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ABSTRACT

Learning the causes of time-series data is a fundamental task in many applications,
spanning from finance to earth sciences or bio-medical applications. Common
approaches for this task are based on vector auto-regression, and they do not take
into account unknown confounding between potential causes. However, in settings
with many potential causes and noisy data, these approaches may be substantially
biased. Furthermore, potential causes may be correlated in practical applications.
Moreover, existing algorithms often do not work with cyclic data. To address these
challenges, we propose a new doubly robust method for Structure Identification
from Temporal Data (SITD). We provide theoretical guarantees, showing that
our method asymptotically recovers the true underlying causal structure. Our
analysis extends to cases where the potential causes have cycles and they may be
confounded. We further perform extensive experiments to showcase the superior
performance of our method.

1 INTRODUCTION

One of the primary objectives when working with time series data is to uncover the causal structures
between different variables over time. Learning these causal relations and their interactions is of criti-
cal importance in many disciplines, e.g., healthcare (Anwar et al., 2014), climate studies (Stips et al.,
2016; Runge et al., 2019a), epidemiology (Hernán et al., 2000; Robins et al., 2000), finance (Hiemstra
& Jones, 1994), ecosystems (Sugihara et al., 2012), and many more. Interventional data is not often
accessible in many of these applications. For instance, in healthcare scenarios, conducting trials
on patients may raise ethical concerns, or in the realm of earth and climate studies, randomized
controlled trials are not feasible.

In general, understanding the underlying causal graph using only observational data is a cumbersome
task due to many reasons: i) observational data, as opposed to interventional data, capture correlation-
type relations1 instead of cause-effect ones. ii) unobserved confounders introduce biases and deceive
the algorithms to falsely infer causal relations instead of the true structure, e.g., the existence
of a hidden common confounder iii) the number of possible underlying structures grows super
exponentially with the number of variables creating major statistical and computation barriers iv) the
identifiability problem, since multiple causal models can result in the same observational distribution,
thus making it impossible to uniquely determine the true structure. To overcome these problems
and determine the underlying structure, additional assumptions are imposed. Typical assumptions
include faithfulness, linearity of relations, or even noise-free settings, which limit the types of causal
relationships that can be discovered (Pearl, 2000; Peters et al., 2017; Spirtes et al., 2000; Glymour
et al., 2019). Almost all of these challenges 2 extend to the problem of identifying the underlying
causal structure from observational time-series datasets.

Subsequently, in many instances, the emphasis is placed on particular target variables of interest and
their causal features. Causal features of a target are defined as the set of variables that conditioned on
them, the target variable is independent of the rest variables. Causal feature selection enables training
models which are much simpler, more interpretable, and more robust (Aliferis et al., 2010a; Janzing
et al., 2020). However, learning the causal structures between variables and a specific target is still a
demanding task, and many current approaches for causal feature selection face limitations by making

1which capture how changes in one variable are associated with changes in another variable.
2The arrow of time assumption can slightly simplify a very limited number of cases. See Axiom (B) for

definition.
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unrealistic simplifying assumptions about the data-generating process or by lacking computational
and/or statistical scalability (Yu et al., 2021; 2020). As an important example, under the faithfulness
assumption, causal features are equivalent to the Markov Blanket (MB) of the target variable (Pearl,
2000). Consequently, numerous research efforts have been dedicated to recovering the MB of
the target variable (Tsamardinos et al., 2003b;a; Pena, 2008; Aliferis et al., 2010a; Yaramakala &
Margaritis, 2005; Aliferis et al., 2010b; Margaritis & Thrun, 1999; Aliferis et al., 2003; Borboudakis
& Tsamardinos, 2019; Tsamardinos et al., 2019). Nonetheless, this assumption is confining and these
algorithms generally face the curse of dimensionality statistically and/or computationally. These
challenges become particularly amplified in the context of time series data, where the number of
variables grows linearly with the length of the data trajectories. As a result, to mitigate these problems,
additional assumptions, e.g., stationarity or no hidden confounders are included (Moraffah et al.,
2021; Bussmann et al., 2021; Runge, 2018) and/or weaker notions of causality3 such as Granger
causality have been studied extensively (Granger, 1988; 1969; Marinazzo et al., 2011; Tank et al.,
2018; Bussmann et al., 2021; Khanna & Tan, 2019; Runge, 2018; Hasan et al., 2023).

The existing causal feature selection from time-series data algorithms often assume some level
of faithfulness or causal sufficiency (Runge et al., 2019b; Runge, 2018; 2020). Oftentimes, they
overlook the presence of unknown confounding factors among potential causes (Moraffah et al.,
2021). Moreover, most cannot adapt to cyclic settings (Entner & Hoyer, 2010), which is relatively
ubiquitous in many domains (Bollen, 1989). Furthermore, many algorithms employ the popular vector
auto-regression framework to model time-dependence structures (Bussmann et al., 2021; Lu et al.,
2016; Chen et al., 2009; Weichwald et al., 2020; Hyvärinen et al., 2010), which again is restrictive.
To overcome these problems and inspired by the debiased machine learning literature (Chernozhukov
et al., 2018), we propose an efficient algorithm for doubly robust structure identification from temporal
data.

Our contribution.
• We provide an efficient and easy-to-implement doubly robust structure identification from

temporal data algorithm (SITD) with theoretical guarantees enjoying
√
n-consistency.

• We provide an extensive technical discussion relating Granger causality to Pearl’s framework
for time series and show under which assumptions our approach can be used for feature
selection or full causal discovery.
• We provide theoretical insights demonstrating that our algorithm doesn’t need faithfulness or

causal sufficiency while allowing for general non-linear cyclic structures and also the presence
of hidden confounders among the covariates for the task of finding the direct causes of the
target variable. An important problem in many applications.
• In extensive experiments we illustrate that our approach is significantly more robust, signifi-

cantly faster, and more performative than state-of-the-art baselines.

2 RELATED WORK

A longstanding line of work intends to tailor the existing causal structure learning and Markov
blanket discovery for i.i.d. data to the temporal setting. To name a few, Entner & Hoyer (2010)
adapted the Fast Causal Inference algorithm (Spirtes et al., 2000) to time-series data. While the
approach shares the benefit of being able to deal with hidden confounders, it is not possible to
account for cyclic structures. Runge et al. (2019b) introduced PCMCI, as an adjusted version of
PC (Spirtes et al., 2000) with an additional false positive control phase which is able to recover
time-lagged causal dependencies. PCMCI+ modified the approach further to additionally be able to
find contemporaneous causal edges (Runge, 2020). LPCMCI extends the scope by catering to the
case of hidden confounders (Gerhardus & Runge, 2020). Even though methods in this category are
able to provide theoretical guarantees for learning the causal structure, SITD has several advantages
over them: i) For all of these methods, the faithfulness assumption is a key ingredient while SITD
does not need it. ii) These methods are based on conditional independence testing which is widely
recognized to be a cumbersome statistical problem (Bergsma, 2004; Kim et al., 2022). Shah & Peters
(2020) have established that no conditional independence (CI) test can effectively control the Type-I
error for all CI settings. Moreover in practice, conducting many conditional independence tests from
lengthy time-series is burdensome. iii) Even having access to a perfect conditional independence test

3weaker than Pearl’s structural equation model (Pearl, 2000).
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Figure 1: Example of a full-time graph (left), and the corresponding summary graph (right). Note
that time series X1 and X2 causally influence the outcome Y with different lags. The time series U
is unobserved, and it acts as a confounder for X1 and X2. Moreover, there is a cycle between the
confoundings variables X1 and X2 of the outcome variable Y .

oracle, severe computational challenges exist (Chickering, 1996; Chickering et al., 2004)4 (please
refer to Appendix A.9 for a detailed comparison).

Another line of work relies heavily on the vector auto-regression framework. VarLiNGAM (Hyvärinen
et al., 2010) generalizes LiNGAM (Shimizu et al., 2006) to time-series and similar to that it assumes
a linear non-Gaussian acyclic model for the data. In the work of Huang et al. (2019), a time-
varying linear causal model is assumed, allowing for causal discovery even in the presence of hidden
confounders. More recently, deep neural networks are used to train vector auto-regression. Tank
et al. (2018) adapted neural networks (named cMLP and cLSTM) for Granger causality by imposing
group-sparsity regularizers. In a similar fashion, Khanna & Tan (2019) used recurrent neural networks.
In another work, Bussmann et al. (2021) designed neural additive vector auto-regression (NAVAR), a
neural network approach to model non-linearities. In contrast to previous works, they extract Granger-
type causal relations by injecting the necessary sparsity directly into the architecture of the neural
networks. This line of work is quite limited to ours as they consider confining structural assumptions
over the underlying causal structural equations; details on these assumptions are discussed next to
Axiom (A) in the following section.

The use of double robustness in causality problems has a long history mainly concentrated on
estimating average treatment effect (Robins et al., 1994; Funk et al., 2011; Benkeser et al., 2017;
Bang & Robins, 2005; Słoczyński & Wooldridge, 2018). Chernozhukov et al. (2018) introduced the
DoubleML framework to achieve double robustness for structural parameters. Upon that, Soleymani
et al. (2022) defined an orthogonalized score to infer the direct causes of partially linear models. Their
approach is fast and allows for the assumption of complicated underlying structures but unfortunately,
it is limited to only linear direct causal effects. While this was later extended to the non-linear
case (Quinzan et al., 2023), we propose a doubly robust approach for identifying causal structures
from temporal data under the general assumptions discussed below.

3 FRAMEWORK

3.1 PROBLEM DESCRIPTION

We are given i.i.d. observations from a univariate target time series Y := {Yt}t∈Z and i.i.d. observa-
tions from a multivariate time series X := {X1

t , . . . , X
m
t }t∈Z of potential causes. We assume that

the outcome time series is specified by some of the potential causes by a deterministic function with
posterior additive noise, and no instantaneous effects. We can formalize this model as

Axiom (A) YT = f(paT (Y ), T ) + εT ,

with εT exogenous independent noise and paT (Y ) ⊆ {X1
t , . . . , X

m
t }t∈Z is a subset of random

variables of the multivariate time series X . Note that the independence of the additive noise is
important for identifiability. In fact, if there are dependencies between the noise and the history, then

4Learning Bayesian Networks with conditional independence tests is NP-Hard.

3



Under review as a conference paper at ICLR 2024

one might run into identifiability problems. We refer the reader to Appendix A.3 for a counterexample.
We are interested in identifying the time series Xi that directly affects the outcome Y . That is, we
wish to identify time series Xi such that it holds Xi

t ⊆ paT (Y) for some time steps t, T .

As discussed in Section 2, vector auto-regression methods enforce heavy structural assumptions
on the underlying causal structural equations. NAVAR (Bussmann et al., 2021) assumes that each
variable is influenced by its causal parents exclusively in an additive way and higher-order interactions
among them are precluded. In mathematical terms, they follow

YT = β +

N∑
X∈paT (Y )

fX(Xt−κ:t−1) + ηt,

where β is a bias term, κ is the time lag, and ηt is an independent noise variable. VarLiNGAM
(Hyvärinen et al., 2010) takes a step further and uses much more restrictive assumptions on the
functional form of the structural equations, confining to fX being a linear transformation of Xt−κ:t−1.
These structural assumptions are quite limited as they do not include even simple functionals, e.g.,
Yt = X1

t−1×X2
t−1 or Yt = log(X1

t−1+X2
t−1), whereas Axiom (A) is able to capture any interaction

between the covariates and timestep T which is a significant improvement over existing works.

Additional assumptions. In order to learn causes from observations, we further assume that

Axiom (B) there are no causal effects backward in time;
Axiom (C) there are no instantaneous causal effect between Y and any of the potential causes Xi.

Both Axiom (B) and Axiom (C) appear in previous related work (see, e.g., Peters et al. (2013);
Mastakouri et al. (2021); Löwe et al. (2022)). Note that these axioms allow for cycles and hidden
common confounders between the potential causes. Axiom (B) is a natural assumption as a system is
called causal when the output of the system only depends on the past, not the future (Peters et al.,
2017; Pearl, 2000). Axiom (C) poses additional restrictions on the class of models that we consider,
since instantaneous effects may be relevant in some cases and applications (Lippe et al., 2022a)5.
However, without this assumption, it is impossible to learn causes from observational data. The
necessity of Axiom (C) for causal discovery is a well-known fact (Peters et al., 2013)6. For the sake
of completeness, we have furnished an example of this identifiability problem tailored to time-series
data in Appendix A.4. For simplicity, we also consider the following assumption:

Axiom (D) the causal relationships are stationary, i.e., they are invariant under a joint shift of all
the variables.

Axiom (D) again follows previous related work (Peters et al., 2013; Mastakouri et al., 2021; Löwe
et al., 2022). This assumption is not strictly necessary for our analysis, but it is a general assumption
that simplifies modeling. Our results can be extended to models that do not fulfill this axiom.

Our framework retains some degree of generality over previous related work. In fact, Axiom (A)-
Axiom (D) allow for hidden confounding and cycles between the potential causes (see Figure 1),
providing a more general framework than the full autoregressive model studied, e.g., by Hyvärinen
et al. (2010); Peters et al. (2013); Löwe et al. (2022); Wu et al. (2020). Furthermore, in contrast to
several previous works (Khemakhem et al., 2020; Gresele et al., 2021; Lachapelle et al., 2022; Lippe
et al., 2022b; Yao et al., 2021), we do not assume that the variables YT , X

1
T , . . . , X

m
T are independent

conditioned on the observed variables at previous time steps. Importantly, we also do not assume
causal faithfulness in the full time graph, or weaker notions such as causal minimality.7 This is a
major improvement over some previous works, e.g., Mastakouri et al. (2021); Gong et al. (2022),

5An example of cases where time series exhibit instantaneous causal effects is given by dynamical sys-
tems (Mogensen et al., 2018; Rubenstein et al., 2016). In dynamical systems, a variable may instantaneously
affect another variable of the model. Instantaneous effects have been studied in previous related work (Gong
et al., 2022) but due to identifiability issues, they rely on stronger assumptions such as faithfulness.

6In general, Peters et al. (2013) show that causal discovery is impossible with instantaneous effects. However,
Peters et al. (2013) also provide a special case in which the causal structure is identifiable with instantaneous
effects. This special case occurs when the random variables of the model are jointly Gaussian, and the
instantaneous effects are linear. Our framework extends to this special case.

7Recall that a distribution is faithful to a causal diagram if no conditional independence relations are present,
other than the ones entailed by the Markov property.
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since there is no reason to assume that faithfulness or causal minimality hold in practice. Theorem 1
by Gong et al. (2022) provides an identifiability result for a model with history-dependent noise and
instantaneous effects. This result, however, requires causal minimality.

We remark that much of the previous related work considers the general problem of full causal
discovery, whereas we use Axiom (A)-Axiom (C) for the more specific task of causal feature
selection. However, our method can also be used for full causal discovery assuming a fully-observed
acyclic system (see Section 5.2 for details).

3.2 CAUSAL STRUCTURE

We are interested in direct causal effects, which are defined by distribution changes due to inter-
ventions on the DGP. An intervention amounts to actively manipulating the generative process of a
potential cause Xi at some time step t, without altering the remaining components of the DGP. Then,
a time series Xi has a direct effect on Y if performing an intervention on some temporal variable Xi

t
will alter the distribution of YT , for some time steps t, T . For a precise definition of these concepts,
we refer the reader to Appendix A.2.

Following, e.g., Mastakouri et al. (2021), we define the full time graph G as a directed graph whose
edges represent all direct causal effects among the variables at all time steps. Given the outcome YT

at a given time step, we refer to the parent nodes in the full time graph as its causal parents. We
further define the summary graph whose nodes are Xi and Y , and with directed edges representing
causal effects between the time series. We refer the reader to Figure 1 for a visualization of these
graphs. Note that the causes of Y correspond to the parent nodes of Y in the summary graph.

3.3 GRANGER CAUSALITY

Granger causality (Granger, 1988) is one of the most commonly used approaches to infer causal
relations from observational time-series data. Its central assumption is that “cause-effect relationships
cannot work against time”. Informally, if the prediction of the future of a target time-series Y can
be improved by knowing past elements of another time-series Xi, then Xi “Granger causes” Y .
Formally, we say that Xi Granger causes Y if it holds

P
(
YT = y |Xi

T = x, I
\i
T = i

)
̸= P

(
YT = y | I\i

T = i
)

(1)

for a non-zero probability event {Xi
T = x, I

\i
T = i}, where IT stands for the set

{X1
T ,X

2
T , . . . ,X

m
T } and I

\i
T represents the set IT \ {Xi

T }.
Granger causality is commonly used to identify causes. Assuming stationary, multivariate Granger
causality analysis usually fits a vector autoregressive model to a given dataset. This model can be then
used to determine the causes of a target Y . However, it is important to note that Granger causality
does not imply true causality in general. This limitation was acknowledged by Granger himself in
Granger (1988).

4 METHODOLOGY

4.1 DOUBLE MACHINE LEARNING (DOUBLEML)
DoubleML is a general framework for parameter estimation, which uses debiasing techniques
to achieve

√
n-consistency (see, e.g., Rotnitzky et al. (2020); Chernozhukov et al. (2022)). In

DoubleML, we consider the problem of estimating a parameter θ0 as a solution of an equation of the
form E [L(θ0, η0)] = 0. The score function L depends on two terms, the true parameter θ0 that we
wish to estimate, and a nuisance parameter η0. We do not directly care about the correctness of our
estimate of η0, as long as we get a good estimator of θ0. The nuisance parameter η0 may induce an
unwanted bias in the estimation process, resulting in slow convergence.

To overcome this problem, we consider score functions that fulfill the Mixed Bias Property (MBP)
(Rotnitzky et al., 2020). Intuitively, the MBP holds if small changes of the nuisance parameter do
not significantly affect the score function computed around the true parameters (θ0, η0). If the given
score function fulfills the MBP, then it is possible to partially remove the bias induced by the nuisance
parameter using (double) cross-fitting.8 By removing this bias, the convergence rate of the parameter

8Although in our analysis we focus on the MBP, strong consistency results follow using the weaker Neyman
Orthogonaloty condition.
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estimation improves. We refer the reader to Rotnitzky et al. (2020); Chernozhukov et al. (2018);
Rotnitzky et al. (2020); Chernozhukov et al. (2022) for details.

Following the notation introduced earlier, for a fixed time step T , let X be a random variable in
the set of random variables V , g any real-valued function of X such that E

[
g2(X)

]
< ∞. We

consider parameters of the form θ0 := E [m(V ; g)], where m(V ; g) is a linear moment functional in
g. The celebrated Riesz Representation Theorem ensures that, under certain conditions, there exists
a function α0 of X such that E [m(V ; g)] = E [α0(X)g(X)]. The function α0 is called the Riesz
Representer (RR). Chernozhukov et al. (2021) shows that the Riesz representer can be estimated from
samples. Using the RR, we can derive a score function for the parameter θ0 with g0(X) = E [Y |X]
that fulfills the MBP.

Chernozhukov et al. (2022); Rotnitzky et al. (2020) shows that we can learn the parameters θ0 as
above, with a score function of the form

φ(θ,η) := m(V ; g) + α(X) · (Y − g(X))− θ. (2)

Here, η := (α, g) is a nuisance parameter consisting of a pair of square-integrable functions.
As shown by Chernozhukov et al. (2022), the score function Eq. (2) yields E [φ(θ0,η)] =
−E [(α(X)− α0(X))(g(X)− g0(X))]. This equation corresponds to the MBP as in Definition 1
of Rotnitzky et al. (2020). Hence, if we use (double) cross-fitting, the resulting estimator θ̂ has the
double robustness property. That is, the quantity

√
n(θ̂− θ0) converges in distribution to a zero-mean

Normal distribution if the product of the mean-square convergence rates of α and g is faster than√
n.

4.2 GRANGER CAUSALITY IMPLIES TRUE CAUSATION UNDER AXIOM (A)-AXIOM (C)

As discussed in Section 3.3, Granger causality does not imply true causality in general. In our case,
however, Granger causality corresponds to true causation, as stated in the following result.

Theorem 4.1. Consider a causal model as in Axiom (A)-Axiom (C). Then, a time series Xi is a
potential cause of Y if and only if (iff.) Xi Granger causes Y .

Proof of this result is given in Appendix A.5. Importantly, Theorem 4.1 does not require causal
faithfulness.7 We remark that Peters et al. (2013) shows that Granger causality implies true causation
for fully autoregressive models (see also Löwe et al. (2022)). This result is based on the identifiability
of additive noise models, in which all relevant variables are observed (Peters et al., 2011). Our
framework, however, is more general than Peters et al. (2013); Löwe et al. (2022), since it allows for
confounding among the covariates (see Figure 1). In the special case of a fully autoregressive model,
Theorem 4.1 is equivalent to previous results (Peters et al., 2013; Löwe et al., 2022).

4.3 TESTING GRANGER CAUSALITY WITH DOUBLEML

Our approach to identifying potential causes consists of performing a statistical test to determine
if Eq. 1 holds. Due to Theorem 4.1, a straightforward approach would then consist of using a
conditional independence test, to select or discard a time series Xi as a cause of the outcome Y .
However, conditional independence testing is challenging in high-dimensional settings. Furthermore,
kernel-based conditional independence tests (Fukumizu et al., 2007; Zhang et al., 2011; Park &
Muandet, 2020; Sheng & Sriperumbudur, 2020) are computationally expensive. Instead, we provide
a new statistical test based on DoubleML. Our approach is based on the observation that under Axiom
(A)-Axiom (C), the condition in Eq. 1 can be written in terms of simple linear moment functionals.
The following theorem holds.

Theorem 4.2. Consider the notation as in Eq. 1, and fix a time step T . For any square-integrable
random variable g0(Xi

T , I
\i
T ), consider the moment functional m0(V ; g0) := YT · g0. Similarly, for

any square-integrable random variable gi(I\i
T ), consider the moment functional mi(V ; gi) := YT ·gi.

Assuming Axiom (A)-Axiom (D), Xi Granger causes Y iff. it holds

E
[
m0(V ; g00)

]
− E

[
mi(V ; gi0)

]
̸= 0, (3)

with g00(x, i) = E[YT |Xi
T = x, I

\i
T = i], and gi0(i) = E[YT | I\i

T = i].
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Algorithm 1 The SITD

1: split the dataset D into k random disjoint subsets Dj of the same size;

2: for each dataset partition j do
3: perform regressions to estimate α0

j , g0j on dataset D \ Dj ;
4: θ0j ← ÊDj

[YT · g0j + α0
j · (YT − g0j )];

5: end for
6: θ0 ← k−1

∑
j θ

0
j ;

7: for each potential cause Xi do
8: for each dataset partition j do
9: apply zero-masking to α0

j , g0j for the variables Xi, and denote with α̃0
j , g̃0j the resulting

models;
10: θij ← ÊDj

[YT · g̃ij + α̃i
j · (YT − g̃ij)];

11: end for
12: θi ← k−1

∑
j θ

i
j

13: perform a paired Student’s t-test to determine if θi ≈ θ0, and select time series Xi as a cause
if the null-hypotheses is rejected;

14: end for
15: return the selected time series;

The proof is deferred to Appendix A.6. By this theorem, we can identify the causal parents of Y by
testing Eq. 3. This boils down to learning parameters θ00 := E[YT · g00 ], θi0 := E[YT · gi0], and then
performing a sample test to verify if it holds θ0 − θi ̸= 0.

Intuitively, the parameter θ := E[YT .E[YT |I]] quantifies the cross-correlation between the target
variable YT and its conditional mean E[YT |I], given the set of variables I . In general terms, variations
in the parameter θ due to changes in the set I suggest the presence of a causal relationship between
alterations in the set I and the target variable YT .

Outline of the approach. Given a sample dataset D, we iterate the following steps:

Step (1) Select a potential cause Xi to test if Xi Granger causes Y . Split the dataset D into k
disjoint sets Dj with k ≥ 2.

Step (2) Learn g00 , gi0 as in Theorem 4.2 on dataset D \Dj . Denote with g0j , gij the resulting esti-
mates. Learn the RRs α0

0, αi
0 coresponding to E

[
YT · g00

]
and E

[
YT · gi0

]
respectively,

on dataset D \ Dj . Denote with α0
j , αi

j the resulting estimates.

Step (3) Learn the parameter θ00 = E[YT · g00 ] on dataset Dj for all j, by minimizing the
orthogonal score function as in Eq. 2. Learn the parameter θi0 = E[YT · gi0] on dataset
Dj for all j, by minimizing the orthogonal loss as in Eq. 2. Denote with θ0j , θij the
resulting estimates, and define θ0 := k−1

∑
j θ

0
j and θi := k−1

∑
j θ

i
j .

Step (4) Use a two-sample Student’s t-test to determine if E
[
θ0 − θi

]
is approximately zero.

Select Xi as a cause of Y if the null hypothesis is rejected.
This procedure can be iterated for each of the features.

Strong consistency guarantees. Step (4) requires some explanation. Under mild conditions on
the convergence of g0j , g

i
j and α0

j , α
i
j , the quantity θ0 − θi has

√
n-consistency. As a consequence of

strong consistency, it holds
lim

n→+∞

√
nE

[
θ0 − θi

]
= 0, (4)

iff. E
[
YT · η00

]
− E

[
YT · ηi0

]
= 0. Then, by Theorem 4.2, Eq. 4 holds iff. Xi does not Granger

causes Y . Step (4) in the procedure outlined above uses a two-sample Student’s t-test to determine if
Xi Granger causes Y . We refer the reader to Chernozhukov et al. (2022; 2018) for a proof of the√
n-consistency for estimates as θ0 and θi.
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5 THE ALGORITHM

5.1 OVERVIEW

Our approach to test Granger causality essentially follows Step (1)-Step (4) outlined in the previous
section. We refer to our approach as the SITD (Structure Identification from Temporal Data). Our
method is presented in Algorithm 1, where we use the notation ÊD to denote the empirical expected
value over a given dataset D. We note that, however, this procedure requires training g0j , gij and α0

j ,
αi
j for each potential cause, and for each partition Dj . This can be time-consuming in large instances.

To overcome this bottleneck, we make the following improvements:
• The parameters g0j , α0

j , θ0j , and θ0 are the same for each one of the potential causes, and we
only trained them once at the beginning of the process (Line 2-6 of Algorithm 1).
• The RR corresponding to E

[
m0(V ; g00)

]
as in Theorem 4.1 can be written in explicit form

as α0
0 = E[YT | Xi

T = x, I
\i
T = i]. Similarly, the RR of E

[
mi(V ; g0i )

]
as in Theorem 4.1

can be written in explicit form as αi
0 = E[YT | I\i

T = i]. Hence, we estimate α0
0, αi

0 by
performing regressions.
• Instead of computing gi0 and αi

0 directly, we apply a zero-masking layer to g0j and α0
j for the

features Xi. This masking layer tells the sequence-processing layers that the input values
for features Xi should be skipped. We then compute θi0 using the resulting surrogate models
g̃ij , α̃i

j (Line 9-10 in Algorithm 1). Please refer to Appendix A.7 on why zero-masking is not
hurting the estimations.

Runtime of Algorithm 1. Much of the run time of our algorithm consists of performing a regression
to learn η0j on dataset Dj . Denote with d the time complexity of performing such a regression. For a
given k-partition of the dataset, we can upper-bound the time complexity of our algorithm as O(dk).
Here, d depends on the specific techniques used for the regression. Non-parametric regression can be
performed efficiently in the problem size. We analyse the computational complexity in Appendix A.9
further and showp runtime plots for extensive experiments in Appendix A.10.3.

5.2 FULL CAUSAL DISCOVERY

It is possible to use Algorithm 1 for full causal discovery, for fully-observed acyclic auto-regressive
models with no instantaneous effects (see Peters et al. (2013); Löwe et al. (2022) for a precise
definition of this restricted framework). In fact, under these more restrictive assumptions, we can
identify the causes of each random variable of the model by testing Granger causality. For these
models, we can learn the full summary graph, by identifying the causes of each variable with
Algorithm 1. The resulting run time can be quantified as O(mdk), where d is the time complexity of
performing a regression, as outlined above, m is the number of time series considered, and k is the
number of dataset partitions used for double cross-fitting. Since k = O(1) w.r.t. parameters of the
problem (see Appendix A.8), the runtime of SITD is O(md).

6 EXPERIMENTS

6.1 SEMI-SYNTHETIC EXPERIMENTS

The Dream3 dataset. Following previous related work (Tank et al., 2018; Khanna & Tan, 2019;
Nauta et al., 2019; Bussmann et al., 2021; Gong et al., 2022), we evaluate performance with the
Dream3 benchmark (Prill et al., 2010; Marbach et al., 2009). Dream3 consists of measurements of
gene expression levels for five different networks. Each network contains 100 genes. In this dataset,
time series correspond to different perturbation trajectories. For each one of the five networks, there
are m = 46 different trajectories.

Description of the experiments. Our goal is to infer the causal structure of each group of time
series (trajectories) of Dream3, as detailed above. This gives us a total of five tasks, i.e., E.Coli 1,
E.Coli 2, Yeast 1, Yeast 2, and Yeast 3. We run our algorithm on this dataset and we use the area under
the ROC curve (AUROC) as the performance metric. Following (Gong et al., 2022), we compare
against the following baselines: cMLP (Tank et al., 2018), cLSTM (Tank et al., 2018), TCDF (Nauta
et al., 2019), SRU (Khanna & Tan, 2019), eSRU (Khanna & Tan, 2019), Dynotears (Pamfil et al.,
2020), Rhino+g (Gong et al., 2022), and Rhino (Gong et al., 2022).
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Table 1: AUROC score for the SITD and common algorithms for Granger causality. Models with "✦"
sign use deep neural networks. We remark that our estimator is much simpler than deep nets, and it
has low sample complexity. We observe that our method achieves state-of-the-art performance on
three tasks (E.Coli 1, E.Coli 2, Yeast 2) and that it obtains comparable performance on the remaining
two (Yeast 1, Yeast 3).

Method E.Coli 1 E.Coli 2 Yeast 1 Yeast 2 Yeast 3

cMLP✦ 0.644 0.568 0.585 0.506 0.528
cLSTM✦ 0.629 0.609 0.579 0.519 0.555
TCDF✦ 0.614 0.647 0.581 0.556 0.557
SRU✦ 0.657 0.666 0.617 0.575 0.55
eSRU✦ 0.66 0.629 0.627 0.557 0.55
DYNO. 0.590 0.547 0.527 0.526 0.510
PCMCI+ 0.530 0.519 0.530 0.510 0.512
Rhino✦ Reprod. 0.686 0.625 0.667 0.580 0.540
Rhino+g✦ Reprod. 0.662 0.606 0.663 0.585 0.577
SITD (ours) 0.704±0.005 0.680±0.004 0.653±0.001 0.585±0.003 0.544±0.003

Results. The results for cMLP, cLSTM, TCDF, SRU and SRU are taken directly from Khanna & Tan
(2019); Gong et al. (2022). Regarding Rhino+g and Rhino, we partially reproduce the experiments by
Gong et al. (2022), using their source code. Our implementation of Rhino+g and Rhino differs from
Gong et al. (2022) only in the choice for the hyper-parameters, which is the same on all five tasks.
We specifically use the following hyper-parameters for Rhino: Node Embedd. = 16, Instantaneous
eff. = False, Node Embedd. (flow) = 16, lag = 2, λs = 19, Auglag = 30. And we use the following for
Rhino+g: Node Embedd. = 16, Instantaneous eff. = False, lag = 2, λs = 15, Auglag = 60. This is the
setting that is reported for the Ecoli1 subtask and found in the corresponding code implementation.
We opted for this approach because in the experiment by Gong et al. (2022), it seems that Rhino
overfitted to the dataset. We learn ηij as in Line 3 of Algorithm 1, using a simple kernel ridge
regression model with polynomial kernels of degree three combined with zero masking.

Overall, we observe that our method gives competitive results. Specifically, SITD outperforms all the
other benchmarks on two tasks (E.Coli 1, E.Coli 2), and it obtains the same AUROC as Rhino+g on
Yeast 2. Furthermore, SITD obtains comparable performance on the remaining tasks (Yeast 1 and
Yeast 3). We also would like to emphasize that our estimator is much simpler than deep nets such
as Rhino or Rhino+g. As such, it has lower sample complexity and lower run time than the other
algorithms.

6.2 ADDITIONAL EXPERIMENTS

We provide additional extensive synthetic experiments for various noise-to-signal ratios and number
of causes in Appendix A.10. One appealing property of SITD is the double robustness property. Due
to this property, the dependence of SITD on the estimator is relatively lower compared to existing
baselines. Using a fast and simple estimator with low statistical complexity in Algorithm 1, we
are able to get competitive results compared to richer models especially in low sample complexity
settings. The illustrated case with a simple kernel ridge regression estimator with polynomial kernels
of degree three in Section 6.1 is a compelling example of this. In Appendix A.10, we will thus focus
on these practically important aspects in more detail and show in particular further experiments on
low sample settings in Appendix A.10.2 and runtime plots in Appendix A.10.3.

7 DISCUSSION

In this work, we propose an efficient algorithm for doubly robust structure identification from temporal
data. We further provide asymptotical guarantees that our method is able to discover the direct causes
even when there are cycles or hidden confounding and that our algorithm has

√
n-consistency. We

extensively discuss the relations of the approach between the popular frameworks of Granger and
Pearl’s causality as well as relate and extend approaches from debiased machine learning to structure
discovery from temporal data. We hope to apply these approaches to important real-world applications
in biomedicine where robustness to confounding, sample efficiency, and ease of use are important for
causal discovery from observational time series.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we conducted extensive benchmarking experiments on
synthetic datasets that provide a known ground truth. Detailed descriptions of the dataset generation
process and the experiments can be found in Appendix A.10. Furthermore, we provide detailed
proofs in Appendix A.5 and A.6 for the theoretical results as well as intuitions for zero-masking
in Appendix A.7. Finally, wee have included the code for dataset generation and experimentation
in the supplementary materials, and upon acceptance of the paper, we are committed to releasing
it under an open-source license. This transparency enables fellow researchers to replicate our work
effectively.
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A APPENDIX

A.1 BROADER IMPACT AND LIMITATIONS

In many safety-critical applications, one needs to infer causal structure from observational data e.g.
in healthcare, economics, or geosciences since interventions are unethical or simply impossible. For
these cases, one requires algorithms that have theoretical guarantees, are robust to hidden confounding,
and are computationally efficient. We hope that in the long term, our work can thus contribute to
better machine learning-driven decision-making in safety-critical environments.

While theoretical guarantees and extensive experiments are critical components for the evaluation of
algorithms, especially in safety-critical environments this can potentially lead to a false sense of secu-
rity and trust. Constant monitoring and assessment by domain experts are needed before and during
the deployment of any machine learning algorithm, especially in safety-critical environments.

One key limitation of our approach as well as of all causal discovery approaches from observational
data is the reliance on additional assumptions. These assumptions are required since causal discovery
from observational data is impossible without them. We related our assumptions to previous ones in
the Framework Section 3. These assumptions of our approach need to be checked before applying
the approach but are less restrictive than for comparable baselines. Moreover, since our approach is
inspired by debiased machine learning, the focus is on inferring the true or "debiased" underlying
structure rather than obtaining low variance estimates of the structure.

A.2 DIRECT CAUSAL EFFECTS AND INTERVENTIONS

In this section, we clarify the notion of an intervention and direct causal effects. We will also
introduce some notation that will be used later on in the proofs.

We consider interventions by which a random variable Xj
t is set to a constant Xj

t ← x. We denote
with YT | do(Xi

t = x) the outcome time series Y at time step T , after performing an intervention as
described above. We can likewise perform multiple joint interventions, by setting a group of random
variables I at different time steps, to pre-determined constants specified by an array i. We use the
symbol YT | do(I = i) to denote the resulting post-interventional outcome, and we denote with
P (YT = y | do(I = i)) the probability of the event {YT | do(I = i) = y}.

Using this notation, a time series Xi has a direct effect on the outcome Y , if performing dif-
ferent interventions on the variables Xi, while keeping the remaining variables fixed, will al-
ter the probability distribution of the outcome Y . Formally, define the sets of random variables
IT := {X1

t , . . . , X
n
t , Yt}t<T , which consists of all the information before time step T . Similarly,

define the random variable Xi
T := {Xi

t}t<T , consisting of all the information of time series Xi

before time step T . Define the variable I
\i
T := IT \Xi

T , which consists of all the variables in IT

except for Xi
T . Then, a time series Xi has a direct effect on the outcome Y if it holds

P
(
YT = y | do

(
Xi

T = x′, I
\i
T = i

))
̸= P

(
YT = y | do

(
Xi

T = x′′, I
\i
T = i

))
(5)

We say that a time series Xi causes Y , if there is a direct effect between Xi and Y as in Eq. 5, for
any time step T .

A.3 NECESSITY OF THE STATISTICAL INDEPENDENCE OF εt

We provide a counterexample, to show that if there are dependencies between the noise and the
historical data, then the causal structure may not be identifiable from observational data. To this end,
we consider a first dataset {Xt, Yt}t∈Z, defined as

Xt−1, Yt ∼ N (0,Σ)

Here, N (0,Σ) is a zero-mean joint Gaussian distribution with covariance matrix

Σ =

[
1 1
1 1

]
.

We also consider a second dataset {Wt, Zt}t∈Z, defined as

Wt ∼ N (0, 1), Zt = Wt−1
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The parameter Σ is defined as above. Both datasets entail the same joint probability distribution.
However, the causal diagrams change from one dataset to the other. Hence, the causal structure
cannot be recovered from observational data, if the posterior additive noise εt is correlated with some
of the covariates.

A.4 NECESSITY OF NO INSTANTANEOUS CAUSAL EFFECT BETWEEN Y AND ANY OF THE
POTENTIAL CAUSES Xi

Here, we provide a counterexample to show that without the no instantaneous causal effect, the causal
structure may not be identifiable from observational data. Consider the following two models:

• Model 1: We consider time series {Xt}, {Yt} of the form Xt = E[Xt−1] + c and Yt =
E[Yt−1 − Xt−1] + Xt. In this model, c is a random variable drawn from a Gaussian
distribution with a mean of 0 and covariance of 1.

• Model 2: We consider time series {Xt}, {Yt} of the form Yt = E[Yt−1] + c and Xt =
E[Xt−1 − Yt−1] + Yt. In this model, c is a random variable drawn from a Gaussian
distribution with a mean of 0 and covariance of 1.

Both models entail the same joint distribution. However, in Model 1 X has a causal effect on Y ,
whereas in Model 2 Y has a causal effect on X . Hence, in this example, the causal structure is not
identifiable.

A.5 PROOF OF THEOREM 4.1
We prove the following result.

Theorem 4.1. Consider a causal model as in Axiom (A)-Axiom (C). Then, a time series Xi is a
potential cause of Y if and only if (iff.) Xi Granger causes Y .

Proof. We first prove that it holds

P
(
YT = y | do(Xi

t = x, I
\i
T = i)

)
= P

(
YT = y | Xi

t = x, I
\i
T = i

)
(6)

for any non-zero event {YT = y}. To this end, define the group P consisting of all the causal
parents of the outcome. Note that P ⊆ {Xi

t , I
\i
T }. By Axiom (A), the outcome can be described as

Y = f(P ) + ε, where ε is independent of {Xi
t , I

\i
T }. Hence by Rule 2 of the do-calculus (see Pearl

(2000), page 85) Eq. 6 holds, since Y becomes independent of {Xi
t , I

\i
T } once all arrows from P to

Y are removed from the graph of the DGP.

We now prove the claim using Eq. 6. To this end, assume that Eq. 6 holds and suppose that Xi does
not Granger causes Y , i.e., it holds

P
(
YT = y | Xi

t = x, I
\i
T = i

)
= P

(
YT = y | I\i

T = i
)
, (7)

for any non-zero event {YT = y}. Then,

P
(
YT = y | do(Xi

t = x, I
\i
T = i)

)
= P

(
YT = y | Xi

t = x, I
\i
T = i

)
[Eq. 6]

= P
(
YT = y | I\i

T = i
)

[Eq. 7]

= P
(
YT = y | Xi

t = x′, I
\i
T = i

)
[Eq. 7]

= P
(
YT = y | do(Xi

t = x′, I
\i
T = i)

)
. [Eq. 6]

Hence, causality implies Granger causality.

We now prove that Granger causality implies causality. To this end, suppose that Xi is not a potential
cause of Y . By the definition of direct effects, it holds

P
(
YT = y | do(Xi

t = x, I
\i
T = i)

)
= E

[
P
(
YT = y | do(Xi

t = x′, I
\i
T = i)

)
| I\i

T = i
]
. (8)
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Hence,

P
(
YT = y | do(Xi

t = x, I
\i
T = i)

)
= P

(
YT = y | Xi

t = x, I
\i
T = i

)
[Eq. 6]

= E
[
P
(
YT = y | do(Xi

t , I
\i
T )

)
| I\i

T = i
]

[Eq. 8]

= E
[
P
(
YT = y | Xi

t , I
\i
T

)
| I\i

T = i
]

[Eq. 6]

= P
(
YT = y | I\i

T = i
)
,

and the claim follows.

A.6 MISSING PROOF OF 4.2
We prove the following result.

Theorem 4.2. Consider the notation as in Eq. 1, and fix a time step T . For any square-integrable
random variable g0(Xi

T , I
\i
T ), consider the moment functional m0(V ; g0) := YT · g0. Similarly, for

any square-integrable random variable gi(I\i
T ), consider the moment functional mi(V ; gi) := YT ·gi.

Assuming Axiom (A)-Axiom (D), Xi Granger causes Y iff. it holds

E
[
m0(V ; g00)

]
− E

[
mi(V ; gi0)

]
̸= 0, (3)

with g00(x, i) = E[YT |Xi
T = x, I

\i
T = i], and gi0(i) = E[YT | I\i

T = i].

In order to prove Theorem 4.2, we use the following auxiliary lemma.

Lemma A.1. Consider a causal model as in Axiom (A)-Axiom (C). Then, the following conditions
are equivalent:

1. E
[
YT | Xi

t = x, I
\i
T = i

]
= E

[
YT | Xi

t = x′, I
\i
T = i

]
a.s. ;

2. P
(
YT = y | Xi

t = x, I
\i
T = i

)
= P

(
YT = y | Xi

t = x′, I
\i
T = i

)
a.s.

Proof. Clearly, Item 2 implies Item 1.

We now prove the converse, i.e., we show that Item 1 implies Item 2. To this end, define the group
P T consisting of all the causal parents of YT . Note that it holds P T ⊆ {I\i

T , Xi
t} ⊆ {I

\i
T , Xi

t}.
Hence, the joint intervention {Xi

t , i
i,t
T−1} ← {x, i} define an intervention on the parents P T ← p.

Further, we can write the potential outcome as

YT | do(Xi
t = x, I

\i
T = i) = f(p) + ε. (9)

Similarly, the joint intervention {Xi
t , I

i,t
T−1} ← {x, i}, define an intervention on the parents P T ←

p′. We can write the potential outcome as

YT | do(Xi
t = x′, I

\i
T = i) = f(p′) + ε. (10)

Hence, it holds

f(p) + E [ε] = E
[
YT | do(Xi

t = x, I
\i
T = i)

]
[Eq. 9]

= E
[
YT | Xi

t = x, I
\i
T = i

]
[Eq. 6, Theorem 4.1]

= E
[
YT | Xi

t = x′, I
\i
T = i

]
[by assumption]

= E
[
YT | do(Xi

t = x′, I
\i
T = i)

]
[Eq. 6, Theorem 4.1]

= f(p′) + E [ε] . [Eq. 10]
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By Axiom (A), the variable ε is exogenous independent noise. From the chain of equations above it
follows that f(p) = f(p′). Hence,

P
(
YT = y | do(Xi

t = x, I
\i
T = i)

)
= P (f(p) + ε = y)

= P (f(p′) + ε = y) = P
(
YT = y | do(Xi

t = x′, I
\i
T = i)

)
(11)

We conclude that it holds

P
(
YT = y | Xi

t = x, I
\i
T = i

)
= P

(
YT | do(Xi

t = x, I
\i
T = i)

)
[Eq. 6, Theorem 4.1]

= P
(
YT = y | do(Xi

t = x′, I
\i
T = i)

)
[Eq. 11]

= P
(
YT = y | Xi

t = x′, I
\i
T = i

)
, [Eq. 6, Theorem 4.1]

as claimed.

We can now prove the main result.

Proof of Theorem 4.2. We first prove that Xi Granger causes Y iff. it holds

E
[(

E
[
YT | Xi

t , I
\i
T

]
− E

[
YT | I\i

T

])2
]
̸= 0. (12)

First, suppose that Eq. 12 does not hold. Then, it holds [YT | Xi
t = x, I

\i
T = i] = E[YT | Xi

t =

x′, I
\i
T = i], a.s. Combining this equation with Lemma A.1 yields

P
(
YT = y | Xi

t = x, I
\i
T = i

)
= E

[
P
(
YT = y | Xi

t , I
\i
T

)
| I\i

T = i
]

= P
(
YT = y | I\i

T = i
)
,

a.s. Hence, if Xi Granger causes Y , then Eq. 12 holds.

E
[
YT | Xi

t = x, I
\i
T = i

]
̸= E

[
YT | Xi

t = x′, I
\i
T = i

]
, (13)

for a triple {x, x′,w}. By combining Eq. 13 with Lemma A.1 we see that Eq. 12 implies causality.
However, by Theorem 4.1 Granger causality is equivalent to causality in this case.

We now prove the claim. By the tower property of the expectation Williams (1991) that

E
[(

E
[
YT | Xi

t , I
\i
T

]
− E

[
YT | I\i

T

])2
]

= E
[(

E
[
YT | Xi

t , I
\i
T

]
− E

[
YT | I\i

T

])2
]

= E
[
E
[(

E
[
YT | Xi

t , I
\i
T

]
− E

[
YT | I\i

T

])2

| I\i
T

]]
= E

[
E
[(

E
[
YT | Xi

t , I
\i
T

]2
− E

[
YT | Xi

t , I
\i
T

]
E
[
YT | I\i

T

])
| I\i

T

]]
= E

[
E
[
YT | Xi

t , I
\i
T

]2]
− E

[
E
[(

E
[
YT | Xi

t , I
\i
T

]
E
[
YT | I\i

T

])
| I\i

T

]]
= E

[
E
[
YT | Xi

t , I
\i
T

]2]
− E

[
E
[
YT | I\i

T

]2]
= E

[
YTE

[
YT | Xi

t , I
\i
T

]]
− E

[
YTE

[
YT | I\i

T

]]
,

as claimed.
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A.7 INTUITION ON ZERO-MASKING

We provide intuition why masking is a reasonably good idea. Assume that the function f̂ is a ϵ-close
estimator of the true function f∗ in the L2(PX1,X2,...,Xm

) norm, where the functions f̂ , f∗ and the
joint probability distribution PX2,...,Xm

are defined on the set {X1, X2, . . . , Xm},

||f̂ − f∗||L2(PX1,X2,...,Xm ) ≤ ϵ

Now, let’s mask the random variable X1. We are interested to see how close is the estimator EX1 f̂

to the true function EX1
f∗ in the L2(PX2,...,Xm

) norm, where the functions EX1
f̂ ,EX1

f∗ and the
marginal probability distribution PX2,...,Xm

are defined on the rest of variables {X2, . . . , Xm}, By
Jensen’s inequality, we infer that for any realization of X2 = x2, X3 = x3, . . . , Xm = xm,

(EX1
f̂(X1, x2, . . . , xm)−EX1

f∗(X1, x2, . . . , xm))2 ≤ EX1
[(f̂(X1, x2, . . . , xm)−f∗(X1, x2, . . . , xm))2]

Plugging it in the ϵ-closeness assumption leads to,

||EX1 f̂ − EX1f
∗||L2(PX2,...,Xm ) ≤ ||f̂ − f∗||L2(PX1,X2,...,Xm ) ≤ ϵ,

which guarantees that EX1
f̂ is also ϵ-closs to EX1

f∗ and hence it’s a good estimator. In the sequel,
a natural solution would be to estimate EX1 f̂ by taking averages of f̂ over different samples of
X1. However, for the linear regression problem that the estimator has a linear structure of the input,
it is straightforward to show that it is enough to evaluate f̂ at E[X1]. And finally due to the zero-
centering step of data preprocessing, E[X1] = 0. Thus, the aforementioned procedure is equivalent
to zero-masking.

A.8 A NOTE ON THE NUMBER OF PARTITIONS

The number of partitions k affects the performance of our algorithm in practice since a larger number
of partitions will help in removing a bias in the estimates. However, in our experiments, we observe
that a small number of partitions is sufficient to achieve good results. Furthermore, an excessive
number of random partitions may have a detrimental effect, due to the possible small number of
samples in each partition. Hence, we believe that the number of partitions will not drastically
affect performance in practice. Reasonable choices of k for our experiments range between 3-7,
hence k = O(1) w.r.t. parameters of the problem. Thus, the resulting runtime can be reported as
O(md).

A.9 COMPUTATIONAL COMPLEXITY AND COMPARISON

As discussed in Section 2, compared to SITD, conditional independence-based approaches such as
PCMCI (Runge et al., 2019b), PCMCI+ (Runge, 2020), and LPCMCI (Gerhardus & Runge, 2020)
face exponential computational barriers. It is widely known that even endowed with a perfect infinite
sample independence testing oracle, learning Bayesian Networks becomes NP-Hard (Chickering
et al., 2004; Chickering, 1996). Consequently, computational challenges arise not only due to the
nature of the conditional independence tests themselves but also from the computational intractability
of searching through the exponentially large space of possible network structures. Hence, the runtime
of the O(m) number of regressions that SITD demands is negligible compared to the exponential
number of conditional independence tests from lengthy time-series. To support this argument in
practice, we provide a runtime comparison between SITD and PCMCI+ w.r.t. the number of nodes m
in Table 2.

10 20 30 40 50 100 200 400

SITD 42± 13 35± 6 29± 1 30± 4 35± 15 41± 6 62± 6 77± 10
PCMCI+ 4.2± 0.4 18.6± 0.8 48.6± 1.4 99.2± 10 216.4± 42.2 1091± 65 5678± 264 ≈ 8 hours

Table 2: Table with runtime means and standard deviations for SITD and PCMCI+ (in seconds).
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A.10 ADDITIONAL EXPERIMENTS

A.10.1 SYNTHETIC EXPERIMENTS

Dataset generation. We first set the number of potential causes m, and we fix the lag ∆ and the
number of time steps for the dataset T . We create a covariate adjacency 3-dimensional tensor Σ of
dimensions ∆ ×m ×m. This tensor has 0-1 coefficients, where Σk,i,j = 1 if Xi

t−k has a casual
effect on Xj

t for all time steps t. Similarly, we create an adjacency matrix ΣY for the outcome Y .
ΣY is a binary ∆×m array, such that ΣY

k,j = 1 if Xj
t−k has a causal effect on Yt for all time steps

t. The entries of Σ and ΣY follow the Bernouli distribution with parameter p = 0.5. Note that the
resulting casual structure fulfills Axiom (B)-Axiom (D).

We then create m transformations that are used to produce the potential causes X1, . . . ,Xm. Each
one of these transformations is modeled by an MLP with 1 hidden layer and 200 hidden units. We
use TANH nonlinearities (included also in the output layer) in order to control the scale of the values.
The final output value is further scaled up so that all transforms generate values in the range [−10, 10].
The input layer of each MLP is coming from the corresponding causal parents of the corresponding
time series, as calculated from Σ.

In order to generate the potential causes Xi, we use Σ and the MLP transforms. The first value
of each time series is randomly generated from a uniform distribution in [−10, 10]. Then, each
Xi is produced by applying the appropriate transform to its causal parents, as determined by Σ,
and a zero-mean unit variance Gaussian noise is added. We generate the target time series in a
similar fashion. Each variable Yt is produced by applying the MLP transform to its causal parents, as
determined by the target adjacency matrix ΣY . We then add zero-mean Gaussian noise. The scale of
the posterior additive noise for the outcome is referred to as the noise-to-signal ratio (NTS).

Description of the experiments. We are given a dataset as described above with m potential causes
and a fixed NTS for the generation of the outcome Y . We determine which series X1, . . . ,Xn are
the causal parents of the outcome, using Algorithm 1. For a given choice of m and NTS, we repeat
the experiments five times, and we report on the sample mean for the Accuracy (see Table 3). We
additionally report on the F1 Score and CSI Score in Table 5-4 in the Appendix. This experiment is
repeated for an increasing number of potential causes, and increasing noise-to-signal ratio, to evaluate
the performance of Algorithm 1 on challenging datasets.

In this set of experiments, we learn ηij as in Line 3 of Algorithm 1, using for the regression task an
MLP model. We found that this simple approach, combined with zero-masking, dramatically reduces
the false positives of the Student’s t-test in Line 13 of Algorithm 1.

Results. Table 3 shows the performance of our method with respect to the accuracy, for an increasing
number of potential causes and increasing NSR. We observe that our method maintains a good score.
These results are partially confirmed when we look at the F1 and CSI scores (see Table 5-4 in the
Appendix). In fact, we see that the SITD is stable for an increasingly higher posterior noise.

In Figure 2 we plot the AUROC performance of SITD against RHINO on the synthetic dataset,
confirming the competitive performance of STID. In order to calculate the AUROC for SITD, we sort
our predictions (for existence of an edge) on the standard deviation of Z := YT · g̃ij + α̃i

j · (YT −
g̃ij)− YT · g0j − α0

j · (YT − g0j ), which is simply the difference of the doubly robust statistics for θi

and θ0 for a datapoint in partition Dj .

We provide the CSI Score in Table 4 and the F1 Score in Table 5 for the experiments on synthetic
datasets. Recall that in this set of experiments we considered synthetic datasets with varying numbers
of potential causes (m) and noise-to-signal ratio (NSR). Increasing m and NSR give more challenging
settings. We observe that our method maintains good CSI and F1 scores, for increasing NSR.

A.10.2 PERFORMANCE IN LOW-SAMPLE REGIMES

Here we report the results for additional experiments in the practically important low sample setting.
In Figure 3, the plots are provided to support Section 6.2. The double robustness property enables
our algorithm to rely on simple estimators with low statistical complexity. As a result, our method
shows more consistent performance in low-sample regimes as opposed to existing approaches that
are based on overparameterized models demanding so many data points.
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Figure 2: AUROC metric for RHINO and SITD for various noise levels on the synthetic dataset.

Table 3: Accuracy of our method for increasing number of potential causes m, and different noise-
to-signal ration (NSR). We observe that our method maintains good accuracy, even in challenging
settings with many potential causes and high noise.

Accuracy

NSR = 0 NSR = 0.05 NSR = 0.1 NSR = 0.15 NSR = 0.2 NSR = 0.25 NSR = 0.3
m = 5 0.60 ± 0.09 0.74 ± 0.25 0.66 ± 0.19 0.90 ± 0.11 0.80 ± 0.06 0.82 ± 0.10 0.94 ± 0.12
m = 10 0.99 ± 0.02 0.92 ± 0.08 0.97 ± 0.04 0.79 ± 0.18 0.89 ± 0.06 0.94 ± 0.04 0.90 ± 0.08
m = 15 0.89 ± 0.05 0.89 ± 0.05 0.88 ± 0.10 0.85 ± 0.02 0.79 ± 0.11 0.79 ± 0.09 0.81 ± 0.03
m = 20 0.83 ± 0.07 0.73 ± 0.05 0.72 ± 0.07 0.77 ± 0.10 0.73 ± 0.05 0.75 ± 0.05 0.69 ± 0.06
m = 25 0.76 ± 0.04 0.72 ± 0.10 0.71 ± 0.06 0.63 ± 0.08 0.68 ± 0.04 0.71 ± 0.07 0.66 ± 0.04
m = 30 0.76 ± 0.04 0.74 ± 0.04 0.72 ± 0.07 0.70 ± 0.10 0.66 ± 0.05 0.68 ± 0.04 0.64 ± 0.07
m = 35 0.68 ± 0.02 0.65 ± 0.07 0.72 ± 0.06 0.65 ± 0.03 0.66 ± 0.05 0.61 ± 0.07 0.64 ± 0.09
m = 40 0.64 ± 0.03 0.69 ± 0.05 0.67 ± 0.05 0.62 ± 0.03 0.63 ± 0.06 0.58 ± 0.07 0.60 ± 0.07
m = 45 0.65 ± 0.04 0.68 ± 0.08 0.58 ± 0.04 0.61 ± 0.03 0.64 ± 0.04 0.59 ± 0.04 0.61 ± 0.06
m = 50 0.68 ± 0.05 0.63 ± 0.05 0.64 ± 0.06 0.63 ± 0.05 0.66 ± 0.05 0.59 ± 0.08 0.64 ± 0.07

A.10.3 RUNTIME AND HARDWARE

To give a taste of the computational efficiency of our method, here we report the average runtime of
SITD and the competitive rival Rhino for experiment Table 1 across all five tasks (E.Coli 1, E.Coli 2,
Yeast 1, Yeast 2 and Yeast 3) in Table 6. Despite having access only to a single CPU in contrast to the
GPU-equipped execution of Rhino our method is almost 20x faster. This is because of the fact that
SITD algorithm will provide reasonable results even when employing simple fast efficient estimators
(in this case a kernel regression).
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Table 4: CSI Score of Algorithm 1 for increasing number of potential causes m, and different
noise-to-signal ration (NSR). Again, we observe that our method is robust to increasing NSR.

CSI Score

NSR = 0 NSR = 0.05 NSR = 0.1 NSR = 0.15 NSR = 0.2 NSR = 0.25 NSR = 0.3
m = 5 0.57 ± 0.07 0.71 ± 0.28 0.63 ± 0.19 0.86 ± 0.12 0.69 ± 0.10 0.73 ± 0.12 0.91 ± 0.17
m = 10 0.98 ± 0.04 0.86 ± 0.14 0.95 ± 0.06 0.69 ± 0.21 0.80 ± 0.09 0.87 ± 0.07 0.82 ± 0.14
m = 15 0.80 ± 0.07 0.77 ± 0.11 0.75 ± 0.16 0.68 ± 0.06 0.59 ± 0.19 0.57 ± 0.15 0.59 ± 0.03
m = 20 0.66 ± 0.12 0.52 ± 0.12 0.46 ± 0.07 0.56 ± 0.10 0.46 ± 0.08 0.51 ± 0.07 0.39 ± 0.09
m = 25 0.51 ± 0.06 0.45 ± 0.12 0.43 ± 0.09 0.37 ± 0.09 0.38 ± 0.05 0.41 ± 0.08 0.33 ± 0.06
m = 30 0.47 ± 0.05 0.50 ± 0.07 0.46 ± 0.12 0.38 ± 0.08 0.35 ± 0.08 0.34 ± 0.05 0.31 ± 0.07
m = 35 0.42 ± 0.04 0.31 ± 0.06 0.39 ± 0.07 0.29 ± 0.07 0.30 ± 0.09 0.22 ± 0.09 0.26 ± 0.09
m = 40 0.32 ± 0.06 0.38 ± 0.05 0.33 ± 0.08 0.29 ± 0.06 0.24 ± 0.06 0.20 ± 0.07 0.19 ± 0.11
m = 45 0.33 ± 0.10 0.34 ± 0.07 0.20 ± 0.02 0.22 ± 0.05 0.25 ± 0.03 0.20 ± 0.05 0.19 ± 0.06
m = 50 0.33 ± 0.03 0.29 ± 0.06 0.29 ± 0.06 0.23 ± 0.04 0.26 ± 0.06 0.21 ± 0.08 0.26 ± 0.07

Table 5: F1 Score of the SITD for increasing number of potential causes m, and different noise-to-
signal ration (NSR). Interestingly, our method maintains a good F1 score for increasing NSR.

F1 Score

NSR = 0 NSR = 0.05 NSR = 0.1 NSR = 0.15 NSR = 0.2 NSR = 0.25 NSR = 0.3
m = 5 0.73 ± 0.06 0.79 ± 0.20 0.75 ± 0.12 0.92 ± 0.07 0.81 ± 0.07 0.84 ± 0.08 0.95 ± 0.11
m = 10 0.99 ± 0.02 0.92 ± 0.09 0.98 ± 0.03 0.80 ± 0.15 0.89 ± 0.06 0.93 ± 0.04 0.90 ± 0.09
m = 15 0.89 ± 0.05 0.86 ± 0.08 0.85 ± 0.11 0.81 ± 0.04 0.73 ± 0.15 0.72 ± 0.12 0.74 ± 0.03
m = 20 0.79 ± 0.08 0.67 ± 0.10 0.62 ± 0.07 0.71 ± 0.09 0.63 ± 0.07 0.67 ± 0.06 0.56 ± 0.09
m = 25 0.68 ± 0.05 0.61 ± 0.11 0.60 ± 0.09 0.53 ± 0.11 0.55 ± 0.05 0.57 ± 0.08 0.49 ± 0.07
m = 30 0.64 ± 0.05 0.66 ± 0.06 0.62 ± 0.10 0.54 ± 0.09 0.51 ± 0.09 0.50 ± 0.06 0.46 ± 0.09
m = 35 0.59 ± 0.05 0.47 ± 0.07 0.56 ± 0.07 0.45 ± 0.08 0.46 ± 0.11 0.35 ± 0.11 0.41 ± 0.11
m = 40 0.49 ± 0.07 0.55 ± 0.05 0.49 ± 0.08 0.45 ± 0.07 0.38 ± 0.08 0.33 ± 0.09 0.30 ± 0.15
m = 45 0.49 ± 0.11 0.50 ± 0.08 0.34 ± 0.03 0.36 ± 0.06 0.40 ± 0.04 0.33 ± 0.06 0.32 ± 0.08
m = 50 0.50 ± 0.03 0.44 ± 0.07 0.44 ± 0.08 0.38 ± 0.05 0.41 ± 0.07 0.34 ± 0.11 0.40 ± 0.09

Table 6: Runtime and Hardware used for our method (SITD) and the state-of-the-art baseline Rhino.

Category\Method Rhino SITD (ours)

Runtime 18 mins 40 sec ± 30 sec 57.12 sec ± 1.6 sec

Hardware 1 NVIDIA A100 GPU + AMD EPYC 7402 24-Core CPU 11th Gen Core i5-1140F CPU
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(a) Task: E.Coli 1 (b) Task: E.Coli 2

(c) Task: Yeast 1 (d) Task: Yeast 2

(e) Task: Yeast 3

Figure 3: This figure demonstrates the consistent performance of SITD w.r.t number of observations
compared to state-of-the-art methods Rhino and Rhino+g. Note that Rhino and Rhino+g are built
on neural networks. SITD significantly outperforms Rhino and Rhino+g in E.Coli 1 and E.Coli 2
and shows competitive results in Yeast 1. Thanks to the double robustness property of SITD, the
dependence of our algorithm on the estimator is much lower than the well-established approaches. In
this regard, SITD with a simple kernel regression with polynomial kernels has superior performance
compared to state-of-the-art methods Rhino and Rhino+g. This superiority gets magnified in the low
number of observation regimes due to the high sample complexity required by Rhino and Rhino+g.
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