness in other settings.

FRL for group fairness Following Zemel et al. [13] which originally introduced FRL, a
plethora of different methods have been proposed based on optimization [22, 18], adversarial train-
ing [23, 24, 15, 25–29, 17], variational approaches [30, 14, 31, 32], disentanglement [33], mutual
information [16, 34], and normalizing flows [19, 35]. No prior method restricts representations,
which is a key step in our work. While Zemel et al. [13] map data to prototypes, this mapping is
probabilistic, thus fundamentally incompatible with our bounding procedure (see Section 4).

Towards fairness guarantees The key issue is that most of these methods produce representa-
tions that have no provable guarantees of fairness. Concretely, this means that a machine learning
model trained on the representations produced by these methods could have arbitrarily bad fair-
ness. In fact, prior work [36, 20, 16] has shown that methods based on adversarial training often
significantly overestimate the fairness of their representations. While some of them derive bounds
on maximum possible unfairness [37, 16, 29], these are of purely theoretical nature and cannot be
exactly computed in practice. Closest to our work is FNF [19] that can compute high-confidence
bounds, but critically, assumes knowledge of the input probability distribution, which is rarely the
case in practice. Our work makes no such assumption, which makes it significantly more practical.

3 Preliminaries

We now set up the notation and provide the background necessary to understand our contributions.

Fair representation learning Assume data (x, s) ∈ Rd × {0, 1} from a joint probability distri-
bution X , where each datapoint belongs to a group with respect to a sensitive attribute s. We focus
on binary classification, i.e., given y ∈ {0, 1} for each x, we aim to build g : Rd → {0, 1} to predict
y from x. The goal is to maximize both accuracy and fairness of g with respect to s, according to
some definition. This often implies a slight accuracy loss, as these goals are generally at odds.

A large class of methods aims to directly produce g with satisfactory fairness properties. A different
group of methods, our focus here, preprocesses data by applying an encoder f : Rd → Rd′ to obtain
a new representation z = f(x, s) of each datapoint, producing a debiased synthetic dataset. This
induces a joint distribution Z of (z, s). The downstream classifier g is now trained to predict y from
z, i.e., now we have g : Rd′ → {0, 1}. The main advantage of these methods is that by ensuring
fairness properties of representations z, we can limit the unfairness of any g trained on data from Z .

Fairness metric Let Z0 and Z1 denote conditional distributions of z where s = 0 and s = 1,
respectively. In this work, we aim to minimize the demographic parity distance of g, reflecting the
goal of equally likely assigning positive outcomes to inputs from both sensitive groups:

∆DP
Z0,Z1

(g) := |Ez∼Z0 [g(z)]− Ez∼Z1 [g(z)]| .
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Our choice of metric is primarily motivated by consistency with prior work—other definitions (e.g.,
equalized odds) may be more suitable for a particular use-case [38], and our method can be easily
adapted to support them, following the corresponding results of Madras et al. [15].

In the remainder of this work, we will use p0 and p1 to denote the PDFs of Z0 and Z1 respectively,
i.e., p0(zi) = P (zi|s = 0) and p1(zi) = P (zi|s = 1) and p to denote the PDF of the marginal
distribution of z. Similarly, we will use q for the marginal distribution of s, and qi for the conditional
distribution of s for z = zi, i.e., qi(0) = P (s = 0|z = zi) and qi(1) = P (s = 1|z = zi).

4 FARE: Provable Fairness Bounds with Restricted Encoders

We present our key contributions, the derivation of provable unfairness bounds under the assumption
of restricted encoders (explained shortly), and an instantiation based on decision trees.

Optimal adversary Consider the adversary h : Rd′ → {0, 1} predicting group membership s,
which aims to maximize the following balanced accuracy objective:

BAZ0,Z1
(h) :=

1

2
(Ez∼Z0

[1− h(z)] + Ez∼Z1
[h(z)]) . (1)

Let h?, such that for all h, BAZ0,Z1
(h?) ≥ BAZ0,Z1

(h), denote the optimal adversary. Intuitively,
the optimal adversary predicts the group s for which the likelihood of z under the corresponding
distribution (Z0 or Z1) is larger. More formally, h?(z) = 1{p1(z) ≥ p0(z)}, where 1{φ} = 1 if φ
holds, and 0 otherwise (see Balunović et al. [19] for a proof). As shown in Madras et al. [15],

∆DP
Z0,Z1

(g) ≤ 2 ·BAZ0,Z1
(h?)− 1 (2)

holds for any g, i.e., we can upper-bound the unfairness of any downstream classifier trained on data
from Z by computing the balanced accuracy of the optimal adversary h?.

h3

h12

· · ·
h7

h∗ = hi

S

BAZ0,Z1

CI

Figure 2: Restricted
representations enable
upper-bounding of
BAZ0,Z1

(h?).

Restricted encoders Prior work is unable to utilize Eq. (2) to obtain a
fairness guarantee, as using unconstrained neural network encoders gen-
erally makes it intractable to compute the densities p0(z) and p1(z) that
define the optimal adversary h∗. Notably, Balunović et al. [19] use nor-
malizing flows, allowing computation of p0(z) and p1(z) under the as-
sumption of knowing corresponding densities in the original distribution
X . In contrast, we propose a class of encoders for which we can derive a
procedure that can upper-bound the RHS of Eq. (2), and thus the unfair-
ness of g, without imposing any assumption in terms of knowledge of X .
We rely only on a set of samples (z, s) ∼ Z , obtained by applying f to
samples (x, s) ∼ X , readily available in the form of a given dataset.

Namely, we hypothesize that restricting the space of representations can
still lead to favorable fairness-accuracy tradeoffs. Based on this, we pro-
pose restricted encoders f : Rd → {z1, . . . ,zk}, i.e., encoders that map
each x to one of k possible values (cells) zi ∈ Rd′ . As now there is a
finite number of possible values for a representation, we can use samples
from Z to analyze the optimal adversary h∗ on each possible z. More-
over, we can upper-bound its balanced accuracy on the whole distribution Z with some value S
with high probability, using confidence intervals (CI) (as illustrated in Fig. 2). Finally, we can apply
Eq. (2) to obtain the bound ∆DP

Z0,Z1
(g) ≤ 2S − 1 = T . A sketch of our upper-bounding procedure

follows; see Appendix C for a detailed exposition.
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Upper-bounding the balanced accuracy We reformulate Eq. (1) as follows:

BAZ0,Z1(h∗) =
1

2

(
k∑
i=1

p0(zi) · [1− h∗(zi)] +

k∑
i=1

p1(zi) · [h∗(zi)]

)
(E of discrete RV)

=
1

2

(
k∑
i=1

max (p0(zi), p1(zi))

)
(Optimal adversary)

=

k∑
i=1

p(zi) ·max

(1/2q(0))︸ ︷︷ ︸
α0

·qi(0), (1/2q(1))︸ ︷︷ ︸
α1

·qi(1)

 , (Bayes’ rule)

where applications of Bayes’ rule are p0(zi) = qi(0)p(zi)/q(0) and p1(zi) = qi(1) · p(zi)/q(1).
We do not know Z , but instead have access a set D of datapoints (z(j), s(j)) ∼ Z . Further, we
assume a standard setting, where D is split into a training set Dtrain, used to train f , validation set
Dval, held-out for the upper-bounding procedure (and not used in training of f in any capacity), and
a test set Dtest, used to evaluate the empirical accuracy and fairness of downstream classifiers.

Using these samples, we aim to obtain an upper boundBAZ0,Z1
(h∗) ≤ S that holds with confidence

at least 1 − ε, where ε is chosen in advance (we use ε = 0.05). We heuristically choose a split
ε = εb + εc + εs, and perform the upper-bounding procedure in three steps. First, we upper-bound
the base rates α0 and α1 with confidence 1− εb, by applying the Clopper-Pearson binomial CI [39]
(Appendix B) on Dtrain; this is sound as estimated probabilities are independent of the encoder
f . Second, we use the obtained upper bounds to bound the per-cell balanced accuracy of h?, i.e.,
the expression max(α0qi(0), α1qi(1)) for each cell i, with confidence 1− εc, again using Clopper-
Pearson CI, this time on Deval. Finally, we use the results of the previous steps to upper-bound the
final sum with confidence 1 − εs, applying Hoeffding’s inequality [40] (Appendix B) on samples
from Dtest. Finally, we obtain the desired upper bound on the DP distance of any encoder g trained
on the embeddings from a restricted encoder:

∆DP
Z0,Z1

(g) ≤ 2 ·BAZ0,Z1(h?)− 1 ≤ 2S − 1 = T, (3)

which per union bound holds with desired error probability ε, with respect to the sampling process.

This completes the bounding procedure, enabling provable fair representation learning with no re-
strictive assumptions. Our procedure can be applied to representations produced by any restricted
encoder—here, we use a particular instantiation based on decision trees, that we describe next.

Restricted representations with fair decision trees The restricted encoder used in FARE is based
on decision trees, a choice motivated by strong results of tree-based models on tabular data [41], as
well as their feature space splitting procedure, whose discrete behavior is inherently suitable for
our requirement of restricted representations. In particular, we train a classification tree f with k
leaves, and obtain a synthetic dataset by encoding all samples that end up in leaf i to the same
representation zi. We construct zi based on the set of training examples in leaf i, taking the median
value for continuous, and the most common value for categorical features (thus in our case, d′ = d).

To be able to obtain good empirical results, and tight bounds, we modify the vanilla decision trees in
two main ways. First, similar to Kamiran et al. [42] and others (see Appendix A), we generalize the
Gini impurity criterion to optimize each split with respect to both fairness and accuracy (instead of
just accuracy), introducing a tradeoff parameter γ. Second, we use ordinal encoding of categorical
variables and generalize the usual techniques used in this case, again to make the procedure more
fairness-aware. These changes are crucial to obtain a practical restricted encoder. We describe both
changes in more detail and discuss the hyperparameters of FARE in Appendix D.

5 Experimental Evaluation

Here we evaluate FARE on several datasets, and show that its fairness-accuracy tradeoffs are compa-
rable to prior work, while for the first time offering provable fairness bounds. We further investigate
the tightness of our bounds and provide additional experiments on transfer learning in Appendix F.
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Figure 3: Evaluation of FRL methods on ACSIncome-CA (left) and ACSIncome-US (right).

Experimental setup We consider common fairness datasets: Health [43] and two variants of AC-
SIncome [44], ACSIncome-CA (only California), and ACSIncome-US (US-wide, larger but more
difficult due to distribution shift). The sensitive attributes are age and sex, respectively. We com-
pare our method with the following recent FRL baselines (described in Section 2): LAFTR [15],
CVIB [14], FCRL [16], FNF [19], sIPM-LFR [17], and FairPath [18]. We provide all omitted
details regarding datasets, baselines, and our experimental setup, in Appendix E.

Main experiments We explore the fairness-accuracy tradeoff of each method by running it with
various hyperparameters. Each run produces representations, used to train a 1-hidden-layer neural
network (1-NN) for the prediction task using a standard training procedure (same for each method),
and plot its demographic parity (DP) distance and prediction accuracy. Following Kim et al. [17],
we show a test set Pareto front for each method. Further, for FARE we independently show a Pareto
front of a 95% confidence provable upper bound on DP distance (following Section 4), which is a
key feature of our approach and cannot be produced by any other method. Finally, we include an
Unfair Baseline, which uses an identity encoder. The results on ACSIncome-CA and ACSIncome-
US are shown in Fig. 3; the results on Health are given in Fig. 6 in Appendix F. We omit FairPath
and LAFTR from the main plots (see extended results in Appendix F), as LAFTR has stability and
convergence issues [16, 17], and FairPath uses a different metric to us [18].

Across all datasets, FARE can achieve a better or comparable accuracy-fairness tradeoff compared
to baselines. Crucially, other methods cannot guarantee that there is no classifier with a worse DP
distance when trained on their representations. This cannot happen for our method—we produce a
provable upper bound on DP distance of any classifier trained on our representations. The results
indicate that our provable upper bound is often comparable to empirical values of baselines. Finally,
another advantage of FARE is its efficiency compared to the baselines (seconds instead of hours).
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Figure 4: Comparing down-
stream classifiers with the
FARE upper bound.

Exploring downstream classifiers In Fig. 4, we show a represen-
tative point from our main experiments on Health (Fig. 6), its fairness
guarantee, and 24 diverse downstream classifiers (see Appendix F)
trained on same representations, where half are trained to maximize
accuracy, and half to maximize unfairness. The latter (left cluster) can
reach higher unfairness than initially suggested, reaffirming a known
limitation of prior work [20, 16]: evaluating representations with
some model class (here, a 1-NN) does not reliably estimate unfair-
ness, as other classifiers (perhaps intentionally created by a malicious
actor) might be more unfair. This highlights the value of FARE which
provides a provable unfairness upper bound—all unfairness values
still remain below a known upper bound. In Appendix F we perform
the same analysis on another point from Fig. 3 (right), where since
k = 6, it is possible to enumerate all 26 = 64 possible classifiers, and
directly confirm that each DP distance is below the upper bound.
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Interpretability Finally, another advantage of FARE is that its tree-based encoder enables direct
interpretation of representations. To illustrate this, for representations with k = 6 mentioned above
we can easily find that, for example, the representation z6 is assigned to each person older that 24,
with at least a Bachelor’s degree, and an occupation in management, business or science.

6 Conclusion

We introduced FARE, a method to produce provably debiased synthetic data via fair representation
learning. The key idea was that using restricted encoders enables a practical statistical procedure for
computing a provable upper bound on unfairness of downstream classifiers trained on these repre-
sentations. We instantiated this idea with a tree-based encoder, and experimentally demonstrated that
FARE can for the first time obtain tight fairness bounds on several datasets, while simultaneously
producing empirical fairness-accuracy tradeoffs similar to prior work which offers no guarantees.
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A Additional Related Work

Here we discuss additional related work omitted from Section 2.

Provable fairness in other settings Numerous related works on provable fairness provide a dif-
ferent kind of guarantee or assume a different setting than ours. First, in the setting of FRL, several
methods have proposed approaches for learning individually fair representations [45–47], a dif-
ferent notion of fairness than group fairness which we focus on. Prior work has also examined
provable fairness guarantees in various problem settings such as ranking [48], distribution shift-
ing [49, 50], fair classification with in-processing [51, 52], individually fair classification with post-
processing [53], and fair meta-learning [54]. These are all different from our setting, which is FRL
for group fairness.

Fair decision trees The line of work focusing on adapting decision trees to fairness concerns
includes a wide range of methods which differ mainly in the branching criterion. Common choices
include variations of Gini impurity [42, 55, 56], mixed-integer programming [57, 58] or AUC [59],
while some apply adversarial training [60, 61]. Further, some works operate in a different setting
such as online learning [56] or post-processing [62]. The only works in this area that offer provable
fairness guarantees are Ranzato et al. [61], which certifies individual fairness for post-processing,
and Meyer et al. [63], which certifies that predictions will not be affected by data changes. This
fundamentally differs from our FRL setting where the goal is to certify fairness of any downstream
classifier.

B Mathematical Tools

Here we formally state the Hoeffding’s inequality and the Clopper-Pearson binomial confidence
intervals, used in our upper-bounding procedure in Section 4.

Hoeffding’s inequality [40]: Let X(1), . . . , X(n) be independent random variables such that
P (X(j) ∈ [a(j), b(j)]) = 1. Let µ̂ = X(1)+...X(n)

n and µ = E[µ̂]. It holds that:

P (µ− µ̂ ≥ t) ≤ exp

(
−2n2t2∑n

i=1(b(i) − a(i))2

)
.

Clopper-Pearson binomial proportion confidence intervals [39]: Assume a binomial distribution
with an unknown success probability θ. Given m successes out of n experiments, it holds that:

B(
α

2
;m,n−m+ 1) < θ < B(1− α

2
;m+ 1, n−m) (4)

with confidence at least 1−α over the sampling process, where B(p; v, w) denotes the p-th quantile
of a beta distribution with parameters v and w.

C Detailed Description of the Upper-bounding Procedure

In this section we expand on the overview given in Section 4 and provide a detailed presentation
of our practical statistical procedure used to upper-bound the unfairness of downstream classifiers
trained on embeddings from a restricted encoder.

Recall from Section 4 that we aim to upper bound the following quantity with high probability, using
samples from Z:

BAZ0,Z1
(h∗) =

k∑
i=1

p(zi) ·max

(1/2q(0))︸ ︷︷ ︸
α0

·qi(0), (1/2q(1))︸ ︷︷ ︸
α1

·qi(1)

 .

The expression above can be interpreted as the prior-weighted (i.e., weighted by p(zi)) per-cell
balanced accuracy (i.e., max(α0qi(0), α1qi(1)) for each cell i), where we define α0 = 1/2q(0) and
α1 = 1/2q(1).
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Next, we introduce 3 lemmas, and later combine them to obtain the desired upper bound. We use
B(p; v, w) to denote the p-th quantile of a beta distribution with parameters v and w. Note that for
Lemma 1 we do not use the values z(j) in the proof, but still introduce them for consistency.

Lemma 1 (Bounding base rates). Given n independent samples {(z(1), s(1)), . . . , (z(n), s(n))} ∼ Z
and a parameter εb, for α0 and α1 as defined above, it holds that

α0 <
1

2B( εb2 ;m,n−m+ 1)
, and α1 <

1

2(1−B(1− εb
2 ;m+ 1, n−m))

,

with confidence 1− εb, where m =
∑n
j=1 1{s(j) = 0}.

Proof. We define n independent Bernoulli random variables X(j) := 1{s(j) = 0} with
same unknown success probability q(0). Using the Clopper-Pearson binomial CI [39] (Ap-
pendix B) to estimate the probability q(0) we get P (q(0) ≤ B( εb2 ;m,n−m+ 1)) ≤ εb/2 and
P (q(0) ≥ B(1− εb

2 ;m+ 1, n−m)) ≤ εb/2. Substituting q(0) = 1 − q(1) in the latter, as well
as the definitions of α0 and α1 in both inequalities, produces the inequalities from the lemma state-
ment, which per union bound simultaneously hold with confidence 1− εb.

Lemma 2 (Bounding balanced accuracy for each cell). Given n independent samples
{(z(1), s(1)), . . . , (z(n), s(n))} ∼ Z , parameter εc, and constants ᾱ0 and ᾱ1 such that α0 < ᾱ0

and α1 < ᾱ1, it holds for each cell i ∈ {1, . . . , k}, with total confidence 1− εc, that

max(α0 · qi(0), α1 · qi(1)) ≤ ti, (5)

where ti = max
(
ᾱ0B( εc2k ;mi, ni −mi + 1), ᾱ1(1−B(1− εc

2k ;mi + 1, ni −mi))
)
. In this ex-

pression, ni = |Zi|, and mi =
∑
j∈Zi

1{s(j) = 0}, where we denote Zi = |{j|z(j) = zi}|.

Proof. As in Lemma 1, for each cell we use the Clopper-Pearson CI to estimate qi(0) with samples
indexed by Zi and confidence 1− εc/k. As before, we apply qi(0) = 1− qi(1) to arrive at a set of
k inequalities of the form Eq. (5), which per union bound jointly hold with confidence 1− εc.

Lemma 3 (Bounding the sum). Given n independent samples {(z(1), s(1)), . . . , (z(n), s(n))} ∼ Z ,
where for each j ∈ {1, . . . , n} we define a function idx(z(j)) = i such that z(j) = zi (cell index),
parameter εs, and a set of real-valued constants {t1, . . . , tk}, it holds that

P

(
k∑
i=1

p(zi)ti ≤ S

)
≥ 1− εs,where S =

1

n

n∑
j=1

tidx(z(j)) + (b− a)

√
− log εs

2n
, (6)

and we denote a = min{t1, . . . , tk} and b = max{t1, . . . , tk}.

Proof. For each j let X(j) := tidx(z(j)) denote a random variable. As for all j, X(j) ∈ [a, b] with
probability 1 and X(j) are independent, we can apply Hoeffding’s inequality [40] (restated in Ap-
pendix B) to upper-bound the difference between the population mean

∑k
i=1 p(zi)ti = Ez∼Ztidx(z)

and its empirical estimate 1
n

∑n
j=1X

(j). Setting the upper bound such that the error is below εs di-
rectly recovers S and the statement of the lemma.

Applying the lemmas Finally, we describe how we apply the lemmas in practice to upper-bound
BAZ0,Z1

(h?), and in turn upper-bound ∆DP
Z0,Z1

(g) for any downstream classifier g trained on repre-
sentations learned by a restricted encoder. We assume a standard setting, where a setD of datapoints
{(x(j), s(j))} from X is split into a training set Dtrain, used to train f , validation set Dval, held-out
for the upper-bounding procedure (and not used in training of f in any capacity), and a test setDtest,
used to evaluate the empirical accuracy and fairness of downstream classifiers.

After training the encoder and applying it to produce representations (z(j), s(j)) ∼ Z for all three
data subsets, we aim to derive an upper bound on ∆DP

Z0,Z1
(g) for any g, that holds with confidence

at least 1 − ε, where ε is the hyperparameter of the procedure (we use ε = 0.05). To this end, we
heuristically choose some decomposition ε = εb + εc + εs, and apply Lemma 1 on Dtrain to obtain
upper bounds α0 < ᾱ0 and α1 < ᾱ1 with error probability εb. As mentioned above, using Dtrain in
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this step is sound as estimated probabilities q(0) and q(1) are independent of the encoder f . Next,
we use ᾱ0, ᾱ1 and Dval in Lemma 2, to obtain upper bounds t1, . . . , tk on per-cell accuracy that
jointly hold with error probability εc. Finally, we upper-bound the sum

∑k
i=1 p(zi)ti ≤ S with error

probability εs using Lemma 3 on Dtest with previously computed t1, . . . , tk. Combining this with
Eq. (2) finally gives the desired upper bound, that per union bound holds with confidence 1− ε:

∆DP
Z0,Z1

(g) ≤ 2 ·BAZ0,Z1
(h?)− 1 ≤ 2S − 1 = T. (7)

D Fair Decision Trees as Restricted Encoders

Here we expand on our description of a decision tree as a restricted encoder given in Section 4. We
start by recalling the background on decision trees and proceed to describe the two main additional
components used in FARE.

Vanilla classification trees Starting from the training setDroot of examples (x, y) ∈ Rd×{0, 1},
a binary classification tree f repeatedly splits some leaf node P with assigned DP , i.e., picks a split
feature j ∈ {1, . . . , d} and a split threshold v, and adds two nodes L and R as children of P , such
that DL = {(x, y) ∈ DP | xj ≤ v} and DR = DP \DL. j and v are picked to minimize a chosen
criterion, weighted by |DL| and |DR|, aiming to produce leaves where the distribution of y is highly
unbalanced. We focus on Gini impurity, computed as Giniy(D) = 2py(1 − py) ∈ [0, 0.5] where
py =

∑
(x,y)∈D 1{y = 1}/|D|. At inference, a test example x is propagated to a leaf l, and we

predict the majority class of Dl.

Fairness-aware criterion Using a tree-based encoder that utilizes one of the common split-
ting criteria focused on accuracy (such as Giniy(D)) generally leads to high unfairness, mak-
ing it necessary to introduce a direct way to prioritize more fair tree structures. To this end,
similar to Kamiran et al. [42] and others (see discussion in Appendix A), we use the criterion
FairGini(D) = (1 − γ)Giniy(D) + γ(0.5 − Ginis(D)) ∈ [0, 0.5], where Ginis is defined
analogously to Giniy . The second term aims to maximize Ginis(D), i.e., make the distribution of
s in each leaf i as close to uniform (making it challenging for the adversary to infer the value of s
based on zi), while the hyperparameter γ controls the accuracy-fairness tradeoff.

Fairness-aware categorical splits Further, while usual splits of the form xj ≤ v are suitable for
continuous, they are inefficient for categorical (usually one-hot) variables, as only 1 category can
be isolated. Consequently, this increases the number of cells and makes our fairness bounds loose.
Instead, we represent nj categories for feature j as integers c ∈ {1, 2, ..., nj}. To avoid evaluating
all 2nj − 1 possible partitions, we sort the values by py(c) =

∑
(x,y)∈Dc

1{y = 1}/|Dc| where
Dc = {x ∈ D | xj = c}, and consider all prefix-suffix partitions (Breiman shortcut).

This ordering focuses on accuracy and is provably optimal for FairGini(D) with γ = 0 [64]. How-
ever, as it ignores fairness, it is inefficient for γ > 0. To alleviate this, we generalize the Breiman
shortcut, and explore all prefix-suffix partitions under several orderings. Namely, for several values
of the parameter q, we split the set of categories {1, 2, . . . , nj} in q-quantiles with respect to ps(c)
(defined analogous to py(c)), and sort each quantile by py(c) as before, interspersing q obtained ar-
rays to obtain the final ordering. Note that while this offers no optimality guarantees, it is an efficient
way to consider both objectives, complementing our fairness-aware criterion.

Hyperparameters There are four main hyperparameters of FARE: γ (used for the criterion, where
larger γ puts more focus on fairness), k̄ (upper bound for the number of leaves), ni (lower bound for
the number of examples in a leaf), and v (the ratio of the training set to be used as a validation set).
Note that all parameters affect accuracy, empirical fairness, and the tightness of the fairness bound.
For example, larger ni is likely to improve the bound by making Lemma 2 tighter, as more samples
can be used for estimation. For the same reason, increasing v improves the tightness of the bound,
but may slightly reduce the accuracy as fewer samples remain in the training set used to train the
tree.
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Dataset Training size Test size Base rate (s) Base rate (y)

ACSIncome-CA 165 546 18 395 0.46 0.64
ACSIncome-US 1 429 070 158 786 0.48 0.68
Health 174 732 43 683 0.35 0.68

Table 1: Statistics of evaluated datasets.

E Details of Main Experiments

In this section we provide details of our main experimental evaluation omitted from the main text.

Datasets As mentioned in Section 5, we perform our experiments on ACSIncome [44] and
Health [43] datasets. In Table 1 we show some general statistics about the datasets: size of the
training and test set, base rate for the sensitive attribute s (percentage of the majority group out of
the total population), and base rate for the label y (accuracy of the majority class predictor).

ACSIncome is a dataset recently proposed by Ding et al. [44] as an improved version of UCI Adult,
with comprehensive data from US Census collected across all states and several years (we use 2014).
The task is to predict whether an individual’s income is above $50,000, and we consider sex as a
sensitive attribute. We evaluate our method on two variants of the dataset: ACSIncome-CA, which
contains only data from California, and ACSIncome-US, which merges data from all states and is
thus significantly larger but also more difficult, due to distribution shift. 10% of the total dataset is
used as the test set. We also use the Health dataset [43], where the goal is to predict the Charlson
Comorbidity Index, and we consider age as a sensitive attribute (binarized by thresholding at 60
years). For this dataset perform the same preprocessing as Balunović et al. [19], and use 20% of the
total dataset as the test set.

Evaluation procedure For our main experiments, as a downstream classifier we use a 1-hidden-
layer neural network with hidden layer size 50, trained until convergence on representations normal-
ized such that their mean is approximately 0 and standard deviation approximately 1. We train the
classifier 5 times and in our main figures report the average test set accuracy, and the maximal DP
distance obtained, following the procedure of Gupta et al. [16].

Hyperparameters For baselines, we follow the instructions in respective writeups, as well as
Gupta et al. [16] to densely explore an appropriate parameter range for each value (linearly, or
exponentially where appropriate), aiming to obtain different points on the accuracy-fairness curve.
For CVIB, we explore λ ∈ [0.01, 1] and β ∈ [0.001, 0.1]. For FCRL on ACSIncome we explore
λ = β ∈ [0.01, 2], and for Health λ ∈ [0.01, 2] and β = 0.5λ. For FNF, we explore γ ∈ [0, 1]. For
sIPM-LFR, we use λ ∈ [0.0001, 1.0] and λF ∈ [0.0001, 100.0], extending the suggested ranges. For
FairPath we set the parameter κ ∈ [0, 100]. Finally, for LAFTR we use g ∈ [0.1, 50], extending the
range of [0, 4] suggested by [16]. We adjust the parameters for transfer learning whenever supported
by the method.

Regarding FARE (see description of hyperparameters in Appendix D), we investigate γ ∈ [0, 1],
k ∈ [2, 200], ni ∈ [50, 1000], v ∈ {0.1, 0.2, 0.3, 0.5}. For the upper-bounding procedure, we
always set ε = 0.05, εb = εs = 0.005, and thus εc = 0.04. Finally, when sorting categorical
features as described in Appendix D, we use q ∈ {1, 2, 4} in all cases.

F Additional Experimental Results

In this section we provide additional experimental results omitted from the main text. For main
experiments, we provide results on the Health dataset and with two additional methods. Further,
we provide an additional investigation of downstream classifiers, results of our experiment on the
relationship of data and bound tightness, and a set of experiments on transfer learning.

Main experiments In Fig. 5 and Fig. 6 we provide the extended results of our main experiments,
including another dataset (Health), and two originally excluded methods, LAFTR and FairPath.
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Figure 5: Extended evaluation on ACSIncome-CA (left) and ACSIncome-US (right).

Exploring downstream classifiers We provide additional info on the experiment with down-
stream classifiers given in Fig. 4, and repeat a similar experiment in a different setting.
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Figure 6: Main experimental evalu-
ation on the Health dataset.

Namely, for Fig. 4 we explored the following classifiers: (i)
1-hidden-layer neural network (1-NN) with hidden layer sizes
50 and 200, (ii) 2-NN with hidden layers of size (50, 50), as
well as (200, 100), (iii) logistic regression, (iv) random for-
est classifier with 100 and 1000 estimators, (v) decision tree
with 100 and an unlimited number of leaf nodes. We trained
all these classifiers with a standardization preprocessing step
as described above. We further trained one variant of 1-NN,
2-NN, random forest, and logistic regression, on unnormal-
ized data. All described models were trained both to predict
the task label y, and to maximize unfairness, i.e., predict s,
leading to 24 evaluated models.

Next, in a similar vein, we explore a point from Fig. 3 (right),
with accuracy 75.1% and DP distance of 0.005. As opposed
to our previous experiment, here we have k = 6, i.e., the
possible representations are {z1, . . . ,z6}, thus the previous
investigation of downstream classifiers simplifies. Instead of
choosing a model class, we can enumerate all 26 = 64 pos-
sible classifiers, and directly confirm that each DP distance is below the upper bound, as shown in
Fig. 7 (left). Note that in the original experiment, all baseline methods have DP distance ≥ 0.04 at
similar accuracy of ≈ 75%, implying that the FARE bound is in this case very tight.

Data improves bounds As mentioned in the main text, we investigate the effect of increased
dataset size on bound tightness. Namely, we choose a representative set of FARE points from
Fig. 3 (left), and repeat the upper-bounding procedure with the dataset repeated M times, showing
the resulting upper bounds for M ∈ {2, 4, 8, 16, 32} in Fig. 7 (right). We can clearly observe a
significant improvement in the provable upper bound for larger dataset sizes.

Transfer learning Finally, we analyze the transferability of learned representations across tasks.
We produce a diverse set of representations on the Health dataset with each method, and following
the procedure from prior work [15, 19, 17] evaluate them on five unseen tasks y, where for each the
goal is to predict a certain primary condition group. For each task and each method, we identify
the highest accuracy obtained while keeping ∆DP

Z0,Z1
not above a certain threshold. Moreover, we

show T , the provable DP distance upper bound of FARE. The results are shown in Table 2. First, we
observe that some methods are unable to reduce ∆DP

Z0,Z1
below the given threshold. Our method can

always reduce the ∆DP
Z0,Z1

sufficiently, but due to our restriction on representations which enables
provable upper bounds, we often lose more accuracy than other methods for high ∆DP

Z0,Z1
thresholds.

Future work could focus on investigating alternative restricted encoders with better fairness-accuracy
tradeoffs in the transfer learning setting.

15



0.25 0.50 0.75
Accuracy

0.00

0.01

0.02
D

em
og

ra
ph

ic
P

ar
ity

D
is

ta
nc

e FARE (Upper Bound)
Downstream Classifiers

0.70 0.73 0.76 0.79 0.82
Accuracy

0.00

0.05

0.10

0.15

0.20

D
em

og
ra

ph
ic

P
ar

ity
D

is
ta

nc
e

FARE (Upper Bound)
Upper Bound with M=2
Upper Bound with M=4
Upper Bound with M=8
Upper Bound with M=16
Upper Bound with M=32
FARE (Empirical)

Figure 7: Comparing downstream classifiers with the FARE upper bound for a case where k = 6
(left). The impact of increasing the dataset size M times on the fairness bound tightness (right).

y ∆DP
Z0,Z1

T FARE FCRL FNF sIPM

MIS ≤ 0.30 0.64 79.3 78.6 79.2 79.8
≤ 0.20 0.64 79.3 78.6 78.9 79.8
≤ 0.15 0.64 79.3 78.6 78.9 79.6
≤ 0.10 0.48 78.8 78.6 78.9 79.0
≤ 0.05 0.54 78.7 78.6 78.7 78.6

NEUMENT ≤ 0.30 0.64 73.2 72.4 71.9 78.8
≤ 0.20 0.64 73.2 72.4 71.9 76.6
≤ 0.15 0.64 73.2 72.4 71.8 73.2
≤ 0.10 0.64 73.2 72.2 71.8 /
≤ 0.05 0.42 72.1 71.4 71.7 /

ARTHSPIN ≤ 0.30 0.41 74.4 70.7 68.9 78.3
≤ 0.20 0.41 74.4 70.7 68.9 78.3
≤ 0.15 0.46 74.2 70.1 68.9 /
≤ 0.10 0.23 69.5 69.6 68.7 /
≤ 0.05 0.23 69.5 69.5 68.5 /

METAB3 ≤ 0.30 0.47 74.0 72.5 76.2 /
≤ 0.20 0.46 69.8 69.2 75.0 /
≤ 0.15 0.33 68.7 67.9 73.2 /
≤ 0.10 0.12 66.1 66.7 73.2 /
≤ 0.05 0.12 66.1 65.3 / /

MSC2a3 ≤ 0.30 0.56 71.3 70.5 73.5 77.6
≤ 0.20 0.53 67.2 70.5 73.0 /
≤ 0.15 0.12 63.0 69.7 / /
≤ 0.10 0.12 63.0 69.0 / /
≤ 0.05 0.12 63.0 / / /

Table 2: Results of transfer learning experiments on Health.
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