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ABSTRACT

The effectiveness of Federated Learning (FL) in the context of the Internet of
Things (IoT) is hindered by the resource constraints of IoT devices, such as limited
computing capability, memory space and bandwidth support. These constraints
create significant computation and communication bottlenecks for training and
transmitting deep neural networks. Various FL frameworks have been proposed to
reduce computation and communication overheads through dropout or layer freez-
ing. However, these approaches often sacrifice accuracy or neglect memory con-
straints. In this work, we introduce Federated Learning with Ordered Layer Freez-
ing (FedOLF) to improve energy efficiency and reduce memory footprint while
maintaining accuracy. Additionally, we employ the Tensor Operation Approx-
imation technique to reduce the communication (and accordingly energy) cost,
which can better preserve accuracy compared to traditional quantization methods.
Experimental results demonstrate that FedOLF achieves higher accuracy and en-
ergy efficiency as well as lower memory footprint across EMNIST, CIFAR-10,
CIFAR-100, and CINIC-10 benchmarks compared to existing methods.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) has gained significant traction in the Internet of
Things (IoT) for processing decentralized data and providing privacy-preserving intelligent services
to clients (Jin et al., 2024; Zheng et al., 2023; Nguyen et al., 2022). However, the heterogeneous
nature of client devices poses a challenge due to varying system capacities. In real-world IoT envi-
ronments, clients, often edge devices, exhibit diverse configurations in terms of processor, battery,
bandwidth, and memory. Resource-constrained devices with limited hardware and bandwidth face
difficulties in training and transmitting large neural networks, leading to straggling, low quality-of-
service, and excessive computation and communication costs. Moreover, devices with insufficient
memory may be unable to handle memory-intensive neural networks, thus being excluded from FL
with severe information loss. Therefore, addressing the issue of resource constraints is crucial for
the successful application of FL in IoT systems (Imteaj et al., 2022; Pfeiffer et al., 2023a).

Several studies have been proposed to address resource constraints through techniques such as
dropout (Caldas et al., 2018; Horváth et al., 2021; Diao et al., 2021; Kim et al., 2023) or layer
freezing (Pfeiffer et al., 2023a;b). These methods involve training a subset of the global model with
reduced requirements on hardware, bandwidth, and memory on edge devices. Specifically, dropout
involves pruning a fraction of the global model and sending the remaining sub-model to clients for
training. However, it may significantly degrade accuracy in non-independent identical (non-iid) lo-
cal data distributions. In such settings, data importance among clients may vary, and training an
underparameterized sub-model for an important client with data resembling the global distribution
may not sufficiently capture knowledge from local data, leading to decreased accuracy of the global
model (Pfeiffer et al., 2023b; Acar et al., 2021).

Instead of sub-models, layer freezing involves sending the full global model to all devices and al-
lowing resource-constrained devices to freeze some layers during training. For example, CoCoFL
(Pfeiffer et al., 2023b) allows clients to randomly train certain layers while freezing the remaining,
while SLT (Pfeiffer et al., 2023a) enables clients to sequentially train each layer in a bottom-up man-
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ner, with other layers partially frozen. Compared to dropout, layer freezing is more resilient to non-
iid data by preserving the full model architecture on each client (Pfeiffer et al., 2023b). However,
layer freezing introduces heavy communication overhead since the global model must be transmitted
to clients. Additionally, these methods overlook the fact that top-level layers, even though frozen,
still need to store and pass gradient information back to lower-level active layers during backprop-
agation, resulting in heavy memory consumption. For example, Figure 1 illustrates a comparison
between two training modules: (a) random layer freezing requiring more memory than (b) ordered
layer freezing due to a longer path for backpropagation of gradients (a longer red arrow in Figure
1(a)). To validate this analysis, we implement these two layer-freezing strategies using ResNet20
(He et al., 2016) with the CIFAR-100 dataset (Krizhevsky et al., 2009), and measure their maximum
memory usage using the TORCH.CUDA.MAX MEMORY ALLOCATED function (PyTorch, 2023) in
PyTorch. As depicted in Figure 1(c), random layer freezing consumes more memory compared to
ordered layer freezing, even when the same number of layers are frozen.

Input Output

Input Output

Frozen layer Active layer

(a) Random Layer Freezing

(b) Ordered Layer Freezing

Forwardpropagation Backpropagation

(c) Maximum memory usage
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Figure 1: A comparison between (a) Random Layer Freezing and (b) Ordered Layer Freezing. The
former requires more memory space to pass the gradient information back towards low-level active
layers. (c) shows the maximum memory usage of these two modules in practice.

To address the shortcomings of existing methods, we introduce a new FL framework named Feder-
ated Learning with Ordered Layer Freezing (FedOLF). In FedOLF, resource-constrained devices
selectively freeze some low-level layers while training the remaining top-level layers. This approach
substantially reduces the computation overhead and memory requirements of training, by shortening
the gradient backpropagation path as illustrated in Figure 1(b). Additionally, we empirically observe
that the gradient loss resulting from low-level frozen layers tends to diminish as training moves for-
ward to top-level layers, which helps FedOLF maintain accuracy. Furthermore, we adopt an adapted
Tensor Operation Approximation (TOA) scheme (Adelman et al., 2021) to reduce the communi-
cation cost in FedOLF. Instead of the full global model, clients receive a low-rank approximation
of the frozen layers along with all active layers from the server during communication. Unlike con-
ventional quantization methods, TOA minimally impacts training and significantly preserves model
accuracy. The contributions of this paper are summarized as follows:

• We introduce FedOLF, an efficient FL framework addressing the memory shortage prob-
lem by allowing resource-constrained devices to train partial top-level layers of the global
model. We also provide convergence analysis of FedOLF in non-convex settings.

• We propose an adapted TOA framework to reduce communication costs and memory foot-
print of FedOLF. Unlike the initial method that works on all layers, the adjusted TOA
framework only works on frozen layers to ensure the active layers get fully trained.

• We evaluate FedOLF on EMNIST (with CNN), CIFAR-10 (with AlexNet), CIFAR-100 and
CINIC-10 (with ResNet20 and ResNet44). Experimental results demonstrate that FedOLF
outperforms the state-of-the-art by improving the accuracy by at least 0.3%, 6.4%, 12.8%,
4.4%, 6.6% and 1.29%, with higher energy efficiency and lower memory footprint.
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2 LITERATURE REVIEW

Efficient Federated Learning: This stream of research aims to alleviate the computational and
communication costs associated with FL. Various approaches have been proposed to enhance com-
putation efficiency, such as FedProx (Li et al., 2020), FedParl (Imteaj & Amini, 2021), and Pyra-
midFL (Li et al., 2022), which reduce client training epochs to mitigate computation costs. To
improve communication efficiency, methods like FedCOM (Haddadpour et al., 2021), FetchSGD
(Rothchild et al., 2020), and STC (Sattler et al., 2020) reduce the size of transmitted parameters
through message compression. Additionally, approaches like FedSL (Zhang et al., 2024), FedOBD
(Chen et al., 2022a), FedNew (Elgabli et al., 2022), Fedproto (Tan et al., 2022), and DS-FL (Itahara
et al., 2023) advocate for transmitting lightweight replacement messages, such as logits and pro-
totypes, instead of the full global model. However, these methods often focus on singular aspects
of efficiency and fail to simultaneously address both computation and communication challenges.
Moreover, they do not adequately account for memory constraints on devices, as they typically in-
volve full-model training on all clients. Adaptive dropout (Li et al., 2021a; Jiang et al., 2022; 2023;
Li et al., 2021b) offers a more comprehensive approach by enabling clients to train and transmit
lightweight sub-models, thereby achieving both computation and communication efficiency. Never-
theless, adaptive dropout overlooks memory constraints, as clients must prune unimportant neurons
to generate sub-models, a process that requires pre-training the full model locally. FLrce (Niu et al.,
2024) mitigates overall computation and communication costs by reducing FL iterations with an
early-stopping mechanism. However, it still entails full-model training on all devices irrespective of
memory constraints.

Federated Learning on Resource-Constrained Devices: The primary distinction between ef-
ficient FL and resource-constrained FL lies in the latter’s consideration of devices with limited
resources, such as memory space or bandwidth support, which are unable to train or transmit the
entire model. To tackle this challenge, (Caldas et al., 2018; Horváth et al., 2021; Kim et al., 2023;
Diao et al., 2021) introduce the concept of sub-models, which contain fewer parameters and can be
trained and transmitted by resource-constrained clients. Specifically, Feddrop (Caldas et al., 2018)
employs random neuron pruning, FjORD (Horváth et al., 2021) and HeteroFL (Diao et al., 2021)
adopt a right-to-left approach for neuron pruning, and DepthFL (Kim et al., 2023) employs top-first
layer pruning. Unlike adaptive dropout, these works execute dropout at the server side, eliminating
the need for clients to pre-train a full model. However, these methods are susceptible to non-iid data
among clients, as training small sub-models on crucial clients may not capture sufficient knowledge
to construct an accurate global model. In contrast, CoCoFL (Pfeiffer et al., 2023b) and SLT (Pfeif-
fer et al., 2023a) advocate for maintaining the full model architecture on all clients while freezing
certain layers on resource-constrained devices. CoCoFL randomly freezes layers within the local
model, whereas SLT partially freezes top-level layers and sequentially trains all layers from the
bottom. The frozen layers remain untrained and untransmitted to enhance computation and com-
munication efficiency. However, these approaches lead to increased memory usage, particularly in
the case of frozen top-level layers, which consume significant memory space to transmit gradient
information backward, as illustrated in Figure 1.

3 METHODOLOGY

3.1 PROBLEM SETUP

Given a network with one server and K devices (clients), and a global model w stored on the server
side, the goal of FL is to optimize the following problem:

min
w

f(w) := E[fk(w)] :=
K∑

k=1

nk

n
(fk(w)),

fk(w) :=
1

nk

i=1∑
nk

L(w, (xi, yi)).

(1)

f , the global objective function, is a weighted average of all local objective functions fk (1 ≤ k ≤
K). For a client k, the local objective function fk is equivalent to the empirical risk over its personal
dataset Dk, nk = |Dk| is the size of the local dataset and L(w, (xi, yi)) is the prediction loss of
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w over the i−th sample (xi, yi) in Dk. n =
∑K

k=1 nk is the total number of samples across all
local datasets. Moreover, let N denote the total number of layers in the global model w, and Wl

represent the l−th layer with parameter θl (1 ≤ l ≤ N ). The layer Wl can be viewed as a function
that takes the input feature representation xl−1 from the previous layer, and outputs a new feature
representation xl, i.e. xl = Wl(xl−1,θl). Specially, x0 = x is the initial data sample, and xN = ŷ
is the model’s final prediction.

Algorithm 1 FedOLF

Require: maximum global iteration T , clients C = {1, ...,K} with numbers of frozen layers
{l1, ..., lK}, and initial global model w0, scale factor s.

1: for t = 1, 2, ..., T do
2: Server randomly samples a set of participating clients Ct ⊂ C.
3: for every client k ∈ Ct the server does:
4: Decompose wt into wt

F,k and wt
A,k based on lk.

5: ŵt
F,k ← TOA(wt

F,k, s, lk). ▷ Algorithm 2
6: Send ŵt

F,k and wt
A,k to k.

7: each k ∈ Ct in parallel does:
8: wt

k ← ŵt
F,k ◦ wt

A,k.
9: For local epochs 1, ..., E:

10: wt+1
A,k = wt

A,k − η∇f ′
k(w

t
A,k). ▷ SGD

11: Upload wt+1
A,k to the server.

12: for each layer Wl ∈ wt, the server does:
13: Ct,l ← {k : k ∈ Ct ∧Wl ∈ wt+1

A,k}. ▷ Obtain all clients that include Wl

14: nl ←
∑

k∈Ct,l
nk.

15: Wl ← E(Wk,l) :=
∑

k∈Ct,l

nk

nl
Wk,l. ▷ Layer-wise aggregation

16: end for
17: return wt

3.2 FEDOLF: FEDERATED LEARNING WITH ORDERED LAYER FREEZING

For a client k, the architecture of model w can be decomposed into two components wF,k and wA,k

such that w = wF,k ◦ wA,k. wF,k = {W1, ...,Wlk} and wA,k = {Wlk+1, ...,WN} are respectively
the set of frozen and active layers. lk ∈ {0, 1, ..., N − 1} is the number of frozen layers in training
whose value depends on k’s device capacity. For a powerful device that can train the entire model,
we have lk = 0 and wF,k = ∅.

At global iteration t, client k downloads the global model wt and decomposes wt into wt
F,k and

wt
A,k based on lk. Afterwards, client k freezes wt

F,k and locally trains all parameters in wt
A,k by

applying stochastic gradient descent (SGD) on dataset Dk according to Equation (2):

wt+1
A,k = wt

A,k − η∇f ′
k(w

t
A,k) (2)

η is the learning rate and ∇f ′
k is a low-error-rate approximation of the gradient ∇fk in the case

of layer freezing. With layer freezing, the layers in wt
F,k will remain constant as training goes on,

and will subsequently generate a straggling feature representation x′
lk

= xlk + σlk . xlk is the
true representation generated by wt

F,k if it is non-freezing, and σlk is an error term representing the
divergence between xlk and x′

lk
. Feeding xlk and x′

lk
forward will respectively result in ∇fk and

∇f ′
k. Once local training is completed, client k only sends the updated layers wt+1

A,k to the server
for communication efficiency. After receiving the results from all participating clients, the server
updates the global model using a layer-wise aggregation strategy same as in (Pfeiffer et al., 2023b).
The details of FedOLF are outlined in Algorithm 1.

3.3 FEDOLF WITH TENSOR OPERATION APPROXIMATION

Furthermore, we propose an adapted Tensor Operation Approximation (TOA) framework (Adelman
et al., 2021) dedicated to reducing the communication cost in FedOLF. Instead of the entire global
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model w, a client k downloads ŵt
F,k and wt

A,k from the server, where ŵt
F,k is a low-rank approxima-

tion of the frozen layers wt
F,k with fewer parameters. Unlike the initial TOA method which works

on all layers, in this paper, the modified TOA works only on the frozen layers to ensure all active
layers get fully trained. For illustration, let Hq denote the number of tensors in a frozen layer Wq ,
where a tensor is a filter or neuron if Wq is a convolution or fully-connected layer, respectively.

Figure 2: Within each frozen fully-connected layer Wq (1 ≤ q < l) containing Hq neurons, a subset
W ′

q (blue neurons) is derived by sampling H ′
q = ⌊sHq⌋ neurons of the layer. Consequently, the

approximation of wt
F,k, represented as ŵt

F,k is ŵt
F,k = W ′

1 ◦ ...... ◦W ′
l−1 ◦Wl.

For example, Figure 2 shows how TOA is applied on a fully-connected neural network with l frozen
layers. For every layer Wq (1 ≤ q < l), except for the last frozen layer, the server samples ⌊sHq⌋
tensors from the layer and sends this subset of tensors to client k. s (0 < s ≤ 1) is a scaling
factor that determines the trade-off degree between accuracy and communication efficiency, with
s = 1 representing that no TOA is applied. Moreover, TOA is not performed on the last frozen
layer as shown in Figure 2, so that the dimensions of the output representation x′

l and the following
active layers remain unchanged. Based on the study of Adelman et al. (2021), we apply a weighted
sampling strategy on TOA. With this strategy, TOA selects a tensor Zj (1 ≤ j ≤ Hq) within a
frozen layer Wq with probabilities proportional to their Frobenius norms:

P(Zj ∈W ′
q) =

∥Zj∥F∑Hq

j=1 ∥Zj∥F
. (3)

In this case, the approximation error E[∥x′
l − x′

l,TOA∥2] will be minimized, where x′
l,TOA and x′

l

are respectively the output representations with and without TOA. The TOA technique significantly
reduces the downstream communication cost in FedOLF by approximately O(s2). The procedure
of TOA is shown in Algorithm 2.

Algorithm 2 TOA

Require: set of frozen layers wF , scaling factor s, number of frozen layers lk:
1: For every layer Wq ∈ wF , 1 ≤ q ≤ lk − 1:
2: Hq ← len(Wq).
3: W

′

q ← sample(candidates={Zj}
Hq

j=1,weights={P(Zj ∈W
′

q)}
Hq

j=1, number=⌊sHq⌋).
4: return w′

F := W ′
1 ◦ ...... ◦W ′

lk−1 ◦Wlk

3.4 DETERMINING THE NUMBER OF FROZEN LAYERS

Given a neural network w with N layers, the memory footprint m(w) can be computed as:

m(w) =

N∑
q=1

mAM(Wq) +mG(Wq) +mW(Wq) ≈
N∑
q=1

mAM(Wq) (4)

That is, the overall memory footprint m is the accumulated memory footprint of three components,
which are parameter weights (mW), gradients (mG) and activation maps (mAM) across all layers.
Moreover, compared with weights and gradients, the size of activation maps is much more massive

5
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and consumes a dominant memory space. Therefore, the overall memory footprint can be approxi-
mated as the total size of activation maps across all layers (Pfeiffer et al., 2023a).

In FedOLF, for a frozen layer Wq , mAM(Wq) becomes zero, as no activation maps have to be stored
for training (Pfeiffer et al., 2023a). Accordingly, a client k can choose lk to be the smallest value,
given

∑N
q=lk+1 mAM(Wq) (the size of activation maps in the remaining active layers) not exceeding

its memory limit.

3.5 LOW-LEVEL LAYER SHARING AMONG CLIENTS

According to the studies of (Zhang et al., 2024; Luo et al., 2021), low-level layers across various
local models usually have higher degrees of Centered Kernal Alignment (CKA) similarity across dif-
ferent datasets (Kornblith et al., 2019), which means that these layers contain substantial redundant
information and may generate similar feature representations. Motivated by this insight, in FedOLF,
a resource-constrained device k can ”borrow” the highly-generalized low-level layers from other
clients by downloading wt

F,k from the server. Layers in wt
F,k have been trained by more powerful

clients in previous rounds, and can be directly employed by k during the forward propagation phase
of training without incurring significant errors.

3.6 VANISHING REPRESENTATION ERROR AND BOUNDED GRADIENT LOSS

x0 ... ... x'Nx'l x'l+1

Frozen layers ,..., Active layers ,..., 

Figure 3: During training, the l frozen layers will generate a feature representation x′
l that diverges

from the true xl. Affected by x′
l, the following active layers also generate inaccurate representations.

In addition to reducing memory usage, FedOLF preserves accuracy by mitigating representation
errors induced by ordered layer freezing, with these errors diminishing as training advances through
layers. For illustration, Figure 3 presents an exemplary model with l frozen layers and N − l
active layers. As described in subsection 3.2, owing to the staleness of frozen layers, all feature
representations after layer Wl diverge from the true representations. However, the representation
errors ∥σl∥, ∥σl+1∥, ..., ∥σN∥ tends to decrease as the depth grows, where ∥ · ∥ represents l2-norm.

To verify our hypothesis, we first make the following assumption:

Assumption 1. The intrinsic function of each layer Wl is Bl-Lipschitz continuous with Bl > 0:

∀x1,x2, ∥Wl(x1,θl)−Wl(x2,θl)∥ ≤ Bl∥x1 − x2∥. (5)

Since xl+1 = Wl(xl,θl) and x′
l+1 = Wl(x

′
l,θl), we can rewrite Equation (5) as:

∥x′
l+1 − xl+1∥ ≤ Bl∥x′

l − xl∥. (6)

By induction, we have:

∥x′
N − xN∥ ≤

N−1∏
q=l

Bq∥x′
l − xl∥, i.e. ∥σN∥ ≤

N−1∏
q=l

Bq∥σl∥. (7)

In the experiment, we find that the term
∏N−1

q=l Bq is always shrinking (see Appendix A for evi-
dence). Consequently, the representation error ∥σd∥ (l ≤ d ≤ N ) caused by layer freezing tends to
be vanishing as d increases, and the representation x′

d is gradually approaching the true representa-
tion xd, thereby narrowing the gap between the computed gradient ∇θ′

d and the true gradient ∇θd.
As a result, the accumulated training error

∑N
l ∥∇θ′

l −∇θl∥ will be bounded (see Appendix B.1).
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4 CONVERGENCE ANALYSIS

In this section, we analyze the convergence results for FedOLF on non-convex smooth objective
functions. We do not require the objective function to be convex in the case of deep-learning neural
networks (Karimireddy et al., 2020). We make the following assumptions:

Assumption 2 (smoothness). The objective function fk is L-smooth:

∀w1, w2, ∥∇fk(w1)−∇fk(w2)∥ ≤ L∥w1 − w2∥. (8)

Assumption 3 (Bounded variance). The variance of local gradients to the global gradient is
bounded:

∀k,w, E(∥∇fk(w)−∇f(w)∥2) ≤ γ2. (9)
Furthermore, from Assumption 1 and Assumption 2, we can infer that the divergence of local gradi-
ent ∥∇f ′

k −∇fk∥ resulting from layer freezing is bounded, which is defined in Corollary 1.

Corollary 1. For any client k, the divergence between the local gradient with and without layer
freezing is bounded:

∀k,w, ∥∇f ′
k(w)−∇fk(w)∥2 ≤ D2. (10)

Based on Assumptions 1-3 and Corollary 1, we derive the following theorems:

Theorem 1. When the learning rate η satisfies 1
L < η < 3

2L , we have:

f(wt+1)− f(wt) ≤
η

2
(2ηL− 3)(E[∥∇f(wt)∥])2 + ηD(ηL− 1)E[∥∇f(wt)∥] + η

2
(2ηLγ2 − γ2 + ηLD2 + 2ηLDγ).

(11)

Theorem 2. When the learning rate η satisfies η ≤ 1
L , we have:

f(wt+1)− f(wt) ≤ η

2
× (−E[∥∇f(wt)∥2] +D2 + γ2 + 2Dγ). (12)

According to Theorem 1 and Theorem 2, when the learning rate is less than 3
2L , the objective func-

tion f continues to decrease before wt reaching a ϵ-critical point where ∥∇f(wt)∥ ≤ ϵ. Specifically,

when 1
L < η < 3

2L , we have ϵ = ϵ1 =
D(ηL−1)+

√
ηD2L+8ηLγ2+6ηDLγ+D2−3γ2

3−2ηL . When η ≤ 1
L , we

have ϵ = ϵ2 = D + γ. The proof can be found in Appendix B.

For FedOLF with TOA, the above theorems remain valid. The only difference is that the boundary
D in Corollary 1 is expected to become larger as TOA slightly increases the representation error.
Subsequently, the critical points ϵ1 and ϵ2 also increase, resulting in an earlier halt in the decay of f .

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets and models. We evaluate the performance of FedOLF on the Extended MNIST (EMNIST)
(Cohen et al., 2017), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009) and
CINIC-10 (Darlow et al., 2018) datasets. For EMNIST, we adopt a convolutional neural network
(CNN) consisting of two convolution layers and one fully-connected (FC) classifier (Horváth et al.,
2021). For CIFAR-10, we employ AlexNet (Krizhevsky et al., 2012) (five convolution layers + two
FC layers). For CIFAR-100 and CINIC-10, we utilize ResNet20 and ResNet44 (He et al., 2016).

State-of-the-art for comparison. We compare FedOLF with the following representative methods
for resource-constrained FL: 1. Federated Dropout (Feddrop) (Caldas et al., 2018) randomly
prunes tensors in the global model and sends the remaining sub-model to clients for training. 2.
FjORD (Horváth et al., 2021) prunes the rightmost tensors of the global model. 3. HeteroFL (Diao
et al., 2021) prunes the rightmost filters in convolution layers similar to FjORD, but keep the FC
layers unchanged. 4. DepthFL (Kim et al., 2023) applies a top-first layer pruning method, and
adds extra classifiers to clients with fewer layers to distill knowledge. 5. CoCoFL (Pfeiffer et al.,
2023b) let all clients store a full model locally and randomly freeze layers in training. 6. Successive

7
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Dataset EMNIST CIFAR-10 CIFAR-100 CINIC-10
Model CNN AlexNet ResNet20 ResNet44 ResNet20 ResNet44

Feddrop 32.11 14.33 17.02 6.2 9.87 10.31
FjORD 7.55 46.3 12.7 14.68 16.55 20.08

HeteroFL 17.4 54.79 12.32 12.96 10.69 10.03
DepthFL 60.25 16.74 24.87 37.82 9.97 34.28
CoCoFL 83.71 61.83 22.16 27.56 25.66 26.67

SLT 60.72 30.47 25.04 43.73 24.11 33.63

FedOLF
no TOA 84.02 68.27 37.85 48.15 32.27 35.57

TOA(0.75) - 66.6 36.04 40.72 31.85 32.52
TOA(0.5) - 63.12 24.93 29.68 31.92 30.89

FedAvg 84.42 69.22 46.01 49.46 36.32 37.59

Table 1: Comparison of the final test accuracy (in %) for T = 500 iterations in the non-iid case. Note
that for EMNIST where the number of frozen layers is at most one, FedOLF+TOA is not evaluated
as TOA only works with at least two frozen layers.

Layer Training (SLT) (Pfeiffer et al., 2023a) mandates all clients to sequentially train each layer
from bottom to top, while freezing the parameters of the remaining layers. We also include the
standard FedAvg benchmark (McMahan et al., 2017) for reference. All methods have run for three
independent trials with their mean performance being recorded.

Parameter settings and system implementation. The experiment runs on a virtual network con-
sisting of K = 100 clients operating on a desktop computer with one NVIDIA GeForce GTX 1650
GPU. The number of participants per round is |Ct| = 10 following the settings in (Horváth et al.,
2021; Caldas et al., 2018). The maximum global iteration is set to T = 500 and the local training
epoch is E = 5 for all clients (Horváth et al., 2021; Li et al., 2021a). The learning rate is set to
η = 0.0001 for EMNIST, η = 0.001 for CIFAR-10, and η = 0.01 for CIFAR-100 and CINIC-10
(Luo et al., 2021). The batch size is set to 16 for EMNIST and 128 for the remaining datasets (Li
et al., 2021a; Horváth et al., 2021). The experiment is implemented with PyTorch 2.0.0 and Flower
1.4.0(Beutel et al., 2022).

Feddrop CoCoFL SLT FedOLF+TOA (0.75)FedOLF FedOLF+TOA (0.5)DepthFLFjORD HeteroFL

EMNIST

0 500 1000 1500
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Figure 4: The curves of top-1 accuracy vs. energy consumption (kJ).
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Figure 5: The actual memory footprint (MB) among clients.
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Figure 6: The theoretical context-independent memory footprint (MB) among clients.

Data and system heterogeneity. We evaluate FedOLF in both iid and non-iid environments. For the
iid case, data are allocated to clients uniformly. For the non-iid case, we follow (Luo et al., 2021) and
allocate data to clients based on an extreme Dirichlet distribution with parameter 0.1. To emulate
system heterogeneity, we divide all clients into c uniform clusters that represent c different degrees of
device capability and resource constraints, as per (Horváth et al., 2021; Diao et al., 2021; Kim et al.,
2023; Pfeiffer et al., 2023b). Specifically, following (Horváth et al., 2021), for CNN on EMNIST, c is
set to 2, wherein the numbers of pruned/frozen layers are 0 and 1 respectively for DepthFL, CoCoFL
and FedOLF; for Feddrop and FjORD, the sub-model ratios (i.e. the percentage of left neurons
per layer) are 0.5 and 1.0 for each cluster; for AlexNet on CIFAR-10 or ResNet20 on CIFAR-
100/CINIC-10, c = 5 and the sub-model ratios are {0.2, 0.4, 0.6, 0.8, 1.0} for Feddrop/FjORD; and
the number of pruned/frozen layers or blocks are {4, 3, 2, 1, 0} for DepthFL, CoCoFL, and FedOLF
(see Appendix D for details). For SLT that conducts universal successive training on all clients, the
scaling factor for the partial training procedure is set to 0.5 (Pfeiffer et al., 2023a).

5.2 EXPERIMENT RESULTS

Accuracy. Table 1 shows the accuracy comparison in the non-iid case (see Appendix C for the
iid case). As shown in Table 1, FedOLF achieves the highest final accuracy among all methods
on all datasets, which demonstrates the strength of FedOLF in preserving accuracy on resource-
constrained devices. By looking through all methods, we find that dropout (Feddrop, FjORD) per-
forms poorly with non-iid data, as training a sub-model cannot extract sufficient knowledge from
the local dataset to construct an accurate global model (Pfeiffer et al., 2023b). Besides, sub-models
with inconsistent architectures usually learn divergent parameter updates in training, and aggre-
gating these updates altogether will inevitably compromise the global model’s performance (Jiang
et al., 2022). Although existing layer freezing approaches (CoCoFL, SLT) improve accuracy by
maintaining the full model architecture on all clients, it still lags behind FedOLF in accuracy. Be-
cause in CoCoFL or SLT, the gradient loss caused by frozen layers does not decay as in FedOLF,
and impedes performance more straightforwardly.

Energy consumption and overall efficiency. Combining accuracy and energy consumption, we can
derive the energy efficiency of each method. As shown in Figure 4, FedOLF significantly improves
energy efficiency by obtaining the highest accuracy with the same amount of energy expenditure.
The specific computation and communication costs, including FLOPs, data transmission volume
and energy, can be found in Appendix C.

Memory footprint.1 We measure the real maximum memory usage of all methods using the
TORCH.CUDA.MAX MEMORY ALLOCATED function (PyTorch, 2023). Moreover, considering that

1We merge the curves of Feddrop, FjORD, HeteroFL for brevity as their memory footprints are very close.
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the real memory usage is usually context-dependent (physical device, programming language, etc),
we also calculate their theoretical memory usage following Equation (4). As shown in Figures 5 and
6, FedOLF effectively reduces the memory footprint both theoretically and practically.
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Figure 8: Effect of the scaling of factor s on the practical memory footprint (MB).

Hyperparameter tuning and ablation study. We tune the scaling factor of TOA s using a grid
search within {0.25, 0.5, 0.75, 1.0}, where s = 1 is equivalent to FedOLF without TOA. Results in
Table 1 and Figures 7a and 7b reveal that TOA effectively reduces the downstream communication
cost without degrading much accuracy (except for CIFAR-100 with ResNet-44). For example, a
scaling factor s = 0.25 can reduce the size of the transmitted frozen parameters by utmost 84%
with a minor 5.56% accuracy loss compared with FedOLF sole (AlexNet). Besides, TOA further
reduces the practical memory footprint as Figure 8 shows. Additionally, we compare TOA with the
well-recognized quantized SGD (QSGD) method (Alistarh et al., 2017) for AlexNet on CIFAR-10.
As shown in Figure 7c, TOA achieves much higher accuracy than QSGD given the same degree of
communication efficiency. Specifically, TOA (s = 0.5) is compared with QSGD with 8 bits and
TOA (s = 0.75) is compared with QSGD with 16 bits so that their reductions of communication
cost are approximately equal.

6 CONCLUSION

This paper proposed Federated Learning with Ordered Layer Freezing (FedOLF), an efficient FL
framework where edge devices only train the top-level layers of the model to accommodate resource
constraints. The OLF strategy can minimize the backpropagation path length and the gradient er-
ror, which significantly reduces the memory requirement and improves accuracy. We also enhance
FedOLF with the Tensor Operation Approximation (TOA) technique (Adelman et al., 2021), further
alleviating energy consumption and memory footprint with less accuracy sacrifice. In the future,
we plan to explore the similarities of local clients by using techniques like learning vector quan-
tization (Qin & Suganthan, 2005), to make similar clients share the same layer freezing and TOA
settings. We also plan to enhance the engagement of FedOLF in IoT applications such as mobile
edge networks (Jin et al., 2024) and video surveillance (Zhang et al., 2022a).
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A VANISHING REPRESENTATION ERROR AND BOUNDED TRAINING LOSS

We find that in FedOLF, the negative impact of low-level frozen layers tends to vanish. In formu-
lation, let σl,l+1 ∈ R+ denote the ratio between the representation error between two consecutive
frozen layers Wl and Wl+1, that is:

σl,l+1 :=
∥σl+1∥
∥σl∥

=
∥x′

l+1 − xl+1∥
∥x′

l − xl∥
=
∥Wl+1(x

′
l,θl+1)−Wl+1(x

′
l,θl+1)∥

∥x′
l − xl∥

. (13)

In addition, we rewrite Assumption 1 here for better illustration:

Assumption 1. The intrinsic function of each layer Wl is Bl-Lipschitz continuous with Bl > 0:
∀x1,x2, ∥Wl(x1,θl)−Wl(x2,θl)∥ ≤ Bl∥x1 − x2∥. (14)

By induction:

∥σN∥ ≤
N−1∏
q=l

Bq∥σl∥. (15)

Empirically, we find that the accumulative product ∥σN∥ ≤
∏N−1

q=l Bq∥σl∥ across layers is usually
shrinking. For example, for AlexNet on CIFAR-10, we compute the error ratios among all con-
volution layers for a randomly selected client who only freezes the first layer, as shown in Figure
9:

1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8
0.0

0.2

0.4

0.6

0.8

1.0 Representation error ratio between layers

Figure 9: The ratios of the representation error between two consecutive layers in AlexNet with
only the first layer frozen. Layers 1-5 are convolution layers, layers 6 and 7 are fully-connected
layers and layer 8 is the classifier.

In this scenario, each boundary Bl is highly likely to be smaller than one, which indicates that the
representation error ∥σl+d∥ =

∏l+d−1
q=l Bq∥σl∥ tends to vanish as d increases. Consequently, the

top level learns relatively accurate parameter updates by forwarding representations with lower error
rates. Empowered by this property, FedOLF is able to achieve higher accuracy compared to other
layer freezing methods.

For models like ResNet, the error ratios across layers are not consistently less than 1 as Figure
10 illustrates. We attribute this phenomenon to the unique architecture of ResNet, i.e. it adds
connections between residual blocks so that the representation errors vanish less slowly. However,
the term

∏l−1
q=1 Bq still exhibits an overall vanishing trend as l increases, because the remaining

bounds Bq for q > 2 are likely to be less than one. To further support the validity of this assumption,
please refer to (Mirzasoleiman et al., 2020), where an equivalent assumption has also been made.
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1, 2 2, 3 3, 4 4, 5

0

1

2

3

4

5

6 Representation error ratio between layers

Figure 10: The ratios of the representation error between two consecutive residual blocks in
ResNet20 with only the first layer frozen.

B THEORETICAL PROOF

This section presents the detailed proof of Corollary 1 and Theorems 1 and 2 in Section 4. First, we
rewrite Assumptions 2 and 3 here:

Assumption 2 (smoothness). The local objective function fk is L-smooth:

∀w1, w2, ∥∇fk(w1)−∇fk(w2)∥ ≤ L∥w1 − w2∥. (16)

Assumption 3 (Bounded variance). The variance of local gradients to the global gradient is
bounded:

∀k,w, E(∥∇fk(w)−∇f(w)∥2) ≤ γ2. (17)

B.1 PROOF OF COROLLARY 1

Based on Assumptions 1 and 2, we can derive that the gradient divergence caused by layer freezing
is bounded, as defined in Corollary 1:

Corollary 1. For any client k, the divergence between the local gradient with and without layer
freezing is bounded:

∀k,w, ∥∇f ′
k(w)−∇fk(w)∥2 ≤ D2. (18)

Proof.

We can represent a model w in the format of the set of all layers’ parameters, i.e.:

w := (θ1,θ2, ...,θN ). (19)

Accordingly, for the gradient∇fk(w) we have:

∇fk(w) = ∇θ1 +∇θ2 + ......+∇θN . (20)

where∇θl = ∇fk(xl−1,θl) for any l (1 ≤ l ≤ N ).

Furthermore, we define ∇θ′
l := ∇fk(x′

l−1,θl). Then we can use ∥∇θ′
l − ∇θl∥ to represent the

gradient error on the l-th layer caused by layer freezing.

Since fk is L-smooth, we have:

∥∇θ′
l −∇θl∥ = ∥∇fk(x′

l−1,θl)−∇fk(xl−1,θl)∥ ≤ L∥x′
l−1 − xl−1∥ = L∥σl−1∥. (21)

By induction, we have:

∥∇θ′
l+d −∇θl+d∥ ≤ L∥σl+d−1∥ ≤

l+d−1∏
q=l

BqL∥σl∥. (22)
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Based on Equations (20) and (22), for the gradient difference ∥∇f ′
k −∇fk∥, we have:

∥∇f ′
k(w)−∇fk(w)∥

= ∥
N∑
l=1

∇θ′
l −

N∑
l=1

∇θl∥

= ∥
N∑
l=1

(∇θ′
l −∇θl)∥

≤
N∑
l=1

∥∇θ′
l −∇θl∥

≤
N∑
l=2

l−1∏
q=l

BqL∥σ1∥.

(23)

Note that the first term ∥∇θ′
1 − ∇θ1∥ equals zero and gets eliminated in Equation (23), because

∇θ′
1 = ∇θ1 = 0 when the number of frozen layers is at least one.

Given that
∏l−1

q=l Bq is gradually vanishing as shown in Appendix A, the summation∑N
l=2 B

l−1L∥σ1∥ must be finite and can be upper-bounded, alogn with ∥∇f ′
k(w) − ∇fk(w)∥.

Therefore, Corollary 1 is naturally proven by setting D as the boundary.

B.2 PROOF OF THEOREM 1 AND THEOREM 2

Based on Assumptions 1-3 and Corollary 1, we derive Theorem 1 and Theorem 2:

Theorem 1. When the learning rate η satisfies 1
L < η < 3

2L , we have:

f(wt+1)− f(wt)

≤ η

2
(2ηL− 3)(E[∥∇f(wt)∥])2 + ηD(ηL− 1)E[∥∇f(wt)∥] + η

2
(2ηLγ2 − γ2 + ηLD2 + 2ηLDγ).

(24)

Theorem 2. When the learning rate η satisfies η ≤ 1
L , we have:

f(wt+1)− f(wt) ≤ η

2
× (−E[∥∇f(wt)∥2] +D2 + γ2 + 2Dγ). (25)

Proof.

Since every fk is L-smooth based on Assumption 2, f is also L-smooth, so that we have:

f(wt+1)− f(wt) ≤ ⟨wt+1 − wt,∇f(wt)⟩+ L

2
∥wt+1 − wt∥2. (26)

In the setting of layer freezing, we have wt+1 = wt − η∇f ′(wt) and ∇f ′(wt) = E[∇f ′
k(w

t)].
Therefore:

f(wt+1)− f(wt)

≤ −η ⟨ E[∇f ′
k(w

t)],∇f(wt) ⟩+ L

2
∥ − ηE[∇f ′

k(w
t)]∥2

= −ηE [⟨ ∇f ′
k(w

t),∇f(wt) ⟩] + Lη2

2
∥E[∇f ′

k(w
t)]∥2

≤ −ηE [⟨ ∇f ′
k(w

t),∇f(wt) ⟩] + Lη2

2
E(∥∇f ′

k(w
t)∥2).

(27)
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Since ∥∇f ′
k(w

t) − ∇f(wt)∥2 = ∥∇f ′
k(w

t)∥2 − 2 ⟨∇f ′
k(w

t),∇f(wt) ⟩ + ∥∇f(wt)∥2, Equation
(27) can be written as:

f(wt+1)− f(wt)

≤ η

2
E(∥∇f ′

k(w
t)−∇f(wt)∥2 − ∥∇f ′

k(w
t)∥2 − ∥∇f(wt)∥2) + Lη2

2
E(∥∇f ′

k(w
t)∥2)

=
η

2
E(∥∇f ′

k(w
t)−∇f(wt)∥2) + η

2
(ηL− 1)E[∥∇f ′

k(w
t)∥2]− η

2
E[∥∇f(wt)∥2]

=
η

2
E∥(∇f ′

k(w
t)−∇fk(wt) +∇fk(wt)−∇f(wt)∥2)

+
η

2
(ηL− 1)E[∥∇f ′

k(w
t)∥2]− η

2
E[∥∇f(wt)∥2].

(28)

According to Cauchy-Schwarz inequality, ∥∇f ′
k(w

t) − ∇fk(wt) + ∇fk(wt) − ∇f(wt)∥2 ≤
(∥∇f ′

k(w
t)−∇fk(wt)∥+ ∥∇fk(wt)−∇f(wt)∥)2. Therefore, from Equation (28) we get:

f(wt+1)− f(wt)

≤ η

2
E[(∥∇f ′

k(w
t)−∇fk(wt)∥+ ∥∇fk(wt)−∇f(wt)∥)2]

+
η

2
(ηL− 1)E[∥∇f ′

k(w
t)∥2]− η

2
E[∥∇f(wt)∥2]

=
η

2
E(∥∇f ′

k(w
t)−∇fk(wt)∥2 + ∥∇fk(wt)−∇f(wt)∥2)

+ 2E(∥∇f ′
k(w

t)−∇fk(wt)∥ × ∥∇fk(wt)−∇f(wt)∥)

+
η

2
(ηL− 1)E[∥∇f ′

k(w
t)∥2]− η

2
E[∥∇f(wt)∥2]

≤ η

2
(D2 + γ2 + 2Dγ) +

η

2
(ηL− 1)E[∥∇f ′

k(w
t)∥2]− η

2
E[∥∇f(wt)∥2].

(29)

The last inequality in Equation (29) results from Corollary 1 and Assumption 3.

When the learning rate η > 1
L , we have ηL − 1 > 0. In this case, we can upper bound η

2 (ηL −
1)E[∥∇f ′

k(w
t)∥2] by upper bounding E[∥∇f ′

k(w
t)∥2].

First, we bound ∥∇f ′
k(w

t)∥. Based on Corollary 1 and triangle inequality, we have:

∥∇f ′
k(w

t)∥ − ∥∇fk(wt)∥ ≤ ∥∇f ′
k(w

t)−∇fk(wt)∥ ≤ D. (30)

That is:

∥∇f ′
k(w

t)∥2 ≤ (∥∇fk(wt)∥+D)2 = ∥∇fk(wt)∥2 +D2 + 2D∥∇fk(wt)∥. (31)

By taking the expectation on Equation (31), we get:

E[∥∇f ′
k(w

t)∥2] ≤ E[∥∇fk(wt)∥2] +D2 + 2DE[∥∇fk(wt)∥]. (32)

Because of the triangle inequality, we have:

E[∥∇fk(wt)∥] = E[∥∇fk(wt)−∇f(wt) +∇f(wt)∥]
≤ E[∥∇fk(wt)−∇f(wt)∥] + E[∥∇f(wt)∥]
≤ E[∥∇f(wt)∥] + γ.

(33)

The last inequality in Equation (33) holds because E[∥∇fk(wt)−∇f(wt)∥] ≤ γ as (E[∥∇fk(wt)−
∇f(wt)∥])2 ≤ E[∥∇fk(wt) − ∇f(wt)∥2] ≤ γ2 by Assumption 3. Moreover, by expanding As-
sumption 3, we have:

E[∥∇fk(wt)∥2]
= E[∥∇fk(wt)−∇f(wt) +∇f(wt)∥2]
= E[∥∇f(wt)∥2] + E[∥∇fk(wt)−∇f(wt)∥2] + 2E(⟨∇fk(wt)−∇f(wt),∇f(wt)⟩)
≤ E[∥∇f(wt)∥2] + γ2 + 2E(⟨∇fk(wt)−∇f(wt),∇f(wt)⟩)
≤ E[∥∇f(wt)∥2] + γ2 + E(∥∇fk(wt)−∇f(wt)∥2 + ∥∇f(wt)∥2)
= 2E[∥∇f(wt)∥2] + 2γ2.

(34)
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By combining Equations (32), (33), (34) altogether, we get:

E[∥∇f ′
k(w

t)∥2]
≤ E[∥∇fk(wt)∥2] +D2 + 2DE[∥∇fk(wt)∥]
≤ 2E[∥∇f(wt)∥2] + 2γ2 +D2 + 2DE[∥∇fk(wt)∥]
≤ 2E[∥∇f(wt)∥2] + 2γ2 +D2 + 2D(E[∥∇f(wt)∥] + γ)

= 2E[∥∇f(wt)∥2] + 2DE[∥∇f(wt)∥] + 2γ2 +D2 + 2Dγ.

(35)

Accordingly, we can rewrite Equation (29) as:

f(wt+1)− f(wt)

≤ −η

2
E[∥∇f(wt)∥2] + η

2
(D2 + γ2 + 2Dγ) +

η

2
(ηL− 1)E[∥∇f ′

k(w
t)∥2]

≤ −η

2
E[∥∇f(wt)∥2] + η

2
(D2 + γ2 + 2Dγ)

+
η

2
(ηL− 1)× (2E[∥∇f(wt)∥2] + 2DE[∥∇f(wt)∥] + 2γ2 +D2 + 2Dγ)

=
η

2
(2ηL− 3)E[∥∇f(wt)∥2] + ηD(ηL− 1)E[∥∇f(wt)∥] + η

2
(2ηLγ2 − γ2 + ηLD2 + 2ηLDγ).

(36)

When 2ηL− 3 < 0, i.e. η < 3
2L , we have (2ηL− 3)E[∥∇f(wt)∥2] ≤ (2ηL− 3)(E[∥∇f(wt)∥)2.

In this case, Equation (29) can be written as:

f(wt+1)− f(wt)

≤ η

2
(2ηL− 3)(E[∥∇f(wt)∥])2 + ηD(ηL− 1)E[∥∇f(wt)∥] + η

2
(2ηLγ2 − γ2 + ηLD2 + 2ηLDγ).

(37)

Which successfully proves Theorem 1. Furthermore, if we take E[∥∇f(wt)∥ as a variable,
f(wt+1) − f(wt) is deemed to be upper bounded by a polynomial function of E[∥∇f(wt)∥. In
this case, we can naturally find ϵ1 = −b−

√
b2−4ac
2a by letting the polynomial function equal to zero,

with a = 2ηL− 3, b = 2D(ηL− 1) and c = 2ηLγ2 − γ2 + ηLD2 + 2ηLDγ.

After calculation, we can get ϵ1 =

D(ηL− 1) +
√
ηD2L+ 8ηLγ2 + 6ηDLγ +D2 − 3γ2

3− 2ηL
(38)

Similarly, when the learning rate η ≤ 1
L , we have ηL−1 ≤ 0. In this case, η

2 (ηL−1)E[∥∇f
′
k(w

t)∥2]
is naturally upper bounded by zero, so that Equation (29) can be written as:

f(wt+1)− f(wt) ≤ η

2
(D2 + γ2 + 2Dγ)− η

2
E[∥∇f(wt)∥2]. (39)

Which successfully proves Theorem 2. By letting η
2 (D

2 + γ2 + 2Dγ)− η
2E[∥∇f(w

t)∥2] equal to
zero we naturally get ϵ2 = D + γ.

C SUPPLEMENTRAY EXPERIMENT RESULTS

C.1 COMPUTATION AND COMMUNICATION OVERHEADS

The single-sided comparison of computation cost (in FLOPs) and communication cost (in size of
data transmission) are shown in Figures 11 and 12.

C.2 ENERGY CONSUMPTION

The overall energy consumptions, including the computation energy for training, and the commu-
nication energy for parameter transmission, are shown in Figure 13. The energy consumption is
measured using a plug-in power monitor 2.

2https://www.amazon.com.au/Electricity-Monitor-PIOGHAX-Overload-Protection/dp/B09SFSB66M
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Figure 11: Comparison of the overall computation cost, which is measured in total Floating Point
Operations (FLOPs) of all clients. This is the average result for the three trials.
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Figure 12: Comparison of the overall communication cost, which is measured in the total size of
parameters transmitted across the network. This is the average result for the three trials.
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Figure 13: An overview of the overall energy consumption (kJ) of all clients, including the com-
putation energy for local training (green) and the communication energy for global communication
(yellow).

Dataset EMNIST CIFAR-10 CIFAR-100 CINIC-10
Model CNN AlexNet ResNet20 ResNet44 ResNet20 ResNet44

Feddrop 16.42 14.33 6.05 6.15 9.71 10.81
FjORD 12.68 27.8 11.14 9.09 22.22 11.26

HeteroFL 12.88 58.03 7.02 14.32 13.46 12.0
DepthFL 83.0 10.52 5.05 39.88 10.31 33.44
CoCoFL 81.98 53.92 26.95 31.1 31.81 31.68

SLT 81.04 49.73 45.80 39.60 21.63 36.20

FedOLF
no TOA 84.98 66.98 48.49 44.12 40.66 37.33

TOA(0.75) - 63.7 40.49 42.16 33.96 31.51
TOA(0.5) - 62.05 36.19 38.29 33.42 28.42

FedAvg 85.04 68.41 51.11 52.13 40.80 39.88

Table 2: Comparison of the final test accuracy (in %) for T = 500 iterations in the iid case.

C.3 ACCURACY IN THE IID CASE

The accuracy comparison in the iid case is listed in Table 2. As shown in Table 2, FedOLF still
outperforms the baselines in the iid case, and maintains a competitive accuracy against the FedAvg
benchmark.

C.4 ACCURACY VS. ROUND

The curves of accuracy with respect to training rounds are shown in Figures 14 and 15.
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D DEMONSTRATION OF LAYER FREEZING IN FEDOLF

Figures 16a, 16b, 16c illustrate how FedOLF freezes layers among the heterogeneous clients. Each
bar represents a cluster of clients, dividing the model into two segments. On one side of the bar,
denoted by ”F,” clients freeze the corresponding layers, while on the other side, denoted by ”T,”
clients actively train the model. Specifically, clients within Cluster 2 for EMNIST and Cluster 5 for
CIFAR-10/CIFAR-100/CINIC-10 are assumed to possess the capability to train the entire model.
It is important to note that convolution layers are typically followed by activation functions (e.g.,
ReLU), batch normalization or max-pooling layers, though these are not depicted in the figures for
brevity.
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Figure 14: Accuracy vs. round in the non-iid case.

EMNIST

0 100 200 300 400 500
Round

0.0

0.2

0.4

0.6

0.8

m
ea

n 
te

st
 a

cc
ur

ac
y

EMNIST with CNN

Feddrop
FjORD
SLT
COCOFL
DepthFL
HeteroFL
FedOLF (Ours)

CIFAR-10

0 100 200 300 400 500
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

va
lid

at
io

n 
ac

cu
ra

cy

CIFAR10 with AlexNet
Feddrop
Fjord
SLT
COCOFL
DepthFL
HeteroFL
FedLF(ours)

CIFAR-100 ResNet 20

0 100 200 300 400 500
Round

0.0

0.1

0.2

0.3

0.4

0.5

va
lid

at
io

n 
ac

cu
ra

cy

CIFAR100 with Resnet20

Feddrop
Fjord
SLT
COCOFL
DepthFL
HeteroFL
FedLF(ours)

CIFAR-100 ResNet 44

0 100 200 300 400 500
Round

0.0

0.1

0.2

0.3

0.4

va
lid

at
io

n 
ac

cu
ra

cy

CIFAR100 with Resnet44

Feddrop
Fjord
SLT
COCOFL
DepthFL
HeteroFL
FedLF(ours)

CINIC-10 ResNet 20

0 100 200 300 400 500
Round

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

va
lid

at
io

n 
ac

cu
ra

cy

CINIC with Resnet20
Feddrop
Fjord
SLT
COCOFL
DepthFL
HeteroFL
FedOLF(ours)

CINIC-10 ResNet 44

0 100 200 300 400 500
Round

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

va
lid

at
io

n 
ac

cu
ra

cy

CINIC with Resnet44

Feddrop
Fjord
SLT
COCOFL
DepthFL
HeteroFL
FedOLF(ours)

Figure 15: Accuracy vs. round in the iid case.
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(a) Layer freezing pattern of the 2-layer CNN on EMNIST.
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Figure 16: A specific demonstration of how FedOLF freezes layers among the heterogeneous clients.
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E DISCUSSION

E.1 LIMITATIONS

One of the major limitations of this paper is the lack of theoretical support of TOA’s application
on FedOLF. Even though TOA seems to work well based on the obvious reduction of energy con-
sumption/memory footprint as shown in the experiment results, the specific relationship between
performance degradation and the scaling factor s remains unexplored. In this case, the only way
to determine the optimal value of s is through an experiment (i.e. hyperparameter tuning), which
is usually computationally expensive. To enhance the usefulness of FedOLF w. TOA in practical
applications, a close-formed representation of the effect of s on accuracy is required, so that we can
determine the optimal value of s given the particular energy budget and accuracy requirement.

The other limitation of FedOLF is the additional communication overhead as shown in Figure 12.
Even with TOA, the communication overhead of FedOLF is still higher than other methods in most
cases. In the environment of our experiment, the connection between clients and the server is rela-
tively stable, so that the extra communication overhead of FedOLF does not generate too much en-
ergy consumption. However, in a real-world system with underprivileged network conditions, such
as a mobile-edge network Jin et al. (2024), the negative impact of the increased communication over-
head becomes severe, resulting in much higher communication costs. To promote the application
of FedOLF in bandwidth-constrained systems, addressing the concern of increased communication
cost becomes a vital matter.

E.2 BROADER IMPACT

FedOLF has a positive social impact on boosting fair FL training among heterogeneous clients.
FedOLF proposes that powerful clients take more responsibility in training (i.e. train more lay-
ers), and share the low-level layers with weak clients for forwardpropagation in their local training
tasks. This significantly improves FL’s accuracy, efficiency and robustness in resource-constrained
settings.

Furthermore, FedOLF alleviates privacy concerns compared with traditional FL frameworks such as
Fedavg McMahan et al. (2017). As resource-constrained clients only communicate the active layers
with the server. Compared with the full model, transmitting partial active layers reduces the risks of
several types of attacks such as byzantine attack and privacy inference Hao et al. (2021); Cao et al.
(2020); Zhang et al. (2022b).

As for the negative impact, the increased communication overhead might restrict the usefulness
of FedOLF in mobile networking systems with insufficient bandwidth support. Except for TOA,
possible solutions to address this problem include: 1. Periodical downward communication:
Clients download the frozen layers periodically rather than every round. 2. Clustering: Clients
download from a proximal header rather than the remote server.
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