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ABSTRACT

Knowledge transfer aims to apply existing knowledge to different tasks or new data,
and it has extensive applications in multi-domain and multi-task learning. The key
to this task is quickly identifying a fine-grained object for knowledge sharing and
efficiently transferring knowledge. Current methods, such as fine-tuning, layer-wise
parameter sharing, and task-specific adapters, only offer coarse-grained sharing
solutions and struggle to effectively search for shared parameters, thus hindering
the performance and efficiency of knowledge transfer. To address these issues, we
propose Channel-Wise Parameter Sharing (CWPS), a novel fine-grained parameter-
sharing method for Knowledge Transfer, which is efficient for parameter sharing,
comprehensive, and plug-and-play. For the coarse-grained problem, we first achieve
fine-grained parameter sharing by refining the granularity of shared parameters
from the level of layers to the level of neurons. The knowledge learned from
previous tasks can be utilized through the explicit composition of the model neurons.
Besides, we promote an effective search strategy to minimize computational costs,
simplifying the process of determining shared weights. In addition, our CWPS
has strong composability and generalization ability, which theoretically can be
applied to any network consisting of linear and convolution layers. We introduce
several datasets in both incremental learning and multi-task learning scenarios. Our
method has achieved state-of-the-art precision-to-parameter ratio performance with
various backbones, demonstrating its efficiency and versatility.

1 INTRODUCTION

Knowledge transfer is a crucial task that involves extracting valuable information from existing tasks
to enhance performance in new tasks or data. Existing knowledge can be repurposed and applied to
new problems, offering a wide range of potential applications. For example, adapting a supernet to
a new domain can be efficiently achieved through knowledge transfer (Zhuang et al.| 2020). Two
common and correlated task settings among these applications are Multi-Domain Learning (MDL)
and Multi-Task Learning (MTL). MDL transfers knowledge from one domain to the target domain,
while MTL transfers knowledge between several target tasks. Both involve knowledge transfer during
training, which requires an efficient method.

However, it is not easy to design an algorithm that creates an appropriate model, shares knowledge
between tasks without introducing too many parameters, and has high universality (Gesmundo &
Dean, [2022). The algorithm needs to identify the level of granularity of parameter sharing, measure
the relations of tasks, and operate at the unified level of neural networks, which can be challenging
to balance. In addition, the consumption of extra training for knowledge transfer is also of concern,
which puts more stringent demands on our algorithm. Therefore, we deduce that the key point is
identifying a suitable shared object and efficiently measuring the relations between various tasks.

The existing coarse and parameter-efficient method fixes the parameters of the base model and then
adds some trainable task-specific output layers (Vandenhende et al.,2020) or adapter layers (Rebuftfi
et al.,|2017), sharing the entire backbone. Some other works explore ways to optimize parameter
usage by investigating finer layer-wise parameter sharing (Gesmundo & Dean, [2022; Wallingford
et al.;|2022; Lu et al.l 2017) and finest single-weight-wise parameter sharing (Mallya et al., 2018)).
However, neurons are the smallest computational units in neural networks and are also considered the
smallest memory units of knowledge. While layer-wise parameter sharing provides a coarse-grained
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Figure 1: The difference between different parameter sharing methods. Two candidate tasks, 77 and T3, have
task-specific parameters represented by green and yellow triangles respectively, while blue triangles represent
shared parameters. Our method shares channels between layers, while others share layers between models.

knowledge transfer approach, they lack flexibility and cannot perform fine-grained knowledge sharing
at the neuron level. Finest-grained methods split the weight parameters of each neuron in the network
to share knowledge (Mallya et al.,[2018)). Still, neglecting the "atomic" nature of the neuron as the
smallest memory unit has led to a huge parameter search overhead and suppressed knowledge transfer
performance.

Further, heuristic algorithms (Gesmundo & Dean, [2022)) are used to search for parent models to solve
the enormous search space of shared objects(layers or weights), while [Wallingford et al.| (2022);
Mallya et al.| (2018)) simplify the search process using learnable parameters. However, these methods
to model the relations between tasks are costly and arbitrarily assume the most related base model,
leading to inefficient and weak knowledge exchange between tasks.

To conclude, the decision to select the right level of granularity and solve task relations’ search
space is a dilemma: a coarser level of granularity reduces the search space but is less efficient, and a
finer level of granularity provides more precise control but increases the search space. So, a natural
question arises: can we seek a solution that efficiently determines the fine-grained sharing of objects?

In this paper, we propose a Channel-Wise Parameter Sharing (CWPS) method that avoids the dilemma
of granularity and search space. In theory, our method is defined by the finest parameter-sharing unit,
which is a single neuron. The neuron, also known as the channel, serves as the minimal concept
of the neural network and has not been carefully explored by other parameter-sharing methods. As
shown in Figure|l| incorporating channel-wise parameter-sharing mechanisms allows fine-grained
control of task-specific parameters without compromising neuron consistency, resulting in more
efficient parameter sharing. Besides, we propose a searching method called Composite Parent
Model Searching(CPMS), which constructs a composite parent model for every search process by
measuring parent and child weights. This search method greatly reduces the search space fine-grained
control brought and naturally measures the relations between tasks. Further, CWPS operates at
the fundamental network level, making it applicable in a wide range of scenarios. As long as the
backbone comprises linear and convolution layers, CWPS can be utilized. Its universal nature enables
a seamless transition from various task settings through iterations.

We measure our method in ImageNet-to-Sketch incremental learning benchmark (Berriel et al.,[2019)
and DomainNet multi-task learning benchmark (Peng et alJ, [2019). CWPS can transfer from one
domain to another and reach state-of-the-art performance in incremental and multi-task learning
scenarios. The contributions of our work are as follows:

1. We introduce CWPS, a fine-grained method for knowledge transfer across tasks. Compared
to other parameter-sharing methods, it offers a more natural perspective and allows for the
optimal and efficient utilization of neurons across various tasks.

2. We have developed a rapid architecture search algorithm called CPMS to determine shared
parameters. This algorithm simultaneously models the relationships between different tasks.

3. CWPS is highly scalable, allowing simultaneous use in various knowledge transfer tasks to
achieve state-of-art performance, and is adaptable to multiple network structures.
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2 RELATED WORK

2.1 MULTI-TASK LEARNING

Multi-task Learning (MTL) is a transfer learning strategy that aims to enhance overall performance
by concurrently addressing and learning from multiple correlated tasks within the same model.
The main classification of multi-task frameworks is based on whether they are encoder-based or
decoder-based. As exemplified by Cross-stitch Networks (Misra et al.| 2016)), encoder-based designs
Misra et al.| (2016); [Liu et al.| (2019); (Gao et al.| (2019); |[Lu et al.| (2017) involve the sharing of
task-specific features during the encoding phase. Subsequently, each task possesses an independent
task head for processing the shared encoder features during decoding. Conversely, decoder-based
multi-task frameworks Vandenhende et al.|(2020); |Xu et al.[(2018)); Zhang et al.|(2018)); Neseem et al.
(2023)) address all tasks directly within the same stage, acquiring outputs from all tasks in parallel
or sequentially. Moreover, studies (Bhattacharjee et al.l 2022} [Sun et al., 2020) demonstrate the
sharing of feature information in both the encoding and decoding stages simultaneously. These three
frameworks are efficient in their respective task settings, but their specificity limits their universal
applicability.

2.2 MULTI-DOMAIN LEARNING AND INCREMENTAL LEARNING

Multi-domain learning focuses on overcoming data disparities between domains to enhance model
adaptability. It aims to address knowledge transfer between domains, resolving the challenge of
using multiple datasets with differing statistical properties for the same task. Rebuffi et al.| (2017)
proposed the residual adapter method, incorporating the adapter into data representation from multiple
domains to identify shared features in less similar domains. Subsequent algorithms [Rebutfi et al.
(2018); Rosenfeld & Tsotsos| (2018)), building upon the adapter concept, further refined it to achieve
parameter efficiency while maintaining performance in the original domain. Other methods (Mallya
et al., 2018} [Mancini et al., [2018) utilize binary masks for simpler and more efficient MDL, but
they balance reducing the parameter count and performance. Task Adaptive Parameter Sharing
(TAPS)(Wallingford et al.| 2022)) tries to select the minimal subset of existing layers and retrain them.
However, the layer-level parameter sharing still falls short of the idealized small parameter count.

Meanwhile, Multi-Domain Learning aims to transfer knowledge without forgetting the previous
knowledge, which remains the same as common incremental learning. Consequently, the primary
challenge MDL and incremental learning must address is mitigating catastrophic forgetting. Various
methods have been proposed to address such issues, including functional and parameter regularization
(Aljundi et al., 2018} Kirkpatrick et al.L[2017;|Schwarz et al.,|2018)), developing incrementally updated
components (Li et al.,[2024; Zhang et al.,|2020), improving representation learning with additional
inductive biases (Cha et al., 2021} |Ni et al.| [2023;2021]), they are suggestive to MDL.

2.3  MULTI-DOMAIN LEARNING VS. MULTI-TASK LEARNING

To conclude, we could summarize that MDL is MTL in very restricted situations. Multi-task learning
learns different tasks without strict task constraints, while MDL learns one by one without revisiting
prior data. Our objective for MDL aligns with the approach described in|Wallingford et al.| (2022)),
which involves starting from a pre-trained base model and then learning new tasks or domains. On
the other hand, the aim of MTL is similar to the method outlined in|Gesmundo & Dean|(2022), where
the final models are obtained iteratively through multiple datasets.

3 METHODOLOGY

Based on the conclusion in Section our method begins with the restricted situation (MDL) and is
then extended to a broader range of scenarios to facilitate knowledge transfer. For an incremental
task, we first use CPMS to efficiently search and calculate the relations between the knowledge
contained in the model of the previous task and the new task, and determine the relations between
the neurons of the new task and each neuron of the previous task. Then, we use our fine-grained
parameter sharing method, CWPS, to obtain the knowledge of the previous task, and fine-tune the
model for a few training epochs. We iterate this process for each new task, thus completing the MDL.
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Figure 2: The composition of a single convolution layer; during training. The cuboids in color are kernels
of the convolution layer. Each color represents one task. This portion displays the layer’s training structure,
composed of the child kernels in green, the composite parent kernels in other colors, and mask:,; in gray. The
composite parent kernels are composed of kernels from W,qineq, Which are untrainable, while child kernels
and mask; ; are trainable.
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3.1 PROBLEM STATEMENT

Previous works have shown their effect on sharing weight with the pre-trained model. Following
Gesmundo & Dean| (2022)), when training models for new tasks, the trained models are named the
parent models while the child model is used for new tasks. Assuming that there are K tasks:

T = {Tl,T27...7TK} (1)
and one task T} of the pre-trained model, we need to train & models for every task while introducing
as few task-specific parameters as possible.

Before sharing parameters, some layers, such as Batchnorm2d, contain a small number of parameters
(less than 1% in most networks) and may deteriorate performance if shared. Thus, we do not need
to exchange their parameters among tasks. Besides, the output layers (the last linear layer for
classification tasks) should be task-specific since the output shape differs from task to task.

3.2 EFFICIENT KNOWLEDGE TRANSFER FOR MULTI-DOMAIN LEARNING
3.2.1 DESIGN MOTIVATIONS

To make our method universally applicable, we work at the basic level of the network, which includes
the linear and convolution layers. As shown in Figure [2| our algorithm for the layer, from task ¢’s
model involves trainable child parameters w; ; and b; ;, untrainable parent parameters w’, ; and b’y ;
from other tasks’ trained models, and a mask; ; of the out-channels size to control parameter sharing.
However, it can be challenging to determine the origin of these parent parameters. As a result, we
propose a composite parent model, which allows us to gather information from all potential parent
models and reduce the search space.

3.2.2 COMPOSITE PARENT MODEL SEARCHING

The weight of all the trained layers (linear, conv) from existing tasks, apart from those task-specific
layers mentioned above, is collected in the set Wy qineq. Given a new task ¢ € 7, all parameters in
the set are available to get the model for this task. After training the model for ¢, the corresponding
weights will be added to the set. Consequently, for the first task 77, Wy,gineq Only contains the
weights from the pre-trained model (such as the pre-trained model in ImageNet). Thus, it can be
initialized by

Wirained = {wry,1, b1y 1, w1y ,2, b1y 25 o0, Wy N b1y N } )
where w, ; and b, ; are the parameters of the ¢’th layer for task ¢ and NV is the number of all the
shareable layers for a model.

Before assigning the weight of the parent model, several preparations are needed. First, we utilize the
typical finetune settings to train the new model for a few epochs (one-quarter of the total training
epochs). This phase allows us to get rough references to get the parent weight, which can be completed
at a trivial cost.

The searching process is shown in Figure 3] For every kernel j € {1,2, ..., C;} (C; is the number of
output channels of layer;) of w,; (t € 7,1 € {1,2,..., N}), we obtain the task ¢ where the parent
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Figure 3: (a) The pipeline of our method. The figure contains large rectangles representing layers, each
composed of many small rectangles representing channels. A mask is applied to each channel during the training
stage. The colors of the layers represent the parameters from their respective tasks. This figure illustrates the
algorithmic execution process of the model for the task, which is represented by green. (b) The composite parent
model selection process for layer i of task Ti. The green kernels are reference child kernels (shown in the blue
double-dashed box), while the others are parent kernels to be selected. Our method calculates the similarity
between two kernels (shown in the blue lines) using the function D in Eq. 3, and then identifies the most likely
parent kernel from other tasks (shown in the blue dotted box). Afterward, we get the final updated kernels by

mask ;. Kernels in Wiy qineq outlined with dashed lines indicate parameters sharing with previous tasks.

weight from follows:

Sl

= arg min
tvert/#twy ;€Wirained

D(wt',i[ ‘a :}7 wt7i[j7 ]) (3)
where D is the function to measure the similarity between the weight of two kernels (we use L2
distance and cosine similarity in practice). Thus, the weight of j’th channel is assigned by:

w/t,i[ i = wf,i[ ]

b'1ali] = bz ;1] ®)
After calculating all the kernels of w’y ; and b'; ; from 1 to C; iteratively, every channel is assigned the
trained weights of one channel from W;,.4;neq. These trained weights combine to form the composite
parent model in Figure 2] As can be deduced from Eq. (@f3), if the task is 73, all the parent weights
are from the pre-trained model. For other tasks, the parent weights come from all the models trained
for the prior task.

“

3.2.3 WEIGHT PARAMETRIZATION

Motivated by the mask generation method of [Yan et al| (2021), we introduce a channel mask
mask; ; € RC to control which channel to share. Assuming layer; is a linear layer, its weights are

updated as follows:

(masky ; - thJ» + (1 — maske ;) - w/Z:i)T

(6)

"o
Wy § =

bg,z = maSkt,i : bt’i + (1 - maskt,i) . blt’i

; and b ; are the updated parameters for the final child model.

N

where wy/

However, some kernels in w , should be trainable while others from trained models are untrainable,
this makes it hard to optlmlze wm. To enable the back-propagation of the torch, the original inference
phrase of the linear layer L(x) = w; ;& + by ; is finally converted to:

L'(z) = masks; - (weix +byi) + (1 — masky;) - (w'y iz + 0 ;)

®)
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Algorithm 1 Multi-task learning mode CWPS algorithm
Input: Pre-trained model my with N layers, trained weight Wirgined =
{wry,1,b79,1, WTy 2, 073,25 o0y Wy NS b1y N}
Parameter: 7 = {1}, T, ..., Tk }, Iterations
Output: Trained models M
LLeg=c=..=cxk=0,m3 =my=..=mg=None, M ={}
2: for iter = 1 to Iterations do
3: fort="1T;toTk do

4: c=0,m=myg

5: Following Section[3.2] get the model m with the validation accuracy ¢

6: if ¢ > ¢; then

7: c;, =¢C

8: if m; # None then

9: Remove weights from m; in Wygined > Exclude useless parameters
10: end if
11: Add weights from m to Wigined > Parameters that can be shared with other task
12: m; =m > Better model m for T;
13: end if
14:  end for
15: end for

16: return M = {my, ms,...,mg}

where w; ; and b; ; from trained models are frozen, w'; ; and o', ; are trainable.

3.2.4 TRAINING STRATEGIES
The training procedure is divided into three stages: soft mask training stage, hard mask training stage,
and post-training stage.
Soft mask training stage. In this stage, mask; ; is trainable to optimize it. The elements of
mask, ; should fall into the interval [0, 1], so the mask is assigned by:

mask; ; = Sigmoid(s,;) 9)

where s; ; is the learnable parameter and can be initiated according to the standardized results of
function D in Eq. (3). After a few training rounds (one-fourth of the total training epochs), we can
use the straight-through estimator s, ; to prune network weights, drawing inspiration from TAPS.

Hard mask training stage. We serve s, ; as the channel-wise task-specific estimator for pruning
the weights that can be shared between tasks following

mask,; = F(Sigmoid(s;;)) (10)
0,z < A
o -{ 0755 ay

where A is the threshold to control the ratio of the parameters shared with the parent model. The
weight of the corresponding channel is task-specific if one element in mask; ; is 1, and vice versa.
Following the typical way of pruning, several training epochs are needed when pruning the weights
that can be shared. We assign three-fourths of the training epochs to get the task-specific weights in
practice.

Post-training stage. After finishing training the network, all weights could be simplified following
Eq. (6] [7) to get faster inference performance and fewer parameters. This part does not degrade
the model’s performance in the hard mask training stage and does not require further training; it
merely discards those redundant parameters in inference determined by the soft mask training stage,
as shown in Figure[3|(a). Thus, CWPS would not reduce the inference speed compared to fine-tuning.
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%g;f: Eﬁfg}t Flowers WikiArt Sketch Cars CUB | Mean
Fine-Tuning 6x X 9573 78.02 81.83 91.89 83.61 | 86.22
Feature Extractor 1x v 89.14 6174 6590 5552 63.46 | 67.15
Spot-tune (Guo et al.|2019) 7x X 9634 7577 8020 92.40 84.03 | 85.75
Piggyback (Mallya et al.| 2018} 6x X 9476 7133 7991 89.62 81.59 | 83.44
WTPB (Mancini et al.|[2018) 6x X 96.50 7480 8020 91.50 82.60 | 85.12
TAPS (Wallingford et al.|[2022) 4.12x v 96.68 7694 80.74 89.76 82.65 | 85.35
BAZ (Berriel et al.| 2019) 3.8x v 9574 7232 7928 9214 81.19 | 84.13
Packnet— (Mallya & Lazebnik|[2018) | 1.6x v 9300 6940 7620 86.10 80.40 | 81.02
Packnet+— (Mallya & Lazebnik|[2018) | 1.6x v 90.60 7030 7870 80.00 71.40 | 78.20
CWPS 132x | vV | 9474 7625 8129 91.80 83.90 | 85.60

Table 1: The results of different incremental methods in ImageNet-to-Sketch benchmark using ResNet-50.
The Param Count column means the proportion of all model parameters to the parameters of the pre-trained
backbone, and other digits represent the Top-1 accuracy. The results are categorized into three parts: The first
part shows the lower and upper boundaries, representing typical fine-tuning methods and fixing the backbone.
The methods of the second part introduce parameters no fewer than fine-tuning, and results with under-line are
the most optimal task results among them. The last part presents the results of parameter-efficient methods, with
the best results highlighted in bold.

3.3 ITERATIVE JOINT LEARNING

The difference between incremental learning and common multi-task learning is that the tasks come
incrementally, and all data is available at once in incremental learning, while multi-task learning is
not. So, to fully use the training data, many methods (Gesmundo & Deanl [2022; [Lin et al., 2019)
train the models iteratively, which means more opportunities to search for child model structures.

CWPS can be easily extended to any multi-task learning method from Multi-Domain learning for
its flexibility. As shown in Algorithm[I] when changing CWPS into multi-task learning mode, the
training iteration won’t terminate after finishing training the model of T’k . Instead, T} is the next task
to be dealt with, and we will then go through 7 one or more times. During the traversal, we only save
the model with the best performance (highest validation accuracy) for one task, and we replace the
weights from the worst model in Wy,.qneq With those from the better model. Thus, every iteration
of the traversal will gain better models and the number of weights in Wy,.qineq Will be kept within
specified bounds.

4 EXPERIMENTS

In this section, we will compare CWPS with existing methods. We adjust the pre-trained models
separately for each task and integrate them to form a comprehensive model applicable to various
domains. Our solution is validated on the ImageNet-to-Sketch benchmark (Berriel et al.,2019) and
DomainNet benchmark (Peng et al.;|2019). Due to space limitations, more details and discussions
can be found in the Appendix

4.1 DATASETS AND METRICS

ImageNet-to-Sketch benchmark. For the ImageNet-to-Sketch benchmark, we adopted the eval-
uation methods from prior work (Guo et al., [2019; Mallya et al., [2018}; [Mallya & Lazebnik, [2018};
Mancini et al. 2018; Wallingford et al, [2022). Starting with models pre-trained on the ImageNet
(Deng et al.,[2009) dataset (Russakovsky et al.,[2015)), we transferred them to five additional joint
datasets for evaluation. These datasets include:, VGG-Flowers (Nilsback & Zisserman), [2008]), Stan-
ford Cars (Krause et al.,[2013)), Caltech-UCSD Birds (CUBS)(Welinder et al.,|2010), Sketches (Eitz
et al.L[2012), and WikiArt (Saleh & Elgammal,|2015). These datasets vary significantly, encompassing
various categories (e.g., cars, birds) and diverse image appearances (natural images, artistic paintings,
sketches). We resized all images to 224 and applied random horizontal flipping as data augmentation
during training.
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| Param Count | Flowers WikiArt Sketch Cars CUB | Mean

DenseNet-121 Fine-Tuning | 6x | 956 770 81.1 89.5 826 | 852
Piggyback 6% 94.7 704 797 89.1 80.5| 829
TAPS 3.7x 95.8 736 802 880 809 | 837
CWPS-Incremental 3.1x 93.9 776 802 895 81.1 | 84.46
CWPS-Joint 3.1x 94.0 780 804 90.0 817 | 84.82

Method \ Real Painting Quickdraw Clipart Infograph Sketch \ Mean

TAPS 76.47 65.21 52.87  76.15 35.07 66.54 | 62.05
AdaShare | 78.71 64.01 67.00  73.07 31.19  63.40 | 62.90
CWPS 81.69 67.73 70.28  77.21 36.88  67.06 | 66.81

Table 2: The results of multi-task training using ResNet-50 in ImageNet-to-Sketch benchmark (fop) and
DomainNet benchmark (botfom). Similar to Table[T] these two tables simultaneously display the number of
parameters and precision. The highest level of accuracy is indicated by bold text in their respective settings.

DomainNet benchmark. Domain Datasets (Peng et al.,[2019) is a large-scale dataset designed
for evaluating domain adaptation methods. It comprises approximately 600k images, spanning 345
categories across 6 distinct domains: Clipart, Infograph, Painting, Quickdraw, Real, and Sketch. This
dataset encompasses various object categories such as furniture, clothing, electronics, mammals, and
buildings, making it notable for its diversity. Compared to smaller, environment-specific datasets,
it offers a more comprehensive benchmark for assessing domain adaptation models. Following the
configuration and augmentation methods outlined in TAPS (Wallingford et al.}2022)), we will utilize
this dataset as a benchmark, treating each domain as an individual task and employing their official
training and testing methodologies.

Metrics. To measure efficient methods, the metrics should be able to take into account the precision
and the parameter count. Since our benchmarks consist of classification tasks, our methods are
evaluated based on the average Top-1 accuracy for each task and the average accuracy across all tasks
of several experiments. Moreover, the parameter count is calculated based on the proportion of all
model parameters to the parameters of the pre-trained backbone.

4.2 MULTI-DOMAIN LEARNING

Results on ImageNet-to-Sketch. We first measure our method in the ImageNet-to-Sketch bench-
mark. As seen from Table[T]and Figure ] (left), only two methods, Spot-tune and Fine-Tuning, get
a better mean accuracy than CWPS. However, these two methods assign no less than 1x backbone
parameters for a task, which means low parameter utilization. Other methods Wallingford et al.
(2022); |Berriel et al.| (2019); Mallya & Lazebnik] (2018]), somehow sharing parameters between tasks,
perform worse than CWPS in both mean accuracy and parameter efficiency. Although Packnet only
uses 1.6x backbone parameters, its performance is unstable and relatively worse in these methods.
In other words, CWPS makes full use of every convolution kernel in the backbone, thus striking a
state-of-the-art balance between task accuracy and parameter count.

4.3 MULTI-TASK LEARNING

The effect of multi-task training. For fairness, the results in Sectionare confined to incremental
learning mode, which only allows us to go through all the datasets once. In this section, the effect
of multi-task training is shown. We first compare our methods with previous incremental methods,
and densenet-121 is chosen for the backbone. As seen in Table[2] the performance of all the tasks
is dramatically improved when multi-task joint training. Besides, our method maintains parameter
efficiency, and every task’s average number of parameters remains the lowest.

Results on DomainNet. Apart from the multi-domain benchmark ImageNet-to-Sketch, we also
measure CWPS on the DomainNet benchmark. As shown in the bottom table in Table 2] we compare
our method with the multi-task learning method AdaShare |Sun et al.[(2020). CWPS shows efficiency
in terms of both parameter and computational resources. In the case of ResNet-50, CWPS achieves
greater accuracy while introducing fewer parameters, demonstrating a more comprehensive sharing
of parameters.
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Figure 4: The relationship between precision (Top-1 accuracy) and the number of parameters for different
methods. (left) Methods located in the top-left region generally exhibit superior performance. The relation of
different tasks in ImageNet-to-Sketch benchmark based on our algorithm. (right) Each curve represents the
relationship between the two tasks. Its thickness indicates the strength of the relationship. A higher number of
shared neurons means a stronger relationship between tasks.
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Figure 5: Diagram of the variation of model performance and model parameters with A. This experiment used
ResNet18 as the backbone, controlled the value of A\ from 1 to 0, and was trained for 3 iterations to obtain the
results. Among them, the area of the orange empty circle represents the size of the model’s parameters after
completing the algorithm.

Measure the relation between tasks In Figure[d (right), the relation of tasks is quantified without
direction. The thickness of the lines represents the degree of association between the data from the
two datasets. For example, the Sketch dataset contains many categories such as "flower with stem",
"leaf", and others that are directly semantically related to the Flowers dataset. In contrast, the Cars
dataset lacks such categories related to the Flowers dataset. As a result, the connection between the
Sketch and the Flowers should be stronger than between the Cars and the Flowers, which aligns with
our experimental findings.

As shown in the Figure [4] (right), all tasks have stronger relations with ImageNet than any other
tasks. This highlights the comprehensiveness of the ImageNet Dataset. Besides, the Sketches Dataset
shows the weakest relations with other data domains. This is consistent with the ImageNet-to-Sketch
benchmark design and our intuitive understanding of differences between data domains.

The effect of A We conduct the ablation experiment for A to further demonstrate the impact of our
method in balancing the number of parameters and model performance. As shown in Table[3|and fig.[5]
we can observe that when ) is less than 0.3, the model’s performance shows little improvement
and even declines due to overfitting. On the other hand, when the value of )\ is greater than 0.7,
the reduction in the number of parameters is very modest, but there is a significant drop in model
performance.
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A | Param Count | Flowers WikiArt Sketch ~ Cars CUB | Mean

0.0 | 6x | 93.14 70.05  79.03 89.81 81.16 | 82.64
0.3 | 5.36x% 93.19 70.01  78.88 90.18 81.33 | 82.72
0.4 | 4.36x 93.06 69.87 7910 89.97 81.33 | 82.67
0.5 | 3.29x 92.62 69.77  78.78 88.86 80.47 | 82.10
0.6 | 2.60x 92.39 69.19  78.52 88.37 79.75 | 81.64
0.7 | 1.75x 92.19 68.16 7791 87.56 79.42 | 81.05
1.0 | 1.05x | 90.63 6476 7522 7731 74.55 | 76.49

Table 3: Our ablation studies of X use ResNet18 as the backbone, control the value of A from 1 to 0, and train
for 3 iterations to obtain the results.

5 DISCUSSIONS

Although our approach focuses on parameter efficiency in incremental and multi-task learning,
other methods, such as Mixture of Experts (MoE), model merging, pruning-based techniques, and
prompt-based techniques, are intuitive. In this section, we will compare these methods with CWPS.

Some MoE-based methods, such as AdaMV-MOoE (Chen et al.l [2023)) and M3ViT (Fan et al.| [2022),
address the issues of gradient interference in multi-task learning and the impact of task quantity on
model inference speed to some extent. The MoE method involves simultaneous training of expert
selection and multiple expert models, resulting in a dynamic model structure. However, while their
inference structures are flexible, they often focus on a single transformer architecture and are not
universally applicable across other structures compared to CWPS. Additionally, they only share
parameters between layers and require multiple models to be pre-loaded during inference, leading to
certain parameter waste.

Model merging (Matena & Raffel, 2022} |[Ilharco et al., [2022; |Yadav et al.,|2024) and our approach
involve parameter sharing among multiple pre-trained models to adapt to different tasks. The method
based on task vectors (Zhang et al.| 2024)) was very inspiring for our design approach. Our method
essentially seeks to identify a finer-grained task vector that recognizes the underlying common
information between tasks. Similar to MoE, the granularity and proportion of parameter sharing in
model merging are relatively low, potentially leading to higher computational resource consumption
during inference.

On the other hand, pruning-based methods, such as CPG (Hung et al., [2019)) and BAZ? (Santos
et al., [2022) subsequent approach, aim to reduce the number of parameters in multi-task settings,
thereby improving inference speed. However, the lack of direct parameter sharing results in lower
utilization of model parameters compared to parameter-sharing methods like ours, and the reduced
computational load during inference can lead to decreased model performance.

Methods based on prompts (Wang et al.l [2022)) attempt to establish a prompt for each task and
category to measure their correlations, quantifying the relationships between tasks. However, due to
the limitations of the transformer architecture, this approach still has certain application constraints
on other backbones, such as convolutional networks.

These methods aim to improve each task’s performance by incorporating information from multiple
domains, while our method prioritizes achieving a balance between parameter count and performance
across multiple tasks.

6 CONCLUSION

This paper demonstrated Channel-Wise Parameter Sharing, a plug-and-play incremental and multi-
task learning method. By fine-grained control and composite parent model, our method exhibits
superior knowledge transfer capabilities, requiring fewer iterations and fewer parameters while
maintaining high precision. Our experiments confirm these capabilities and demonstrate that CWPS
can automatically adapt pre-trained models to various tasks and uncover relationships between tasks.
Our methods have limitations, including increased video memory usage during training and requiring
more steps to save models. Further research is needed.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139-154, 2018.

Rodrigo Berriel, Stephane Lathuillere, Moin Nabi, Tassilo Klein, Thiago Oliveira-Santos, Nicu
Sebe, and Elisa Ricci. Budget-aware adapters for multi-domain learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 382-391, 2019.

Deblina Bhattacharjee, Tong Zhang, Sabine Siisstrunk, and Mathieu Salzmann. Mult: An end-to-end
multitask learning transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12031-12041, 2022.

Hyuntak Cha, Jacho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings of
the IEEE/CVF International conference on computer vision, pp. 9516-9525, 2021.

Tianlong Chen, Xuxi Chen, Xianzhi Du, Abdullah Rashwan, Fan Yang, Huizhong Chen, Zhangyang
Wang, and Yeqing Li. Adamv-moe: Adaptive multi-task vision mixture-of-experts. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 17346-17357, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Mathias Eitz, James Hays, and Marc Alexa. How do humans sketch objects? ACM Transactions on
graphics (TOG), 31(4):1-10, 2012.

Zhiwen Fan, Rishov Sarkar, Ziyu Jiang, Tianlong Chen, Kai Zou, Yu Cheng, Cong Hao, Zhangyang
Wang, et al. M3vit: Mixture-of-experts vision transformer for efficient multi-task learning with
model-accelerator co-design. Advances in Neural Information Processing Systems, 35:28441—
28457, 2022.

Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. Nddr-cnn: Layerwise feature
fusing in multi-task cnns by neural discriminative dimensionality reduction. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 3205-3214, 2019.

Andrea Gesmundo and Jeff Dean. munet: Evolving pretrained deep neural networks into scalable
auto-tuning multitask systems. arXiv preprint arXiv:2205.10937, 2022.

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and Rogerio Feris.
Spottune: transfer learning through adaptive fine-tuning. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 4805-4814, 2019.

Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song
Chen. Compacting, picking and growing for unforgetting continual learning. Advances in neural
information processing systems, 32, 2019.

Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Darrell, and Kurt Keutzer.
Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869,
2014.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Simon
Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpolating
weights. Advances in Neural Information Processing Systems, 35:29262-29277, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521-3526, 2017.

11



Under review as a conference paper at ICLR 2025

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops,
pp- 554-561, 2013.

Zhuowei Li, Long Zhao, Zizhao Zhang, Han Zhang, Di Liu, Ting Liu, and Dimitris N Metaxas.
Steering prototypes with prompt-tuning for rehearsal-free continual learning. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2523-2533, 2024.

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task learning.
Advances in neural information processing systems, 32, 2019.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1871-1880, 2019.

Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogerio Feris. Fully-
adaptive feature sharing in multi-task networks with applications in person attribute classification.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5334-5343,
2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.
7765-7773, 2018.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple
tasks by learning to mask weights. In Proceedings of the European conference on computer vision
(ECCV), pp. 67-82, 2018.

Massimiliano Mancini, Elisa Ricci, Barbara Caputo, and Samuel Rota Bulo. Adding new tasks to a
single network with weight transformations using binary masks. In Proceedings of the European
Conference on Computer Vision (ECCV) Workshops, pp. 0-0, 2018.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703-17716, 2022.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for

multi-task learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3994-4003, 2016.

Marina Neseem, Ahmed Agiza, and Sherief Reda. Adamtl: Adaptive input-dependent inference for
efficient multi-task learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4729-4738, 2023.

Zixuan Ni, Haizhou Shi, Siliang Tang, Longhui Wei, Qi Tian, and Yueting Zhuang. Revisiting
catastrophic forgetting in class incremental learning. arXiv preprint arXiv:2107.12308, 2021.

Zixuan Ni, Longhui Wei, Siliang Tang, Yueting Zhuang, and Qi Tian. Continual vision-language
representaion learning with off-diagonal information. arXiv preprint arXiv:2305.07437, 2023.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number

of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722-729. 1EEE, 2008.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1406-1415, 2019.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. Advances in neural information processing systems, 30, 2017.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8119-8127, 2018.

12



Under review as a conference paper at ICLR 2025

Amir Rosenfeld and John K Tsotsos. Incremental learning through deep adaptation. IEEE transactions
on pattern analysis and machine intelligence, 42(3):651-663, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211-252, 2015.

Babak Saleh and Ahmed Elgammal. Large-scale classification of fine-art paintings: Learning the
right metric on the right feature. arXiv preprint arXiv:1505.00855, 2015.

Samuel Felipe dos Santos, Rodrigo Berriel, Thiago Oliveira-Santos, Nicu Sebe, and Jurandy Almeida.
Budget-aware pruning for multi-domain learning. arXiv preprint arXiv:2210.08101, 2022.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual
learning. In International conference on machine learning, pp. 4528-4537. PMLR, 2018.

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. Adashare: Learning what to share
for efficient deep multi-task learning. Advances in Neural Information Processing Systems, 33:
8728-8740, 2020.

Simon Vandenhende, Stamatios Georgoulis, and Luc Van Gool. Mti-net: Multi-scale task interaction
networks for multi-task learning. In Computer Vision—-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part IV 16, pp. 527-543. Springer, 2020.

Matthew Wallingford, Hao Li, Alessandro Achille, Avinash Ravichandran, Charless Fowlkes, Rahul
Bhotika, and Stefano Soatto. Task adaptive parameter sharing for multi-task learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7561-7570,
2022.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. European Conference on Computer Vision, 2022.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and
Pietro Perona. Caltech-ucsd birds 200. 2010.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch—image—-models, 2019.

Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. Pad-net: Multi-tasks guided prediction-
and-distillation network for simultaneous depth estimation and scene parsing. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 675-684, 2018.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing Systems,
36, 2024.

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3014-3023, 2021.

Frederic Z Zhang, Paul Albert, Cristian Rodriguez-Opazo, Anton van den Hengel, and Ehsan
Abbasnejad. Knowledge composition using task vectors with learned anisotropic scaling. arXiv
preprint arXiv:2407.02880, 2024.

Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, and Jitendra Malik. Side-tuning: a
baseline for network adaptation via additive side networks. In Computer Vision—-ECCV 2020: 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part III 16, pp. 698-714.
Springer, 2020.

Zhenyu Zhang, Zhen Cui, Chunyan Xu, Zequn Jie, Xiang Li, and Jian Yang. Joint task-recursive learn-
ing for semantic segmentation and depth estimation. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 235-251, 2018.

13


https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Under review as a conference paper at ICLR 2025

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and
Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43-76,
2020.

14



Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 MORE ABOUT EXPERIMENT

Training details. We use various ImageNet pre-trained models as the base models. For ResNet, we
train the models for 40 epochs with batch size 96 in RTX4090, and the learning rate is from 0.01 to
0.04 in different circumstances. The learning rates for DenseNet (Iandola et al.,2014)) and the vision
transformer |[Dosovitskiy et al.|(2020) are set to 0.08 and 0.001, respectively, while the other settings
remain unchanged. One training iteration in the ImageNet-to-Sketch benchmark spends about four
hours, while it spends about twenty-two hours in DomainNet benchmark. Throughout the training
period, one-quarter of the epochs are dedicated to the soft mask training stage, while the remainder
focuses on the hard mask training stage. During the soft mask training stage, the learning rate of
mask parameter s; is set to 0.02. Besides, SGD optimizer and cosine learning rate scheduler are used
to improve performance.

For CWPS hyperparameters, the threshold ) is set from 0.3 to 0.7, so we can obtain a flexible control
of the sharing ratio. In terms of the initialization of the mask parameter s;, we normalize the values of
D(-) in Eq. and multiply them by 3 L which helps us project these values on a reasonable

mean(D(
interval.

= [nference direction

¢  Convolution kernel

Figure 6: The kernels of the first layer of the supernet consisted of ResNet-18 (3 in-channels and 64 out-channels)
for five tasks and ImageNet. The figure uses different colors to represent different tasks, diamonds to represent
kernels, and lines to represent individual weights. If two kernels from different models share parameters, they
are placed together.

Task-specific parameters. In Figure[f] we visualize the parameters sharing of the first layer in
ImageNet-to-Sketch benchmark. After five training iterations, we get five ResNet-18 models for these
benchmark tasks. Together with the ImageNet pre-trained model, the input layers of six models are
visualized. As expected, kernels from different tasks are shared or are task-specific according to the
preset threshold value A. As these models are initialized using a pre-trained model from ImageNet,
they will likely share parameters with the pre-trained model. Meanwhile, as the number of iterations
grows, the number of actual task-specific parameters becomes fewer and fewer (only a dozen kernels
are task-specific in this case) because the information on these tasks is more fully integrated. Finally,
the illustration demonstrates how CWPS can reveal the connection between tasks kernel by kernel,
allowing the child model to transfer knowledge from various datasets encountered effectively.

The effect of iteration. Figure[/|illustrates the progressive improvement in accuracy over the itera-
tive process, reflecting the exchange of information between tasks. The second iteration demonstrates
the most significant improvement in accuracy, attributed to the models in this iteration having access
to information from all the tasks for the first time. From this fact, we deduced that these parent
models in the second iteration are more comprehensively composed by parameters trained in all
datasets, as intended by the design of the iterative mechanics. Besides, if the task settings are limited
in computing resources, choosing two iterations would lead to the most economical method.
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Figure 7: The figure illustrates the effect of iteration. The orange line represents the fluctuation of mean accuracy
as the number of iterations increases, while the other lines depict the incremental Top-1 accuracy of each task
from the first iteration. The final mean accuracy is pinned in the figure, which is obtained after five iterations.

| Flowers WikiArt Sketch Cars CUB

Random Init 94.62 75.74 80.80 91.52 83.78
Constant Init - - - - _

Ours | 94.74 76.25 8129 91.80 83.90

Table 4: The table displays the results of various mask initializations tested on the ImageNet-to-Sketch
benchmark. The "Random Init" refers to initialization with a Gaussian distribution. The "Constant Init" refers to
initialization with a constant value. Our method is mentioned in Appendix@]

The effect of mask initialization. As depicted in Table ] various mask initializations can lead to
different outcomes, with Random Init performing poorly across all datasets. Meanwhile, if the mask
is initialized with a constant value, its elements remain unchanged during training, resulting in an
inappropriate initialization. This suggests that while using trainable parameters helps measure the
potential for sharing each channel, a single parameter may not be sufficient to identify the optimal
sharing structure within the entire search space. We experimented with various initialization methods
(such as constant initialization, normal initialization, etc.) before ultimately selecting the approach
outlined in the Appendix [A.T] Therefore, it is essential to choose a suitable initialization method.

\Flowers WikiArt Sketch Cars CUB mean

ViT Fine-Tuning | 99.3 82.6 819 892 889 884
TAPS 99.1 82.3 822 887 884 881
CWPS 99.0 81.2 824 894 887 88.1

Table 5: The results of ViT in ImageNet-to-Sketch Benchmark show that our method is competent with TAPS
in mean accuracy. Meanwhile, TAPS’s parameter count is about 4%, but our parameter count is 2.6x.

The scalability of CWPS. As shown in Table |5, CWPS can be easily applied to the transformer-
based backbone without changing the structure. Our method utilized only 2.6x parameters to get the
same performance as TAPS(its parameter count is not reported in detail). The basic structure of the
transformer layer is the linear layer, which serves as the projection function to get g, k, and v. We
deduce that the transformer (linear-based) layers are denser than the convolution layers, making it
easier for our method to identify fine-grained sharing candidates. As a result, more parameters in
transformer layers can be shared.

The effect of the pre-trained models. We assess the impact of the pre-trained models from two
perspectives. The results will vary significantly if the base models are trained on different datasets,
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for example, ResNet-50 trained on ImageNet and Places-365 Zhou et al.| (2017) (the pre-trained
model’s average accuracy on the Places365 dataset is slightly lower by a few points), which indicates
the differences in the comprehensiveness of different data sets. At the same time, the final results can
be influenced by models even trained on the same dataset but in varying settings. For instance, the
average accuracy of the pre-trained Densenet-121 from Pytorch is 0.43 higher than that from Timm
‘Wightman| (2019) on the ImageNet-to-Sketch benchmark.

The computational complexity analysis of CPMS Our computational efficiency derives from
more universal parent model searching. The efficiency of our parameter search method is primarily
reflected in more effective information exchange across domains. Suppose we have NNV tasks where
each model can obtain the state that information from all other datasets is available to the model. This
state can be referred to as the complete information exchange state. The faster we reach this state,
the higher the efficiency of the information exchange. The parent model parameters in our method
come from all the trained models, thus requiring at least two passes through all tasks, which amounts
to 2N model training to achieve the state. In contrast, methods like MuNet and TAPS, which also
require parameter search, derive the parent model parameters from only one trained model directly at

atime. Theyneed N + (N —1)+...+1= NIVHD fimes training to reach the state. Therefore, we
have reduced the complete information exchange from polynomial to constant complexity.
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