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ABSTRACT

The training of multimodal models involves many design choices, such as the
underlying modality-specific tokenizers, fusion mechanisms, and strategies for
freezing model layers during different training stages. However, the individ-
ual impact of these decisions on downstream multimodal performance remains
poorly understood due to the diversity of current practices. In this paper, we sys-
tematically investigate how choices in image tokenization, architectural design,
and layer-freezing strategies affect the training and cross-modal generalization of
vision-language models (VLMs). We train and evaluate over 50 VLM variants
across a controlled suite of tokenizers, model architectures, and training recipes.
Our experiments reveal several key trends: (1) image tokenizers designed with text
alignment in mind, together with training recipes that further enhance image-text
alignment, yield the best performance; (2) unfreezing the language model boosts
in-domain results but can degrade out-of-domain generalization; and (3) fusion
architectures based on the mixture-of-transformers architecture are effective, es-
pecially when language parameters are frozen. To further probe cross-modality
transfer, we introduce three new synthetic datasets, which we use to evaluate our
pretrained models.

1 INTRODUCTION

Vision-language models (VLMs) are frequently built by combining a pretrained large language
model (LLM) with an image tokenizer via a fusion architecture that integrates image and text repre-
sentations. Here, we use the term tokenizer to refer to any module that processes raw modality inputs
(such as images or text) into a sequence of discrete or continuous tokens for downstream modeling.
This encompasses both discretization approaches such as VQVAE (van den Oord et al., 2017), and
conventional encoders such as CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023), which
generate token-like embeddings.

Despite rapid progress, the effects of architectural and training choices, such as how to align and fuse
modality-specific representations, remain unclear, due to the proliferation of fusion architectures
(e.g., joint autoregressive decoders (Liu et al., 2023; Deitke et al., 2024; Bai et al., 2025; Du et al.,
2025; Zhu et al., 2025), cross-attention models (Alayrac et al., 2022; Grattafiori et al., 2024; Dai
et al., 2024) and mixtures-of-transformers (Liang et al., 2025; Shi et al., 2025b; Deng et al., 2025)),
tokenization schemes (Tschannen et al., 2025; Fini et al., 2024; Oquab et al., 2023; Yu et al., 2024;
Tian et al., 2024; Bachmann et al., 2025; Miwa et al., 2025), and multi-stage training recipes with
varied layer freezing. This diversity of approaches makes it challenging to disentangle how each
design choice impacts the performance and generalization behavior of VLMs.

Understanding how design and training strategies of multimodal models enable cross-modality
transfer is particularly important. Effective transfer allows models to develop reasoning and under-
standing that may be more naturally expressed in one modality than another (for example, physical
reasoning may be more apparent in vision than in text). Furthermore, robust cross-modal transfer
enables models to leverage alternative data sources, which is increasingly valuable as high-quality
text data becomes scarce due to the growing scale of LLM training.
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Figure 1: Different multimodal fusion architectures: (a) Joint-Decoder, (b) Cross-Attention, (c) Mixture-
of-Transformers.

In this work, we systematically investigate the influence of fusion architectures, image tokenizers,
and training recipes on VLM performance. We train and evaluate over 50 VLM variants, all built
on a Qwen3-0.6B (Yang et al., 2025) LLM backbone and trained on a mix of image-caption and
vision question answering (VQA) data. We assess in-domain and out-of-domain performance using
a suite of VQA benchmarks to discover trade-offs between architectural and training choices. To
further explore cross-modality transfer, we also introduce three new synthetic datasets designed for
evaluating cross-modality generalization.

Our main findings are: (i) Image tokenizers trained to text-alignment objectives lead to better per-
formance trained for image reconstruction, regardless of fusion architecture or whether layers are
frozen. (ii) While unfreezing the LLM backbone provides the largest gains for in-domain perfor-
mance, it often degrades out-of-domain generalization. Unfreezing only the image tokenizer offers
a more balanced improvement. (iii) The Mixture-of-Transformer fusion architecture allows freezing
the LLM backbone to achieve strong in-domain and out-of-domain performance while preserving
text-only performance. (iv) The success of cross-modality transfer depends on both the model’s
internal design (i.e., architecture and tokenizer) and the representational alignment between the data
modalities themselves.

2 EXPERIMENTAL SETTINGS

2.1 ARCHITECTURES

We study three fusion architectures for vision-language modeling, illustrated in Figure 1: Joint-
Decoder, Cross-Attention, and Mixture-of-Transformers (MoT).

Joint-Decoder: In the Joint-Decoder architecture (Deitke et al., 2024; Bai et al., 2025; Du et al.,
2025; Zhu et al., 2025), image and text tokens are concatenated and then fed into a shared multimodal
transformer decoder (Figure 1a).

Cross-Attention: In the Cross-Attention architecture, cross-attention layers allow text tokens to
attend to image token representations (Figure 1b), following architectures like Flamingo (Alayrac
et al., 2022) and Llama 3-V (Grattafiori et al., 2024). Design variants exist in how and where visual
information is injected. For example, NVLM (Dai et al., 2024) explores different placements and
use of special visual tokens for cross-modal reasoning.

Mixture-of-Transformers (MoT): For the Mixture-of-Transformers architecture (Liang et al.,
2025; Shi et al., 2025b; Deng et al., 2025), the model processes each modality through its own
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stack of transformer layers, referred to as modality-transformers, each with separate query-key-
value (QKV) matrices and feed-forward networks. At every layer, tokens are first routed through
their respective modality-transformer for QKV computation, then mixed globally via multimodal
self-attention, and finally passed back through that modality’s feed-forward sublayer (Figure 1c).
This doubles the parameter count of the fusion layers relative to the analogous Joint-Decoder ar-
chitecture, but, as shown in (Liang et al., 2025), the overall floating-point operations (FLOPs) per
forward pass remain comparable.

All of our models are built with Qwen3-0.6B, which contains of 28 transformer layers, as the lan-
guage backbone. While Qwen3-0.6B ties its text embedding and output head, we untie them for
our models. In the Joint-Decoder architecture, these 28 layers are repurposed as a single, shared
multimodal decoder initialized with the pretrained LLM weights. For the Cross-Attention models,
we follow the design of Llama 3-V (Grattafiori et al., 2024) and interleave a cross-attention layer
every four layers within the backbone, adding a total of seven new cross-attention layers. Finally,
the Mixture-of-Transformers (MoT) architecture, following Shi et al. (2025b); Deng et al. (2025),
creates two parallel modality-transformers, each containing a full copy of the 28 transformer layers,
both of which are initialized with the original Qwen3-0.6B weights.

2.2 IMAGE TOKENIZERS AND ADAPTERS

We experiment with a range of image tokenizers, each trained with different objectives:

• Continuous tokenizers:
– CLIP (Radford et al., 2021): Trained via contrastive learning to align image and text

embeddings.

– SigLIP 2 (Tschannen et al., 2025): Trained using a combination of contrastive learning
with a sigmoid loss (Zhai et al., 2023), an autoregressive captioning loss (Wan et al., 2024),
and self-distillation (Naeem et al., 2025; Maninis et al., 2025).

– AIMv2 (Fini et al., 2024): Trained with next patch prediction (for images) and an autore-
gressive captioning loss (for text).

• Discrete tokenizers:
– TiTok (Yu et al., 2024): Trained to encode images into one-dimensional latent token se-

quences by reconstructing ground-truth two-dimensional latents.

– VAR (Tian et al., 2024): Trained to autoregressively reconstruct images via multi-scale
token maps.

To match tokens to fusion architectures, we include lightweight adapter modules. For Joint-Decoder
and MoT, continuous tokenizers are projected using a two-layer MLP, while discrete tokenizers
use an embedding layer. In the Cross-Attention architecture, adapters follow Llama 3-V, aligning
dimensions for image tokens (using an embedding layer for discrete tokenizers and dimensionality
matching for continuous ones).

2.3 TRAINING SETUP

We train each of our models in three stages: 1) a pretraining stage; 2) a VQA fine-tuning stage; 3)
and a reasoning-transfer stage. The hyperparameters for all three training stages can be found in
Appendix D.

Stage 1 (Pretraining): We pretrain models for caption generation on COYO-700M (Byeon et al.,
2022) to align the image tokenizer and any uninitialized model weights, improving the represen-
tations available to the LLM layers. The language model layers are kept frozen in this stage. For
each model with a continuous image tokenizer, we run both frozen and unfrozen variants to enable
downstream comparison. Discrete image tokenizers remain frozen throughout, avoiding the need
for a straight-through estimator.

During pretraining, we only train the Joint-Decoder and Cross-Attention models. For MoT models,
we follow Shi et al. (2025b); Deng et al. (2025) and initialize weights from a trained Joint-Decoder
checkpoint by transferring the adapter and image tokenizer weights, and copying the original Qwen3
weights into both modality-transformers.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Stage 2 (Fine-tuning): We fine-tune each pretrained checkpoint on a combination of COCO-
Captions (Lin et al., 2014), VQAv2 (Goyal et al., 2017), DocVQA (Mathew et al., 2021),
TextVQA (Singh et al., 2019), and ChartQA (Masry et al., 2022). We systematically ablate whether
the image tokenizer or LLM layers are frozen at this stage, such that unfrozen layers during pretrain-
ing remain unfrozen for fine-tuning. Models are evaluated after each epoch on the validation splits
of VQAv2, A-OKVQA (Schwenk et al., 2022), DocVQA, TextVQA, and ChartQA. The checkpoint
with the highest mean validation accuracy across VQA datasets is selected for further evaluation.

Stage 3 (Reasoning-Transfer): We further train our models on three synthetic datasets, detailed
in Section 4 and Appendix C. Each dataset pairs an image with an equivalent text description,
allowing for both image-based VQA and comparable text-only QA training runs. We evaluate on
in-distribution and out-of-distribution tasks in both modalities to quantify cross-modality transfer.

2.4 EVALUATION PROTOCOL

To assess model capabilities, we evaluate on a combination of standard academic vision-language
benchmarks and our own synthetic datasets. These benchmarks measure both general visual under-
standing and the ability to transfer knowledge across domains and modalities. We group academic
benchmarks into in-domain and out-of-domain: out-of-domain benchmarks not only cover novel
topics but also feature visual multiple-choice questions, a format our models were not exposed to
during training.

For academic evaluations, our in-domain suite tests a range of capabilities, including general VQA
with VQAv2 (Goyal et al., 2017), knowledge-based reasoning with A-OKVQA (Schwenk et al.,
2022), and specialized understanding of documents (DocVQA (Mathew et al., 2021)), text in im-
ages (TextVQA (Singh et al., 2019)), and charts (ChartQA (Masry et al., 2022)). To assess out-
of-domain generalization, we use MathVista (Lu et al., 2024b) for mathematical reasoning, Real-
WorldQA (xAI, 2024) for robustness to novel image distributions, and the multi-task benchmark
MMTBench (Ying et al., 2024).

3 UNDERSTANDING THE DESIGN OF MULTIMODAL ARCHITECTURES

3.1 EFFECT OF IMAGE TOKENIZER ON IN-DOMAIN PERFORMANCE
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Tokenizer Lang

CLIP F 49.8 22.1 12.2 20.1 12.1 23.2 30.5
U 66.7 41.6 20.8 31.9 20.7 36.3 32.9

AIMv2 F 62.5 30.3 19.5 33.6 17.9 32.8 32.4
U 75.3 49.5 30.6 43.2 25.2 44.7 34.5

SigLIP 2 F 55.9 24.0 15.7 30.0 17.0 28.5 31.7
U 74.8 47.2 28.8 43.6 26.6 44.2 32.8

TiTok F 3.2 0.2 5.1 1.0 3.0 2.5 26.7
U 43.1 26.0 13.9 11.8 11.8 21.3 27.1

VAR F 30.3 2.0 9.2 4.9 6.0 10.5 28.1
U 46.5 27.7 13.7 11.9 11.9 22.3 22.4

Table 1: Evaluation results (accuracy, %) on the Joint-Decoder architecture with frozen image tokenizer.
The table compares results across various image tokenizers while ablating whether the language model (Lang)
is frozen (F) or unfrozen (U) during Stage 2.

Table 1 presents the accuracies for different image tokenizers within the Joint-Decoder architec-
ture, with the image tokenizer frozen to normalize for the trainability of the discrete tokenizers.
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The results consistently show that image tokenizers trained with text-alignment objectives (AIMv2,
SigLIP 2, CLIP) substantially outperform those trained for image reconstruction (TiTok, VAR) for
both in-domain and out-of-domain tasks. Among the text-supervised tokenizers, a further hierar-
chy emerges for in-domain tasks: AIMv2 and SigLIP 2, which incorporate stronger text objectives
like autoregressive captioning, outperform the purely contrastively trained CLIP. This general trend
holds true across the cross-attention and MoT architectures and is consistent regardless of the layer
freezing strategy. Full evaluation results are available in Appendix A.
Takeaway 1. Image tokenizers trained with text-alignment objectives are crucial for strong VLM

performance, significantly outperforming those trained solely on image reconstruction on both in-
domain and out-of-domain tasks.
Takeaway 2. Stronger text-alignment objectives (e.g., autoregressive captioning vs. contrastive

loss) provide a clear advantage for in-domain performance.

3.2 VARYING FROZEN LAYERS AND ARCHITECTURAL CHOICES

Stage 1 Stage 2 Joint-Decoder Cross-Attention MoT

Image Image Lang In Out In Out In Out

F F F 28.2 (+0.0) 31.5 (+0.0) 37.7 (+0.0) 28.6 (+0.0) 38.8 (+0.0) 34.0 (+0.0)
F F U 41.8 (+13.6) 33.4 (+1.9) 43.5 (+5.8) 25.6 (-3.0) 42.3 (+3.5) 31.5 (-2.5)
F U F 35.5 (+7.3) 32.9 (+1.4) 41.4 (+3.7) 27.6 (-1.0) 43.2 (+4.4) 35.6 (+1.6)
F U U 45.8 (+17.6) 32.9 (+1.4) 46.8 (+9.1) 25.9 (-2.7) 46.3 (+7.5) 29.8 (-4.2)
U U F 39.9 (+11.7) 34.3 (+2.8) 43.0 (+5.3) 31.3 (+2.7) 45.8 (+7.0) 36.3 (+2.3)
U U U 47.7 (+19.5) 33.1 (+1.6) 47.7 (+10.0) 27.0 (-1.6) 47.8 (+9.0) 31.6 (-2.4)

Table 2: Average in-domain (In) and out-of-domain (Out) performance (accuracy, %) across different
fusion architectures and layer freezing strategies. Scores are averaged over all text-supervised image tok-
enizers (CLIP, AIMv2, SigLIP 2). The table ablates the freezing status, Frozen (F) or Unfrozen (U), of the
image tokenizer (Image) and language model (Lang) during Stage 1 (pretraining) and Stage 2 (fine-tuning).
Values in parentheses indicate the change from the fully frozen baseline in the first row.

Table 2 summarizes the effects of unfreezing the image tokenizer and/or LLM during both pretrain-
ing (Stage 1) and fine-tuning (Stage 2) across different fusion architectures.

Unfreezing the image tokenizer consistently provides moderate improvements in in-domain accu-
racy, while unfreezing the LLM backbone yields even larger gains—most notably for Joint-Decoder
models, which have less capacity for multimodal integration than Cross-Attention or MoT. When
both the image tokenizer and language layers are frozen, MoT outperforms the other architectures,
thanks to the extra trainable parameters it has (over 400M more parameters from the image modality-
transformer). However, as more layers are unfrozen, all architectures perform more similarly. In
contrast, unfreezing the LLM often leads to a reduction in out-of-domain performance, whereas
unfreezing only the image tokenizer can provide a modest out-of-domain boost.
Takeaway 3. Unfreezing both image and language layers maximizes in-domain performance, but

may hurt out-of-domain generalization.

Our results show that the Mixture-of-Transformers (MoT) architecture is particularly effective. By
providing dedicated parameters for multimodal integration without increasing the FLOPs per for-
ward pass (Liang et al., 2025; Shi et al., 2025b), MoT enables a strategy where the language model
can be frozen. This approach yields strong performance on both in-domain and out-of-domain
tasks, preserves the LLM’s original text-only capabilities, and remains computationally efficient.
This finding aligns with recent work (Dai et al., 2024; Lin et al., 2024; Shi et al., 2025b) and high-
lights the value of strategies that limit LLM supervision, especially when high-quality training data
is scarce.
Takeaway 4. MoT with an unfrozen image tokenizer and frozen language layers delivers the best

overall task performance.

4 CROSS-MODALITY TRANSFER LEARNING

In this section, we systematically evaluate cross-modality transfer across the models we trained.
Motivated by similar settings in prior work (Wang et al., 2024; Yamada et al., 2024), we construct
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Image
SpatialMap Grid Ring

Consider a map with the following 
objects: yellow star, orange octagon, 
blue triangle, yellow octagon, brown 
cross, pink pentagon, red diamond.

Where is the blue circle relative to the 
red star? Possible options: Northeast, 
Northwest, Southeast, Southwest.

Text-only
Consider a map with the following objects: blue triangle, 
... 
The pink pentagon is to the Northeast of the yellow 
octagon. The blue triangle is to the Southeast of the 
yellow star. ...

Where is the yellow octagon relative to the yellow star? 
Possible options: Northeast, Northwest, Southeast, 
Southwest.

Image

Consider a 3x3 grid with the following 
objects in no particular order: purple 
triangle, ...

You start at the black square, then you 
go up by one step, then...

What will you find?

Text-only

Consider a 3 by 3 square grid. The grid contents, listed 
left-to-right and top-to-bottom, are: (1,1) a black 
square, (1, 2) a...

You start at the black square, then you go up by one 
step, then...

What will you find?

Image

Consider a ring with 8 positions con-
taining the following objects in no 
particular order: a red hexagon, ...

You start at the blue diamond, then 
you go clockwise by one step, then...

What will you find?

Text-only

You are on a ring of 8 positions. The ring contents, listed 
clockwise from the top (index 0), are: (0) a purple pen-
tagon,

You start at blue diamond, then you go clockwise by one 
step, then...

What will you find?

Figure 2: Examples from the three synthetic datasets used to study cross-modality transfer. Each dataset
provides paired image and text-only versions with equivalent information but distinct spatial structures. Spa-
tialMap (left, blue) places objects on an open canvas and asks about relative positions between two objects.
Grid (middle, green) arranges objects in a 3×3 lattice and requires tracking movement across cells. Ring
(right, red) positions objects cyclically and requires tracking clockwise or counterclockwise traversal.

three synthetic datasets designed to isolate reasoning from perception. Each dataset pairs proce-
durally generated images with equivalent text-only representations and is built around a distinct
spatial reasoning task: SpatialMap (objects on an open canvas), Grid (objects in a 2D grid), and
Ring (objects arranged cyclically), see Figure 2. Because the image and text modalities contain
identical information, we can directly measure a model’s ability to transfer learned concepts. Each
dataset provides 4,500 training examples, 500 in-distribution (InD) test examples, and 500 out-of-
distribution (OOD) test examples designed to be compositionally harder. Further details on dataset
generation are in Appendix C.

To measure transfer, we perform further fine-tuning (as described in Section 2.3) on either the image-
based (VQA) or text-only (QA) version of a task. We then evaluate each fine-tuned model across
two axes of generalization:

• Same-Modality vs. Cross-Modality: We test on tasks using the same modality as the synthetic
data (e.g., VQA → VQA) and on tasks using the other modality (e.g., VQA → QA).

• In-Distribution (InD) vs. Out-of-Distribution (OOD): We test on both the standard test set
(InD) and the more challenging, compositionally distinct test set (OOD).

In the following subsections, we present results from this further fine-tuning on the image-based
tasks (Section 4.1) and the text-only tasks (Section 4.2). An analogous analysis performed on several
open-weight VLMs is provided in Appendix B.

4.1 CROSS-MODALITY TRANSFER FROM IMAGE TO TEXT

In this section, we evaluate image-to-text cross-modality transfer. To do this, we fine-tune our
stage-2 models on the image-based (VQA) version of our synthetic datasets (SpatialMap, Grid,
and Ring). We then evaluate performance on both the original image-based task and the unseen,
text-only version of the task. This allows us to measure how well knowledge acquired from visual
inputs transfers to a purely textual domain. The distinction between these modalities is illustrated in
Figure 2.

Table 3 presents these results, averaged across all fusion architectures to isolate the impact of the
image tokenizer. A clear trend emerges: models using text-supervised continuous tokenizers (CLIP,
AIMv2, SigLIP 2) demonstrate strong performance on the original VQA task and successfully trans-
fer knowledge to the text-only task. In contrast, models with discrete, reconstruction-based tokeniz-
ers (TiTok, VAR) struggle, showing substantially less learning on the image task and less transfer.
While transfer to out-of-distribution tasks is challenging for all models, the text-supervised tokeniz-
ers still show a distinct advantage. This performance gap indicates that text-alignment pretraining
is critical for developing representations that support both visual and textual reasoning, a capability
not fostered by image reconstruction objectives alone.
Takeaway 5. Text-supervised image tokenizers perform better than the image tokenizers trained

for image reconstruction in image-to-text cross-modality transfer.
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Dataset Tokenizer VQA/InD VQA/OOD Text-only/InD Text-only/OOD

SpatialMap

CLIP 57.6 (+41.3) 54.8 (+38.4) 30.7 (+13.6) 28.5 (+11.5)
AIMv2 89.6 (+66.8) 86.0 (+62.7) 33.1 (+12.5) 33.2 (+15.6)
SigLIP 2 94.3 (+75.3) 90.1 (+70.0) 36.5 (+7.2) 34.9 (+4.1)
TiTok 25.6 (+14.6) 25.2 (+14.4) 23.2 (+0.2) 23.6 (+0.7)
VAR 24.2 (+16.9) 26.7 (+17.9) 26.2 (-3.0) 26.6 (-0.6)

Grid

CLIP 92.0 (+90.0) 17.2 (+16.8) 64.3 (+61.0) 19.4 (+18.6)
AIMv2 95.4 (+91.6) 15.5 (+14.1) 48.4 (+42.6) 18.8 (+16.6)
SigLIP 2 98.6 (+98.1) 17.4 (+16.8) 55.9 (+53.4) 16.4 (+14.8)
TiTok 30.4 (+30.2) 12.2 (+11.8) 23.1 (+21.3) 8.0 (+7.2)
VAR 32.0 (+31.9) 8.6 (+8.6) 31.4 (+31.0) 9.6 (+9.1)

Ring

CLIP 97.0 (+95.3) 10.2 (+9.2) 99.6 (+97.0) 15.2 (+12.4)
AIMv2 99.4 (+98.3) 8.6 (+8.5) 97.9 (+93.9) 13.5 (+9.9)
SigLIP 2 99.4 (+99.2) 8.9 (+8.8) 82.2 (+79.3) 10.2 (+8.6)
TiTok 22.6 (+22.2) 9.3 (+9.3) 38.5 (+35.3) 9.1 (+8.8)
VAR 25.1 (+25.1) 8.8 (+8.8) 37.4 (+36.2) 10.2 (+9.0)

Table 3: Image-to-text transfer performance (accuracy, %) for each image tokenizer. Models were fine-
tuned on the VQA version of the synthetic datasets, and scores are averaged across all fusion architectures.
Each score is presented alongside the change in performance due to the additional training.

Dataset Architecture VQA/InD VQA/OOD Text-only/InD Text-only/OOD

SpatialMap
Joint-Decoder 79.4 (+54.8) 75.5 (+50.4) 34.8 (+2.4) 34.6 (+2.2)
Cross Attention 88.4 (+78.2) 83.8 (+72.2) 32.7 (+23.8) 30.2 (+21.8)
MoT 73.6 (+50.3) 71.6 (+48.6) 32.8 (+7.1) 31.9 (+7.2)

Grid
Joint-Decoder 95.4 (+90.4) 16.8 (+14.4) 67.3 (+62.5) 22.1 (+20.2)
Cross Attention 94.6 (+94.2) 15.1 (+15.1) 34.4 (+34.0) 14.1 (+13.7)
MoT 96.0 (+95.2) 18.2 (+18.1) 66.9 (+60.4) 18.4 (+16.2)

Ring
Joint-Decoder 98.8 (+96.6) 7.6 (+6.5) 99.2 (+94.4) 12.8 (+9.0)
Cross Attention 99.2 (+99.2) 9.6 (+9.6) 88.8 (+88.8) 13.0 (+13.0)
MoT 97.9 (+97.0) 10.6 (+10.5) 91.8 (+87.1) 13.1 (+8.9)

Table 4: Image-to-text transfer performance (accuracy, %) by fusion architecture. Scores are averaged
over text-supervised image tokenizers (CLIP, AIMv2, SigLIP 2) after models were fine-tuned on the VQA
versions of the synthetic datasets. Each score is presented alongside the change in performance due to the
additional training.

Table 4 isolates the effect of the fusion architecture by averaging results across the text-supervised
tokenizers. Here, we observe that the degree of transfer is highly dependent on the representational
alignment between the image and text modalities of a given dataset. For the Grid and Ring datasets,
where the textual description is a direct, one-to-one serialization of the visual information, models
achieve strong cross-modality transfer. For the SpatialMap dataset, where the text describes relative
spatial locations, the textual description of relative coordinates is ambiguous and does not uniquely
define the visual layout. Subsequently, transfer is significantly more challenging, resulting in much
lower text-only accuracy. This suggests that the representational gap between modalities is a key
bottleneck.
Takeaway 6. The success of cross-modality transfer is heavily influenced by the representational

alignment between the source and target modalities. Transfer is more effective when the textual
representation is a direct, structured description of the visual scene.

4.2 CROSS-MODALITY TRANSFER FROM TEXT TO IMAGE

In this section, we evaluate the reverse direction: text-to-image transfer. To do this, we fine-tune our
stage-2 models on the text-only (QA) version of our synthetic datasets and then evaluate performance
on the corresponding, unseen image-based (VQA) tasks.
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Dataset Tokenizer Text-only/InD Text-only/OOD VQA/InD VQA/OOD

SpatialMap

CLIP 76.5 (+59.4) 74.9 (+57.9) 17.4 (+1.1) 17.8 (+1.4)
AIMv2 70.2 (+49.6) 68.8 (+51.2) 16.6 (-6.2) 17.2 (-6.1)
SigLIP 2 67.4 (+38.1) 69.1 (+38.3) 8.2 (-10.8) 9.9 (-10.2)
TiTok 61.2 (+38.2) 61.8 (+38.9) 9.0 (-2.0) 9.1 (-1.7)
VAR 71.2 (+42.0) 74.8 (+47.6) 17.4 (+10.1) 16.4 (+7.6)

Grid

CLIP 99.8 (+96.5) 56.4 (+55.6) 10.2 (+8.2) 5.1 (+4.7)
AIMv2 99.3 (+93.5) 29.1 (+26.9) 13.1 (+9.3) 7.1 (+5.7)
SigLIP 2 99.9 (+97.4) 58.6 (+57.0) 12.2 (+11.7) 5.8 (+5.2)
TiTok 99.9 (+98.1) 35.6 (+34.8) 11.5 (+11.3) 7.3 (+6.9)
VAR 99.1 (+98.7) 33.3 (+32.8) 11.6 (+11.5) 4.8 (+4.8)

Ring

CLIP 100.0 (+97.4) 13.4 (+10.6) 12.4 (+10.7) 5.2 (+4.2)
AIMv2 100.0 (+96.0) 13.6 (+10.0) 9.8 (+8.7) 5.3 (+5.2)
SigLIP 2 100.0 (+97.1) 14.1 (+12.5) 6.8 (+6.6) 4.6 (+4.5)
TiTok 100.0 (+96.8) 14.3 (+14.0) 8.0 (+7.6) 5.6 (+5.6)
VAR 100.0 (+98.8) 13.9 (+12.7) 9.0 (+9.0) 6.2 (+6.2)

Table 5: Text-to-image transfer performance (accuracy, %) by image tokenizer. Models were fine-tuned
on the text-only (QA) version of the synthetic datasets, and scores are averaged across all fusion architectures.
Each score is presented alongside the change in performance due to the additional training.

The results, grouped by image tokenizer in Table 5, reveal a stark asymmetry compared to the pre-
vious section. While all models, regardless of tokenizer, successfully learn the source text-only
task (often reaching near-perfect in-distribution accuracy), this knowledge largely fails to transfer
to the image domain. This is expected, as text-only fine-tuning provides no gradient signal to up-
date the image tokenizer or its alignment with the language model. In many cases, especially for
the SpatialMap dataset, performance on the VQA task degrades significantly from the stage-2 train-
ing baseline, indicating that adapting the LLM to a new text distribution can disrupt its previously
learned alignment with the frozen vision components.
Takeaway 7. Text-to-image transfer is harder than image-to-text transfer due to the fact that the

image tokenizer and fusion architecture do not have chance to align with each other while being
trained on the text-only version of the datasets.

Dataset Architecture Text-only/test Text-only/test-ood VQA/test VQA/test-ood

SpatialMap
Joint-Decoder 76.2 (+43.8) 76.6 (+44.2) 15.6 (-9.0) 18.3 (-6.8)
Cross Attention 65.4 (+56.5) 66.4 (+58.0) 0.0 (-10.2) 0.0 (-11.6)
MoT 72.5 (+46.8) 69.8 (+45.1) 26.6 (+3.3) 26.6 (+3.6)

Grid
Joint-Decoder 99.8 (+95.0) 58.2 (+56.3) 11.9 (+6.9) 5.8 (+3.4)
Cross Attention 99.3 (+98.9) 42.8 (+42.4) 10.5 (+10.1) 5.5 (+5.5)
MoT 100.0 (+93.5) 43.0 (+40.8) 13.1 (+12.3) 6.6 (+6.5)

Ring
Joint-Decoder 100.0 (+95.2) 15.1 (+11.3) 12.4 (+10.2) 6.4 (+5.3)
Cross Attention 100.0 (+100.0) 12.0 (+12.0) 8.2 (+8.2) 3.9 (+3.9)
MoT 100.0 (+95.3) 14.0 (+9.8) 8.4 (+7.5) 4.8 (+4.7)

Table 6: Text-to-image transfer performance (accuracy, %) by fusion architecture. Scores are averaged
over text-supervised image tokenizers (CLIP, AIMv2, SigLIP 2) after models were fine-tuned on the text-only
(QA) versions of the synthetic datasets. Each score is presented alongside the change in performance due to
the additional training.

When analyzing the results by fusion architecture (Table 6), we see that the representational align-
ment between modalities remains a key factor. Transfer is marginally better for the Grid and Ring
datasets, where the text is a structured serialization of the image, but remains very poor for Spa-
tialMap. Notably, the Cross-Attention architecture appears most vulnerable to this transfer failure,
with its performance often collapsing to near-zero on SpatialMap. This suggests its fusion mecha-
nism is less robust to text-only training compared to the Joint-Decoder and MoT architectures.
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Takeaway 8. The Cross-Attention architecture is particularly brittle in the text-to-image transfer
setting, with its performance sometimes collapsing entirely. This suggests its fusion mechanism
may be less robust to text-only fine-tuning compared to Joint-Decoder or MoT, ruining its VQA
capability.

5 RELATED WORK

Our work builds on three key areas of VLM research: the design of image tokenizers, the diversity
of training recipes, and direct architectural comparisons.

The Importance of the Image Tokenizer. The choice of image tokenizer is a critical factor in VLM
performance. Prior work has explored this from several angles. For instance, PaLI (Chen et al.,
2023) demonstrated the benefits of scaling up the vision encoder, while Eagle (Shi et al., 2025a)
improved performance by combining multiple task-specific image tokenizers. More recent studies,
such as Cambrian-1 (Tong et al., 2024), have focused on comparing different language-supervised
tokenizers. While these works establish the tokenizer’s importance, a systematic comparison of
tokenizers trained with different objectives (e.g., contrastive vs. reconstructive) across varied archi-
tectural and training setups remains an open area. Our work addresses this by evaluating five distinct
tokenizers across three fusion architectures.

Diversity in Training Recipes. Training recipes for VLMs are highly varied, typically involv-
ing multi-stage protocols with different layer-freezing strategies. A common approach, seen in
the LLaVA family (Liu et al., 2023; 2024; Li et al., 2025), InternVL 2.5 (Chen et al., 2024), and
DeepSeek-VL (Lu et al., 2024a), involves freezing both the image tokenizer and LLM during an
initial alignment stage where only a small adapter is trained. In contrast, models like Qwen 2.5
VL (Bai et al., 2025) and DeepSeek-VL2 (Wu et al., 2024) unfreeze the image tokenizer from the
start to foster better alignment, while keeping the LLM frozen. A less common end-to-end ap-
proach, adopted by Molmo (Deitke et al., 2024), trains all parameters simultaneously but requires
high-quality data and carefully tuned learning rates. The choices become even more complex in
later fine-tuning stages, as shown by Cambrian-1, which ablates freezing the image encoder during
its second training phase and finds it can be beneficial. This diversity makes it difficult to attribute
performance gains to specific training choices versus other confounding factors. Our work addresses
this by systematically ablating freezing strategies across fixed architectures.

Architectural Comparisons. Direct architectural comparisons for VLMs have been conducted, but
often with limited scope. For example, NVLM (Dai et al., 2024) provided an early comparison
between the Joint-Decoder and Cross-Attention architectures, along with ablations on using special
tokens for visual knowledge transfer. More recently, LMFusion (Shi et al., 2025b) compared the
Joint-Decoder against using modality-specific MLPs or an MoT architecture, but their study was
confined to a setting where the language backbone remained frozen. Our work expands on these
studies by providing a unified comparison of all three major architectures (Joint-Decoder, Cross-
Attention, and MoT) while also varying layer-freezing strategies for both the vision and language
components, thereby offering a more comprehensive understanding of architectural trade-offs.

6 CONCLUDING REMARKS

In this work, we systematically studied how the choice of image tokenizer, fusion architecture, and
layer freezing strategies influence the downstream performance of vision-language models. Our
results highlight the critical impact of the image tokenizer choice, reveal distinct in-domain and
out-of-domain trade-offs associated with layer freezing, quantify the robustness of different fusion
architectures to various freezing strategies, and demonstrate the varying degrees of cross-domain
transfer enabled by these design choices.

Several open questions arise from our findings. Our experiments were conducted with models in
the 1–1.5B parameter range, and it is important to explore how these results scale to larger models.
Future work could also extend the comparison to other modalities, such as speech, to investigate
whether transfer occurs more readily between specific modality pairs or domains (e.g., speech and
poetry vs. vision and physical reasoning). Additionally, our models are text-only generators. Further
research is needed to assess the trade-offs of different architectures and training recipes for other
generative tasks.
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Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol (eds.), Computer
Vision – ECCV 2024, pp. 38–55, Cham, 2025. Springer Nature Switzerland. ISBN 978-3-031-
72664-4. 3
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A FULL EVALUATIONS

We include in this appendix the full list of evaluations for all of the models that we trained for stage
2 and stage 3.

A.1 STAGE 2 EVALUATION RESULTS
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S1 S2

Tokenizer Im Im La

CLIP

F F F 49.8 22.1 12.2 20.1 12.1 23.2 25.0 37.4 29.0 30.5 25.9
F F U 66.7 41.6 20.8 31.9 20.7 36.3 27.3 34.3 37.0 32.9 35.0
F U F 61.8 31.4 20.4 27.9 16.5 31.6 26.7 34.7 34.5 32.0 31.7
F U U 72.1 45.4 29.2 35.9 24.8 41.5 27.7 35.0 35.9 32.9 38.3
U U F 66.0 35.7 23.0 34.1 20.4 35.8 22.8 38.5 31.4 30.9 34.0
U U U 74.1 47.2 30.6 40.1 25.2 43.4 28.4 35.4 36.9 33.6 39.7

AIMv2

F F F 62.5 30.3 19.5 33.6 17.9 32.8 26.5 43.7 26.9 32.4 32.6
F F U 75.3 49.5 30.6 43.2 25.2 44.7 28.2 37.0 38.3 34.5 40.9
F U F 68.0 35.5 28.1 37.1 21.8 38.1 26.9 41.9 37.1 35.3 37.1
F U U 77.0 50.0 36.3 43.9 27.4 46.9 26.2 36.1 41.0 34.4 42.2
U U F 69.1 38.1 29.6 38.8 22.6 39.6 26.4 43.5 42.7 37.6 38.9
U U U 77.0 50.4 37.2 45.5 28.4 47.7 29.2 36.7 37.4 34.4 42.7

SigLIP 2

F F F 55.9 24.0 15.7 30.0 17.0 28.5 25.5 38.1 31.4 31.7 29.7
F F U 74.8 47.2 28.8 43.6 26.6 44.2 28.0 38.1 32.4 32.8 39.9
F U F 65.4 31.4 29.3 35.5 22.2 36.8 24.1 37.7 32.7 31.5 34.8
F U U 77.8 50.2 43.2 44.7 29.6 49.1 25.1 35.7 33.2 31.3 42.4
U U F 71.1 40.9 36.5 45.1 28.1 44.3 27.4 42.1 34.1 34.5 40.7
U U U 78.4 52.3 46.8 50.0 32.7 52.0 28.6 35.6 29.5 31.3 44.2

TiTok F F F 3.2 0.2 5.1 1.0 3.0 2.5 23.8 27.7 28.6 26.7 11.6
F F U 43.1 26.0 13.9 11.8 11.8 21.3 26.0 22.8 32.5 27.1 23.5

VAR F F F 30.3 2.0 9.2 4.9 6.0 10.5 24.4 27.5 32.3 28.1 17.1
F F U 46.5 27.7 13.7 11.9 11.9 22.3 26.9 19.3 21.0 22.4 22.4

Table 7: Detailed evaluation results (accuracy, %) for the Joint-Decoder models. The table presents scores
on individual benchmarks alongside in-domain, out-of-domain, and overall averages. We ablate the choice of
image tokenizer and whether the image tokenizer (Im) or language layers (La) are frozen (F) or unfrozen (U)
over the two stages (S1 and S2).
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S1 S2

Tokenizer Im Im La

CLIP

F F F 64.4 34.5 19.7 33.6 19.7 34.4 24.7 28.4 36.6 29.9 32.7
F F U 72.5 46.0 24.0 37.1 23.0 40.5 24.7 19.3 30.3 24.8 34.6
F U F 67.3 37.2 27.4 33.9 22.0 37.6 25.0 31.1 32.9 29.7 34.6
F U U 74.8 45.8 33.4 39.7 25.9 43.9 25.8 23.4 37.3 28.8 38.3
U U F 69.7 40.4 30.6 39.5 24.2 40.9 26.5 28.1 33.7 29.5 36.6
U U U 74.5 47.5 33.4 42.7 26.9 45.0 27.5 20.6 30.7 26.3 38.0

AIMv2

F F F 69.4 36.7 24.8 40.1 21.1 38.4 24.0 26.9 28.9 26.6 34.0
F F U 75.4 47.0 30.7 43.6 25.3 44.4 26.9 29.7 25.0 27.2 37.9
F U F 71.1 40.6 30.6 40.0 22.2 40.9 24.4 26.7 34.4 28.5 36.3
F U U 76.7 49.8 35.9 43.5 25.8 46.4 27.2 28.9 28.1 28.1 39.5
U U F 72.0 40.5 30.8 41.8 23.6 41.7 25.0 32.5 34.8 30.7 37.6
U U U 76.5 49.8 36.1 45.3 26.9 46.9 26.1 20.4 25.0 23.8 38.3

SigLIP 2

F F F 70.4 37.8 23.3 44.8 25.2 40.3 24.5 33.0 30.6 29.4 36.2
F F U 76.5 49.1 27.2 47.4 27.7 45.6 26.2 20.8 27.3 24.8 37.8
F U F 72.8 42.9 38.8 45.0 28.7 45.7 26.1 24.9 22.6 24.6 37.7
F U U 78.1 50.6 43.0 48.1 30.7 50.1 25.3 17.2 19.6 20.7 39.1
U U F 73.5 43.2 39.2 47.4 29.4 46.5 25.9 36.1 39.1 33.7 41.7
U U U 78.2 49.8 44.2 50.7 32.6 51.1 29.2 30.3 33.5 31.0 43.6

TiTok F F F 40.0 13.9 10.6 7.7 8.2 16.1 24.7 25.0 37.5 29.1 20.9
F F U 42.5 24.6 13.6 11.1 11.8 20.7 23.8 21.3 25.8 23.6 21.8

VAR F F F 42.4 16.3 10.6 8.5 9.1 17.4 23.7 24.4 36.9 28.3 21.5
F F U 46.6 24.6 13.2 11.6 11.9 21.6 26.3 22.5 24.8 24.6 22.7

Table 8: Detailed evaluation results (accuracy, %) for the Cross-Attention models. The table presents
scores on individual benchmarks alongside in-domain, out-of-domain, and overall averages. We ablate the
choice of image tokenizer and whether the image tokenizer (Im) or language layers (La) are frozen (F) or
unfrozen (U) over the two stages (S1 and S2).
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S1 S2

Tokenizer Im Im La

CLIP

F F F 63.1 35.7 20.3 30.5 18.9 33.7 27.2 38.2 33.6 33.0 33.4
F F U 67.0 42.8 22.3 33.9 21.5 37.5 28.4 31.0 22.1 27.1 33.6
F U F 69.5 40.1 26.6 34.0 23.5 38.7 27.5 40.6 40.8 36.3 37.8
F U U 72.6 46.7 29.8 36.7 24.3 42.0 27.0 31.4 29.0 29.1 37.2
U U F 72.1 46.4 29.1 37.1 25.1 42.0 26.1 41.0 43.4 36.8 40.0
U U U 74.2 47.4 30.4 39.5 25.7 43.4 28.2 34.6 33.9 32.2 39.2

AIMv2

F F F 72.8 42.5 28.5 40.4 23.8 41.6 27.8 40.4 36.9 35.0 39.1
F F U 75.4 48.0 30.7 43.4 26.4 44.8 27.3 40.8 42.2 36.8 41.8
F U F 74.7 44.9 35.2 41.4 26.8 44.6 29.0 41.9 42.4 37.8 42.0
F U U 77.3 50.3 37.0 44.1 28.0 47.3 27.1 31.0 28.0 28.7 40.3
U U F 74.8 46.6 35.1 42.5 27.6 45.3 26.4 39.0 39.0 34.8 41.4
U U U 77.1 51.1 36.9 44.3 28.2 47.5 26.4 32.2 32.9 30.5 41.2

SigLIP 2

F F F 71.3 42.9 26.6 41.2 23.9 41.2 25.8 38.6 37.3 33.9 38.4
F F U 75.0 48.1 28.8 43.7 27.4 44.6 27.5 34.3 29.5 30.4 39.3
F U F 74.7 43.9 40.6 43.0 28.8 46.2 26.7 39.3 31.9 32.6 41.1
F U U 78.0 49.6 43.6 45.4 30.4 49.4 28.2 34.6 32.0 31.6 42.7
U U F 76.4 47.9 43.9 49.1 33.7 50.2 28.4 41.6 42.0 37.3 45.4
U U U 79.0 52.7 46.6 50.7 33.1 52.4 29.4 36.2 30.7 32.1 44.8

TiTok F F F 39.7 21.0 10.5 7.7 7.9 17.4 23.6 27.8 30.3 27.2 21.1
F F U 42.3 26.9 12.9 10.5 11.2 20.8 24.9 20.4 19.3 21.5 21.1

VAR F F F 41.9 23.8 10.8 8.7 9.6 19.0 25.2 27.1 32.0 28.1 22.4
F F U 46.9 29.0 13.4 11.7 12.4 22.7 25.0 22.4 24.7 24.0 23.2

Table 9: Detailed evaluation results (accuracy, %) for the Mixture-of-Transformers models. The table
presents scores on individual benchmarks alongside in-domain, out-of-domain, and overall averages. We ablate
the choice of image tokenizer and whether the image tokenizer (Im) or language layers (La) are frozen (F) or
unfrozen (U) over the two stages (S1 and S2).
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A.2 CROSS-MODALITY TRANSFER LEARNING

VQA/InD VQA/OOD Text-only/InD Text-only/OOD

Dataset Architecture Tokenizers Base SFT Base SFT Base SFT Base SFT

SpatialMap

Joint-Decoder

CLIP 24.4 52.0 24.0 47.8 22.4 28.2 22.2 30.6
AIMv2 24.8 88.4 25.6 85.6 36.4 37.2 35.0 37.0
SigLIP 2 24.8 97.8 25.8 93.2 38.4 39.2 40.0 36.2
TiTok 1.4 24.6 1.4 26.6 13.0 8.4 13.0 7.8
VAR 0.0 25.8 0.2 26.4 29.8 26.0 25.4 25.2

Cross Attention

CLIP 2.6 88.6 3.0 83.4 0.2 30.8 0.0 25.6
AIMv2 21.2 88.8 23.0 84.8 6.0 29.6 4.2 28.6
SigLIP 2 6.8 88.0 9.0 83.4 20.6 37.8 21.2 36.4
TiTok 25.2 28.6 25.8 24.4 26.8 35.0 27.8 39.2
VAR 16.8 22.2 17.2 28.0 31.6 28.0 27.8 28.2

MoT

CLIP 22.0 32.2 22.2 33.2 28.8 33.2 29.0 29.4
AIMv2 22.4 91.6 21.4 87.8 19.4 32.6 13.8 34.2
SigLIP 2 25.6 97.2 25.6 93.8 29.0 32.6 31.4 32.2
TiTok 6.6 23.6 5.2 24.6 29.2 26.4 28.0 24.0
VAR 5.2 24.6 9.2 25.8 26.2 24.8 28.4 26.4

Ring

Joint-Decoder

CLIP 5.0 96.8 3.0 9.0 0.4 100.0 3.4 14.6
AIMv2 0.8 99.8 0.0 7.4 5.6 99.8 3.4 14.8
SigLIP 2 0.8 99.8 0.4 6.4 8.6 97.8 4.8 9.0
TiTok 0.6 20.2 0.0 8.6 9.0 13.6 0.0 7.2
VAR 0.0 24.2 0.0 8.4 3.0 44.0 3.8 11.4

Cross Attention

CLIP 0.0 99.4 0.0 10.4 0.0 99.4 0.0 12.6
AIMv2 0.0 99.0 0.0 8.4 0.0 98.4 0.0 13.4
SigLIP 2 0.0 99.2 0.0 10.0 0.0 68.6 0.2 13.2
TiTok 0.0 24.4 0.0 10.0 0.2 14.6 0.0 9.8
VAR 0.0 24.4 0.0 10.0 0.8 14.2 0.0 8.2

MoT

CLIP 0.2 94.8 0.0 11.2 7.4 99.6 5.2 18.4
AIMv2 2.6 99.6 0.4 10.2 6.6 95.6 7.4 12.4
SigLIP 2 0.0 99.4 0.0 10.4 0.2 80.4 0.0 8.6
TiTok 0.8 23.2 0.0 9.4 0.6 87.4 1.0 10.4
VAR 0.0 26.8 0.0 8.0 0.0 54.0 0.0 11.2

Grid

Joint-Decoder

CLIP 4.0 87.8 1.2 18.0 0.0 58.0 0.0 21.6
AIMv2 9.6 99.2 4.2 13.8 8.0 70.8 2.4 27.4
SigLIP 2 1.6 99.2 1.8 18.6 6.4 73.2 3.4 17.4
TiTok 0.4 30.6 1.0 13.8 1.4 5.0 1.0 2.8
VAR 0.4 33.2 0.0 8.0 1.2 37.0 1.2 10.0

Cross Attention

CLIP 1.4 93.8 0.0 18.4 0.0 65.6 0.0 19.2
AIMv2 0.0 91.6 0.0 13.8 0.0 15.2 0.0 8.2
SigLIP 2 0.0 98.6 0.0 13.2 1.2 22.4 1.4 15.0
TiTok 0.0 30.0 0.0 11.4 4.0 16.0 1.4 8.8
VAR 0.0 32.2 0.0 7.8 0.0 17.2 0.0 8.2

MoT

CLIP 0.6 94.6 0.0 15.4 10.0 69.4 2.4 17.6
AIMv2 2.0 95.4 0.2 19.0 9.6 59.2 4.2 20.8
SigLIP 2 0.0 98.2 0.2 20.4 0.0 72.2 0.2 17.0
TiTok 0.2 30.8 0.2 11.4 0.0 48.4 0.0 12.4
VAR 0.0 30.8 0.0 10.2 0.0 40.0 0.4 10.8

Table 10: Image-to-text transfer performance (accuracy, %) by different combination of fusion archi-
tecture and image tokenizers. Scores are evaluated after models were fine-tuned on the VQA versions of the
synthetic datasets. Each score is presented alongside the original score before the additional training.
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Text-only/InD Text-only/OOD VQA/InD VQA/OOD

Dataset Architecture Tokenizers Base SFT Base SFT Base SFT Base SFT

SpatialMap

Joint-Decoder

CLIP 22.4 74.8 22.2 74.4 24.4 25.4 24.0 27.8
AIMv2 36.4 78.8 35.0 78.0 24.8 21.0 25.6 26.6
SigLIP 2 38.4 75.2 40.0 77.4 24.8 0.4 25.8 0.6
TiTok 13.0 56.8 13.0 61.0 1.4 0.0 1.4 0.0
VAR 29.8 71.6 25.4 77.6 0.0 25.4 0.2 22.8

Cross Attention

CLIP 0.2 76.6 0.0 72.8 2.6 0.0 3.0 0.0
AIMv2 6.0 62.6 4.2 65.8 21.2 0.0 23.0 0.0
SigLIP 2 20.6 57.2 21.2 60.8 6.8 0.0 9.0 0.0
TiTok 26.8 64.8 27.8 64.6 25.2 0.0 25.8 0.4
VAR 31.6 71.8 27.8 75.0 16.8 2.6 17.2 3.6

MoT

CLIP 28.8 78.2 29.0 77.6 22.0 26.8 22.2 25.6
AIMv2 19.4 69.4 13.8 62.6 22.4 29.0 21.4 25.2
SigLIP 2 29.0 70.0 31.4 69.2 25.6 24.2 25.6 29.2
TiTok 29.2 62.2 28.0 59.8 6.6 27.2 5.2 27.0
VAR 26.2 70.4 28.4 72.0 5.2 24.4 9.2 22.8

Ring

Joint-Decoder

CLIP 0.4 100.0 3.4 15.2 5.0 15.4 3.0 5.8
AIMv2 5.6 100.0 3.4 17.2 0.8 10.8 0.0 5.6
SigLIP 2 8.6 100.0 4.8 13.0 0.8 11.0 0.4 8.0
TiTok 9.0 100.0 0.0 14.8 0.6 11.2 0.0 10.4
VAR 3.0 100.0 3.8 17.2 0.0 9.6 0.0 6.8

Cross Attention

CLIP 0.0 100.0 0.0 9.4 0.0 10.8 0.0 5.2
AIMv2 0.0 100.0 0.0 12.2 0.0 12.0 0.0 6.4
SigLIP 2 0.0 100.0 0.2 14.4 0.0 1.8 0.0 0.2
TiTok 0.2 100.0 0.0 13.6 0.0 5.8 0.0 3.6
VAR 0.8 100.0 0.0 13.6 0.0 6.6 0.0 3.6

MoT

CLIP 7.4 100.0 5.2 15.6 0.2 11.2 0.0 4.8
AIMv2 6.6 100.0 7.4 11.6 2.6 6.6 0.4 4.0
SigLIP 2 0.2 100.0 0.0 15.0 0.0 7.6 0.0 5.8
TiTok 0.6 100.0 1.0 14.6 0.8 7.0 0.0 3.0
VAR 0.0 100.0 0.0 11.0 0.0 11.0 0.0 8.2

Grid

Joint-Decoder

CLIP 0.0 99.8 0.0 70.6 4.0 11.6 1.2 4.0
AIMv2 8.0 99.8 2.4 29.4 9.6 11.2 4.2 7.6
SigLIP 2 6.4 99.8 3.4 74.8 1.6 13.0 1.8 6.0
TiTok 1.4 100.0 1.0 36.2 0.4 14.0 1.0 8.8
VAR 1.2 97.8 1.2 39.6 0.4 11.8 0.0 4.6

Cross Attention

CLIP 0.0 99.8 0.0 43.0 1.4 10.2 0.0 6.4
AIMv2 0.0 98.2 0.0 31.6 0.0 9.6 0.0 3.8
SigLIP 2 1.2 100.0 1.4 54.0 0.0 11.8 0.0 6.4
TiTok 4.0 100.0 1.4 45.4 0.0 8.6 0.0 7.2
VAR 0.0 99.8 0.0 25.2 0.0 8.0 0.0 3.6

MoT

CLIP 10.0 100.0 2.4 55.6 0.6 9.0 0.0 5.0
AIMv2 9.6 100.0 4.2 26.4 2.0 18.6 0.2 10.0
SigLIP 2 0.0 100.0 0.2 47.2 0.0 11.8 0.2 5.0
TiTok 0.0 99.8 0.0 25.4 0.2 12.0 0.2 6.0
VAR 0.0 99.8 0.4 35.2 0.0 15.2 0.0 6.2

Table 11: Text-to-image transfer performance (accuracy, %) by different combination of fusion architec-
ture and image tokenizers. Scores are evaluated after models were fine-tuned on the text-only (QA) version
of the synthetic datasets. Each score is presented alongside the original score before the additional training.

B ADDITIONAL RESULTS: CROSS-MODALITY TRANSFER FOR
OPEN-WEIGHT VLMS

To supplement our analysis on cross-modality and out-of-distribution transfer on our trained vision-
language models, in this section we evaluate a suite of open-source vision–language models span-
ning different architectures and scales, including Qwen2.5-VL (3B- and 7B-Instruct), Gemma, In-
ternVL3, and Kimi-VL. Each model is fine-tuned on our synthetic datasets using supervised fine-
tuning (SFT) for direct comparison across modalities. For Qwen2.5-VL, we additionally explore
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reinforcement learning (RL)-based finetuning, reported in Section B.2, to assess whether optimiza-
tion beyond standard SFT can further enhance cross-modality transfer. Hyperparameters and other
details about training setup are provided in Appendix D.

B.1 SUPERVISED FINE-TUNING TRANSFER RESULTS

Similar to Section 4.1 and Section 4.2, we perform a single-epoch supervised fine-tuning (SFT) on
either the image-based VQA task or the equivalent text-only task across our three synthetic datasets
to evaluate cross-modality transfer in open-weight vision–language models. Training is conducted
on the respective train split, and models are evaluated on four held-out settings: (i) test split in the
same modality, (ii) test split in the opposite modality, (iii) out-of-distribution (OOD) test split in the
same modality, and (iv) OOD test split in the opposite modality. This setup parallels the fine-tuning
procedure used for our in-house multimodal models, enabling direct comparison of how open-source
architectures generalize across modalities and dataset variants.

We present evaluation accuracy after fine-tuning on the image version of the datasets in Table 12,
We observe consistent image-to-text transfer when models are fine-tuned on the image version of the
datasets. Qwen2.5-VL-7B achieves the strongest overall performance, with InternVL3 also showing
competitive transfer, particularly on Grid. As in our earlier experiments, SpatialMap remains the
most challenging for cross-modal transfer: several models exhibit drops in text-only accuracy after
SFT on the image task, underscoring the modality mismatch in how the task is represented.

Conversely, in the text-to-image transfer setting, results are more mixed in Table 13. Qwen2.5-VL-
7B shows strong transfer on SpatialMap but weaker performance on Grid and Ring. InternVL3
demonstrates more balanced transfer across datasets, suggesting that pretraining with substantial
text-only data may aid robustness when moving from textual to visual reasoning. Overall, these
results reinforce the asymmetric nature of cross-modality transfer and highlight model-specific dif-
ferences in how supervision in one modality propagates to another.

Dataset Model VQA/InD VQA/OOD Text-only/InD Text-only/OOD

SpatialMap

Qwen2.5-VL-7B 98.6 ( +18.4) 98.2 ( +18.0) 63.0 ( +0.8) 57.6 ( -5.8)
Qwen2.5-VL-3B 84.4 ( +38.8) 81.0 ( +38.6) 42.2 ( -1.4) 43.0 ( -1.0)
InternVL3-8B 97.2 ( +19.4) 95.2 ( +19.4) 62.0 ( -6.2) 59.2 ( -9.4)
Gemma-3-4B 94.0 ( +53.4) 91.4 ( +50.0) 52.8 ( -1.6) 53.8 ( +1.8)
Kimi-VL-A3B 28.8 ( +4.0) 24.8 ( -3.6) 34.2 ( -24.2) 28.6 ( -33.8)

Grid

Qwen2.5-VL-7B 99.4 ( +83.2) 84.8 ( +77.0) 99.4 ( +47.0) 95.6 ( +68.2)
Qwen2.5-VL-3B 91.0 ( +79.0) 34.4 ( +28.6) 94.4 ( +82.0) 60.0 ( +53.2)
InternVL3-8B 99.4 ( +80.2) 68.4 ( +53.6) 97.8 ( +11.6) 87.4 ( +18.4)
Gemma-3-4B 99.0 ( +83.6) 59.8 ( +56.0) 98.2 ( +66.2) 84.4 ( +71.6)
Kimi-VL-A3B 7.0 ( -4.4) 2.6 ( -4.8) 60.6 ( -2.4) 44.8 ( -5.6)

Ring

Qwen2.5-VL-7B 99.4 ( +83.8) 15.0 ( +4.6) 99.6 ( +69.4) 15.8 ( -4.0)
Qwen2.5-VL-3B 85.0 ( +74.4) 13.8 ( +5.4) 82.0 ( +69.8) 18.2 ( +10.8)
InternVL3-8B 99.4 ( +84.4) 17.8 ( +9.4) 95.4 ( +41.2) 28.8 ( -40.6)
Gemma-3-4B 99.8 ( +89.6) 15.2 ( +12.8) 99.4 ( +34.6) 15.2 ( -15.8)
Kimi-VL-A3B 7.0 ( -3.0) 3.0 ( -6.6) 63.4 ( +33.0) 34.0 ( -0.4)

Table 12: Image-to-text transfer performance (accuracy, %) by base model. Models were fine-tuned on
the VQA version of the synthetic datasets. Each score is presented alongside its performance delta from the
base model’s performance.

B.2 COMPARISON TO REINFORCEMENT LEARNING FINE-TUNING

We compare supervised fine-tuning (SFT) and reinforcement learning (RL) fine-tuning for Qwen-
2.5-VL models at two scales (3B and 7B parameters). In both cases, we train exclusively on the
image version of each synthetic dataset (SpatialMap, Ring, Grid), using a binary reward signal
of 1 for producing the correct final answer and 0 otherwise. We then evaluate on both the in-
distribution test and OOD test splits, across both image and text modalities. This setup probes not
only in-distribution performance, but also cross-modality transfer (image → text) and robustness
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Dataset Model Text-only/InD Text-only/OOD VQA/InD VQA/OOD

SpatialMap

Qwen2.5-VL-7B 86.2 ( +24.0) 90.0 ( +26.6) 89.0 ( +8.8) 86.2 ( +6.0)
Qwen2.5-VL-3B 61.4 ( +17.8) 55.0 ( +11.0) 27.0 ( -18.6) 27.2 ( -15.2)
InternVL3-8B 91.4 ( +23.2) 93.6 ( +25.0) 78.6 ( +0.8) 79.2 ( +3.4)
Gemma-3-4B 90.2 ( +35.8) 90.4 ( +88.2) 52.6 ( +12.0) 48.6 ( +7.2)
Kimi-VL-A3B 70.2 ( +11.8) 73.2 ( +10.8) 22.8 ( -2.0) 25.4 ( -3.0)

Grid

Qwen2.5-VL-7B 99.8 ( +47.4) 95.4 ( +68.0) 19.2 ( +3.0) 8.2 ( +0.4)
Qwen2.5-VL-3B 100.0 ( +87.6) 49.2 ( +42.4) 16.8 ( +4.8) 9.8 ( +4.0)
InternVL3-8B 100.0 ( +13.8) 98.4 ( +29.4) 16.0 ( -3.2) 4.8 ( -10.0)
Gemma-3-4B 99.8 ( +67.8) 54.4 ( +41.6) 16.4 ( +1.0) 11.2 ( +7.4)
Kimi-VL-A3B 90.8 ( +27.8) 41.4 ( -9.0) 60.6 ( +49.2) 4.0 ( -3.4)

Ring

Qwen2.5-VL-7B 100.0 ( +69.8) 16.4 ( -3.4) 18.6 ( +3.0) 7.0 ( -3.4)
Qwen2.5-VL-3B 93.2 ( +81.0) 23.0 ( +15.6) 21.4 ( +10.8) 8.0 ( -0.4)
InternVL3-8B 99.8 ( +45.6) 23.6 ( -45.8) 19.8 ( +4.8) 9.8 ( +1.4)
Gemma-3-4B 99.2 ( +34.4) 16.2 ( -14.8) 14.6 ( +4.4) 9.2 ( +6.8)
Kimi-VL-A3B 94.0 ( +63.6) 41.8 ( +7.4) 10.4 ( +0.4) 9.0 ( -0.6)

Table 13: Text-to-image transfer performance (accuracy, %) by base model. Models were fine-tuned on
the text-only (QA) version of the synthetic datasets. Each score is presented alongside its performance delta
from the base model’s performance.

to distribution shift. We report results at base, after SFT, and at the best RL checkpoint for each
configuration.

At the larger 7B scale (see Table 14), RL generally provides stronger generalization than SFT, align-
ing with similar sentiments from prior work (Chu et al., 2025; Liu et al., 2025; Setlur et al., 2025).
For example, RL improves cross-modality transfer on SpatialMap, where SFT hurts image to text
performance, and yields large gains on OOD splits for Ring (0.87–0.88 vs 0.14–0.20 for SFT).
RL also preserves or slightly enhances in-distribution accuracy, often reaching near-perfect perfor-
mance. Although there were instances where SFT frequently saturates or even degrades transfer, it
is more sample-efficient; we see for certain tasks (eg. Grid), the gains from RL are more modest
particularly with respect to cross-modality transfer. However, we observed RL training continued to
yield steady improvements for the entire duration of training (15 epochs)— in contrast, SFT offers
better sample efficiency.

For the smaller 3B scale (see Table 15), transfer patterns are more varied. RL improves cross-
modality and OOD transfer on SpatialMap, but offers less consistent gains on Grid, where SFT
remains competitive—likely reflecting that the Grid and Ring tasks have more closely aligned im-
age and text representations. A notable pitfall emerges in Ring: the 3B RL model fails to improve
much beyond random chance, collapsing into short outputs with only the final answer token. This
illustrates the importance of controlling model output distribution during RL, and the inherent limi-
tations of RLVR to the support of the base model Wu et al. (2025). As mentioned above, when such
collapse does not occur, we observed RL training yields steady improvements over epochs, whereas
SFT tends to plateau earlier.

Overall, these results indicate that RL at larger scale consistently enhances generalization across
modality and distribution shift, while at smaller scale it can either unlock improved transfer (Spa-
tialMap) or suffer from instability (Ring). SFT remains a useful baseline for more aligned tasks but
appears less reliable for tasks requiring substantial abstraction across modalities.
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SpatialMap Grid Ring
Base SFT RL Base SFT RL Base SFT RL

VQA/InD 80.2 99.6 (+19.4) 99.8 (+19.6) 16.2 99.8 (+83.6) 98.6 (+82.4) 15.6 100.0 (+84.4) 99.8 (+84.2)
VQA/OOD 80.2 99.6 (+19.4) 99.8 (+19.6) 7.8 89.0 (+81.2) 59.6 (+51.8) 10.4 15.0 (+4.6) 86.6 (+76.2)
Text-only/InD 62.2 65.2 (+3.0) 70.8 (+8.6) 52.4 99.8 (+47.4) 61.8 (+9.4) 30.2 100.0 (+69.8) 98.6 (+68.4)
Text-only/OOD 63.4 63.8 (+0.4) 71.6 (+8.2) 27.4 97.4 (+70.0) 30.4 (+3.0) 19.8 19.8 (+0.0) 87.8 (+68.0)

Table 14: Transfer performance (accuracy, %) for Qwen-2.5-VL-7B-Instruct. Synthetic SpatialMap, Grid,
and Ring results at base, after SFT, and best RL checkpoint for Qwen-2.5-VL-7B-Instruct when training with
the image version of the respective task.

SpatialMap Grid Ring
Base SFT RL Base SFT RL Base SFT RL

VQA/InD 45.6 99.2 (+53.6) 100.0 (+54.4) 12.0 99.2 (+87.2) 89.6 (+77.6) 10.6 100.0 (+89.4) 13.2 (+2.6)
VQA/OOD 42.4 99.4 (+57.0) 99.4 (+57.0) 5.8 45.4 (+39.6) 44.8 (+39.0) 8.4 17.4 (+9.0) 12.4 (+4.0)
Text-only/InD 43.6 46.4 (+2.8) 64.4 (+20.8) 12.4 99.2 (+86.8) 42.0 (+29.6) 12.2 99.6 (+87.4) 12.8 (+0.6)
Text-only/OOD 44.0 44.8 (+0.8) 66.0 (+22.0) 6.8 60.0 (+53.2) 20.4 (+13.6) 7.4 21.4 (+14.0) 9.6 (+2.2)

Table 15: Transfer performance (accuracy, %) for Qwen-2.5-VL-3B-Instruct. Synthetic SpatialMap, Grid,
and Ring results at base, after SFT, and best RL checkpoint for Qwen-2.5-VL-3B-Instruct when training with
the image version of the respective task.

C SYNTHETIC DATASET DETAILS

Below we provide details regarding the three synthetic datasets.

SpatialMap: The Synthetic SpatialMap dataset tests models on spatial reasoning over symbolic
objects. Each sample consists of a set of n colored shapes placed randomly on a blank canvas.
Questions probe pairwise spatial relations, for example: “Where is the blue circle relative to the
red star? Possible options: Northeast, Northwest, Southeast, Southwest.” The dataset follows the
structure of the spatial mapping tasks in prior work (Wang et al., 2024), with object names replaced
by colored geometric shapes for greater visual simplicity and compositional control. We provide
two parallel modalities: an image version, where the model must infer relations directly from the
visual configuration, and a text version, which encodes equivalent information as a series of binary
relation statements (e.g., “The purple pentagon is to the Northeast of the blue circle.”). The text
description is complete and sufficient to solve the task, but requires chaining relational statements.
The training split contains 4,500 procedurally generated examples with 7 objects per image, while
the OOD split introduces 8 objects per image, slightly increasing task complexity without changing
the basic query format.

Grid: The Synthetic Grid dataset evaluates navigation and reasoning in discrete two-dimensional
environments. We generate an n×n grid where each cell contains a distinct colored shape. Questions
specify a starting shape and a sequence of relative moves, such as “Begin at the yellow triangle and
go down one step, then right two steps. Which shape do you land on?” The image version provides
the grid visualization alongside the question, while the text version lists the grid contents in row-
major order, thereby encoding object positions without requiring visual perception. This dataset
is adapted from the “global grid” task of Yamada et al. (2024), though we substitute ImageNet
categories with geometric shapes to simplify object recognition and emphasize spatial reasoning.
The training set uses 3×3 grids with navigation sequences of length 8, while the OOD split increases
difficulty with 4 × 4 grids and up to 12-step sequences. Unlike the image version, the text version
bypasses object recognition, highlighting how modality differences impact reasoning difficulty.

Ring: The Synthetic Ring dataset parallels the grid task but in a circular layout, also present in its
text version in Yamada et al. (2024). Objects are evenly arranged around a ring, and queries specify
a starting shape and a number of clockwise or counterclockwise steps (e.g., “Starting from the red
square, move four steps clockwise. Which shape do you land on?”). The image version presents
the circle of shapes with the question, while the text version linearizes the ring into an ordered list
beginning from a designated reference point and continuing clockwise. The training split contains
rings of 8 objects with navigation sequences up to 8 steps, while the OOD split expands to 12 objects
and 12-step sequences.
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Dataset generation: We describe how we procedurally generate the three datasets below. We plan
on releasing the dataset generation code and example datasets.

• For each SpatialMap example, we sample a set of distinct color-shape pairs and randomly
assign them positions along two independent orderings (vertical and horizontal). These
orderings determine the relative row and column of each object, which are rendered on a
blank canvas. We then select an unambiguous query pair (q, r) whose vertical and hori-
zontal offsets uniquely determine a diagonal relation (Northeast, Northwest, Southeast, or
Southwest). The text modality question (question) begins with a full relational de-
scription of the scene expressed as binary statements (e.g., “The purple pentagon is to the
Northeast of the blue circle.”). The query is appended to this description, requiring the
model to chain multiple statements to answer correctly. The image modality question
(question direct) instead lists only the set of objects without relational information,
with the same query appended, such that solving requires interpreting the image directly.
Solutions are generated in parallel: the text solution (solution) provides a multi-step
chain-of-thought reasoning through vertical and horizontal relations, while the image solu-
tion (solution direct) gives a concise explanation phrased as direct visual inspection.
The final label (answer) is the correct diagonal relation.

• For each Grid example, we construct an n×n grid and assign a unique color-shape object
to each cell, rendering the grid with light boundaries. A navigation query is created by
sampling a start cell and a valid sequence of directional moves. The text modality question
(question) specifies the grid contents in row-major order, ensuring that the layout can
be reconstructed entirely from text, followed by the navigation program (e.g., “Start at
the yellow triangle, move down one step, then right two steps. Which object do you land
on?”). The image modality question (question direct) instead lists the objects in
random order without positional information, requiring the model to resolve the navigation
over the visual grid. The solutions mirror these formats: the text solution (solution)
details each step of the navigation trace, while the image solution (solution direct)
is identical, describing the sequence of moves until the final object is reached. The final
label (answer) is the object found at the destination cell.

• For each Ring example, we arrange a sampled set of unique color–shape objects evenly
around a circle in clockwise order, selecting a starting position and a sequence of clock-
wise or counterclockwise steps to form a navigation query. The text modality question
(question) lists the objects deterministically in clockwise order from a fixed reference
point, then provides the navigation program (e.g., “Starting from the red square, move
four steps clockwise. Which object do you land on?”). The image modality question
(question direct) instead lists the same objects in random order without positional
information, such that the model must rely on the ring image to resolve the query. Both the
text and image solutions (solution, solution direct) provide an explicit step-by-
step trace of the walk around the ring, concluding with the identified object. The final label
(answer) is the object at the destination position.
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D TRAINING DETAILS

D.1 STAGE 1 (PRETRAINING) HYPERPARAMETERS

For Stage 1 pretraining, models are trained on the COYO-700M dataset (Byeon et al., 2022) for
100,000 steps with a global batch size of 1536. Input text captions are truncated to a maximum
length of 256 tokens. During this stage, only the Joint-Decoder and Cross-Attention models are
trained directly. For stage 2, MoT checkpoints are initialized from the resulting Joint-Decoder
weights, as mentioned in Section 2.3.

We follow the learning rate strategy of Deitke et al. (2024). The adapter modules for the Joint-
Decoder and Cross-Attention models use a learning rate of 2 × 10−4. When the image tokenizer
is unfrozen, it is trained with a learning rate of 6 × 10−6. All models use a cosine-decay learning
rate schedule with a linear warmup, decaying to 10% of the maximum learning rate by the end of
training. A comprehensive list of all hyperparameters is provided in Table 16.

Joint-Decoder Cross-Attention

Adapter LR 2× 10−4 2× 10−4

Cross-Attention LR N/A 2× 10−4

Image Tokenizer LR 6× 10−6 6× 10−6

Optimizer AdamW AdamW
Betas (0.9, 0.999) (0.9, 0.999)

Weight decay 0.01 0.01
LR Schedule Cosine Decay Cosine Decay

Min LR 10% of Max 10% of Max
Linear Warmup 2000 steps 2000 steps

Global Batch size 1536 1536
Num Training Steps 100k steps 100k steps

Table 16: Hyperparameters for stage 1 training.

D.2 STAGE 2 (FINE-TUNING) HYPERPARAMETERS

For the Stage 2 fine-tuning, models are trained on a combined dataset comprising COCO-Captions,
VQAv2, ChartQA, TextVQA, and DocVQA. Following the second-stage setup of Deitke et al.
(2024), we set the learning rate to 1 × 10−5 for the image tokenizer (when unfrozen), the adapters
in the Joint-Decoder and MoT models, and the cross-attention layers. A higher learning rate of
5×10−5 is used for the LLM backbone (when unfrozen) and the image modality-transformer in the
MoT models. All models use a cosine-decay learning rate schedule with a linear warmup, decaying
to 10% of the maximum learning rate. A complete summary of these hyperparameters is available
in Table 17.

D.3 STAGE 3 (REASONING-TRANSFER) HYPERPARAMETERS

For the Stage 3 reasoning transfer experiments, models are fine-tuned on either the text-only (QA)
or image-based (VQA) training split of one of the three synthetic datasets. A uniform learning rate
is applied to all unfrozen layers. As in previous stages, discrete image tokenizers remain frozen to
avoid the need for a straight-through estimator.

Although the training was configured for 5 epochs using a cosine-decay schedule, we exclusively
use the checkpoint saved after the first epoch for all evaluations. Under this setup, the learning rate
only decays to approximately 90.5% of its initial value by the end of the first epoch ( 1+cos(π/5)

2 ≈
0.905), effectively creating a near-constant learning rate. While we expect performance to be very
similar to using a true constant learning rate, we provide these specifics for full reproducibility. All
hyperparameters are detailed in Table 18.
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Joint-Decoder Cross-Attention MoT

Adapter LR 1× 10−5 1× 10−5 1× 10−5

Cross-Attention LR N/A 1× 10−5 N/A
Image Tokenizer LR 1× 10−5 1× 10−5 1× 10−5

Image Transformer LR N/A N/A 5× 10−5

Language LR 5× 10−5 5× 10−5 5× 10−5

Optimizer AdamW AdamW AdamW
Betas (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)

Weight decay 0.01 0.01 0.01
LR Schedule Cosine Decay Cosine Decay Cosine Decay

Min LR 10% of Max 10% of Max 10% of Max
Linear Warmup 750 steps 750 steps 750 steps

Global Batch size 1536 1536 1536
Num Training Steps 10860 steps (15 epochs) 10860 steps (15 epochs) 10860 steps (15 epochs)

Table 17: Hyperparameters for stage 2 training.

Joint-Decoder Cross-Attention MoT

Learning Rate 1× 10−5 1× 10−5 1× 10−5

Optimizer AdamW AdamW AdamW
Betas (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)

Weight decay 0.01 0.01 0.01
LR Schedule Cosine Decay Cosine Decay Cosine Decay

Linear Warmup 0 steps 0 steps 0 steps
Global Batch size 32 32 32

Num Training Steps 140 steps (1 epoch) 140 steps (1 epoch) 140 steps (1 epoch)

Table 18: Hyperparameters for stage 3 training.

D.4 OPEN-WEIGHT VISION-LANGUAGE MODELS

For our fine-tuning results on open-weight vision-language models presented in Appendix B, we
use the LLaMA-Factory framework (Zheng et al., 2024) for SFT and the verl (Sheng et al., 2024)
implementation of Group Relative Policy Optimization (GRPO) (Shao et al., 2024) for RL fine-
tuning. We specify hyperparameters in Table 19 below.

SFT RL

Learning Rate 1× 10−6 1× 10−6

Optimizer AdamW AdamW
Betas (0.9, 0.999) (0.9, 0.999)

Warmup Steps 0 0
Scheduler Cosine Decay Constant

Num Epochs 1 15
Training Global Batch Size 64 128
Rollout Global Batch Size N/A 128

N Samples per Prompt N/A 5
KL Coeff N/A 1× 10−3

Table 19: Hyperparameters for SFT and RL training.
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E LARGE LANGUAGE MODEL USAGE

We used large language models to help improve the clarity and style of the manuscript. All drafts, in-
cluding the main text, citations, and tables, were originally written by hand. We then used ChatGPT-
4.1 and Gemini 2.5 Pro to suggest revisions for clarity, conciseness, and academic tone. No content
generation or data analysis was performed by language models; all substantive contributions and
data interpretation are the authors’ own.
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