
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HARDMATH: A BENCHMARK DATASET FOR

CHALLENGING PROBLEMS IN APPLIED MATHEMATICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Advanced applied mathematics problems are underrepresented in existing Large
Language Model (LLM) benchmark datasets. To address this, we introduce
HARDMATH, a dataset inspired by a graduate course on asymptotic methods,
featuring challenging applied mathematics problems that require analytical ap-
proximation techniques. These problems demand a combination of mathematical
reasoning, computational tools, and subjective judgment, making them difficult for
LLMs. Our framework auto-generates a large number of problems with solutions
validated against numerical ground truths. We evaluate both open- and closed-
source LLMs on HARDMATH-MINI, a sub-sampled test set of 366 problems, as
well as on 40 word problems formulated in applied science contexts. Even leading
closed-source models like GPT-4 achieve only 43.8% overall accuracy with few-
shot Chain-of-Thought prompting, and all models demonstrate significantly lower
performance compared to results on existing mathematics benchmark datasets. We
additionally conduct a detailed error analysis to gain insights into the failure cases
of LLMs. These results demonstrate limitations of current LLM performance on
advanced graduate-level applied math problems and underscore the importance of
datasets like HARDMATH to advance mathematical abilities of LLMs.

1 INTRODUCTION

Many mathematical equations that arise in practical scientific and engineering problems cannot be
solved analytically. Traditional mathematics courses tend to focus on equations with exact, analytical
solutions, teaching only a limited set of techniques for solving them. Similarly, the mathematical
reasoning datasets used to benchmark large language models (LLMs) are predominantly restricted to
problems of this nature. However, many real-world mathematics problems involve integrals, ordinary
differential equations (ODEs), and partial differential equations (PDEs) that do not have closed-form
solutions and must be approached with a different set of techniques. While numerical solutions offer
valuable insights, they often fail to provide intuition behind solutions behavior. A key approach in
applied mathematics involves finding approximate analytical solutions to complex problems using
asymptotic and applied analysis techniques—methods that are largely underrepresented in existing
LLM benchmark datasets. To address this gap, we introduce HARDMATH, a dataset specifically
designed to focus on asymptotic reasoning in mathematics. This dataset captures a fundamentally
different type of mathematical reasoning compared to other benchmarks and can be useful for
evaluating LLMs’ abilities to make research-relevant approximations.

HARDMATH consists of 1,466 problems inspired by a graduate-level course on asymptotic methods.
These problems cover algebraic equations, ODEs, and integrals commonly encountered in real-
world scientific and engineering contexts, where exact solutions often do not exist. Instead, various
asymptotic reasoning techniques are employed to find approximate but accurate solutions to these
complex mathematical problems.

A primary motivation for developing HARDMATH is the lack of benchmark datasets targeting
the mathematical approximation methods required in many applications. While some recent works
have begun to include university-level problems (Liu et al., 2024), most datasets focus on grade
school- to high school-level mathematics problems (Amini et al., 2019; Hendrycks et al., 2021;
Cobbe et al., 2021) whose solution methods only involve direct, ‘clean’ calculations. In contrast,
HARDMATH targets applied mathematics problems that require approximate analytical solutions;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

an equally important yet underrepresented aspect of mathematical reasoning. Solving such problems
can be challenging even for individuals with highmathematical proficiency, as it requires advanced
techniques from calculus, differential equations, and complex analysis. Additionally, computational
tools are often needed to analyze the behavior of different terms in each equation and to derive
numerical solutions that can serve as benchmarks for theapproximations. Given the difficulty of these
problems and their prevalence across science and engineering—where researchers may not always
have a strong background in advanced mathematics—this level of difficulty and style of mathematics
should be included in LLM evaluations.

Rather than relying on the typical approach of collecting problems from textbooks, standardized tests,
or competitions, as seen in most existing datasets, we developed algorithms to automatically generate
problems and their step-by-step solutions. We implemented a comprehensive testing methodology
to evaluate the mathematical reasoning abilities of leading LLMs in the domain of approximation
methods. Our dataset includes a larger set HARDMATH that can be used for model developments
(e.g. novel prompting techniques or fine-tuning), as well as two test sets - HARDMATH-MINI and
WORD-PROBLEMS-HARDMATH, which are used to assess LLM performance. We present an
evaluation accuracy summary and error mode analyses. Our results demonstrate that the performance
of current LLMs on these problems is poor, highlighting significant room for their improvement on
these challenging asymptotics problems.

2 RELATED WORK

2.1 MATHEMATICAL DATASETS

LLMs have shown promising capabilities in mathematics. However, evaluating and expanding the
full extent of these abilities requires diverse datasets with problems that go beyond basic arithmetic
or elementary word problems. Existing benchmarks often focus on these simpler domains, with a
gap in addressing graduate-level applied mathematics problems that demand a deeper understanding
and diverse, multi-modal analytical skills. Most mathematics datasets for evaluating or training
LLMs contain samples that either present the problem directly or within a constructed narrative
context. Notable examples of these datasets include MATH (12,500 high school competition-style
problems) (Hendrycks et al., 2021), GSM8K (8,500 multistep grade-school problems) (Cobbe et al.,
2021), MATHQA (37,000 GRE/GMAT-level multiple-choice problems) (Amini et al., 2019), and
ODYSSEY-MATH (387 hand-curated problems across various difficulty levels) (Netmind.AI, 2024).
While these existing datasets are valuable for assessing LLM math performance in certain areas, most
are limited in scope and complexity.

Recent efforts target more advanced problems that are most often manually-sourced. Relevant works
include JEEBENCH (Arora et al., 2023) and a subset of the MATHBENCH dataset (Liu et al.,
2024), both of which cover some college-level topics including simple ODEs and multivariable
calculus. More advanced-level problems are presented in GHOSTS, which contains a GRAD-
TEXT subset—a collection of 130 exercises from graduate-level mathematics textbooks in functional
analysis, topology, and probability theory (Frieder et al., 2024)—and in ARB, which features a
small set of university-level formal mathematics problems from prior qualifying examinations in the
mathematics departments at Harvard University and the University of California, Berkeley (Sawada
et al., 2023). However, these datasets are limited by their size and scalability; datasets created by
scraping textbooks or similar resources are generally quite small and difficult to broaden easily. Most
of these challenging datasets also focus on abstract, formal mathematics and exclude other forms
of mathematical reasoning. Finally, textbook problems are often protected by copyright, which can
complicate their public use.

Existing datasets (summarized in Table 1) thus lack the scale and specific focus needed to evalu-
ate LLMs on advanced mathematical problems that may be highly useful for scientific research.
HARDMATH aims to address these limitations by offering a large collection of challenging applied
mathematics problems inspired by a graduate-level course on asymptotic methods. It emphasizes
problems that require diverse mathematical approaches, numerical calculations, and subjective judg-
ment, mirroring the complexity of problems faced by researchers in a variety of domains. Code for
auto-generating the problems in HARDMATH can be used to generate any number of additional
problems, which is a unique and powerful feature for scaling LLM benchmarking and model develop-
ments like novel prompting techniques or fine-tuning. A key area of interest in current LLM research

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison of HARDMATH with related datasets. Note that for all the datasets excluding
MATH and GSM8K, we report the number of relevant problems at a comparable difficulty to
our dataset (e.g., THEORY-KNOWLEDGE-COLLEGE in MATHBENCH, and GRAD-TEXT and
HOLES-IN-PROOFS from GHOSTS.) HARDMATH is the largest graduate-level dataset.

Dataset Size Problem Sourcing Difficulty

MATH (Hendrycks et al., 2021) 12.5K Manual High School
GSM8K (Cobbe et al., 2021) 8.5K Manual Grade School
MATHBENCH-T (Liu et al., 2024) 632 Manual, Algorithmic Undergraduate
JEEBENCH (Arora et al., 2023) 236 Manual High School
GHOSTS (Frieder et al., 2024) 190 Manual Graduate
ARB (Sawada et al., 2023) 34 Manual Graduate

HARDMATH (Ours) 1.4K Algorithmic Graduate

is developing models that can effectively use external tools. The problems in our dataset are unique
because they involve approximate solutions that cannot be formalized using tools like Lean or similar
software. To excel in this benchmark, LLMs must integrate tool use with sophisticated reasoning.
This makes HARDMATH particularly valuable for benchmarking and developing LLMs capable of
effective tool use, setting it apart from other mathematical datasets.

2.2 RECENT INTEREST IN ADVANCED MATHEMATICAL REASONING

As LLMs continue to improve, there has been growing interest in developing more challenging
benchmarks, especially in mathematics. A notable example is the recent open challenge, Humanity’s
Last Exam, which aims to create the world’s most difficult public AI benchmark, requesting questions
that "only exceptional individuals can answer correctly," do not involve "straightforward calculation/-
computation," and are written by individuals with PhD-level academic training (Hendrycks & Wang,
2024). Similarly, frontier models have been advancing quickly, and many are explicitly focused on
quantitative and scientific reasoning, such as OpenAI’s recent o1 series. In line with our motivation
for developing HARDMATH to better track the progress of LLMs, OpenAI argues that "recent
frontier models do so well on MATH and GSM8K that these benchmarks are no longer effective at
differentiating models" (OpenAI, 2024).

3 DATASETS

3.1 HARDMATH DESIGN CHOICES

(a) HARDMATH-MINI dataset (b) HARDMATH dataset

Figure 1: Breakdowns of the HARDMATH-MINI (left) and the HARDMATH (right) datasets.

Here, we detail the HARDMATH dataset, which contains problems on polynomial nondimension-
alization, polynomial root-finding, ODEs, integrals, and word problems that contextualize each of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

these. A sample of a HARDMATH integral problem is shown in Box 1. HARDMATH contains
four problem classes with seven distinct problem types, as well as 40 handwritten word problems
contextualizing the problem types. The main HARDMATH dataset, which can be used for model
developments like fine-tuning, contains 1,060 problems, and the evaluation dataset HARDMATH-
MINI, which we use in this paper to benchmark LLM performance, contains 366 problems. Figure 1
provides a detailed breakdown of these datasets.

Box 1: Sample Integral Problem and Solution

Problem:
Consider the integral I(ϵ) =

∫ 56.00

0
1

ϵ+2.0x6.0+2.0x9.0+5.0x11.0+5.0x13.0 dx. Develop analytical formu-
las that approximate I(ϵ) for different regimes of ϵ.

Solution: The integral is of the form I(ϵ) =
∫ 56

0
1

ϵ+P (x)
dx where P (x) is a polynomial. Thus, its

value can be estimated as the product between a height and a width.
Since the integrand is maximized at x = 0, the height can be set to 1

ϵ
.

For small ϵ, we define the width as the point where the integrand becomes half of its maximum height.
This corresponds to solving for x given P (x) = ϵ. Applying dominant balance, considering the term
in P (x) with the smallest degree, the width is approximated as

(
1

2.0∗ϵ

)1/6.0. Therefore, the analytical
approximation of the integral for small ϵ is I(ϵ) = 0.8909

ϵ0.8333
.

For an intermediate regime where ϵ is large, we also define the width based on the term with the
largest degree. The width is approximated as

(
1

5.0∗ϵ

)1/13.0. Therefore, the analytical approximation of
the integral for large ϵ is I(ϵ) = 0.7647

ϵ0.8333
.

If the width of the integral exceeds the range of integration, we consider one more regime for very large
ϵ. The width is then just the range of integration, so in this regime, the integral can be approximated as
L
ϵ

. Therefore, the analytical approximation of the integral for very large ϵ is I(ϵ) = 56
ϵ

.

Altogether, the solutions at small, large, and very large ϵ are
0.89

ϵ0.83
,
0.76

ϵ0.83
,
56

ϵ
.

One key commonality between all HARDMATH problems is the use of the Method of Dominant
Balance in calculating solutions. This reduces an equation to only the terms that ‘dominate’ the
behavior of the solution and can significantly simplify the equation (Bender & Orszag, 2013).
In addition to the Method of Dominant Balance, our problems also involve other sophisticated
mathematical techniques, such as checks for self-consistency and the use of numerical methods. The
combination of these tools captures several key aspects of mathematical modeling, including the
combined use of computational and analytical techniques. Additionally, subjective choices about the
regimes of solution space to consider, the number of terms to include in approximate expressions,
and the approximation methods themselves must be made on a case-by-case basis with rigorous
mathematical justification. Both of these aspects are potentially difficult tasks for existing LLMs. In
Box 1, we highlight the methods and regimes relevant to solving a sample integral problem.

3.2 DATASET GENERATION AND VERIFICATION

The dataset generation procedure is outlined in Fig. 2. Code for data generation uses SymPy (Meurer
et al., 2017), a library for symbolic mathematics, and SciPy, a library for scientific computing
(Virtanen et al., 2020), to implement the mathematical procedures required for obtaining approximate,
analytical solutions. Problems are generated by combining randomly selected coefficients, functional
forms, and initial conditions uniquely defined for each problem (described in Appendix A)—no
duplicate problems are included. Solutions are generated by navigating through a set of possible cases
during the algorithmic problem-solving strategy. Each mathematical step is embedded in explanatory
text so HARDMATH solutions match the style and rigor of traditional problem set solutions. The
main results for all problems are included in boxed environments in the solution explanations to
distinguish them from the rest of the text. This follows the formatting convention used in other
mathematics datasets designed for LLM benchmarking, such as MATH (Hendrycks et al., 2021).

For each problem type, the dataset includes: 1) LATEX-formatted problem statements with prompts, 2)
LATEX-formatted solution steps and final analytical answer(s), 3) demonstration of the accuracy of the
analytical results by comparing with numerical solutions, and 4) metadata descriptors of the problem
and solution types. For every problem type, we select evaluation points in each solution regime and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Flowchart detailing the data generation procedure for HARDMATH problems.

calculate the relative error between the analytical solution and the numerical solution at these points.
Problems were included in HARDMATH only if their approximate solutions had less than 10% error
from the numerically calculated ground-truths. For the polynomial root correction problems, we
also confirm that the corrections improve the original approximation. While manually verifying each
solution step-by-step is impractical for a dataset of this size, our validation process ensures a high
level of confidence in the accuracy of the solutions provided. Verification of HARDMATH-MINI
is performed by plotting analytical solutions against numerical ground truths for a range of values
in each regime (see example in Appendix A.1). This semi-automated step provides an easy means
for visual human-verification—plots will directly reveal whether analytical and numerical solutions
correspond in the correct solution regimes.

3.3 PROBLEM TYPES

For all problem types discussed in this section, details regarding parameters used to generate problems
and mathematical solution techniques are provided in Appendix A.2.

3.3.1 NONDIMENSIONALIZATION OF POLYNOMIALS

Nondimensionalization is a technique to simplify equations by reducing the number of parameters
(Evans, 1972). In HARDMATH, the first type of polynomial used for nondimensionalization
demonstration contains symbolic coefficients and is of the form

a1x
n1 + a2x

n2 + a3, n1 > n2 > 0. (1)

Nondimensionalization converts this to the form ϵyn1 + yn2 +1. The second type contains numerical
coefficients and is of the form

±a1x
n1 ± a2x

n2 ± a3, n1 > n2

which can be simplified to ϵyn1 ± yn2 ± 1 given a specific numerical value of ϵ.

3.3.2 POLYNOMIAL ROOT-FINDING

Exact formulas exist for quadratic, cubic, and quartic equations, but deriving them for quintic or
higher-order polynomials is not possible (Stewart, 2015). HARDMATH includes approximate
root-finding examples for higher order polynomials of the form ϵxn1 ±xn2 ±1 (example in Appendix
A.2.2). The goal is to solve for roots in terms of ϵ using the method of dominant balance for small
and large positive ϵ regimes.

3.3.3 POLYNOMIAL ROOT CORRECTION TERMS

The use of two-term dominant balances—such as in the previous problem type—neglects terms and
introduces an error. We can calculate a correction term δ to reduce this error. Suppose the true roots
x∗ of a polynomial are given by x∗(ϵ) = x(ϵ) + δ, where x is our approximation to the root and δ is
the error term. Plugging the roots x∗(ϵ) = x(ϵ) + δ into the polynomial allows one to use a Taylor
expansion of δ around x to solve for the correction δ. Appendix A.2.3 shows a full worked solution.

3.3.4 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

We generate nonlinear third-order ODEs for which there do no exist exact analytical solutions and
provide approximate formulae for small and large x regimes, where the small x regime is near

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

x = 0 and the large x regime typically involves the solution diverging (example in Appendix A.2.4).
The method is robust for higher-order problems, but for simplicity HARDMATH includes only
third-order ODEs.

3.3.5 TRADITIONAL INTEGRALS

We consider integrals of the form I(ϵ) =
∫ a

0
1

ϵ+P (x) dx, where P (x) is an arbitrary polynomial.
HARDMATH provides approximations of each integral in three regimes: small, intermediate, and
large ϵ. A full example is in Appendix A.2.5.

3.3.6 LAPLACE INTEGRALS

We consider integrals of the form I(x) =
∫ b

a
g(t)e±xf(t)dt, which can be approximated using

Laplace’s Method when x is very large because the integral’s value is dominated by the region around
t0 (Bender & Orszag, 2013). Depending on where the minimum is, the approximation is either

I(x) ≈ g(t0)e
±xf(t0)

√
2π

x|f ′′(t0)|
or I(x) ≈ g(t0)e

±xf(t0)

x|f ′′(t0)|
.

See and Appendix A.2.6 for examples of a Laplace integral problem with solutions.

3.4 WORD PROBLEMS IN CONTEXT

One motivation for creating HARDMATH is to help LLMs recognize and solve problems where
approximation techniques are needed. To evaluate how LLMs perform on such problems in realistic
scenarios, we develop a smaller dataset of 40 manually-generated word problems (example in Box 2).
Although this dataset is smaller than our hand-verified evaluation set, it is large enough to evaluate
the effect of additional context in the problem statement on LLM accuracy.

Box 2. Sample Word Problem with Context

The density of fish at different points along a certain path in a lake can be modeled as (ϵ+ x2 + x5)−1,
where x represents the distance from the shore in kilometers (ranging from 0 to 100 km), and ϵ represents
environmental factors that affect the fish density. To study the total presence of fish along the path,
develop an approximate analytical formula for I(ϵ) given below:

I(ϵ) =

∫ 100

0

1

ϵ+ x2 + x5
dx.

3.5 AUTOMATIC GENERATION OF CONTEXT FOR WORD PROBLEMS

Recognizing that manual context crafting for these problems is labor-intensive and lacks scalability,
we conduct preliminary experiments on automatically generating contexts for word problems using a
powerful closed-source LLM, such as GPT-4o. The generation process involves two steps: (1) We
create a foundational set of mathematical problems and solutions following the methodology in Fig.
2. These problems serve as a starting point, capturing essential mathematical formulation without
context. 2) We then prompt the LLM to generate real-world contexts to embed these problems and
solutions based on a specified domain seed (e.g., physics). To ensure physical plausibility, a secondary
verification LLM checks parameter ranges (e.g., energy must be non-negative) and assigns a 0-1
plausibility score. A score around 0.5 indicates that while no hard violations were found, the verifier
cannot fully assess violations of less stringent domain priors. Only plausibity scores >0.5 are thus
considered. Example prompts for both generator and verifier are available in Appendix A.2.7, Table
3. Using ODEs as a demonstration, we batch generate 30 problems with {domain_seed} physics.
Appendix A.2.8 shows an example of the original vs. context-embedded problem side by side, and
Appendix A.2.9 6a demonstrates the set of generated problems has good context diversity, covering
different sub-fields in physics. Moreover, most problems’ plausibility scores >0.5 , indicating queried
math equations make good sense under generated contexts (A.2.9 6b).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

While we recognize limitations in capturing more subtle, domain-specific priors, this approach offers
a promising step toward automating the generation of applied math problems in real scientific contexts.
We plan to refine these methods in future work.

4 EVALUATION

4.1 EVALUATION PROTOCOLS

We conduct evaluations of various LLMs on HARDMATH-MINI, a carefully curated subset of 366
problems that matches the statistical composition of HARDMATH (Fig. 1). This smaller dataset
is designed to optimize computational resources while retaining a sufficient number of questions
to ensure consistent and reliable testing outcomes, thus maintaining the integrity of our evaluation.
The evaluation focuses on four distinct problem types: 1) Nondim includes nondimensionalization
in symbolic and numerical form; 2) Roots includes polynomial root-finding; 3) ODEs includes
nonlinear ODEs; and 4) Integrals includes traditional and Laplace integrals. The input prompt
for each problem contains the essential problem setup and a detailed description of the question.
Additionally, hints specific to each problem type are provided to guide the format of the answer.
When few-shot prompting is used, it adds a fixed set of paired problem-solution examples from the
corresponding problem types. Example prompts can be found in Appendix A.3.1, Table 7.

We evaluate model-generated responses by scoring them for accuracy using a combined protocol of
automatic final answer assessment and procedural LLM-based grading. The automatic assessment
follows methodology from Hendrycks et al. (2021), where models are prompted to enclose their
final answers using the LATEX\boxed{} command (Table 7). Evaluation then compares the model’s
output within the \boxed{} command to the dataset solution. To handle different mathematical
expression formats, we implement both SymPy-based equivalence checks and numerical evaluations.

In addition to the standard automatic assessment of final answers, we develop a novel procedural
grading approach leveraging LLMs, tailored to the unique evaluation challenges of our dataset: 1)
Some problem types require complex, multi-step solution procedures (e.g. determining critical point
in Laplace integral approximation) where a single cut-off criterion at the final answer cannot capture
the full spectrum of model performance. Thus, grading intermediate steps in the solution procedure
is necessary for comprehensive assessment. 2) HARDMATH targets the models’ ability to make
human-like abstraction and approximation judgments. Some problem types allow a narrow range of
solutions rather than a single exact one, as long as the reasoning is self-consistent and the final result
falls within certain threshold to numerical ground truth.

Inspired by LLMs’ ability to generate consistent ratings for response content and style (Hackl et al.,
2023), we employ GPT-4o as a procedural grader. The model is prompted with a ground truth answer
key and grading rubrics adapted from course grading guidelines for each problem type (example
grading prompts in Appendix A.3.2 Table 5). We manually verify a subset of grading responses and
found that LLM-based grading is closely aligned with human grading. Average score adjustment
for each model and problem type is summarized in Appendix A.3.3 Table 6. We implement this
procedural grading alongside automatic answer assessment for the problem types Roots, ODEs, and
Integrals.

4.2 MODEL CHOICE

We compare the performance of several closed- and open-source models on HARDMATH in zero-
and few-shot settings with the Chain-of-Thought (CoT) (Wei et al., 2023) prompting. Closed-source
LLMs include GPT-3.5 (Radford et al., 2018; 2019; Ouyang et al., 2022), GPT-4 (Achiam et al.,
2023) and o1-mini (OpenAI, 2024a), open-source LLMs include Llama3 (AI, 2024) and CodeLlama
(Meta, 2023). We believe this subset of models to be representative of current LLM capabilities. We
provide the prompts and hyper-parameters for LLMs evaluations in Appendix A.3.4 Table 7.

4.3 QUANTITATIVE RESULTS

We present the accuracy of the models and prompting settings for each problem type and the combined
evaluation set (Table 2, Figure 7). Few-shot CoT prompting significantly boosts performance for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Evaluation Accuracy (percentage) on the HARDMATH evaluation set.

Model ALL Nondim Roots ODEs Integrals

Closed-source models
GPT-3.5 (0 shot) 6.04 5.05 17.2 1.39 3.33
GPT-3.5 (1 shot CoT) 14.2 6.11 29.3 6.94 18.2
GPT-3.5 (5 shot CoT) 24.6 24.3 35.0 16.2 23.1
GPT-4 (0 shot) 14.0 6.04 33.7 7.87 14.9
GPT-4 (1 shot CoT) 37.6 36.5 52.8 15.9 40.5
GPT-4 (5 shot CoT) 43.8 48.6 57.3 21.7 41.4
o1-mini (0 shot CoT) 29.8 38.1 24.3 10.2 32.5
o1-mini (5 shot CoT) 62.3 84.5 62.1 30.6 46.5
Open-source models
Llama3-8b (0 shot) 3.67 0.50 11.5 4.63 2.52
Llama3-8b (5 shot CoT) 20.2 17.9 17.1 12.0 28.1
CodeLlama-13b (0 shot) 1.94 0.00 8.73 1.85 0.50
CodeLlama-13b (5 shot CoT) 9.79 8.41 13.1 9.7 9.57

all models, with o1-mini and GPT-4 showing the greatest improvement, consistent with (Wei et al.,
2023) (Figure 7a). Interestingly, although the o1-mini official prompting guide recommends simple
prompting over CoT (OpenAI, 2024b), we observe fairly large performance increase for all problem
types at 5 shot CoT compared to 0 shot. Performance increase with prompting behavior also shows
problem type-specific patterns: Figure 8 demonstrates that performance saturates quickly for harder
problem types like ODEs. The varying performance increases among different problem types may be
due to different error modes in model answers, which we discuss in the following section. It’s notable
that o1-mini, though with much smaller parameter size, shows considerably better performance at all
tested shot levels, confirming its optimized ability for STEM reasoning (OpenAI, 2024a).

Among closed-source models, o1-mini with 5-shot CoT prompting achieves the highest overall
accuracy of 62.3%. GPT-4 at 5-shot CoT scores only 43.8%. Among open-source models, Llama3-
8b with 5-shot CoT prompting achieves the highest overall accuracy of 20.2%. We discuss the
performance of these representative models—o1-mini, GPT-4 and Llama3—on HARDMATH-
MINI in comparison with established datasets, including GSM-8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021), and more advanced mathematics datasets like GHOSTS (Frieder et al.,
2024).

Llama3-8b achieves a test accuracy of 30.0% on the MATH dataset with 4-shot CoT and 79.6% on the
GSM-8K dataset with 8-shot CoT prompting (AI, 2024). Testing Llama3-8b on HARDMATH-MINI
results in an overall accuracy of 20.2% with 5-shot CoT prompting. GPT-4 (gpt-4-turbo-2024-04-09)
is reported to achieve 72.2% accuracy on the MATH dataset with 0-shot CoT prompting (OpenAI,
2024) and 92.0% on the GSM-8K dataset with 5-shot CoT prompting (Achiam et al., 2023). On
theMINIGHOSTS dataset, which also covers graduate-level mathematics, GPT-4 reaches an average
score of 4.15 out of 5. We test GPT-4 on our HARDMATH-MINI dataset and obtained an overall
accuracy of 43.8% with 5-shot CoT prompting.

Finally, we include results on OpenAI’s new o1-mini, which is reported to achieve 90.0% accuracy on
MATH-500 with 0-shot CoT (OpenAI, 2024a). Testing o1-mini on HARDMATH-MINI reveals a
significant performance increase compared to results on other models on some (e.g. Nondim) but not
all problem types. Overall accuracy with 5 shot CoT reaches 62.3%, substantially lower compared to
performance on existing mathematics benchmarks. This indicates that the HARDMATH benchmark
consists of problems that are still challenging and unfamiliar to even the most performant LLMs
developed specifically for advanced reasoning.

4.3.1 EXTENSIONS TO WORD PROBLEMS

To assess LLM’s ability to solve similar applied math problems in real science and engineering
contexts, we also test GPT-4 (best performing model with a stable version) on a set of 40 hand-crafted
word problems that included a mixture of Nondim, Roots, ODEs, and Integrals. We avoided additional
prompt engineering, omitting the problem-specific hints listed in Table 4. This evaluation resulted in
an overall accuracy of 28.1%. We plan to leverage the automated generation method as a basis to
expand the number of word problems for future work.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Percentage of correct, partial, and incorrect responses for o1-mini, GPT-4 and Llama3,
prompting conditions, and problem types.

4.4 FINE-GRAINED RESULTS

In addition to reporting the summarized test accuracy, we study the detailed breakdown of model
responses at different correctness levels and summarize specific error modes of LLMs solving these
challenging applied mathematics questions. This analysis helps us compare performance nuances
and understand reasoning paths by model, prompting technique and question type.

We first break down model performance by percentage of correct, partial and incorrect responses
(Figure 3). This analysis reveals how few-shot prompting enhances model performance across varying
problem types but through different strategies. Overall quantitative results already show that ODEs
are comparatively harder for all models while Nondim problems appear to be the easiest (Figure 7b).
For hard problems like ODEs, full correctness is rare. Correctness level analysis shows that models
tend to increase partial credit responses with CoT prompting, as they struggle to solve the problems
entirely but manage to partially address them—in this case, starting with the easier small x regime
solutions. In contrast, for simpler problems like Roots, advanced models like o1-mini and GPT-4 get
more fully correct responses with increasing CoT shot number, demonstrating the models’ ability to
understand the approximation reasoning procedure fully (Fig. 3).

Second, we summarize the error modes of partial and incorrect responses to better understand the
model’s reasoning pitfalls. Specifically, we want to dissect how CoT changes model performance
on the level of detailed errors. Figure 4 uses GPT-4’s responses at 0 vs. 5 shots on problem type
Roots as an analysis example. This illustrates how 5 shot CoT prompting significantly alters the
error structure compared to 0 shot. The most common error mode—incorrectly setting up dominant
balance by considering only the leading term—diminishes substantially. Instead, errors shift to more
nuanced issues: 1) setting up correct dominant balances but missing certain cases, or 2) failing to
calculate complex roots (examples of those error modes included in Box 3 and Appendix A.4.2). This
shift indicates that CoT prompting improves the model’s understanding and application of dominant
balance techniques, enabling it to move beyond intuitive yet incorrect simplifications. We are
particularly curious to compare o1-mini’s error modes with existing models, given its specialization
in STEM reasoning. However, in the current evaluation, o1-mini sometimes returns only the final
answer without showing intermediate steps, making it difficult to trace the source of errors. We
therefore leave this exploration for future work.

3. Grading Response: Roots

Question: Consider the polynomial P (x) = ϵx8 + x4 − 1. Find approximate expressions for all roots
of the polynomials in the limit of small positive ϵ and large positive ϵ. Only a single term approximation
to the root is required.
Grading for Small Positive ϵ:
Model Response: For small ϵ : [1,−1, i,−i]
Ground Truth:

For small positive ϵ :

[
− 4

√
−1

ϵ
,

4

√
−1

ϵ
, −i

4

√
−1

ϵ
, i

4

√
−1

ϵ
, −1, 1, −i, i

]
The response only includes the roots from the balance B + C = 0 and completely misses the roots
from the balance A+B = 0. Therefore, score for small positive ϵ is 0.5

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: GPT-4 error modes for problem type Roots at 0 vs. 5 shot CoT prompting

5 CONCLUSION

We introduce HARDMATH, a new dataset covering several problem types from an advanced
applied mathematics course that can be used to benchmark LLMs’ mathematical capabilities and
perform model developments, including fine-tuning. This dataset consists of 1060 examples, and we
additionally include 366 human-verified examples in HARDMATH-MINI and 40 human-verified
‘problems in context’ that we use to evaluate various leading LLMs. HARDMATH is unique
in several ways. First, there do not exist large-scale mathematical datasets covering problems of
similar difficulty from applied mathematics. Second, HARDMATH’s problems and solutions are
algorithmically generated, with automatic numeric validity checks and an easy visual means for
human-verification, meaning that one could produce datasets of arbitrary size using our framework.
This feature of HARDMATH is especially unique, since most existing mathematical datasets require
manual problem-setting or curation from existing sources (many of which are not publicly accessible).

Our evaluation highlights that while few-shot CoT prompting significantly improves model perfor-
mance, especially for models like o1-mini and GPT-4, the overall accuracy on HARDMATH-MINI
problems remains much lower compared to other existing benchmarks. This suggests that our dataset
poses unique and challenging tasks that go beyond the boundaries of current LLM capabilities,
particularly in approximation-oriented mathematical reasoning. These findings emphasize the need
for further improvement in LLMs to address hard math problems.

Our evaluation results use HARDMATH-MINI as a comprehensive test set; however, future work
will fine-tune LLMs on the larger HARDMATH to improve performance. Additionally, while we
have evaluated several frontier models, we plan to extend our evaluations to even more LLMs as they
become available. This expanded evaluation should provide more detailed insights into performance
disparities across different models, further advancing our understanding of LLMs’ capabilities in
handling complex mathematical reasoning.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Meta AI. Meta llama 3, 2024. URL https://ai.meta.com/blog/meta-llama-3/. Ac-
cessed: 2024-06-03.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based
formalisms. In Proceedings of NAACL-HLT, pp. 2357–2367, 2019.

10

https://ai.meta.com/blog/meta-llama-3/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Daman Arora, Himanshu Singh, et al. Have llms advanced enough? a challenging problem solving
benchmark for large language models. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 7527–7543, 2023.

Carl M Bender and Steven A Orszag. Advanced mathematical methods for scientists and engineers I:
Asymptotic methods and perturbation theory. Springer Science & Business Media, 2013.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021. URL https://arxiv.org/pdf/2110.14168v1.

John H Evans. Dimensional analysis and the buckingham pi theorem. American Journal of Physics,
40(12):1815–1822, 1972.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Petersen, and Julius Berner. Mathematical capabilities of chatgpt. Advances in Neural
Information Processing Systems, 36, 2024.

Veronika Hackl, Alexandra Elena Müller, Michael Granitzer, and Maximilian Sailer. Is gpt-4 a
reliable rater? evaluating consistency in gpt-4’s text ratings. Frontiers in Education, 8, December
2023. ISSN 2504-284X. doi: 10.3389/feduc.2023.1272229. URL http://dx.doi.org/10.
3389/feduc.2023.1272229.

Dan Hendrycks and Alexandr Wang. Submit your toughest questions for humanity’s last exam, 2024.
URL https://www.safe.ai/blog/humanitys-last-exam. Accessed: 2024-10-01.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In 35th
Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and
Benchmarks. NeurIPS, 2021.

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong Duan, Zhiwei Fei, Fengzhe Zhou, Wenwei
Zhang, Songyang Zhang, Dahua Lin, and Kai Chen. Mathbench: Evaluating the theory and
application proficiency of llms with a hierarchical mathematics benchmark. arXiv preprint
arXiv:2405.12209, 2024.

Meta. Code llama: Ai for coding, 2023. URL https://about.fb.com/news/2023/08/
code-llama-ai-for-coding/. Accessed: 2024-06-03.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean
Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik
Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh
Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, January 2017. ISSN 2376-5992. doi:
10.7717/peerj-cs.103. URL https://doi.org/10.7717/peerj-cs.103.

Netmind.AI. Odyssey-math. https://github.com/protagolabs/odyssey-math/
tree/main, 2024. Accessed: April 22, 2024.

OpenAI. Simple evals. https://github.com/openai/simple-evals?tab=
readme-ov-file#user-content-fn-1-43aa11412dfb93b343474c8d56f8882f,
2024. Accessed: 2024-06-03.

OpenAI. Introducing openai o1-preview, 2024. URL https://openai.com/index/
introducing-openai-o1-preview/. Accessed: 2024-10-01.

OpenAI. Openai o1-mini, 2024a. URL https://openai.com/index/
openai-o1-mini-advancing-cost-efficient-reasoning/. Accessed: Septem-
ber 30, 2024.

OpenAI. Reasoning models, 2024b. URL https://platform.openai.com/docs/
guides/reasoning/how-reasoning-works. Accessed: Oct. 1, 2024.

11

https://arxiv.org/pdf/2110.14168v1
http://dx.doi.org/10.3389/feduc.2023.1272229
http://dx.doi.org/10.3389/feduc.2023.1272229
https://www.safe.ai/blog/humanitys-last-exam
https://about.fb.com/news/2023/08/code-llama-ai-for-coding/
https://about.fb.com/news/2023/08/code-llama-ai-for-coding/
https://doi.org/10.7717/peerj-cs.103
https://github.com/protagolabs/odyssey-math/tree/main
https://github.com/protagolabs/odyssey-math/tree/main
https://github.com/openai/simple-evals?tab=readme-ov-file#user-content-fn-1-43aa11412dfb93b343474c8d56f8882f
https://github.com/openai/simple-evals?tab=readme-ov-file#user-content-fn-1-43aa11412dfb93b343474c8d56f8882f
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://platform.openai.com/docs/guides/reasoning/how-reasoning-works
https://platform.openai.com/docs/guides/reasoning/how-reasoning-works

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019. URL https://api.semanticscholar.
org/CorpusID:160025533.

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla, Pranav Tadepalli, Paula Vidas, Alexander
Kranias, John J Nay, Kshitij Gupta, and Aran Komatsuzaki. Arb: Advanced reasoning benchmark
for large language models. arXiv preprint arXiv:2307.13692, 2023.

Ian Stewart. Galois Theory. CRC Press, Taylor & Francis Group, Boca Raton, FL, 4th edition, 2015.
ISBN 978-1-4822-4583-7. Version Date: 20150112.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

12

https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 SEMI-AUTOMATED SOLUTION VERIFICATION

Figure 5 provides a visual comparison of the numerical and approximate solutions for the Laplace
Integral example in Appendix A.2.6 over a large domain. This allows for semi-automated human
verification that analytical solutions correspond well with numerical ground truths, a method used to
verify the problems in HARDMATH-MINI.

Figure 5: Visual comparison of numerical and approximate analytical solutions to a sample Laplace
integral problem for solution verification.

A.2 IMPLEMENTATION AND METHOD DETAILS FOR DATA GENERATION

The following subsections detail the process used to generate the problems and solutions for each
problem type.

A.2.1 NONDIMENSIONALIZATION OF POLYNOMIALS

The first nondimensionalization sub-type is generalized by varying the integer values for the degrees
n1 and n2 within the range 0 < n2 < n1 < 10, while keeping a1, a2, a3 > 0 symbolic. Solutions to
these problems express the dimensionless parameter ϵ in terms of these three coefficients.

Sample Symbolic Nondimensionalization Problem and Full Solution

Problem: Nondimensionalize the polynomial

a1x
10 + a2x

9 + a3

into one of the form ϵy10 + y9 + 1. Express ϵ as a function of a1, a2, and a3.

Solution: We begin with the substitution

x = y 9

√
a3
a2

This gives the expression

a1y
10

(
a3
a2

) 10
9

+ a3y
9 + a3

Divide by the coefficient remaining in front of the constant, leaving us with the nondimen-
sionalized polynomial with coefficients in terms of a1, a2, and a3:

a1y
10
(

a3

a2

) 10
9

a3
+ y9 + 1.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

By inspection, we can see that

ϵ =
a1

(
a3

a2

) 10
9

a3
.

The second subtype implements integer numerical values for the coefficients a1, a2, a3 that are are
randomly chosen from [−10, 10].

Sample Numeric Nondimensionalization Problem and Full Solution

Problem: Nondimensionalize the polynomial

P (x) = 2x7 + 8x2 + 5

into a polynomial of the form ϵy7 ± y2 ± 1. Solve for ϵ.

Solution: For now, we ignore the numeric values of the coefficients and instead call them
a1, a2, a3. Our polynomial is then:

a1x
7 + a2x

2 + a3.

Use the substitution

x = y

√
a3
a2

,

which gives the expression

a1y
7

(
a3
a2

) 7
2

+ a3y
2 + a3.

Divide all terms by the coefficient remaining in front of the constant term, giving us the
nondimensionalized polynomial with coefficients in terms of a1, a2, a3:

a1y
7
(

a3

a2

) 7
2

a3
+ y2 + 1

Substituting in the known numeric values for a1, a2, a3 (using their absolute values as we
have already accounted for sign), we get:

25
√
10y7

1024
+ y2 + 1

From inspection of this nondimensionalized equation, we can now identify ϵ:

ϵ =
25

√
10

1024
=⇒ ϵ ≈ 0.08.

A.2.2 POLYNOMIAL ROOT-FINDING

As with the nondimensionalization problems, degrees in the polynomial are randomly generated with
maximum order ten and 0 < n2 < n1. See a full problem and solution below.

Sample Polynomial Root-finding Problem and Full Solution

Problem: Consider the polynomial

P (x) = ϵx6 − x5 + 1.

Find first order approximations for all roots of the polynomials in the limit of small positive ϵ
and large positive ϵ.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Solution: We begin by equating the polynomial to zero to solve for the roots: P (x) = 0.
This problem can be rewritten in the form A + B + C = 0, where: A = ϵx6; B = −x5;
C = 1.
This problem has no analytical solutions, so we find approximate solutions to the roots by
considering the three possible dominant balances. For each dominant balance, we find the
roots of the resulting equation and evaluate whether each balance is self-consistent for small
or large positive ϵ.

We start with the balance A+B = 0, assuming that |C| is negligible when compared to |A|
and |B|. Solving this for x in terms of ϵ then gives us 1 non-zero root:

ϵx6 − x5 = 0

=⇒ x =

[
1

ϵ

]
.

To verify that these roots are consistent with the assumption that |A|, |B| ≫ |C|, we substitute
these found roots back into the terms A, B, and C and compare their magnitudes. Using this
method, we find that it is true that these roots are valid for small ϵ, while validity for large ϵ
is false.
Therefore, these roots are valid in the limit of small positive ϵ only.

Next we examine the balance B + C = 0, assuming that |A| is negligible when compared to
|B| and |C|. Solving this for x in terms of ϵ gives us 5 non-zero roots:

1− x5 = 0

=⇒
x =1, −1

4
+

√
5

4
− i
√

2
√
5 + 10

4
, −1

4
+

√
5

4
+

√
−10− 2

√
5

4
,

−
√
5

4
− 1

4
− i
√
10− 2

√
5

4
, −

√
5

4
− 1

4
+

i
√

10− 2
√
5

4

.

To verify that these roots are consistent with the assumption that |B|, |C| ≫ |A|, we substitute
these found roots back into A, B, and C and compare their magnitudes. Using this method,
we find that it is true that these roots are valid for small ϵ, while validity for large ϵ is false.
Therefore, these roots are valid in the limit of small positive ϵ only.

Finally, we examine the balance A+ C = 0, assuming that |B| is negligible when compared
to |A| and |C|. Solving this for x in terms of ϵ gives us 6 non-zero roots:

ϵx6 + 1 = 0

=⇒

x =

− 6

√
−1

ϵ
,

6

√
−1

ϵ
,

6

√
− 1

ϵ

(
−1−

√
3i
)

2
,

6

√
− 1

ϵ

(
−1 +

√
3i
)

2
,

6

√
− 1

ϵ

(
1−

√
3i
)

2
,

6

√
− 1

ϵ

(
1 +

√
3i
)

2


.

To verify that these roots are consistent with the assumption that |A|, |C| ≫ |B|, we substitute
these found roots back into A, B, and C and compare their magnitudes. Using this method,
we find that it is false that these roots are valid for small ϵ, while validity for large ϵ is true.
Therefore, these roots are valid in the limit of large positive ϵ only.

By the Fundamental Theorem of Algebra, a polynomial of degree 6.0 has exactly 6.0 roots.We
have found 6.0 roots that are valid in the limit of small positive ϵ and 6.0 roots valid in the
limit of large positive ϵ. Our method therefore provides a complete solution to the problem,
finding the correct number of roots in each ϵ regime.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The roots of P (x) for large positive ϵ are

− 6

√
−1

ϵ
,

6

√
−1

ϵ
,

6

√
− 1

ϵ

(
−1−

√
3i
)

2
,

6

√
− 1

ϵ

(
−1 +

√
3i
)

2
,

6

√
− 1

ϵ

(
1−

√
3i
)

2
,

6

√
− 1

ϵ

(
1 +

√
3i
)

2

and the roots of P (x) for small positive ϵ are

1

ϵ
, 1, −1

4
+

√
5

4
− i
√

2
√
5 + 10

4
, −1

4
+

√
5

4
+

√
−10− 2

√
5

4
,

−
√
5

4
− 1

4
− i
√
10− 2

√
5

4
, −

√
5

4
− 1

4
+

i
√

10− 2
√
5

4

A.2.3 POLYNOMIAL ROOT CORRECTION TERMS

The true roots x∗ of a polynomial are given by x∗(ϵ) = x(ϵ)+δ, where x is our existing approximation
to the root as found in Appendix A.3 and δ is the error term. This requires us to solve

ϵ(x+ δ)n1 ± (x+ δ)n2 ± 1 = 0

for δ by equating coefficients of ϵ terms of the same order, as detailed in the worked solution below.

Sample Numeric Nondimensionalization Problem and Full Solution

Problem: Consider the polynomial
P (x) = ϵx3 − x+ 1.

Find approximate expressions for all roots of the polynomial in the limit of small positive ϵ
and large positive ϵ. Use a series expansion to calculate improved formulae for these roots to
order 1 i.e. calculate O(1) corrections for each root.

Solution: Note: The root calculation in this problem follow the same method as those
demonstrated in the A.3, so they has been omitted here. We include only correction term
calculations for the sake of brevity.

We now need to calculate correction terms for these roots to give us better approximations.
We consider the ansatz that the root is given by x+ δ, where the correction term δ is the sum
of higher order terms of ϵ that we initially neglected in our approximation x. By definition,
δ < x. We plug this ansatz into the polynomial and perform a series expansion in δ. We keep
terms only up to O(1) in δ. Then, we set the expression equal to 0 and solve for δ.

Regime 1: valid for small ϵ

Root 1: −
√

1
ϵ

x+ δ = −
√

1

ϵ
+ δ

Substitute this into P (x) for x and equate to 0:

−δ + ϵ

(
δ −

√
1

ϵ

)3

+

√
1

ϵ
+ 1 = 0.

We then expand this expression to get

δ3ϵ− 3δ2ϵ

√
1

ϵ
+ 2δ − ϵ

(
1

ϵ

) 3
2

+

√
1

ϵ
+ 1 = 0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

and represent it as a series of O(1) in δ, discarding higher order δ terms

2δ − ϵ

(
1

ϵ

) 3
2

+

√
1

ϵ
+ 1 ≈ 0.

We can then solve the expression for the correction δ to O(1), and get

δ ≈
ϵ
(
1
ϵ

) 3
2

2
−

√
1
ϵ

2
− 1

2
.

Root 2:
√

1
ϵ

x+ δ =

√
1

ϵ
+ δ

Substitute this into P (x) for x and equate to 0:

−δ + ϵ

(
δ +

√
1

ϵ

)3

−
√

1

ϵ
+ 1 = 0.

We then expand this expression to get

δ3ϵ+ 3δ2ϵ

√
1

ϵ
+ 2δ + ϵ

(
1

ϵ

) 3
2

−
√

1

ϵ
+ 1 = 0

and represent it as a series of O(1) in δ, discarding higher order δ terms

2δ + ϵ

(
1

ϵ

) 3
2

−
√

1

ϵ
+ 1 ≈ 0.

We can then solve the expression for the correction δ to O(1), and get

δ ≈ −
ϵ
(
1
ϵ

) 3
2

2
+

√
1
ϵ

2
− 1

2
.

Regime 2: valid for small ϵ
Root 1: 1

x+ δ = 1 + δ

Substitute this into P (x) for x and equate to 0:

−δ + ϵ (δ + 1)
3
= 0.

We then expand this expression to get

δ3ϵ+ 3δ2ϵ+ 3δϵ− δ + ϵ = 0

and represent it as a series of O(1) in δ, discarding higher order δ terms

δ (3ϵ− 1) + ϵ ≈ 0.

We can then solve the expression for the correction δ to O(1), and get

δ ≈ − ϵ

3ϵ− 1
.

Regime 3: valid for large ϵ

Root 1: 3

√
− 1

ϵ

x+ δ =
3

√
−1

ϵ
+ δ

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Substitute this into P (x) for x and equate to 0:

−δ + ϵ

(
δ +

3

√
−1

ϵ

)3

− 3

√
−1

ϵ
+ 1 = 0.

We then expand this expression to get

δ3ϵ+ 3δ2ϵ
3

√
−1

ϵ
+ 3δϵ

(
−1

ϵ

) 2
3

− δ − 3

√
−1

ϵ
= 0

and represent it as a series of O(1) in δ, discarding higher order δ terms

δ

(
3ϵ

(
−1

ϵ

) 2
3

− 1

)
− 3

√
−1

ϵ
≈ 0.

We can then solve the expression for the correction δ to O(1), and get

δ ≈
3

√
− 1

ϵ

3ϵ
(
− 1

ϵ

) 2
3 − 1

.

Root 2:
3
√

− 1
ϵ (−1−

√
3i)

2

x+ δ =

3

√
− 1

ϵ

(
−1−

√
3i
)

2
+ δ

Substitute this into P (x) for x and equate to 0:

−δ + ϵ

δ +

3

√
− 1

ϵ

(
−1−

√
3i
)

2

3

−
3

√
− 1

ϵ

(
−1−

√
3i
)

2
+ 1 = 0.

We then expand this expression to get

δ3ϵ−
3δ2ϵ 3

√
− 1

ϵ

2
−

3
√
3iδ2ϵ 3

√
− 1

ϵ

2
−

3δϵ
(
− 1

ϵ

) 2
3

2

+
3
√
3iδϵ

(
− 1

ϵ

) 2
3

2
− δ +

3

√
− 1

ϵ

2
+

√
3i 3

√
− 1

ϵ

2
= 0

and represent it as a series of O(1) in δ, discarding higher order δ terms

δ

−
3ϵ
(
− 1

ϵ

) 2
3

2
+

3
√
3iϵ
(
− 1

ϵ

) 2
3

2
− 1

+

3

√
− 1

ϵ

2
+

√
3i 3

√
− 1

ϵ

2
≈ 0.

We can then solve the expression for the correction δ to O(1), and get

δ ≈
3

√
− 1

ϵ

(
1 +

√
3i
)

3ϵ
(
− 1

ϵ

) 2
3 − 3

√
3iϵ
(
− 1

ϵ

) 2
3 + 2

.

Root 3:
3
√

− 1
ϵ (−1+

√
3i)

2

x+ δ =

3

√
− 1

ϵ

(
−1 +

√
3i
)

2
+ δ

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Substitute this into P (x) for x and equate to 0:

−δ + ϵ

δ +

3

√
− 1

ϵ

(
−1 +

√
3i
)

2

3

−
3

√
− 1

ϵ

(
−1 +

√
3i
)

2
+ 1 = 0.

We then expand this expression to get

δ3ϵ−
3δ2ϵ 3

√
− 1

ϵ

2
+

3
√
3iδ2ϵ 3

√
− 1

ϵ

2
−

3δϵ
(
− 1

ϵ

) 2
3

2

−
3
√
3iδϵ

(
− 1

ϵ

) 2
3

2
− δ +

3

√
− 1

ϵ

2
−

√
3i 3

√
− 1

ϵ

2
= 0

and represent it as a series of O(1) in δ, discarding higher order δ terms

δ

−
3ϵ
(
− 1

ϵ

) 2
3

2
−

3
√
3iϵ
(
− 1

ϵ

) 2
3

2
− 1

+

3

√
− 1

ϵ

2
−

√
3i 3

√
− 1

ϵ

2
≈ 0.

We can then solve the expression for the correction δ to O(1), and get

δ ≈
3

√
− 1

ϵ

(
1−

√
3i
)

3ϵ
(
− 1

ϵ

) 2
3 + 3

√
3iϵ
(
− 1

ϵ

) 2
3 + 2

.

A.2.4 ODES

We generate third-order ordinary differential equations of the form

y′′′ = f1(x)(y
′′)a + f2(x)(y

′)b + f3(x)y
c + f4(x),

where f1(x), f2(x), f3(x), f4(x) are rational functions with integer coefficients. The initial condi-
tions are randomly selected integers from [0, 3]. The dataset excludes problems with a function of x
as a dominant term because of the difficulty of deriving power law expressions in these cases.

Approximate solutions at small x can be derived using a Taylor series expansion (up to the third
order) around x = 0. Solving ODEs in the large x regime involves determining the two largest terms,
assuming a divergence at some large x∗, and solving the dominant balance between these terms to
create a power law approximation of the form

y(x) = A(x∗ − x)p.

ODE Problem and Solution

Problem: Consider the following third-order ordinary differential equation:

y′′′ = − y

24x4 + 6x2 + 3
+ y′2 − y′′

5x3 − 2x2 − x+ 2
− 1

12x2 − cos (x) + 11

with initial conditions at x = 0:

y(0) = 1.00

y′(0) = 0.00

y′′(0) = 0.00

Find analytical expressions that approximate the solution of y(x) at small and large x.

Solution:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The dominant balance in the large x regime is given by

d3

dx3
y =

(
d

dx
y

)2

.

We recognize that the solution of this ODE will diverge at finite x and that divergences
typically follow a power law of the form

y = α(x− x∗)p,

where x∗ is the divergence point. The divergence point can be determined by estimated by
examining the numerical solution generated by code.
Plugging in the dominant terms we found previously yields the following equation:

αp (p− 2) (p− 1) (x− 11.45)
p−3

= α2p2 (x− 11.45)
2p−2

.

After substituting the derivatives, the equation is reorganized to collect terms with respect
to (x − x∗). This leads to an equation where the coefficients and powers of (x − x∗) are
equated on both sides. Simplifying the equation gives us two separate equations, one for the
coefficients and another for the powers of (x − x∗). There is now a system of equations,
where the coefficients’ equation is

αp (p− 2) (p− 1) = α2p2

and the powers’ equation is:
p− 3 = 2p− 2.

Solving this system of equations provides the values of α and p. A valid solution is identified
if α and p are both nonzero. Here, the solution for α and p is found to be:

α = −6, p = −1

With these values, the analytical approximation for the solution at large x (near the divergence
point) is given by

y = −6(x− 11.45)−1.

The approximate solution at small x can also be solved used dominant balance, but one can
take advantage of the initial conditions and form a Taylor series instead around x = 0, which
is given by

y(x) ≈ y(0) + y′(0)x+
y′′(0)

2!
x2 +

y′′′(0)

3!
x3.

Plugging in the initial conditions, we get the following expression at small x:

y(x) = 1− 13

180
x3

Thus, with rounding for clarity, the solution is given by

y(x) = 1− 13

180
x3, y = −6(x− 11.45)−1.

A.2.5 INTEGRALS

The polynomial P (x) is randomly generated to consist of up to ten terms, where each term is a power
function of x with an integer power randomly sampled from 1 and 20 and an integer coefficient
sampled from 1 to 10. The integration bound a ∈ [0, 100] is also randomly selected. This form
ensures that the integral does not oscillate.

The height is approximated as the maximum value of the integrand, which is 1
ϵ , and the width can be

estimated as the distance over which the integrand decreases from its maximum value by a factor of
2, which implies that the width x obeys the equation

1

ϵ+ P (x)
=

1

2ϵ
⇒ P (x) = ϵ.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

In the regime of small ϵ, the term with the smallest degree and ϵ are the dominant terms, and in the
regime of intermediate ϵ, the term with the largest degree and ϵ are dominant. There exists one more
solution regime when the width of the integral exceeds the limits of integration, or when ϵ is "very
large." In this case, the integral is approximated by L/ϵ, where L is the integration range.

See a full sample of a traditional integral problem in Box 1.

A.2.6 LAPLACE INTEGRALS

Laplace integrals of the form I(x) =
∫ b

a
g(t)e±xf(t)dt assume that f(t) > 0, is never a constant, and

has an absolute minimum at a point t0 either in the interior of or on the bounds of the interval [a, b].

The set of possible Laplace integrals I(x) in our dataset are parameterized by four parameters:
the bounds [a, b], g(t), f(t), and the sign in front of x. To generate the dataset, the bounds for
each problem were randomly sampled from the [−1,−0.9, . . . 0.9, 1], and the sign was uniformly
sampled from {−1, 1}. The functions f(t) and g(t) were generated by randomly selecting a linear
combination of polynomials up to fifth order and basic trigonometric functions.

Our solution uses SymPy under the hood to find the minima of f(t) (or the dual annealing algorithm
if SymPy fails to return the minima).

Sample Laplace Integral Problem and Solution

Problem: Consider the integral

I(x) =

∫ 0.3

−0.9

(−1.6t2 − 0.5 sin (t)− 1.9)e+x(−2.5t4−0.8t3+1.4t2) dt (2)

Develop an analytical formula for I(x) that is accurate as x → ∞.

Solution:
The integral is of the form

I(x) =

∫ b

a

g(t)e+xf(t) dt (3)

where a = −0.9, b = 0.3, g(t) = −1.6t2 − 0.5 sin (t)− 1.9, and f(t) = −2.5t4 − 0.8t3 +
1.4t2. This means we can use Laplace’s method to develop an analytical approximation in
the limit that x → ∞. In this limit, the integral will be dominated by the integrand near
the maximum of f(t) within the bounds [−0.9, 0.3]. So, to simplify the integral, we will
expand the integrand around this maximum. In this case, we can find the maximum of
f(t) = −2.5t4 − 0.8t3 + 1.4t2 on the interval analytically. We begin by looking for critical
point(s) tcrit of f(t) by solving f ′(t) = −10.0t3 − 2.4t2 + 2.8t = 0 for t. This gives us
that tcrit = [−0.66, 0]. To find the maximum on this interval, we evaluate f(t) at the critical
point(s) tcrit and the bounds −0.9 and 0.3. We take the t that gives the largest value. Here,
this maximum t0 = [−0.66]. Since the integral is dominated by the value of the integrand
near -0.66, we Taylor expand the integrand around this point.

I(x) =

∫ b

a

(g(−0.66) + (t+ 0.66)g′(−0.66) + ...)

∗ e+x(f(−0.66)+(t+0.66)f ′(−0.66)+
(t+0.66)2

2 f ′′(−0.66)+...)dt (4)

But f ′(−0.66) = 0 by definition, so we can remove this term from the exponent. We can
then approximate

I(x) ≈
∫ b

a

g(−0.66)e+x(f(−0.66)+
(t+0.66)2

2 f ′′(−0.66)) dt, (5)

which equals

g(−0.66)e+xf(−0.66)

∫ b

a

e+x(
(t+0.66)2

2 f ′′(−0.66)) dt (6)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

We perform the change of variables u =
√
x |f ′′(−0.66)|

2 (t+ 0.66), rewriting the integral as

g(−0.66)e+xf(−0.66)

∫ √
x

|f′′(−0.66)|
2 (b+0.66)√

x
|f′′(−0.66)|

2 (a+0.66)

√
2

x|f ′′(−0.66)|
e−u2

dt (7)

Since x → ∞, we approximate this as

g(−0.66)e+xf(−0.66)

√
2

x|f ′′(−0.66)|

∫ ∞

−∞
e−u2

dt (8)

Solving the integral and evaluating, we find that

I(x) ≈ −1.21

√
π

x
e0.37x (9)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.2.7 WORD PROBLEM AUTOMATIC GENERATION SETUP

Table 3: Prompts for generating problem and solution contexts and plausibility verification.

Task Task instruction
Question con-
textualization

Rewrite this {question_type} problem by embed-
ding it within a plausible real-world {domain_seed}
problem scenario, without changing the mathematical
question at the end.

Solution con-
textualization

We provide above a real-world {domain_seed} ques-
tion, and its mathematical solution. Generate a single
introductory sentence before the solution that can connect
the solution to the real-world {domain_seed} context
provided in the question.

Verification We provide above a real-world {domain_seed} ques-
tion. Review and verify its plausibility within the context
of parameter ranges of this domain (e.g. energy value
cannot be negative). Identify any inconsistencies or areas
needing clarification to ensure the problem is realistic for
this domain. Return a single float number as plausibility
score (0-1) in LaTeX boxed format \boxed{} at the end.

A.2.8 WORD PROBLEM AUTOMATIC GENERATION EXAMPLE

Original vs. physics context augmented problem (ODEs)

Original Mathematical Problem: Consider the following third-order ordinary differential
equation:

y′′′ =
y

3x4 − 4x3 − 2
+ (y′)4 +

y′′

4 · (4x2 + 1)
+

1

5x4 + sin(x)− 8

with initial conditions at x = 0:

y(0) = 1.00

y′(0) = 0.00

y′′(0) = 0.00

Find analytical expressions that approximate the solution of y(x) in the small x and large x
regimes.

Real-World Context Problem: In a study of the dynamics of a newly discovered type of
fluid, researchers are investigating the behavior of a fluid flow through a porous medium.
The flow is described by a third-order ordinary differential equation that models the velocity
profile of the fluid, denoted by y(x), as it moves through the medium. The equation takes
into account various factors such as the porosity of the medium, the viscosity of the fluid, and
external forces acting on the fluid.
The governing equation for the velocity profile is given by:

y′′′ =
y

3x4 − 4x3 − 2
+ (y′)4 +

y′′

4 · (4x2 + 1)
+

1

5x4 + sin(x)− 8

The initial conditions at the entry point of the medium, x = 0, are specified as follows:

y(0) = 1.00

y′(0) = 0.00

y′′(0) = 0.00

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

The researchers are interested in finding analytical expressions that approximate the solution
of y(x) in the small x and large x regimes. These approximations will help in understanding
the initial behavior of the fluid as it enters the medium and its asymptotic behavior as it travels
further through the medium.

A.2.9 WORD PROBLEM AUTOMATIC GENERATION QUALITY EVALUATION

(a) Diversity of context subdomains within the
broader physics domain for auto-generated word
problems.

(b) Plausibility scores distribution of automatically
generated word problems.

Figure 6: Diversity and quality assessment of automatically generated word problems. Only problems
above a plausibility score threshold are included.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.3 EVALUATION SETUP

A.3.1 PROMPTS FOR RESPONSE GENERATION

Table 4: Problem type specific hints by Question and Answer Type

Question
Type

Answer Type Task instruction

Nondim-
symbolic

SymPy Please answer the question requiring an answer in a
SymPy convertible formula containing variables and math
operation expressions and provide the final answer, e.g.,
x3, x

y inside a Latex boxed format \boxed{}.

Nondim-
numerical

Float (2) Please answer the question requiring a floating-point num-
ber with two decimal places and provide the final value,
e.g., 0.80, 3.12, inside a Latex box \boxed{}.

Polynomial
Roots

SymPy List Please answer the question requiring a Python list contain-
ing SymPy convertible formulas of variable ϵ and math
operation expressions and provide the final list, e.g., [ϵ3,
1
ϵ] inside a Latex boxed format \boxed{}.

ODEs SymPy List Please answer the question requiring a Python list contain-
ing SymPy convertible formula of y = f(x) and provide
the final list, e.g., [y = 1− x3, y = −6/(x− 5)], inside a
Latex boxed format \boxed{}.

Integrals SymPy Please answer the question requiring an answer in a
SymPy convertible formula containing formulas of vari-
able x and math operation expressions and provide
the final answer, e.g., x3 inside a Latex boxed format
\boxed{}.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A.3.2 PROMPTS FOR GRADING

Table 5: LLM-based grading prompts by Question and Answer Type

Question
type

Answer type Task instruction

Polynomial
Roots

SymPy List Please take this response {response} and this answer
key {answer key} and grade the response based on
the following criteria: 1) Check both the small and large
ϵ solutions. 2) For each solution, give full credit if it
completely matches the elements in the answer key; give
partial credit proportional to the number of matching roots
between the response and the answer key; give no credit
if it is completely wrong. 3) For both partial and no credit
briefly state the error reason. 4) Average the scores for the
small and large epsilon solutions to obtain a final score
between 0 and 1. 5) Give the final grading as a float in
Latex boxed format \boxed{}.

ODEs SymPy List Please take this response {response} and this solution
{answer key} and grade the response based on the
following criteria: 1) Check both the small and large ϵ
solutions. 2) For small regime solution, only give full
credit if it matches the formula in the answer key exactly;
give no credit if it is doesn’t match the form. For large
regime solution, give full credit if it matches the formula
in the answer key exactly; give partial credit if it doesn’t
match but the numerical evaluation is not far from solution
at this regime; give no credit if neither satisfies 3) Average
the scores for the small and large epsilon solutions to
obtain a final score between 0 and 1. 4) Give the final
grading as a float in Latex boxed format \boxed{}.

Integrals (tra-
ditional)

SymPy List Please take this response {response} and this solu-
tion {answer key} and grade the response based on
the following criteria: 1) Check both the small and large
ϵ solutions. 2) For each solution, give full credit if it
matches the formula in the answer key; give no credit
if it is completely wrong and briefly state the reason for
the error. 3) Average the scores for the small and large
epsilon solutions to obtain a final score between 0 and 1.
4) Give the final grading as a float in Latex boxed format
\boxed{}.

Integrals
(Laplace)

SymPy Please take this response {response} and this solution
{answer key} and grade the response based on the
following criteria: 1) Check the large x final solution. 2)
Give full credit if it matches the formula in the answer key;
give half credit if the {response} get to the checkpoint
where it correctly identifies t0 where f attains its maxi-
mum and attempt performing Taylor’s expansion around
it but the final answer is wrong; give no credit if it is com-
pletely wrong. 3) For both partial and no credit briefly
state the error reason. 4) Give the final grading as a float
in Latex boxed format \boxed{}.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A.3.3 GPT GRADING HUMAN VERIFICATION

Model Roots ODEs Integrals
GPT3.5 (0) 0 0 0
GPT3.5 (1) 0 -0.09 -0.02
GPT3.5 (5) +0.02 +0.07 +0.02
GPT4 (0) 0 -0.02 0
GPT4 (1) 0 -0.04 -0.02
GPT4 (5) +0.07 -0.07 -0.15
o1-mini (0) +0.04 +0.05 0
o1-mini (5) +0.05 +0.05 0
Llama3-8b (0) 0 0 -0.02
Llama3-8b (5) -0.07 -0.02 -0.02
Codellama3-14b (0) 0 -0.02 0
Codellama3-14b (5) 0 -0.02 0

Table 6: Average adjusted points using human judgment from GPT-based grading. Rows with score
adjustments of 0.1 or more are highlighted in pink.

A.3.4 MODEL HYPER-PARAMETERS

Table 7: Generating parameters for various LLMs.

Model Generation Setup
GPT-3.5 model = gpt-3.5-turbo, temperature = 0, max_tokens = 4000
GPT-4 model = gpt-4-turbo, temperature = 0, max_tokens = 4000
o1-mini model = o1-mini, temperature = 0, max_tokens = 4000
Llama3 model = llama3:8b, temperature = 0
CodeLlama model = codellama:13b, temperature = 0

A.3.5 COMPUTING RESOURCE

Evaluations of open-source models on HARDMATH are conducted on a high-performance compute
cluster with a single Tesla V100 GPU (16GB vram). Evaluation on one problem type typically takes
less than 1 hour.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

A.4 EXTENDED EXPERIMENTAL RESULTS

A.4.1 EXTENDED EVALUATION RESULTS

(a) Model accuracy increases with shot numbers.
(b) Model accuracy breakdown by problem sub-
types for all models with 5-shot CoT prompting.

Figure 7: Model evaluation accuracy breakdown by shot number and problem sub-types. (a)
evaluation accuracy for all models increases with shot numbers for CoT prompting with o1-mini and
GPT-4 showing the most obvious improvements; (b) evaluation accuracy breakdown for all models
on all problem sub-types under the 5-shot CoT condition.

Figure 8: Model performance scaling upon few-shot prompting (0, 1, 5, 10) for problem type Nondim
and ODEs

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 9: Percentage of correct, partial, and incorrect responses for GPT-3.5 and CodeLlama using
CoT.

A.4.2 EXTENDED ERROR MODE ANALYSIS

Problem 136 Grading Response: Roots (error mode: incorrect dominant balance setup)

Question: Consider the polynomial P (x) = ϵx6 + x4 − 1. Find approximate expressions
for all roots of the polynomials in the limit of small positive ϵ and large positive ϵ . Only a
single term approximation to the root is required.
Grading for Large Positive ϵ:
Model Response: For large ϵ When ϵ is large, the term ϵx6 dominates the polynomial for
most x , except for potentially small x where x4 might still be relevant. However, focusing
on the dominant term gives: P (x) ≈ ϵx6. Setting this equal to zero for an approximation
(acknowledging that we’re looking for non-trivial roots of the overall polynomial, but focusing
on dominance to guide our approximation), suggests that we don’t get meaningful roots from
this term alone since x6 = 0 doesn’t provide roots that satisfy the original polynomial’s
requirement for non-zero roots.
Reference Solution: Finally, we examine the balance A + C = 0 , assuming that |B| is
negligible when compared to |A| and |C| . Solving this for x in terms of ϵ gives us 6 non-zero

roots: ϵx6 − 1 = 0 implies x =

(−1±
√
3i
)

6

√
1
ϵ

2
,

(
1±

√
3i
)

6

√
1
ϵ

2
,− 6

√
1

ϵ
,

6

√
1

ϵ

 . To

verify the roots found for consistency with our initial assumption, we check that |A|, |C| >>
|B| holds for this root by substituting our found root expression for x back into A , B , and
C and comparing their magnitudes. Using this method, we find that validity for small ϵ is
False and validity for large ϵ is True.
Grading: The response wrongly sets up the dominant balance as A = 0 and does not provide
a concrete list of roots for large ϵ. Therefore, score for large positive ϵ is 0.0

Problem 133 Grading Response: Roots (error mode: drop imaginary roots)

Question: Consider the polynomial P (x) = ϵx3 + x2 − 1. Find approximate expressions
for all roots of the polynomials in the limit of small positive ϵ and large positive ϵ . Only a
single term approximation to the root is required.
Grading for Large Positive ϵ:
Model Response: To find the approximate expressions for all roots of the polynomial
P (x) = ϵx3 + x2 − 1 in the limits of small and large ϵ , we will consider the two cases
separately. For Large ϵ When ϵ is large, the term ϵx3 dominates the polynomial. Thus, the
polynomial can be approximated by ignoring the x2 term, leading to ϵx3 − 1 ≈ 0 . Solving

for x gives us an approximation for the root: x ≈
(
1
ϵ

) 1
3 . The other roots in this limit are

complex and given the scope, we’ll focus on this real root approximation.
Reference Solution: Finally, we examine the balance A+C = 0 , assuming that |B| is negligi-
ble when compared to |A| and |C| . Solving this for x in terms of ϵ gives us 3 non-zero roots:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

ϵx3 − 1 = 0 implies x =

(−1−
√
3i
)

3

√
1
ϵ

2
,

(
−1 +

√
3i
)

3

√
1
ϵ

2
,

3

√
1

ϵ

 . To verify the

roots found for consistency with our initial assumption, we check that |A|, |C| >> |B| holds
for this root by substituting our found root expression for x back into A , B , and C and com-
paring their magnitudes. Using this method, we find that validity for small ϵ is False and va-
lidity for large ϵ is True. Therefore, these roots are valid in the limit of large positive ϵ only.
Grading: The response makes additional assumptions to drop the two other complex roots
for large ϵ regime without the question asking it to do so. Therefore, score for large positive ϵ
is 0.5

A.4.3 EXTENDED EXAMPLE GPT-4O GRADING RESPONSES

Grading Response: ODEs (incorrect)

To grade the response, we will compare the provided solutions in the response with the ground
truth solutions in both the small x and large x regimes.

SMALL x REGIME

Response: y(x) = 1− 5e−x

Ground Truth: y(x) = 1− 5x3

6
The response and the ground truth solution for small x are significantly different. The ground
truth solution is a polynomial in x, while the response includes an exponential term. They do
not match at all, so the solution for the small x regime is completely wrong.

LARGE x REGIME

Response: y(x) = "Assumed rapid growth form due to y′4 term."
Ground Truth: y = 3

√
30(x− 2.68)

1
3 + (1.84)

The response does not provide a specific analytical expression for the large x regime, while
the ground truth does provide a specific form. The response mentions rapid growth due to
y′4, but without a clear analytical form, this response doesn’t match the ground truth solution.
This indicates that the solution for the large x regime is also completely wrong.
Given the evaluation criteria, both solutions do not match or are incomplete compared to the
ground truth. Therefore, each solution gets no credit.
The final grading is 0.0 .

Box 3: Example grading response for a ODEs problem that gets zero point.

Grading Response: Integrals (correct)

The model response approximates the integral for small ϵ as
1

61/4
ϵ−3/4 and for large ϵ as

1

81/18
ϵ−17/18.

Now, let’s compare these results with the ground truth solutions:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

For small ϵ: - The ground truth solution is I(ϵ) =
0.64

ϵ0.75
. - The model’s result is

1

61/4
ϵ−3/4 .

Both results for small ϵ are essentially the same, with:

1

61/4
≈ 0.64

For large ϵ: - The ground truth solution is I(ϵ) =
0.89

ϵ0.94
. - The model’s result is

1

81/18
ϵ−17/18 .

Both results for large ϵ are essentially the same, with:

1

81/18
≈ 0.89

Since the model’s response closely matches the ground truth solutions in both regimes (small
and large ϵ) and provides essentially the same approximations, I would give full credit 1.0

Box 4: Example grading response for a Integrals sub-type simple integral problem that gets full
points.

Grading Response: Integrals (partial)

Answer Key
1. Setup and Formulation: it 1) correctly identifies the integral form; 2) uses Laplace’s
method; 3) identifies critical points and uses Taylor expansion around the point of interest; 4)
performs a change of variables to simplify the integral.
2. Key Steps and Approximations: it 1) expands the integrand around the minimum of f(t);
2) approximates the integral by focusing on the dominant exponential term; 3) provides a
final analytical approximation for I(x) as x → ∞.
3. Final Result:

I(x) ≈ −0.004e0.89x

x

Model Answer
1. Setup and Formulation: it 1) correctly identifies the integral form; 2) recognizes that the
exponential term will dominate for large x; 3) focuses on the region where the integrand is
most significant (near t = 0.7).
2. Key Steps and Approximations: it 1) uses the method of steepest descents heuristically
without detailed Taylor expansion; 2) approximates by evaluating the polynomial part at
t = 0.7 and considering the exponential decay; 3) recognizes the dominant behavior of the
exponential term but does not perform a detailed variable change or expansion.
3. Final Result:

I(x) ≈ −0.017 · ex·2.6·0.7
3

Comparison
1. Similarities: 1) understanding of dominance: both the answer key and the student correctly
identify that the behavior of the integral for large x is dominated by the exponential term;
2) identifying significant points: both recognize that t = 0.7 is the critical point where
the integrand contributes significantly; 3) approximate behavior: Bbth solutions focus on

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

approximating the behavior of the integral for large x, emphasizing the exponential term’s
dominance.
2. Differences: 1) mathematical rigor: the answer key employs a more rigorous mathematical
approach, including Taylor expansion and change of variables, providing a more precise
and detailed solution; 2) heuristic approach: the student takes a more heuristic approach,
focusing on the dominant exponential term without detailed mathematical expansions or
variable changes; 3) accuracy of final expression: the answer key provides a more accurate
final expression with specific constants derived from the detailed process, while the student’s
result, though on the right track, has a different coefficient due to the heuristic method. I
would give partial credit 0.5

Box 5: Example grading response for a Integrals sub-type Laplace integral problem highlighting the
error of failing to develop Taylor’s expansion.

A.5 MOTIVATION FOR INCLUDING NONDIMENSIONALIZATION PROBLEMS

GPT-4 response on solving a dimensionalized polynomial root finding problem

Problem: Find approximate analytical expressions for the roots of the polynomial:

a0x
5 − a1x+ a2 = 0

at different regimes of the coefficients a0, a1, and a2.

Model Solution:
Regime 1: |a0| ≫ |a1|, |a2| (Dominance of the x5-term) In this regime, the polynomial sim-
plifies to:

a0x
5 ≈ 0

Hence, the dominant contribution to the roots arises from balancing a0x
5 with the constant

term a2:

a0x
5 + a2 ≈ 0 =⇒ x ≈

(
−a2
a0

)1/5

.

This gives five distinct roots corresponding to the 5th roots of unity:

xk =

(
−a2
a0

)1/5

ei2πk/5, k = 0, 1, 2, 3, 4.

Regime 2: |a1| ≫ |a0|, |a2| (Dominance of the linear term) Here, the polynomial reduces to:

−a1x ≈ 0

and the root is approximately:
x ≈ 0.

Including the next dominant term, we balance −a1x with a2:

−a1x+ a2 ≈ 0 =⇒ x ≈ a2
a1

.

Regime 3: |a2| ≫ |a0|, |a1| (Dominance of the constant term) In this regime, the constant
term dominates, and the polynomial becomes inconsistent unless a2 = 0, which contradicts
the assumption |a2| ≠ 0. Thus, there are no real roots in this regime.
Regime 4: General Balance of Terms When all terms are of comparable magnitude, we con-
sider approximate solutions based on the magnitude of x:

1. For large x: The x5-term dominates. Balancing a0x
5 with −a1x:

a0x
5 − a1x ≈ 0 =⇒ x ≈

(
a1
a0

)1/4

.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

2. For small x: The linear term −a1x dominates over the other terms. Balancing
−a1x with a2:

−a1x+ a2 = 0 =⇒ x ≈ a2
a1

.

3. For intermediate x: All terms contribute, and the roots must be found numerically
or using perturbative methods.

Reference Solution:
Nondimensionalization We begin with the quintic polynomial:

a0x
5 − a1x+ a2 = 0.

To explore how the solution depends on the parameters a0, a1, and a2, let us write:

x =
a2
a1

y,

and substitute this into the polynomial. This substitution yields:

a0

(
a2
a1

)5

y5 − a2(y − 1) = 0.

Dividing through by a2, the equation becomes:

a0
a2

(
a2
a1

)5

y5 − y + 1 = 0.

Now define the parameter:

ϵ =
a0a

4
2

a51
,

which simplifies the equation to:

ϵx5 − x+ 1 = 0.

We examine the roots of the equation:

ϵx5 − x+ 1 = 0

in two asymptotic limits: ϵ → 0 and ϵ → ∞. The aim is to match the expressions for the
roots in the intermediate regime.
Consider the limit ϵ → 0. The equation involves three terms: ϵx5, −x, and 1. For the
equation to be satisfied, these terms must sum to zero. In the limit ϵ → 0, typically two of
these terms dominate, forming a distinguished balance.
To discover approximate formulas for the roots, we analyze each possible balance and
determine consistency.
Balancing −x ≈ 1
The first possibility is to balance the terms −x and 1. This implies, to a first approximation:

x ≈ 1.

For this balance to be self-consistent, the neglected term ϵx5 must satisfy:

ϵx5 ≪ 1.

Since x ≈ 1, this condition reduces to ϵ ≪ 1, which is satisfied as ϵ → 0. Hence, this balance
is consistent.
Balancing x5 ∼ −1

Consider the balance ϵx5 ∼ −1. This implies:

x ∼
(
−1

ϵ

)1/5

.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

For this balance to be consistent, the neglected term x ∼ ϵ−1/5 must be smaller than the
terms we have kept. However, this is not the case. In the limit ϵ → 0, the neglected term
grows unbounded, while the retained terms remain order unity. Therefore, this balance is not
consistent.
Balancing x5 ∼ x

The only other possible balance is ϵx5 ∼ x. This balance leads to four roots:

x ∼
(
1

ϵ

)1/4

.

In this case, the size of the neglected term 1 is much smaller than the size of the retained
terms, which are of order O(ϵ−1/4). Thus, this balance is self-consistent.
Final Solution for the Quintic Roots
The quintic equation:

a0x
5 − a1x+ a2 = 0

has the following approximate roots depending on the coefficient regime, summarized below:

Root 1: x ≈ 1,

Roots 2–5: x ≈
(

a51
a0a42

)1/4

ei
2πk
4 , k = 0, 1, 2, 3.

34

	Introduction
	Related work
	Mathematical datasets
	Recent interest in advanced mathematical reasoning

	Datasets
	HARDMath design choices
	Dataset generation and verification
	Problem types
	Nondimensionalization of polynomials
	Polynomial root-finding
	Polynomial root correction terms
	Nonlinear ordinary differential equations
	Traditional integrals
	Laplace integrals

	Word problems in context
	Automatic generation of context for word problems

	Evaluation
	Evaluation protocols
	Model choice
	Quantitative results
	Extensions to word problems

	Fine-grained results

	Conclusion
	Appendix
	Semi-automated solution verification
	Implementation and method details for data generation
	Nondimensionalization of polynomials
	Polynomial root-finding
	Polynomial root correction terms
	ODEs
	Integrals
	Laplace integrals
	Word problem automatic generation setup
	Word problem automatic generation example
	Word problem automatic generation quality evaluation

	Evaluation setup
	Prompts for response generation
	Prompts for grading
	GPT grading human verification
	Model hyper-parameters
	Computing resource

	Extended experimental results
	Extended evaluation results
	Extended error mode analysis
	Extended example GPT-4o grading responses

	Motivation for including nondimensionalization problems

