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Abstract

This paper addresses the problem of predicting hazards that drivers may encounter1

while driving a car. We formulate it as a task of anticipating impending accidents2

using a single input image captured by car dashcams. Unlike existing approaches3

to driving hazard prediction that rely on computational simulations or anomaly4

detection from videos, this study focuses on high-level inference from static im-5

ages. The problem needs predicting and reasoning about future events based on6

uncertain observations, which falls under visual abductive reasoning. To enable7

research in this understudied area, a new dataset named the DHPR (Driving Hazard8

Prediction and Reasoning) dataset is created. The dataset consists of 15K dashcam9

images of street scenes, and each image is associated with a tuple containing car10

speed, a hypothesized hazard description, and visual entities present in the scene.11

These are annotated by human annotators, who identify risky scenes and provide12

descriptions of potential accidents that could occur a few seconds later. We present13

several baseline methods and evaluate their performance on our dataset, identifying14

remaining issues and discussing future directions. This study contributes to the15

field by introducing a novel problem formulation and dataset, enabling researchers16

to explore the potential of multi-modal AI for driving hazard prediction.17

1 Introduction18

In this paper, we consider the problem of predicting future hazards that drivers may encounter while19

driving a car. Specifically, we approach the problem by formulating it as a task of anticipating an20

impending accident using a single input image of the scene in front of the car. An example input21

image is shown in Fig. 1, which shows a taxi driving in front of the car on the same lane, and a22

pedestrian signalling with their hand. From this image, one possible reason is that the pedestrian23

may be attempting to flag down the taxi, which could then abruptly halt to offer them a ride. In this24

scenario, our car behind the taxi may not be able to stop in time, resulting in a collision. This simple25

example shows that predicting hazards sometimes requires abductive and logical reasoning.26

Thus, our approach formulates the problem as a visual abductive reasoning [15, 21] from a single27

image. As an underlying thought, we are interested in leveraging recent advances in multi-modal AI,28

such as visual language models (VLMs) [1, 19, 43, 9, 22, 25]. Despite the growing interest in self-29

driving and driver assistance systems, little attention has been paid to the solution we consider here,30

to the best of our knowledge. Existing approaches rely on predicting accidents through computational31

simulations using physics-based or machine-learning-based models of the surrounding environment32

[34]. For instance, they predict the trajectories of pedestrians and other vehicles. Another approach33
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Figure 1: Example of driving hazard prediction from a single dashcam image. The pedestrian in the
green box may be attempting to flag down a taxi, and the taxi may abruptly stop in front of our car to
offer them a ride.

formulates the problem as detecting anomalies from input videos [36, 37]. However, these methods,34

which rely only on a low-level understanding of scenes, may have limitations in predicting future35

events that occur over a relatively long time span, as demonstrated in the example above.36

An important note is that our approach uses a single image as input, which may seem less optimal37

than using a video to predict hazards encountered while driving. There are two reasons simplifying38

the problem for our choice. First, human drivers are capable of making accurate judgments even from39

a static scene image, as demonstrated in the example above. Our study is specifically tailored for40

this particular type of hazards. Humans are apparently good at anticipating the types of hazards that41

may occur and further estimating the likelihood of each one. Second, there are technical challenges42

involved in dealing with video inputs. Unlike visual inference from a static image (e.g., visual43

question answering [2]), there is currently no established approach in computer vision for performing44

high-level inference from dynamic scene videos; see [21, 15] for the current state-of-the-art. While45

videos contain more information than single images, we believe that there remains much room to46

explore in using single-image inputs.47

To investigate this understudied approach to driving risk assessment, we present a formulation of the48

problem and create a dataset for it. Since actual car accidents are infrequent, it is hard to collect a49

large number of images or videos of real accidents. To cope with this, we utilize existing datasets of50

accident-free images captured by dashcams, specifically BDD100K (Berkeley DeepDrive) [41] and51

ECP (EuroCity Persons) [6]; they were originally created for different tasks, e.g., object detection and52

segmentation. From these datasets, we have human annotators first identify scenes that potentially53

pose risks, in which an accident could occur a few seconds later. We then ask them to provide54

descriptions of the hypothesized accidents with mentions of entities (e.g., traffic signs, pedestrians,55

other cars, etc.) in the scene.56

The proposed dataset, named DHPR (Driving Hazard Prediction and Reasoning), is summarized as57

follows. It contains 15K scene images, for each of which a tuple of a car speed, a description of58

a hypothesized hazard, and visual entities appearing in the image are provided; see Fig. 2. There59

are at least one and up to three entities in each scene, each represented by a bounding box with its60

description. Each entity is referred to as ‘Entity #n’ with n(= 1, 2, 3) in the hazard description.61

Based on the dataset, we examine the task of inferring driving hazards using traffic scene images.62

This task involves making inferences based on uncertain observations and falls under the category of63

visual abductive reasoning, which has been the subject of several existing studies [15, 21, 34]. These64

studies have also introduced datasets, such as Sherlock [15], VAR [21], and VCR [42]. However, our65

study differs from these previous works in several aspects, which are outlined in Table 1. While our66

focus is limited to traffic scenes, our task involves a broader visual reasoning setting that necessitates67

recognizing multiple objects, understanding their interactions, and engaging in reasoning across68

multiple steps. Moreover, numerous studies on traffic accident anticipation have generated datasets69

with similar dashcam imagery, including CCD [3], DoTA [36], A3C [37], and DAD [7]. However,70

2



What is a possible hazard in the given scene?

Entity #2: black car in front of our car.

Entity #1: green car on the right side of the road.

Entity Description

Speed: 45 km/h

Entity #1 attempts to take a u-turn, so Entity #2 
hits the brake and stops the car, but we fail to 
comprehend the situation and bump into Entity #2.

Entity #1 comes into my lane due to Entity #2 in 
front, does not check mirror and collides with my car

Annotator

Model

1

2

Figure 2: An example from our dataset, DHPR (Driving Hazard Prediction and Reasoning). Each
image is annotated with the speed of a car, bounding boxes and descriptions of visual entities involved
in a hypothesized hazard, and a natural language explanation of the hazard. The visual entities are
referred to as ‘Entity #n’ in the explanation.

Table 1: Comparison of DHPR with existing datasets.

Dataset Visual
Inputs

Research
Problem

Multiple
Bboxes

Multi-step
reasoning

Object
Relationship

Annotation
Type

Sherlock
[15]

Scene
images

Abductive reasoning
of an interested object ✗ ✗ None Natural language

VAR
[21]

Scene
images

Abductive reasoning
of a missing event ✗ ✓ Event relations Natural language

VCR
[34]

Scene
images

Commonsense
reasoning ✓ ✓ Object interactions Natural language

CCD
[3]

Dash-cam
videos

Classification
of a future event ✓ ✗ Trajectory only Pre-defined class

DoTA
[36]

Dash-cam
videos

Classification
of a future event ✓ ✗ Trajectory only Pre-defined class

Ours
(DHPR)

Dash-cam
images

Abductive reasoning
of a future event ✓ ✓ Object interactions Natural language

these datasets only provide annotations for closed-set classes of accidents/causations. In contrast, our71

dataset includes annotations for open-set driving hazards expressed in natural language texts.72

The following section provides a more detailed discussion of related work (Sec. 2). We then proceed73

to explain the process of creating the dataset (Sec. 3). Next, we explore various task designs that can74

be examined using this dataset (Sec. 4). The experimental results, which evaluate the performance of75

current baseline methods for vision and language tasks in predicting driving hazards, are presented in76

Sec. 5. Finally, we conclude our study in Sec. 6.77

2 Related Work78

2.1 Traffic Accident Anticipation79

Traffic accident anticipation has received significant attention in the fields. We focus here exclusively80

on studies that utilize a dash board camera as the primary input source. The majority of these studies81

employ video footage as input, which aligns with the task’s nature. Most researchers aim to predict82

the likelihood of an accident occurring within a short time frame based on the input video. It is83

crucial for the prediction to be both accurate and early, quantified by the time to accident (TTA).84

Many existing studies formulate the problem as video anomaly detection. While some studies consider85

supervised settings [7, 18, 31, 3], the majority consider unsupervised settings, considering the diversity86

of accidents. Typically, moving objects are first detected in input videos, such as other vehicles,87

motorbikes, pedestrians, etc., and then their trajectories or future locations are predicted to identify88
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anomalous events; more recent studies focus on modelling of object interactions [14, 12, 17, 36].89

Some studies consider different problem formulations and/or tasks, such as predicting driver’s90

attention in accident scenarios [11], using reinforcement learning to learn accident anticipation and91

attention [4], and understanding traffic scenes from multi-sensory inputs by the use of heterogeneous92

graphs representing entities and their relation in the scene [26].93

Many datasets have been created for the above research, which contains from 600 to over 4000+94

dashcam video recordings, e.g., [13, 7, 18, 3, 37, 36]. However, they provide relatively simple95

annotation, i.e., if and when an accident occurs in an input video. While some provide annotations96

for the causes and/or categories of accidents [3, 36, 39], they only consider a closed-set of accident97

causes and types. On the other hand, the present study considers natural language explanations98

annotated freely by annotators, leading to encompassing an open set of accident types and causations.99

It aims to predict potential hazards that may lead to accidents in the near future. The prediction100

results are not intended to trigger immediate avoidance actions, such as sudden braking, but rather101

increase the awareness of the risk level and promote caution.102

2.2 Visual Abductive Reasoning103

Abductive reasoning, which involves inferring the most plausible explanation based on partial104

observations, initially gained attention in the field of NLP [15, 21, 16, 40]. While language models105

(LMs) are typically adopted for the task, some studies incorporate relative past or future information106

as context to cope with the limitation of LMs that are conditioned only on past context [28]. Other107

researchers have explored ways to enhance abductive reasoning by leveraging additional information.108

For example, extra event knowledge graphs have been utilized [10] for reasoning that requires109

commonsense or general knowledge, or general knowledge and additional observations are employed110

to correct invalid abductive reasoning [27]. However, the performance of abductive reasoning using111

language models exhibits significant underperformance, particularly in spatial categories such as112

determining the spatial location of agents and objects [5].113

Visual abductive reasoning extends the above text-based task to infer a plausible explanation of a114

scene or events within it based on the scene’s image(s). This expansion goes beyond mere visual115

recognition and enters the realm of the “beyond visual recognition” paradigm. The machine’s ability116

to perform visual abductive reasoning is tested in general visual scenarios. In a recent study, the117

task involves captioning and inferring the hypothesis that best explains the visual premise, given an118

incomplete set of sequential visual events [21]. Another study formulates the problem as identifying119

visual clues in an image to draw the most plausible inference based on knowledge [15]. To handle120

inferences that go beyond the scene itself, the authors employ CLIP, a multi-modal model pre-trained121

on a large number of image-caption pairs [30].122

3 Details of the DHPR (Driving Hazard Prediction and Reasoning) Dataset123

3.1 Specifications124

DHPR provides annotations to 14,975 scene images captured by dashcams inside cars running on city125

streets, sourced from BDD100K (Berkeley Deepdrive) [41] and ECP (EuroCity Persons) [6]. Each126

image x is annotated with127

• Speed v: a hypothesized speed v(∈ R) of the car128

• Entities {en = (ebbox,n, edesc,n)}n=1,...,N : up to three entities (1 ≤ N ≤ 3) leading to a129

hypothesized hazard, each annotated with a bounding box ebbox,n and a description edesc,n130

(e.g., ‘green car on the right side of the road’)131

• Hazard explanation h: a natural language explanation h of the hypothesized hazard and132

how it will happen by utilizing the entities {en}n=1,...,N involved in the hazard; each entity133

appears in the format of ‘Entity #n’ with index n.134
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Table 2: Split of DHPR. Direct and indirect indicate the type of hypothesized hazards. See text for
details.

Split Train Set
Validation Set Test Set

Direct Indirect Direct Indirect
# 10,975 1,000 1,000 1,000 1,000

Table 2 shows the construction of the dataset. In total, there are 14,975 images, which are divided135

into train/validation/test splits of 10,975/2,000/2,000, respectively.136

The validation and test splits are subdivided into two categories based on the nature of the hazards137

involved. The first category comprises direct hazards, which can be predicted directly. These hazards138

are hypothetically caused by a single entity and can be anticipated through a single step of reasoning.139

The second category includes indirect hazards, which require more prediction efforts. These hazards140

necessitate multiple reasoning steps and are often associated with multiple entities present in the141

scenes. This classification allows for a comprehensive analysis of models’ performance across various142

aspects. It is important to note that training images do not include direct/indirect tags.143

3.2 Annotation Process144

We employ Amazon Mechanical Turk (MTurk) to collect the aforementioned annotations. To ensure145

the acquisition of high-quality annotations, we administer an exam resembling the main task to146

identify competent workers and only qualified individuals are invited to participate in the subsequent147

annotation process. We employ the following multi-step process to select and annotate images from148

the two datasets, BDD100K and ECP. Each step is executed independently; generally, different149

workers perform each step on each image; see the supplementary material for more details.150

In the first step, we employ MTurk to select images that will be utilized in the subsequent stages,151

excluding those that are clearly devoid of any hazards. This leads to the choice of 25,000 images from152

BDD100K and 29,358 images from ECP. For each image, the workers also select the most plausible153

car speed from the predefined set [10, 30, 50+] (km/h) that corresponds to the given input image.154

In the second step, we engage different workers to assess whether the car could be involved in155

an accident within a few seconds, assuming the car is traveling at 1.5 times the annotated speed.156

The rationale behind using 1.5 times the speed is that the original images are acquired in normal157

driving conditions without any accidents occurring in the future. By increasing the speed, we158

enhance workers’ sensitivity to the risk of accidents, aiming at the generation of natural and plausible159

hypotheses. We exclude the images deemed safe, thereby reducing the total number of images from160

54,358 to 20,791.161

In the third step, we ask the workers to annotate each of the remaining images. Specifically, for each162

image, we ask a worker to hypothesize a hazard, i.e., a potential accident occuring in a near future, in163

which up to three entities are involved. We ask them to draw a bounding box and its description for164

each entity. We finally ask them to provide an explanation of the hazard including how it will occur165

while referring to the specified entities. The hazard explanation must be at least as long as five words166

and contain all the entities in the format ‘Entity #n’. Examples are found in Fig. 2.167

Finally, we conduct an additional screening to enhance the quality of the annotations. In this step,168

we enlist the most qualified workers to evaluate the plausibility of the hazard explanations in each169

data sample. This process reduces the number of samples from 20,791 to 14,975. These are split into170

train/val/test sets and further direct/indirect hazard types, as shown in Table 2.171
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4 Task Design and Evaluation172

4.1 Task Definition173

We can consider several tasks of different difficulty levels using our dataset. Each sample in our174

dataset consists of (x, v, h, {e1, . . . , eN}), where x is an input image, v is the car’s speed, h is a175

hypothesized hazard explanation, and en = (ebbox,n, edesc,n) are the entities involved in the hazard.176

The most natural and ultimate goal is to approach the problem as text generation, where we generate177

h as natural language text for a given input image x. However, this task is particularly challenging178

due to the difficulty of generating text for visual abductive reasoning. An intermediate step, simpler179

approach is to treat it as a retrieval problem, since visual abductive reasoning is an emerging field, as180

demonstrated in a recent study [15] which pioneered visual abductive reasoning and introduced the181

Sherlock dataset, utilized the same approach. For this task, we have {hi}i=1,...,K , which represents182

a set of candidate hazard explanations hi’s. Our objective is to rank the hi’s for each input image183

x. A higher ranking for the ground truth h of x indicates better prediction. Models generate a score184

s = s(x, h) for an image-text pair, with the score s indicating their relevance.185

We also need to consider how we handle visual entities. There are different options that affect the186

difficulty of the tasks. The most challenging option is to require models to detect and identify entities187

by specifying their bounding boxes in the image. A simpler alternative is to select the bounding188

boxes from a provided set of candidate boxes in the image. An even simpler method assumes that the189

correct entities are already given as boxes in the input image. Any of these options can be combined190

with the generation and retrieval tasks.191

In our experiments, we focus on retrieval tasks with the easiest setting for visual entities. Specifically,192

assuming that the bounding boxes of the entities involved in a hypothesized hazard are provided,193

we consider two retrieval tasks: image-to-text retrieval and text-to-image retrieval. For the former,194

we rank a list of given texts based on their relevance to an input image, while for the latter, we195

perform the opposite ranking. Models represent the mapping from three inputs, an image x, a hazard196

explanation h, and the involved entities’ boxes {ebbox,1, . . . , ebbox,N} as197

s = s(x, h, {ebbox,1, . . . , ebbox,N}). (1)

It is important to note that specifying the bounding boxes of the entities involved helps reduce the198

inherent ambiguity in hazard prediction. In a given scene, there can be multiple hypotheses of199

potential hazards. Specifying the entities narrow downs the choices available to the models.200

4.2 Evaluation Procedure and Metrics201

In our retrieval tasks, the models provide a relevance score, denoted as s, for an input tuple. We202

organize our dataset into four splits: val-direct, val-indirect, test-direct, and test-indirect, each203

containing 1,000 samples, as summarized in Table 2. During evaluation, we treat the direct and204

indirect types separately. Consider the test-direct split as an example, where we have 1,000 texts205

and 1,000 images for each hazard type. For image-to-text retrieval, we consider all 1,000 texts that206

are randomly sampled from all the 2,000 test explanations as candidates and rank them for each of207

the 1,000 images. Similarly, for text-to-image retrieval, we perform the same ranking process in the208

opposite direction.209

To assess the performance of our models, we employ two metrics. The first metric measures the210

average rank of the ground-truth (GT) texts for image-to-text retrieval and the average rank of the211

ground-truth images for text-to-image retrieval. The second metric is the Normalized Discounted212

Cumulative Gain (NDCG) score [23, 29]. We calculate NDCG scores for the top 200 out of 1,000213

hazard explanations. In this calculation, we utilize ChatGPT (gpt-3.5-turbo) from OpenAI to estimate214

the semantic similarity between each candidate text and its corresponding ground-truth text; see the215

supplementary material for details. The estimated similarity serves as the relevance score for each216

candidate text, which allows us to calculate the NDCG score.217
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Figure 3: The architectures of our CLIP-based baselines with three extensions.

5 Experiments218

5.1 Methods219

How to Input Visual Entities? To apply a vision and language model to the task under consider-220

ation, it needs to calculate a relevance score s for an image x and a hazard explanation h with the221

bounding boxes of involved visual entities e1, . . . , eN . The method is requested to refer to each entity222

in the hazard explanation in the form of ‘Entity #n’ (n = 1, 2, 3). As the entities are specified as223

bounding boxes in the input image, we need to tell our model which local image regions indicate224

‘Entity #n’ (n = 1, 2, 3). To do this, we employ an approach to augment the input image x into225

x̃ with color-coded bounding boxes, following [15, 38]. Specifically, an opaque color is used to226

represent an image local region under consideration. As there are up to three entities, we employ227

a simple color-coding scheme, i.e., using purple, green, and yellow colors to indicate Entity #1, 2,228

and 3, respectively. We employ alpha blending (with 60% opaqueness) between boxes filled with the229

above colors and the original image; see the supplementary material for more details. We will use x̃230

to indicate the augmented image with the specified visual entities in what follows.231

Compared Methods We experimentally compare several models for vision and language tasks;232

see Table 3. We adopt CLIP [30] as our baseline method, following the approach in [15]. We employ233

the model with ViT-B/16 or ViT-L/14 for the visual encoder and BERT-base for the text encoder.234

In addition, we explore three extended models, which are illustrated in Fig. 3. The first model235

extends CLIP with an auxiliary image-grounded text encoder (Fig. 3(a)). This encoder updates the236

text features by attending to the CLIP visual features. The second model utilizes a text-grounded237

image encoder (Fig. 3(b)). Lastly, the third model combines both text-grounded and image-grounded238

encoders (Fig. 3(c)). All auxiliary encoders share a simple design, consisting of two standard239

transformer layers. Each transformer layer includes a self-attention sub-layer and a cross-attention240

sub-layer, arranged sequentially. Furthermore, we evaluate two popular existing methods for vision241

and language tasks: UNITER [8] and BLIP [20]. UNITER employs a single unified transformer that242

learns joint image-text embeddings. It uses a pre-trained Faster R-CNN to extract visual features.243

BLIP employs two separate transformers, namely a Vision Transformer for visual embeddings and244

a BERT Transformer for text embeddings. For all the models but UNITER, we employ the cosine245

similarity between the image and text embeddings as the relevance score; UNITER has a retrieval246

head to yield a score.247

5.2 Training248

Loss Functions To train (or fine-tune) the above models, we employ two training objectives (i.e.,249

loss functions). One is the contrastive loss over a set of image-text pairs [30] and the other is the250

matching loss between an image and a text [24], if applicable. See the supplementary material for251

details.252
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Table 3: Comparison of average ranks of GT texts and NDCG scores (in brackets if applicable) on
the test split. Lower ranks indicate better performance, while higher NDCG scores indicate better.

Model Visual Encoder Text-to-Image Image-to-Text
Direct Indirect Direct Indirect

Random - 500 500 500 500
UNITER [8] Faster R-CNN 172.3 186.5 173.8 (74.2) 181.2 (71.9)
BLIP [20] ViT-B/16 153.4 172.1 151.9 (78.6) 176.1 (72.3)
BLIP2 [19] ViT-L/14 98.9 82.5 94.3 (74.9) 81.1 (71.6)
Baseline ViT-B/16 77.2 75.3 78.4 (81.8) 73.3 (79.2)
w/ Text Encoder ViT-B/16 75.9 73.5 73.2 (82.2) 68.1 (80.3)
w/ Image Encoder ViT-B/16 74.5 72.2 79.1 (81.4) 69.7 (80.3)
w/ Dual Encoders ViT-B/16 74.8 70.2 69.2 (82.9) 64.3 (80.4)
w/ Dual Encoders ViT-L/14 65.9 55.8 66.5 (84.4) 53.8 (80.7)

Rank 1: We attempted to get out of the parking lot behind Entity 
#1, but being too close and misjudging proximity, we had to clip it.

Rank 5: I adjust car to my right, so I don’t hit Entity #1 but instead 
my car hits Entity #2 due to narrow pass

Rank 2 (0.4): Entity #1 is parked very close to me; even though 
I'm moving my car slowly, getting out of my parking spot will 
scratch Entity #1
Rank 3 (0.6): our car is very near to Entity #1 at the given speed 
we could hit on the back of Entity #1 within a second.
Rank 4 (0.2): Entity #1 is very close to me, so even though I am 
driving slowly due to traffic, I will hit Entity #1

Rank 1 (0.4): Entity #1 and Entity #2 makes the road narrow for 
my car, due to this, I pull to the left more and hits Entity #1
Rank 2 (1.0): Entity #1 and my car converge at the same time at 
Entity #2, due to this my car clips Entity #1 due to Entity #2
Rank 3 (1.0): Entity #1 is coming in my direction, and due to 
Entity #2, my car clips Entity #1 on the side.

GT

top

(a) An example of direct hazard prediction (b) An example of indirect hazard prediction

Figure 4: Examples of the image-to-text retrieval by the best-performing baseline model, including
the annotated hazard (GT) and its rank, alongside the other top three candidates. Each candidate’s
rank is indicated as Rank n with the brackets containing its ChatGPT similarity to the GT.

Entity Shuffle Augmentation While a hypothesized hazard explanation can contain multiple visual253

entities, their order in the explanation is arbitrary, e.g., ‘Entity #1’ may appear after ‘Entity #2’ etc in254

the text. As explained earlier, we assign a color to each index (n = 1, 2, 3), and this assignment is255

fixed throughout the experiments, i.e., purple = ‘Entity #1,’ green = ‘Entity #2,’ and yellow= ‘Entity256

#3.’ To facilitate the models to learn this color coding scheme, we augment each training sample257

by randomly shuffling the indices of entities that appear in the explanation, while we keep the color258

coding unchanged.259

5.3 Results and Discussions260

Table 3 presents the results of the compared methods for the retrieval tasks. Several observations can261

be made. Firstly, regardless of the retrieval mode (text-to-image or image-to-text), the performance is262

generally better for indirect hazard types compared to direct ones. This difference in performance can263

be attributed to the nature of the hazard types. Direct hazards are simpler and have annotations that264

are more similar to each other, whereas indirect hazards are more complex, leading to more diverse265

and distinctive annotations. Secondly, the ranks of the GT (ground-truth) texts are well aligned with266

the NDCG score, indicated within parentheses for image-to-text retrieval.267
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Thirdly, our baseline models, which are based on CLIP, demonstrate superior performance (i.e.,268

average GT rank ranging from 53.8 to 79.1) compared to UNITER, BLIP and BLIP2 (i.e., ranging269

from 81.1 to 186.5). This may be attributable to the larger-scale training of CLIP using diverse270

image-caption pairs. Additionally, we observe that the best performance is achieved by the model that271

utilizes dual auxiliary encoders and a larger ViT-L/14 vision encoder. This finding suggests that the272

task at hand is highly complex, requiring models with sufficient capacity to handle this complexity.273

In summary, our results indicate that it is possible to develop better models for this task.274

It is important to note that even the best-performing model achieves an average rank of around 60 out275

of 1,000 candidates, which may not appear impressive. However, average ranks may not accurately276

represent the true performance of models, although they are effective for comparing different models.277

This is because different scene images can have similar hazard hypotheses and explanations, as shown278

in Fig. 4, due to the nature of driving hazards. Additionally, the same scenes can have multiple279

different hazard hypotheses due to the nature of abductive reasoning. While our experiments limit280

the number of hypotheses by specifying participating visual entities, it may not reduce the possible281

hypotheses to just one. These observations imply that the top-ranked hazard explanations by a model282

can still be practically useful, even if they result in seemingly suboptimal ranking scores. Therefore,283

it may be more appropriate to use the NDCG score as the primary metric to assess the real-world284

performance of models.285

6 Conclusion and Discussions286

We have introduced a new approach to predicting driving hazards that utilizes recent advancements in287

multi-modal AI, to enhance methodologies for driver assistance and autonomous driving. Our focus288

is on predicting and reasoning about driving hazards using scene images captured by dashcams. We289

formulate this as a task of visual abductive reasoning.290

To assess the feasibility and effectiveness of our approach, we curated a new dataset called DHPR291

(Driving Hazard Prediction and Reasoning). This dataset comprises approximately 15,000 scene292

images captured by dashcams, sourced from existing datasets initially designed for different tasks.293

To annotate each scene image, we employed a crowdsourcing platform. The annotations include294

the car’s speed, a textual explanation of the hypothesized hazard, and visual entities involved in the295

hazard, represented by bounding boxes in the image along with corresponding descriptions in text296

format.297

Next, we designed specific tasks utilizing the dataset and introduced proper evaluation metrics. we298

conducted experiments to evaluate the performance of various models, including a CLIP-based299

baseline and popular vision and language (V&L) models, on image-to-text and text-to-image retrieval300

tasks in the setting that participating visual entities are assumed to be given. The experimental results301

demonstrate the feasibility and effectiveness of the proposed approach while providing valuable302

insights for further investigations.303

It should be emphasized that while there are numerous studies on predicting traffic accidents, our304

approach tackles a different problem. Previous research primarily aims to directly forecast the305

occurrence of accidents, with the objective of prevention. In contrast, our study is geared towards306

predicting potential hazards that could eventually lead to accidents in the future. While the outcomes307

of our prediction may not necessitate immediate avoidance actions, such as abrupt braking, they serve308

to make drivers aware of the magnitude of the risk and encourage them to pay attention. This will be309

useful for driver assistance systems.310

This area remains largely unexplored within the related fields, offering numerous opportunities for311

further research. One promising direction is the application of LLMs to the problem. LLMs are now312

recognized for their ability in hypothesis generation, multi-step reasoning, and planning [33, 32, 35].313

Leveraging these capabilities, along with their extension to multi-modal models [1, 19, 43, 22] holds314

great potential. As this unfolds, our dataset will continue to be relevant for studying the creation of315

reasoning texts.316
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Another direction for future exploration involves expanding the study from static images to videos.317

While static images provide sufficient information for predicting and reasoning about a wide but318

limited range of hazards, incorporating temporal information from videos could provide additional319

clues, enabling the consideration of a broader range of hazards and potential accidents. Without our320

intermediate step of leveraging a single image-based method, it would be difficult to navigate the321

complexities of video-based prediction.322

In conclusion, we have high hopes that our study and dataset will spark the interest of researchers323

and contribute to the advancement of driver assistance and autonomous driving systems.324
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