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Abstract

Stacked unsupervised learning (SUL) seems more biologically plausible than1

backpropagation, because learning is local to each layer. But SUL has fallen far2

short of backpropagation in practical applications, undermining the idea that SUL3

can explain how brains learn. Here we show an SUL algorithm that can perform4

completely unsupervised clustering of MNIST digits with comparable accuracy5

relative to unsupervised algorithms based on backpropagation. Our algorithm is6

exceeded only by self-supervised methods requiring training data augmentation by7

geometric distortions. The only prior knowledge in our unsupervised algorithm is8

implicit in the network architecture. Multiple convolutional “energy layers” contain9

a sum-of-squares nonlinearity, inspired by “energy models” of primary visual10

cortex. Convolutional kernels are learned with a fast minibatch implementation of11

the K-Subspaces algorithm. High accuracy requires preprocessing with an initial12

whitening layer, representations that are less sparse during inference than learning,13

and rescaling for gain control. The hyperparameters of the network architecture14

are found by supervised meta-learning, which optimizes unsupervised clustering15

accuracy. We regard such dependence of unsupervised learning on prior knowledge16

implicit in network architecture as biologically plausible, and analogous to the17

dependence of brain architecture on evolutionary history.18

1 Introduction19

Recently there has been renewed interest in the hypothesis that the brain learns through some version20

of the backpropagation algorithm [31]. This hypothesis runs counter to the neuroscience textbook21

account that local learning mechanisms, such as Hebbian synaptic plasticity, are the basis for learning22

by real brains. The concept of local learning has fallen out of favor because it has been far eclipsed23

by backpropagation in practical applications. This was not always the case. Historically, a popular24

approach to visual object recognition was to repeatedly stack a single-layer unsupervised learning25

module to generate a multilayer network, as exemplified by Fukushima’s pioneering Neocognitron26

[11]. Stacked unsupervised learning (SUL) avoids the need for the backward pass of backpropagation,27

because learning is local to each layer.28

In the 2000s, SUL was quite popular. There were attempts to stack diverse kinds of unsupervised29

learning modules, such as sparse coding [21], restricted Boltzmann machines [14, 29], denoising30

autoencoders [46], K-Means [7], and independent subspace analysis [25].31

SUL managed to generate impressive-looking feature hierarchies that are reminiscent of the hierarchy32

of visual cortical areas. Stacking restricted Boltzmann machines yielded features that were sensitive33

to oriented edges in the first layer, eyes and noses in the second, and entire faces in the third layer34

[29]. Stacking three sparse coding layers yielded an intuitive feature hierarchy where higher layers35

were more selective to whole MNIST digits and lower layers were selective to small strokes [43].36

Although these feature hierarchies are pleasing to the eye, they have not been shown to be effective37
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for visual object recognition, in spite of recent efforts to revive SUL using sparse coding [43, 6] and38

similarity matching [39].39

Here we show an SUL algorithm that can perform unsupervised clustering of MNIST digits with high40

accuracy (2% error). The clustering accuracy is as good as the best unsupervised learning algorithms41

based on backpropagation. As far as we know, our accuracy is only exceeded by self-supervised42

methods that require training data augmentation or architectures with hand-designed geometric43

transformations. Such methods use explicit prior knowledge in the form of geometric distortions to44

aid learning.45

Our network contains three convolutional energy layers inspired by energy models of primary visual46

cortex [1], which contain a sum-of-squares nonlinearity. Our energy layer was previously used by47

[16] in their independent subspace analysis (ISA) algorithm for learning complex cells. The kernels48

of our convolutional energy layers are trained by K-Subspaces clustering [45] rather than ISA. We49

also provide a novel minibatch algorithm for K-Subspaces learning.50

After training, the first energy layer contains neurons that are selective for simple features but invariant51

to local distortions. These are analogous to the complex cells in energy models of the primary visual52

cortex [1]. The invariances are learned here rather than hand-designed, similar to previous work53

[16, 15]. We go further by stacking multiple energy layers. The second and third energy layers learn54

more sophisticated kinds of invariant feature selectivity. As mentioned above, feature hierarchies55

have previously been demonstrated for SUL. The novelty here is the learning of a feature hierarchy56

that is shown to be useful for pattern recognition.57

In the special case that the sum-of-squares contains a single term, or equivalently the subspaces are58

restricted to be rank one, our convolutional energy layer reduces to a conventional convolutional layer.59

Accuracy worsens considerably, consistent with the idea that the energy layers are important for60

learning invariances. The energy layers contain an adaptive thresholding that allows representations61

to be less sparse for inference than for learning. This is also shown to be important for attaining high62

accuracy, as has been reported for other SUL algorithms [8, 24]. Representations are rescaled for63

gain control, and the energy layers are preceded by a convolutional whitening layer. These aspects of64

the network are also important for high accuracy.65

The detailed architecture of our unsupervised network depends on subspace number and rank, kernel66

size, and sparsity. We use automatic tuning software [2] to systematically search for a hyperparameter67

configuration that optimizes the clustering accuracy of the unsupervised network. Evaluating the68

clustering accuracy requires labeled examples, so the meta-learning is supervised, while the learning69

is unsupervised. A conceptually similar meta-learning approach has previously been applied to search70

for biologically plausible unsupervised learning algorithms [37].71

For each iteration of the meta-learning, the weights of our network are initialized randomly before72

running the SUL algorithm. Therefore the only prior knowledge available to SUL resides in the73

architectural hyperparameters; no weights are retained from previous networks. We regard this74

implicit encoding of prior knowledge in network architecture as biologically plausible, because brain75

architecture also contains prior knowledge gained during evolutionary history, and meta-learning is76

analogous to biological evolution. In its own “lifetime” our network is able to learn with no labels at77

all. This is possible because the network is “born” with an architecture inherited from networks that78

“lived” previously.79

2 Related work80

Independent subspace analysis Our method is related to past works on independent subspace81

analysis [16, 17, 26], mixtures of principal components analyzers [13], and subspace clustering82

[45, 47]. A core idea behind these works is that invariances can be represented via subspaces. The83

most similar of these works to ours is [26] who stacked 2 layers of subspace features learned with84

independent subspace analysis to action recognition datasets.85

K-Means based features Mathematically the work of [7, 9] is similar to ours. They use a variant of86

K-Means to learn patch features. Their learning algorithm (Algorithm 1) is a special case of our alg. 187

where they use 1D subspaces and full batch updates. Their inference procedure is also very similar,88

in that they use a dynamic threshold to sparsify patch vector representations. They use spatial pooling89

layers for invariance, whereas our pooling is learned by the energy layers. Their primary mode of90
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Figure 1: Our multilayer convolutional energy network. The last step of K-Means clustering can be regarded as
part of the evaluation rather than the network itself.

evaluation was linear evaluation with the full labeled dataset, whereas we will seek to produce an91

unsupervised learning algorithm which clusters inputs without labels. They additionally employ a92

receptive field selection method.93

Capsule networks Capsules are vector representations where the vector’s length represents the94

probability of entity existence and the direction represents properties of that entity [41]. In our95

networks, the r-dimensional subspace vectors Vx can be interpreted as learned “pose” vectors.96

However our goal is to learn invariance, so we only propagate the norm ∥Vx∥, thus suppressing the97

pose details at each layer. Compared to the unsupervised capsule networks [23], our networks do not98

use any backpropagation of gradients, and do not rely on hand-designed affine transformations to99

generate representations.100

Meta-learning of unsupervised learning rules Our work will rely on using a label-based clustering101

objective to evaluate and tune an unsupervised learning rule. In other words there are two levels of102

learning, an unsupervised inner loop and a supervised outer loop. This is the domain of meta-learning.103

The more common scenario for meta-learning is to focus on optimizing over a distribution of tasks,104

but for this work we will focus on one task. The work of [36] is perhaps the most closely related to105

ours. They use a few-shot supervised learning rule to tune an unsupervised learning algorithm that is106

a form of randomized backward propagation [30]. We wish to go further and remove any form of107

gradient feedback from a higher layer L to a lower layer L− 1.108

3 Network architecture109

The overall network architecture is shown in Figure 1, and consists of a whitening layer followed by110

multiple convolutional energy layers and a final average pooling layer. The energy layers include111

adaptive thresholding to control sparsity of activity, as well as normalization of activity by rescaling.112

Convolutional ZCA We define ZCA whitening for image patches in terms of the eigenvalues of113

the pixel-pixel correlation matrix. Our ZCA filter attenuates the top k − 1 eigenvalues, setting them114

equal to the kth largest eigenvalue. The smaller eigenvalues pass through unchanged. Our definition115

is slightly different from [10], which zeros out the smaller eigenvalues completely.116

The first layer of our network is a convolutional variant of ZCA, in which each pixel of the output117

image is computed by applying ZCA whitening to the input patch centered at that location, and118

discarding all but the center pixel of the whitened output patch (p. 118 of [10]). The kernel has a single-119

pixel center with a diffuse surround (see Appendix). Patch size and number of whitened eigenvalues120

are specified in Table 1. Reflection padding is used to preserve the output size. Unsupervised learning121

algorithms such as sparse coding [40] and ICA [5] are often preceded by whitening when applied to122

images.123

Convolutional energy layer We define the following modification of a convolutional layer, which124

computes k output feature maps given m input feature maps. We define the “feature vector” at a125

location to consist of the values of a set of feature maps at a given location.126

1. Convolve the m input feature maps with kernels to produce kr feature maps (“S-maps”) in127

the standard way, except with no bias or threshold.128

2. Divide the kr feature maps into k groups of r. For each group, compute the Euclidean129

norm of the r-dimensional feature vector at each location. The result is k feature maps130

(“C-maps”).131
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Figure 2: Diagram of a single energy layer. The outputs of this layer are the C feature maps, while S are just
intermediate feature maps. We produce kr feature maps (S) with a standard convolution. We produce (C)
feature maps by square root the sum of squares inside each group of S feature maps, followed by an adaptive
thresholding and rescaling.

Individual values in the S- and C-maps of Steps 1 and 2 will be called S-cells and C-cells, respectively.132

Each C-cell computes the square root of the sum-of-squares (Euclidean norm) of r S-cells. The terms133

S-cells and C-cells are used in homage to [11]. They are reminiscent of energy models of primary134

visual cortex, in which complex cells compute the sum-of-squares of simple cell outputs [1].135

The sum-of-squares can be regarded as a kind of pooling operation, but applied to S-cells at the same136

location in different feature maps. Pooling is typically performed on neighboring locations in the137

same feature map, yielding invariance to small translations by design. We will see later on that the138

sum-of-squares in the energy layer acquires invariances due to the learned kernels.139

Adaptive thresholding and normalization It turns out to be important to postprocess the output of a140

convolutional energy layer as follows.141

3. For each k-dimensional feature vector, adaptively threshold so that there are W winners142

active.143

4. Normalize the feature vector to unit Euclidean length, and rescale by multiplying with the144

Euclidean norm of the input patch at the same location.145

Define f as the k-dimensional vector which is the k feature map values at a location u in the C feature146

maps. In Step 3, the adaptive thresholding of f takes the form max{0, fi − τ} for i = 1 to k where τ147

is the W + 1st largest element of f . Note that τ is set adaptively for each location. Such adaptive148

thresholding was used by [44] and is a version of the well-known W -winners-take-all concept [33].149

After thresholding, C-cells are sparsely active, with sparseness controlled by the hyperparameter W .150

S-cells, on the other hand, will typically be densely active, since they are linear.151

Step 4 normalizes the k-dimensional feature vector, and also multiplies by the Euclidean norm of the152

input patch, to prevent the normalized output from being large even if the input is vanishingly small.153

The kernels in the layer are size p× p, so that the input patch at any location contains mp2 values154

where m is the number of input feature maps.155

Final average pooling layer To reduce the output dimensionality, we average pool each output156

feature map of the last energy layer to a 2 × 2 grid, exactly as in [8]. We have generally avoided157

pooling because we want to learn invariances rather than design them in. However, a final average158

pooling will turn out to be advantageous later on for speeding up meta-learning. In Table 2 we show159

that this pooling layer has only a modest impact on the final clustering accuracy.160

4 Stacked unsupervised learning161

The outputs of the ZCA layer are used as inputs to a convolutional energy layer. We train the kernels162

of this layer, and then we freeze the kernels. The outputs of the first convolutional energy layer are163

used as inputs to a second convolutional energy layer, and the kernels in this layer are trained. We164

repeat this procedure to stack a total of three convolutional energy layers, and then conclude with a165

final pooling layer.166
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LAYER # SUBSPACES (k) SUBSPACE RANK (r) # WINNERS (w) KERNEL SIZE PADDING

L1 37 2 9 8 2
L2 9 3 8 5 1
L3 58 16 2 21 2

Table 1: Detailed architecture of our three energy layer net. The first energy layer is preceded by convolutional
ZCA whitening of the input image, where the kernel size is 9 and the number of whitened eigenvalues is 9.
These parameters are found with automated hyperparameter tuning.

REPRESENTATION PIXELS ZCA LAYER 1 LAYER 2 LAYER 3 2X2 POOL
CLUSTERING ERROR (%) 46.2 50.0 22.7 22.2 2.3 2.1

Table 2: Clustering error after every layer of our network with three energy layers.

K-Subspaces clustering Consider an energy layer with k C-cells and kr S-cells at each location. The167

S-cells at one location are linearly related to the input patch at that location by the set of k matrices168

Vj for j = 1 to k, each of size r ×mp2. Here mp2 is the size of the flattened input patch, where m169

is the number of input feature maps and p is the kernel size.170

We can think of these matrices as defining a set of k linear subspaces of rank r embedded in Rmp2

.171

We learn these matrices with a convolutional extension of the K-Subspace learning algorithm [45].172

Let xn be the previous layer’s m-dimensional feature maps for pattern n. Define xn,i as the mp2-173

dimensional feature vector created by flattening a p×p patch centered around location i. K-Subspaces174

aims to learn k r-dimensional subspaces Vk ∈ Rr×mp2

such that every patch is well modeled by175

one of these subspaces. This is formalized with the following optimization:176

min
V

min
C

∑
n,i

∑
k

cnik
∥∥xni −V⊤

k Vkxni

∥∥2
(1)

such that cnik ∈ {0, 1} and
∑

k cnik = 1. We provide a novel minibatch algorithm for this opti-177

mization in Appendix A. During the learning, each matrix Vj is constrained so that its rows are178

orthonormal. Therefore at each location the C-cells contain the Euclidean norms of the projection of179

the input patch onto each of the subspaces, before the adaptive thresholding and rescaling. This is180

why the K-Subspaces algorithm is naturally well-suited for learning the convolutional energy layer.181

During K-Subspaces learning, an input patch is assigned to a single subspace, which means there182

is winner-take-all competition between C-cells at a given location. During inference, on the other183

hand, there can be many C-cells active at a given location (depending on the "number of winners"184

hyperparameter w).185

This idea of making representations less sparse for inference than for learning has been exploited by186

a number of authors [7, 24]. This may be advantageous because overly sparse representations can187

suffer from sensitivity to distortions [32].188

Experiments with MNIST digits We train a network with the architecture of Fig. 1. The details189

of the ZCA layer and the three convolutional energy layers are specified by Table 1. Each energy190

layer is trained using a single pass through the 60,000 MNIST [27] training examples (without using191

the labels), with a minibatch size of 512. Training on a single Nvidia Titan 1080-Ti GPU takes 110192

seconds.193

Evaluation of learned representations We adopt the intuitive notion that the output representation194

vectors of a “good” network should easily cluster into the underlying object classes as defined by195

image labels. This is quantified by applying the trained network to 10,000 MNIST test examples.196

The resulting output representation vectors are clustered with the scikit-learn implementation of197

K-Means. This uses full batch EM-style updates and additionally returns the lowest mean squared198

error clustering found by running the algorithm using 10 different initializations.199

We set the number of clusters to be 10, to match the number of MNIST digit classes. We compute the200

disagreement between the cluster assignments and image labels, and minimize over permutations of201

the clusters. The minimal disagreement is the final evaluation, which we will call the clustering error202

[49].203
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REPRESENTATION CLUSTERING ERROR (%)

PIXELS 46.2
NMF‡ [28] 44.0
STACKED DENOISING AUTOENCODERS† [46] 18.8
UMAP [35] 17.9
GENERATIVE ADVERSARIAL NETWORKS† [12] 17.2
VARIATIONAL AUTOENCODER† [22] 16.8
DEEP EMBEDDED CLUSTERING† [48] 15.7
VADE [19] 5.5
CLUSTERGAN‡ [38] 5.0
UMAP + GMM [35] 3.6
N2D [34] 2.1
OURS (THREE LAYER NET) 2.1
INVARIANT INFORMATION CLUSTERING (AVG SUB-HEAD) † [18] 1.6
STACKED CAPSULE AUTOENCODERS [23] 1.3
INVARIANT INFORMATION CLUSTERING (BEST SUB-HEAD)† [18] 0.8

Table 3: Comparison of clustering accuracy for other unsupervised learning algorithms. For methods which do
not generate clusters, k-means is used to cluster representations into 10 clusters, with the exception of UMAP +
GMM in which case we use a Gaussian Mixture Model to cluster. The errors for methods with a dagger † are all
taken from [18], methods with double dagger ‡ are taken from [38]. UMAP uses “out-of-the-box” parameter
settings.

Figure 3: Layer 1 subspaces learned with our algorithm. Each 8× 8 image corresponds to a kernel.

Table 2 quantifies the accuracy of each layer. The accuracy of the ZCA representation is actually204

worse than that of the raw pixels. However, the accuracy of the representations improves with each205

additional convolutional energy layer, until the final error is just 2.1%.206

Comparisons with other algorithms are shown in Table 3. It is helpful to distinguish between algo-207

rithms that require training data augmentation, and those that do not. Many well-known unsupervised208

algorithms that do not make use of training data augmentation, such as GANs, variational autoen-209

coders, and stacked denoising autoencoders, yield clustering errors of 15 to 19%. Methods such as210

VaDE and ClusterGAN encourage clustered latent representations and these give rise to much lower211

clustering error. Clustering 2D UMAP representations with K-Means gives suprisingly high error,212

and this is likely the returned clusters are not spherical. Using a Gaussian Mixture Model instead213

gives much lower error. See the appendix for more discussion.214

Self-supervised algorithms require training data augmentation, using prior knowledge to create same-215

class image pairs. For MNIST clustering one of the highest performance is Invariant Information216

Clustering, with a clustering error of 1.6 - 0.8% [18]. Our approach delivers roughly 2 % error and is217

noticeably better than the other algorithms that do not require training data augmentation.218

Stacked capsule autoencoders [23] also achieve high accuracy. However, this algorithm incorporates219

a model of geometric distortions. Furthermore, despite the modifier “stacked,” the algorithm does not220

conform to the original idea of repeatedly stacking the same learning module. The architecture uses221

several distinct types of layers and still backpropagates gradients.222

Learned kernels Figure 3 shows that the kernels in the first energy layer look like bars or edges,223

more often curved than straight. Since the subspaces are of rank 2 (Table 1), the kernels come in224

pairs. The kernels in a pair look quite similar to each other, and typically appear to be related by225

small distortions. Therefore the two S-cells in a pair should prefer slightly different versions of the226

same feature. By computing the square root of the sum-of-squares of the S-cells, the C-cell should227

detect the same feature with more invariance to distortions.228
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Figure 4: Output "C" feature maps for 3 input images.

This behavior is reminiscent of energy models of simple and complex cells in primary visual cortex229

[1, 42]. A complex cell computes the sum-of-squares of simple cells, which are quadrature pairs of230

Gabor filters. The sum-of-squares is invariant to phase shifts, much as the sum-of-squares of sine231

and cosine is constant. Our model also contains a sum-of-squares, but the filters are learned rather232

than hand-designed. Learning of complex cells was previously demonstrated by [16] for an energy233

model and by [20] for a similar model. [15] showed how to substitute rectification for quadratic234

nonlinearity. Our contribution is to stack multiple energy layers, and investigate the accuracy of the235

resulting network at a clustering task.236

Feature maps Figure 4 shows the C-maps for the first 3 MNIST digits. The first energy layer exhibits237

an intermediate degree of sparsity, (approximately 20 % of the maps are active at central locations).238

The second energy layer exhibits dense representations (nearly all maps are active at central locations).239

The final energy layer shows quite sparse representations (approximately 5% of the maps are active).240

The feature maps appear to be broad spots.241

5 Meta-learning of network architecture for unsupervised learning242

The detailed architecture of the network is specified in Table 1, and one might ask where it came from.243

For example, the kernel size is 21 in the third energy layers, but sizes are only single digit integers in244

other layers. The subspaces are rank 2 in the first energy layer, but rank 3 and 16 in the subsequent245

energy layers. The second energy layer is highly dense (all but one neuron is active at each location),246

while the third layer is highly sparse (only two neurons are active at each location). There is a total247

of 17 numbers in Table 1, and we can regard them as hyperparameters of the unsupervised learning248

algorithm.249

In the initial stages of our research, we set hyperparameters by hand, guided by intuitive criteria such250

as increasing the subspace rank with layer (meaning more invariances learned). Later on, we resorted251

to automated hyperparameter tuning. For this purpose, we employed the Optuna software package,252

which implements a Bayesian method [2]. We found that we were able to find hyperparameter253

configurations with considerably better performance than our hand-designed configurations.254

In particular, the configuration of Table 1 was obtained by automated search through 2000 hyper-255

parameter configurations, which took approximately 20 hours using 8 Nvidia GTX 1080 Ti GPUS.256

Each hyperparameter configuration was used to generate an unsupervised clustering of the training257

set, and its accuracy with respect to all 60,000 training labels was the objective function of the search.258

For the ZCA layer we tune the kernel size kzca ∈ [1, 11] and number of whitened eigenvalues259

nzca ∈ [0, k2zca]. For each subspace layer we tune number of subspaces k ∈ [2, 64], subspace260

dimension r ∈ [1, 16], number of winners w ∈ [1, k], kernel size ks ∈ [1, input_size], and padding261

ps ∈ [0,floor(ks/2)]. The stride is fixed at 1.262

In some respects, the optimized configuration of Table 1 ended up conforming to our qualitative263

expectations. Sparsity and kernel size increased with layer, consistent with the idea of a feature264
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NUMBER OF LABELS IN TRAINING SET 10 30 50 100 500 5000 60000

% MISCLASSIFIED (TEST) 30.0 9.2 10.7 5.3 4.6 2.9 2.1
% MISCLASSIFIED (TRAIN) 0.0 0.0 0.0 3.0 2.8 2.9 2.5

Table 4: Label efficiency of our stacked learning algorithm. In each case, the algorithm has access to all 60K
unlabeled images from the training set. What varies is the number of labels we use to evaluate each setting of
learning parameters.

EXPERIMENT % ERROR (TEST) % ERROR (TRAIN)

4 ENERGY LAYERS 3.1 3.6
3 ENERGY LAYERS 2.1 2.5
2 ENERGY LAYERS 2.9 3.3
1 ENERGY LAYERS 20.2 20.7
NO ZCA - 3 ENERGY LAYERS 4.0 4.8
NO RESCALING - 3 ENERGY LAYERS 4.1 4.6
NO ZCA & NO RESCALING - 3 ENERGY LAYERS 9.7 10.1
1D SUBSPACES - 3 ENERGY LAYERS 16.0 17.3
RANDOM SUBSPACES - 3 ENERGY LAYERS 29.4 31.1

Table 5: Systematic studies with our multilayer energy model. The learning hyperparameters are tuned using all
60K labels from the training set.

hierarchy with progressively greater selectivity and invariance. However, the number of subspaces265

behaved nonmonotonically with layer, which was unexpected.266

We can think of the hyperparameter tuning as an outer loop surrounding the unsupervised learning267

algorithm. We will refer to this outer loop as meta-learning. Given an architecture, the unsupervised268

learning algorithm requires no labels at all. However, the outer loop searches for the optimal network269

architecture by using training labels. Therefore, while the learning is unsupervised, the meta-learning270

is supervised. Alternatively, the outer loop can use only a fraction of the training labels, in which271

case the meta-learning is semi-supervised.272

It is interesting to vary the number of training labels used for hyperparameter search. The results273

are shown in Table 4. The best accuracy is obtained when all 60,000 training set labels are used.274

Accuracy degrades slightly for 5000 labels, and more severely for fewer labels than that. The test275

error can be lower than the training error. This is not a mistake, and it appears to result from a276

non-random ordering of patterns in the MNIST train and test sets.277

To be clear about the use of data, we note that neither test images nor labels are used during learning278

or meta-learning. Training images but not labels are used during learning. Training labels are used279

by meta-learning. With each iteration of meta-learning, the weights of the network are randomly280

initialized.281

6 Experiments282

The hyperparameter search explores the space of networks defined by Fig. 1. We can widen the283

space of exploration by performing ablation studies, with results given in Table 5. In all experiments,284

we completely retune the hyperparameters using the full 60K training labels to evaluate clustering285

accuracy. With the exception of the experiment where we vary the number of layers, we use the 3286

energy layer network in this section.287

Vary number of energy layers One can vary the depth of the network by adding or removing energy288

layers. 2 and 4 energy layers yield similar accuracy, and are roughly 1% absolute error (50% relative289

error) worse than for 3 energy layers. A 1 energy layer net is dramatically worse (>20% train/test290

error), suggesting the stacking is critical for performance.291

The hyperparameters for each of these optimal architectures are provided in the Appendix. The292

optimal 2 energy layer net resembles the 3 energy layer net with its 2nd energy layer removed, while293

simultaneously making the 1st energy layer less sparse.294
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Remove ZCA whitening Removing the ZCA layer increases both train and test error of the three295

energy layer net by roughly 2×. This might seem surprising, as Table 2 shows that whitening by296

itself decreases accuracy if we directly cluster whitened pixels instead of raw pixels. Apparently, it297

is helpful to “take a step backward, before taking 3 steps forward” in the case of our networks with298

three energy layers. We have no theoretical explanation for this interesting empirical fact.299

Preprocessing images by whitening has a long history. The retina has been said to perform a whitening300

operation, which is held to be an “efficient coding” that reduces redundancy in an information theoretic301

sense [4, 3]. Our experiment suggests that whitening is useful because it improves the accuracy302

of subsequent representations produced by stacked unsupervised learning. This seems at least303

superficially different from efficient coding theory, because the invariant feature detectors in our304

networks appear to discard some information (Figure 4).305

Remove rescaling We now remove the rescaling operation from our energy layers. We observe306

a roughly 2× increase in both test and train error. It may be surprising that such a seemingly307

innocuous change can double the resulting train/test errors. This is likely because we only have 17308

hyperparameters to optimize; with a limited set of parameters to tune, small changes in architecture309

can lead to dramatic performance changes as we only have limited flexibility to tune hyperparameters.310

Remove rescaling and ZCA whitening Removing both ZCA and the per-layer rescaling operations311

causes a 4× increase in train and test error. Apparently the damage to the resulting performance is312

multiplicative: removing ZCA alone doubles the train/test error, removing rescaling alone doubles313

train/test error, and removing both quadruples the train/test error.314

1D subspaces We rerun the automated hyperparameter tuning experiments from the previous section,315

this time restricting our subspaces to be 1D. The subspace norm can be thought of as a conventional316

dot product followed by absolute value nonlinearity ∥Vx∥ = |v · x| where v is the one row of the317

subspace matrix V. When the subspaces are 1D, our algorithm in fact reduces to that of [9].318

Random subspaces Finally we ask the question: does learning actually help or is it simply the319

architecture that matters? To do so, we run tuning experiments with random orthogonal subspaces.320

We observe that performance is almost completely erased by using random subspaces, telling us that321

the unsupervised learning component is indeed critical for clustering performance.322

7 Discussion323

The elements of our SUL algorithm were already known in the 2000s: ZCA whitening, energy layers,324

K-Subspaces, and adaptive thresholding and rescaling of activities during inference. To achieve325

state-of-the-art unsupervised clustering accuracy on MNIST, we employed one more trick, automated326

tuning of hyperparameters. Such meta-learning is more feasible now than it was in the 2000s, because327

computational power has increased since then.328

Given that meta-learning optimizes a supervised criterion, is our SUL algorithm really unsupervised?329

It is true that the complete system is supervised. However, even if the outer loop (meta-learning) is330

supervised, it is accurate to say that the inner loop (learning) is unsupervised. For any hyperparameter331

configuration, the network starts from randomly initialized weights, and proceeds to learn in a purely332

label-free unsupervised manner.333

Although MNIST is an easy dataset by today’s standards, we think that the success of our SUL334

algorithm at unsupervised clustering is still surprising. We are only tuning 17 hyperparameters, and it335

is not clear a priori that our approach would be flexible enough to succeed even for MNIST.336

In future work, it will be important to investigate more complex datasets or tasks. Following the337

more common scenario for meta-learning, future work should train an unsupervised algorithm on a338

distribution of tasks, and test transfer to some held-out distribution. We have done some preliminary339

experiments with the CIFAR-10 dataset. The meta-learning is more time-consuming because larger340

network architectures must be explored. The research is still in progress, but we speculate that the341

winner-take-all behavior of K-Subspaces learning may turn out to be a limitation. If so, it will be342

important to relax the winner-take-all condition in Equation (1).343

Evolution created brains through eons of trial-and-error. For us to discover how the brain learns, it344

will be important to exploit our computational resources, and use meta-learning to empirically search345

the space of biologically plausible learning algorithms.346
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they487
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(c) Did you report error bars (e.g., with respect to the random seed after running experi-489

ments multiple times)? [No] Unfortunately we did not have adequate time to complete490

these experiments, as each meta-learning experiment required training and evaluating491

1000s of different architectures492

(d) Did you include the total amount of compute and the type of resources used (e.g., type493

of GPUs, internal cluster, or cloud provider)? [Yes] In section 5 on hyperparameter494

tuning, we state that each 3 layer meta-learning experiment takes approximately 20495

hours on 8 GPUs496

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...497

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite mnist set498

creators.499

(b) Did you mention the license of the assets? [No]500

(c) Did you include any new assets either in the supplemental material or as a URL? [No]501

(d) Did you discuss whether and how consent was obtained from people whose data you’re502

using/curating? [No] Dataset only includes handwritten digits.503

(e) Did you discuss whether the data you are using/curating contains personally identifiable504

information or offensive content? [No] Dataset only includes handwritten digits.505

5. If you used crowdsourcing or conducted research with human subjects...506

(a) Did you include the full text of instructions given to participants and screenshots, if507

applicable? [N/A]508

(b) Did you describe any potential participant risks, with links to Institutional Review509

Board (IRB) approvals, if applicable? [N/A]510

(c) Did you include the estimated hourly wage paid to participants and the total amount511

spent on participant compensation? [N/A]512

A Online minimization of Eq. 1513

Algorithm 1: K-Subspace clustering via minibatch power iterations

Initialize subspaces {Vk ∈ Rr×mp2}
for i = 1, 2, 3 do

Sample patches from a minibatch of images {xu ∈ Rmp2}
Cluster patches

Xk := {xu : k = argmin
q

∥∥xu −V⊤
q Vqxu

∥∥} for k = 1, 2, 3, . . .

Apply one orthogonal power iteration to every subspace

USV⊤ := X⊤
k XkV

⊤
k SVD decomposition

Vk := U⊤ for k = 1, 2, 3, . . .

end

A standard algorithm for minimizing Eq. 1 is a full batch EM algorithm that alternates between514

cluster assignment (E-step) and using PCA to set Vk to the top r principle components of the patches515

assigned to each cluster k (M-step) [45]. The full batch requirement makes this algorithm rather slow.516

The algorithm we present and use in this paper is described in Algorithm 1. We make two core517

changes to the standard EM algorithm. One, we use minibatch updates instead of full batch updates.518

Two, we perform a single step of power-iteration after each cluster assignment step, instead of519

performing a full PCA.520

Proper initialization can impact on the quality of learned subspaces. We initialize subspaces by521

setting the first dimension to a randomly chosen patch, and the other dimensions to white Gaussian522

13



noise with µ = 0, σ = 0.01. We then perform a few “warmup” iterations of the main loop in alg. 1,523

except we only cluster using the first subspace dimension. We use warmup_iter = 10 in all our524

experiments. During these warmup iterations, the power updates are still performed on the full rank-r525

subspaces. Intuitively, this warmup procedure generates clusters with 1D subspace clustering, and526

initializes subspaces be the top r components within these clusters.527

Convergence of our algorithm is discussed in the Appendix. We prove that the clustering+power528

iteration step ensures the loss computed over the minibatch is non-decreasing. We show empirically529

that the loss computed over the whole dataset decreases with iteration for a reasonable setting of530

parameters. Because we only use a single pass through the data to train each layer, our algorithm is531

much faster than applying the full batch EM-style algorithm described in [45] to the whole dataset.532

B Convergence analysis of Algorithm 1533

B.1 Theory: full-batch convergence534

We will not be able to provide a full proof that Algorithm 1 converges in the minibatch setting.535

However we can at least show that in the full batch setting, every iteration of Algorithm 1 decreases536

the energy in Equation (1). Of course the cluster assignment portion of the algorithm decreases the537

energy. What we will show here is that the power iteration step also decreases the energy at every538

iteration.539

We recall the notation from Algorithm 1. We define the matrix Xk whose rows are the input patches540

assigned to cluster k:541

Xk := {xu : k = argmin
q

∥∥xu −V⊤
q Vqxu

∥∥} (2)

The energy in Equation (1) can be written as a sum of energies for each cluster e =
∑

k ek where:542

ek = ∥Xk −XkV
⊤
k Vk∥2F (3)

We will show that a power update for cluster k now gives a non-decreasing energy ek. To avoid543

notational clutter, we will drop the subspace index k and assume we are working with a single fixed544

cluster for now. It will actually be easier to show that a more general class of updates than the SVD545

update in Algorithm 1 cause the energy to remain or decrease. Suppose we have any subspace update546

defined by:547

V′ := Q(VCV)†CV (4)
where Q is any orthogonal r × r matrix (that can also be a function of V,C. The power update548

in Algorithm 1 is an example of such an update. We will show that the energy for every subspace549

is non-decreasing with this update: e′ ≤ e. We do so by relating the update in Equation (4) to one550

sequence of steps in an alternating least squares problem. Define:551

h(A,B) := ∥X−AB⊤∥2 (5)

Define A = XV⊤ and B = V⊤. Then e = h(A,B). Define the sequence:552

B′ = argmin
U

h(A,U) = XA(A⊤A)†

A′ = argmin
U

h(U,B′) = XB′((B′)⊤B′)†
(6)

We can multiply A′(B′)⊤ and substitute the above equations to get:553

A′(B′)⊤ = X(V′)⊤V′ (7)

We therefore have that e′ = h(A′,B′) ≤ h(A,B) = e, so the subspace energy is non-increasing554

under the updates in Algorithm 1.555

B.2 Experiment: learning curves556

We show learning curves using Algorithm 1 applied to MNIST digits in Figure 5. We run this557

algorithm for a single pass through the 60k training set patterns. Inputs are first whitened with558
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Figure 5: Learning algorithms for Algorithm 1 applied to MNIST digits.

Figure 6: Learned ZCA kernel for 3 energy layer net. We have zero-ed out the central pixel, as its value is 1.17
and thus would make it harder to see the surround structure. This filter resembles an oblique center surround
filter.

ConvZCA using a kernel size of 11 and num component of 16. We learn 64 subspaces, each of559

dimension 5, and kernel size of 9. We use a minibatch size of 256.560

The training set energy is computed over a minibatch of 256 inputs at each iteration. The test set561

energy is computed over all 10K test set patterns, which is why it is less noisy. Empirically we562

see that for this setting of parameters at least, our minibatch K-Subspace algorithm does lead to a563

decreasing energy computed over unseen patterns.564

We apply 10 warmup iterations (only using the first subspace dimension to cluster for the first 10565

iterations), which is why we observe the sharp drop-off in energy after 10 iterations.566

C Hyperparameters for 1,2,3,4 energy layer nets567

In Table 6 we show the learned architectures for the 1,2,3,4 energy layer networks.568
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Table 6: Network architectures for 1,2,3,4 energy layer nets from Table 5.

HYPERPARAMETER 1 LAYER 2 LAYER 3 LAYER 4 LAYER

CONVZCA KERNEL SIZE 5 9 9 11
CONVZCA N COMPONENTS 0 18 9 18

LAYER1 SUBSPACE NUMBER (k) 59 20 37 15
LAYER1 SUBSPACE RANK (r) 2 5 2 2
LAYER1 ACTIVE FEATURES (w) 1 16 9 10
LAYER1 KERNEL SIZE 10 10 8 7
LAYER1 PADDING 4 2 2 3

LAYER2 SUBSPACE NUMBER (k) - 55 9 63
LAYER2 SUBSPACE RANK (r) - 16 3 12
LAYER2 ACTIVE FEATURES (w) - 1 8 1
LAYER2 KERNEL SIZE - 19 5 17
LAYER2 PADDING - 1 1 1

LAYER3 SUBSPACE NUMBER (k) - - 58 57
LAYER3 SUBSPACE RANK (r) - - 16 7
LAYER3 ACTIVE FEATURES (w) - - 2 6
LAYER3 KERNEL SIZE - - 21 8
LAYER3 PADDING - - 2 2

LAYER4 SUBSPACE NUMBER (k) - - - 22
LAYER4 SUBSPACE RANK (r) - - - 1
LAYER4 ACTIVE FEATURES (w) - - - 1
LAYER4 KERNEL SIZE - - - 3
LAYER4 PADDING - - - 1

D Learned ZCA filter569

In Figure 6 we show the learned ConvZCA kernel for the 3 energy layer network. It resembles an570

oblique center surround filter. It is interesting to calculate the relative weight of the negative surround571

vs positive center term. Specifically we calculate:572

f =
I[4, 4]−

∑
u,v max{0,−Iu,v}
I[4, 4]

= 0.10 (8)

where I is the 9x9 kernel and I[4, 4] is the central pixel of that kernel. In other words, there is a small573

DC component (the central pixel is not perfectly cancelled out by the negative surround).574

E Clustering UMAP embeddings575

In the main text we reported a surprisingly low performance for K-Means applied to UMAP em-576

bedding, and that using a Gaussian mixture model instead can significantly improve the accuracy.577

Here we show the UMAP embeddings, and corresponding clusterings generated via K-Means and578

Gaussian Mixture Models.579

Note that our result is not inconsistent with the result given in Table 1 of [34] who reported 82.5%580

clustering accuracy (compared to our result of 96.4% in Table 5) when using a GMM to cluster the581

embedding vectors return by UMAP. This is because we are using UMAP to embed to 2D while they582

used UMAP to embed to 10 dimennsions. For this task it seems that the extremely low dimensional583

embeddings are actually more suitable for downstream clustering.584
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Figure 7: K-Means vs. Gaussian Mixture-based clustering applied to UMAP with "out-of-the-box" parameters
applied to MNIST handwritten digits. Colors are assigned to each point based of the clustering (not the ground
truth labels). K-Means erroneously merges and splits some of the clusters, while Gaussian Mixture models give
a much more intuitive clustering (and ultimately a much lower clustering error as shown in Table 5)
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