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Abstract
The workload of some radiologists increased dramatically in the last several, which resulted in a potentially reduced quality 
of diagnosis. It was demonstrated that diagnostic accuracy of radiologists significantly reduces at the end of work shifts. The 
study aims to investigate how radiologists cover chest X-rays with their gaze in the presence of different chest abnormalities 
and high workload. We designed a randomized experiment to quantitatively assess how radiologists’ image reading patterns 
change with the radiological workload. Four radiologists read chest X-rays on a radiological workstation equipped with an 
eye-tracker. The lung fields on the X-rays were automatically segmented with U-Net neural network allowing to measure 
the lung coverage with radiologists’ gaze. The images were randomly split so that each image was shown at a different time 
to a different radiologist. Regression models were fit to the gaze data to calculate the treads in lung coverage for individual 
radiologists and chest abnormalities. For the study, a database of 400 chest X-rays with reference diagnoses was assembled. 
The average lung coverage with gaze ranged from 55 to 65% per radiologist. For every 100 X-rays read, the lung coverage 
reduced from 1.3 to 7.6% for the different radiologists. The coverage reduction trends were consistent for all abnormalities 
ranging from 3.4% per 100 X-rays for cardiomegaly to 4.1% per 100 X-rays for atelectasis. The more image radiologists 
read, the smaller part of the lung fields they cover with the gaze. This pattern is very stable for all abnormality types and is 
not affected by the exact order the abnormalities are viewed by radiologists. The proposed randomized experiment captured 
and quantified consistent changes in X-ray reading for different lung abnormalities that occur due to high workload.
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Introduction

Over the past decade, the workload of radiologists has been 
growing rapidly, which is due to the increased use of mag-
netic resonance and computed tomography modalities and 
the more extensive use of imaging in diagnosis, treatment, 
and post-treatment monitoring [1–3]. Artificial intelligence 
(AI) has demonstrated the potential in assisting with various 

tasks in radiology [4], and the COVID-19 pandemic has 
accelerated the adoption of such systems for medical imag-
ing [5]. Nevertheless, the problem of effective integration of 
artificial intelligence systems into the working activity of a 
radiologist is still under investigation with various subareas 
almost unaddressed [6, 7]. One of the promising areas of AI 
in medicine is radiologist-AI interaction, where AI does not 
replace radiologists by providing automatic diagnosis but 
provides some other assistance through continuous commu-
nication with radiologists.

The AI-assisted analysis of radiological eye movements 
is one of the emerging research fields. Visual reading of 
medical images can be divided into two stages: visual search 
for regions of interest and interpretation of them [8]. Kim 
and Mansfield [9] compiled a list of 12 types of errors in 
radiological interpretation. In 42%, the reason for misinter-
pretation was under-reading, i.e., when the reader simply 
overlooks an abnormality. Hanna et al. [10] suggested that 
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such perceptual errors could be associated with the changes 
in visual search processes occurring due to fatigue.

Fatigue in the reading room is an important problem that 
leads to an increase in diagnostic errors [10]. At the same 
time, fatigue is a subjective feeling and therefore difficult to 
quantitatively assess. Krupinski et al. [11] used the Swed-
ish Occupational Fatigue Inventory (SOFI) questionnaire 
and oculomotor strain subscale from the Simulator Sick-
ness Questionnaire (SSQ) for radiologists’ fatigue estima-
tion. Their study involved 40 radiologists who viewed 60 
X-rays and concluded that after a working day, there was 
an increase in symptoms of fatigue, oculomotor strain, and 
deterioration in diagnostic quality. Hanna et al. [10] inves-
tigated the effect of night shifts on the quality of a radiolo-
gist’s diagnosis. The study involved 12 radiologists, each of 
whom viewed 20 images during a typical working day and in 
the morning after a night shift. A deterioration in the SOFI 
and diagnostic accuracy has been observed after night shifts. 
This study used eye-tracking and discovered that fatigued 
radiologists need more time to find the first area of interest 
in X-rays. A similar study was done on the interpretation of 
CT images by radiologists with different experiences, where 
all radiologists exhibit worse SOFI and SSQ scores, while 
less experienced radiologists also demonstrate a significant 
reduction in diagnostic accuracy [12].

Radiologists’ gaze contains information about the quality 
and comprehension of image reading. Eye-tracking hardware 
can capture the longitudinal and spatial patterns in gaze data. 
Hosp et al. [13] presented an approach based on machine 
learning and several oculomotor features to classify the 
surgeon’s experience during arthroscopic shoulder surgery. 
Tien et al. [14] previously concluded that less experienced 
surgeons have greater pupillary entropy during cognitively 
demanding tasks, while experts have greater fixation rates 
and spend more time in the areas of interest. Brunye et al. 
[15] observed significant changes in pupil size when physi-
cians examine different areas of breast histopathology scans. 
Similarly, Castner et al. [16] captured the increased pupil 
diameter of expert physicians during the analysis of complex 
areas of dental X-rays in contrast to less experienced physi-
cians, whose pupils were significantly smaller in the same 
areas. However, the moderate changes in pupil size cannot 
be accurately captured by regular eye-tracking devices, and 
usually require the installation of specific equipment that 
can potentially interfere with the radiological workstation 
setting. The fatigue-related changes can be also seen in gaze 
paths, which become sketchier and less focused [17]. Often 
these changes are not reflected in numeric metrics such as 
gaze path length, and the number of fixation points, and 
therefore require a deeper analysis of gaze paths.

This study investigates how lung field coverage with radi-
ologists’ gaze changes with time against different abnormal-
ity types. A workstation that mimics a radiology workstation 

has been developed and equipped with a framework for 
X-ray reading. Four practicing radiologists with different 
levels of experience have been recruited to analyze lung 
X-rays while their eye movement and voice and workstation 
controller commands were recorded. A deep learning-based 
algorithm was applied to segment lung fields which enabled 
the automated calculation of the gaze coverage for the target 
anatomy. A specific randomization protocol was designed to 
minimize the effect of reading patterns for individual radi-
ologists and capture the overall reading trends in lung field 
coverage for different abnormality types and different time 
points of the experiment.

Methodology

Database

A public database of chest X-rays was utilized in this experi-
ment [18]. The X-rays in the database were annotated by three 
radiologists, which were recruited by the database authors. 
From the database, 400 chest X-rays with unambiguous labels 
were randomly selected. A healthy chest X-ray is considered 
unambiguous if no radiologist found any abnormality on it. 
An abnormality is considered to be unambiguously present 
if all three reference radiologists found it. At the same time, 
a chest X-ray could contain other abnormalities detected by 
some but not all radiologists. Such a database composition 
ensures that the reference labels had minimum uncertainty. 
In total, the database had 168 X-rays with no lung abnor-
malities, i.e., normal subjects, 60 X-rays with unambiguous 
nodule/masses labels, 72 X-rays with chest infiltrations, 48 
X-rays with pneumothorax, 12 X-rays with atelectasis, and 40 
X-rays with cardiomegaly. Other abnormalities diagnosed by 
some radiologists included aortic enlargement, pleural thick-
ening, calcifications, and other lesions. The authors of the 
chest X-rays database removed most of the attributes from 
the DICOM headers of the X-rays. However, gender and age 
were available in some DICOMs, which we extracted to get 
an overview of the patient demographics. From the extracted 
metadata, the average age of the patients was 49 years (144 
X-rays), with the gender compositing being 61% males and 
39% females (260 X-rays). The X-rays were acquired by vari-
ous scanners with resolutions ranging from 1624 × 1775 to 
3320 × 3408 pixels.

In‑House‑Designed Radiological Workstation

A framework that mimics radiological workstations for the 
analysis of X-rays has been designed and augmented with 
eye-tracking modules [19]. Several calibration sessions that 
tested the overall correctness and robustness of the frame-
work have demonstrated that the user’s gaze moves too often 
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to the keyboard for typing the diagnosis and switching to a 
new X-ray. This observation stimulated us to redesign the 
framework by adding voice recording to it. This minimized 
the use of the keyboard and mouse. In the final framework 
design, the user dictated the diagnoses, while moving to 
the next X-ray, pausing, and finishing the reading were 
controlled by the same Enter button. The mouse could be 
used to change the brightness and contrast of the current 
X-ray image, which was also recorded by the framework. 
The framework recorded and synchronized eye-movement 
tracking, voice recording, and controller commands. The 
diagnostics labels were manually extracted after the experi-
ment from the voice recordings.

From the hardware point of view, the framework 
was equipped with a 10-bit monitor with a resolution of 
3840 × 2160 px and a pixel density of ρ = 7.31 px/mm to 
display X-ray images. Tobii Eye Tracker 4C was used for 
eye-movement tracking, while Logitech 960 headsets were 
used for voice recording.

Deep Learning‑Based Lung Field Segmentation

One of the core ideas of the gaze analysis experiment is esti-
mating how lung coverage with gaze changes over time and 
if this change is consistent for all radiologists. To automate 
gaze analysis, the lung fields were segmented from the chest 
X-ray using the U-Net [20] convolutional neural network 
architecture. We employed our previous modification of the 
U-Net [21], which captures not only the area inside the lungs 
but also their contours. The intuition of explicitly request-
ing lung contours from the U-Net is to introduce additional 
penalties during training for the errors located on the border 
of the target lungs. The segmentation errors on lung borders 
are more critical in contrast to segmentation errors inside 
the lungs, which can be fixed with simple post-processing 
steps like morphological operations and connected compo-
nent analysis.

The original encoder of U-Net was replaced with 
ResNeXt50 [22] pre-trained on the ImageNet [23] public 
database. Contours were extracted from the lungs using mor-
phological erosion. The U-Net for lung segmentation was 
trained on a public database from The Japanese Society of 
Thoracic Radiology (JSRT) database, which was manually 
segmented by van Ginneken et al. [24].

Chest X‑ray Coverage

The segmented lungs combined with gaze data allow us to 
quantitatively estimate the coverage of the lung fields dur-
ing X-ray reading. To estimate the coverage, we first need to 
define the view angle parameter � that allows us to calculate 
the size of the image part captured by the gaze at each time 
point. There is no universal value of � . However, some studies 

estimated the information perception on medical images 
against the distance between an abnormality and a gaze point 
[25]. Recently, Wolfe et al. [26] showed that radiologists have 
a 33% probability of moving their gaze to breast abnormal-
ity if it is inside a 2-degree view angle. This is supported by 
Stransburger et al. [27] who demonstrated that humans are 
able to perceive objects at a view angle of 1.5–2 degrees from 
the focus point. Accordingly, we set up � = 2°.

The area At of the perceived visual information at the 
gaze point g(t) at time t can be calculated as

where xt, yt � g (t) are the gaze coordinates on the monitor, 
zt � g(t) is the distance in mm between the participant and 
gaze coordinates, � is the visual angle, � is the pixel density 
of the monitor, and x and y are the absolute image coordi-
nates in pixels.

The lung coverage area Clung
�  calculated for a time period 

of � seconds from the beginning of the X-ray reading is

where L is the set of pixels that belong to the lung fields and 
|L| is the cardinality of L . The coverage information allows 
us to quantitatively assess the portion of the lungs observed 
by the reader at each time moment and the end of the reading 
process (Fig. 1).

Randomized Experiment Measuring Changes 
in Lung Coverage

This study hypothesizes that lung coverage significantly 
reduces with the number of X-rays a radiologist has read, 
and this reduction is invariant against different abnormal-
ity types. A straightforward approach to test this hypothesis 
would be to measure the lung coverage for all X-rays for 
a specific radiologist and fit a linear regression model to 
the resulting 400 data samples. The slopes of such models 
fitted to each radiologist’s gaze data will estimate how the 
lung field coverage changes against the number of viewed 
images. The problem with such an approach is that reading 
time depends not only on the reader’s fatigue but also, poten-
tially to a greater extent, on the complexity of the depicted 
case. It is therefore possible that some radiologists got more 
attention-demanding X-rays at the start/end of the experi-
ment, which could skew the observed regression trends.

To address the summarized above issue, the order in 
which radiologists view X-rays was individually rand-
omized. The randomization was designed to ensure that each 
X-ray is given to some radiologists closer to the start of the 
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experiment, and to other radiologists closer to the end of the 
experiment (Fig. 2).

The image randomization was incorporated into a one-
day X-ray reading experiment conducted by each radiolo-
gist. It was expected that radiological fatigue will grow dur-
ing the experiment and the reading quality and potentially 

X-ray coverage with gaze will deteriorate with the number 
of images read. Considering that radiologists cannot ana-
lyze 400 X-rays without rest while continuously dictating 
the diagnoses, the same work-rest protocol has been intro-
duced to all radiologists minimizing the potential influence 
of variable breaks on the experiment outcomes. The breaks 
were introduced after each batch of 100 X-rays was ana-
lyzed. At the start of the experiment and after each break, a 
short calibration session was carried out. During calibration, 
the position of the radiologist was selected, which would be 
comfortable for them throughout the analysis of 100 images. 
The framework was equipped with a module that controls 
that the reader’s eyes are inside the eye tracker capture range. 
If the reader’s eyes come to the borders of this capture range, 
the reader hears a warning sound. Each radiologist analyzed 
100 X-rays, then had a short break, then analyzed the next 
100 X-rays, then had a 40-min lunch break, then analyzed 
the third batch of 100 X-rays, then had a short break, and 
finally analyzed the last batch of 100 X-rays. During breaks, 
the radiologists also passed various fatigue/concentration 
tests. In particular, they filled out the oculomotor part of 
the Simulator Sickness Questionnaire (SSQ) to self-evaluate 
their level of general discomfort, headache, fatigue, blurred 
vision, eye strain, etc. This test was passed at the beginning 
and end of the experiment, and before and after the lunch 
break. During other breaks, the radiologists also passed 

Fig. 1  Example of lung segmentation results (first row) and radiologists’ gaze maps (second row) superimposed over four randomly selected 
X-rays. The segmentations were automatically generated using a modified U-Net algorithm. The heatmaps were recorded during X-ray reading

Fig. 2  The radiologists’ performance on a randomly selected chest X-ray. 
The X-ray was given to radiologists at different time points, so each point 
(blue, red, orange, and green) corresponds to the lung coverage with 
gaze for a particular radiologist. The time points defined as the number 
of chest X-rays analyzed by the radiologist before he got the target X-ray 
define the x-axis
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digital concentration tests, namely, digit symbol substitu-
tion, circle coverage, and reaction time tests [28, 29]. The 
results of the tests and their correlation with the number of 
analyzed X-rays are presented in our previous study [30].

Following the experiment protocol, the X-rays were  
separated into four batches with 100 X-rays in each batch. 
The proportion of healthy and pathological subjects in each 
batch reflected the proportion of healthy and pathological 
samples in the complete database. The batches were shown 
to radiologists in random order. Moreover, the X-rays inside 
batches were randomly shuffled for each radiologist.

As a consequence of this randomized experiment, each 
X-ray was analyzed by four radiologists at different time 
points. This resulted in four measurements of lung coverage 
with radiologists’ gaze. We fitted a linear regression model 
to these measurements to estimate how the coverage changes 
for this particular X-ray depending on the time this image 
was viewed (Fig. 2).

Statistical Analysis

All linear regression models used to evaluate coverage results 
were augmented with 95% confidence intervals estimated 
with the bootstrap method [31]. The X-ray shuffling dur-
ing the experiment was performed using the Fisher-Yates 
algorithm.

Experiment and Results

Experiment Details

Four practicing radiologists with experience ranging from 3 to 
30 years were recruited to participate in the experiment. In his 
everyday practice, radiologist A analyzes both X-ray and CT 
images. Radiologist B analyzes only CT images and does not 
work with X-rays. In contrast, radiologists C and D analyze 
only X-ray images. We did not inform radiologists about the 
experiment aims to remove the risks that they will involuntar-
ily try to change their image reading behavior. At the same 
time, they were informed that we will ask them to read 400 
X-rays and dictate the diagnoses, which will be then compared 
against reference diagnoses. They were also informed about 
certain tests they need to pass during the experiment.

The diagnoses of the participating radiologists were manu-
ally extracted from voice recordings. The radiologists were 
asked to mention all abnormalities they observe and comment 
on the confidence they have in their decision. The decision 
was considered correct if the radiologist mentions, potentially 
among other abnormalities, the abnormality that was unani-
mously diagnosed by the reference radiological team [18]. 
Examples of lung segmentation with superimposed gaze heat-
maps for several random cases are given in Fig. 1.

Results

The average (± standard deviation) lung coverage was 
64 ± 16%, 65 ± 14%, 58 ± 17%, and 55 ± 17% for radiolo-
gists A, B, C, and D, respectively. The linear regression 
models fitted to the lung coverage data had slope coeffi-
cients − 0.026, − 0.013, − 0.076, and − 0.04 for radiologists 
A, B, C, and D, respectively. In other words, radiologist 
C covers 1% less of the lung fields after reading every 13 
X-rays (1/0.076 ≈ 1). Figure 3 depicts the regression mod-
els with the confidence intervals shaded. Linear regres-
sion models were also computed for each abnormality type 
(Fig. 3b). The slope coefficients were − 0.041, − 0.041, − 0
.035, − 0.034, − 0.034, and − 0.041 for atelectasis, infiltra-
tion, pneumothorax, nodule/mass, cardiomegaly, and healthy 
chest X-rays, respectively. Figure 4 presents the box-whisker 
plots that measure the lung coverage for each abnormality  
and each radiologist.

Using the average slope of the linear models fitted to 
individual X-ray readings, we evaluated whether the lung 
coverage with gaze for each radiologist is on average above 
or below the overall trendline. In other words, we used the 
order number of an X-ray to calculate the expected gaze cov-
erage and compared it with the observed gaze coverage for 
each radiologist. We observed that radiologist A is above the 
trendline in 64.5% of cases; that is, he covers a larger part 
of lung fields than is expected from an average radiologist 
for 64.5% of the analyzed X-rays. Radiologist B was above 
the trendline in 66.3% of cases, radiologist C — in 42% of 
cases, and radiologist D — in 38.5% of cases. Considering 
that radiologists can be fast/slow readers, we run an ablation 
analysis of artificially increasing/decreasing lung coverage 
for different radiologists. The analysis aim was to confirm 
that the trends observed for individual diseases (Fig. 3b) are 
invariant to radiologists’ reading styles. In particular, we 
reduced the lung coverage by 10% for radiologists A and B 
or increased the lung coverage by 10% for radiologists C and 
D. Then, we computed the lung coverage slopes using the 
presented above methodology. The trends remain very con-
sistent with the average reduction of lung coverage remain-
ing in a narrow interval of 3.9–4.1% per 100 X-rays (Fig. 5).

The self-reported SSQ test results were recorded for radi-
ologists B–D, while not recorded for radiologist A due to a 
software error. The utilized oculomotor part of the SSQ test 
result ranges from 7, indicating the lowest level of fatigue from 
all test subparts, to 28, indicating the maximal self-reported 
fatigue. All radiologists B–D have reported no fatigue at the 
start of the experiment; that is, they graded all seven oculomo-
tor SSQ measurements with the lowest available grade “1.” 
After analyzing 200 X-rays, the average self-reported fatigue 
grew from 7 to 11 ± 1.4. The lunch break returned the fatigue 
to a close-to-original level of 7.7 ± 0.5. At the end of the exper-
iment, the average self-reported fatigue was 12.7 ± 2.1.
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Discussion

In this paper, we described a randomized experiment to cap-
ture the potential changes in chest X-ray reading patterns 
of radiologists by utilizing eye-tracking and AI-based lung 
segmentation. We hypothesized that there will be a trend of 
reduced quality of X-ray readings at the end of the experi-
ment when radiologists are more tired. The reduction of the 
reading time at the end of the work shifts has been observed 
previously and can vary from insignificant for bone fracture 

diagnosis [11] to more than a 30% reduction for CT colo-
nography [32]. At the same time, it is also observed that 
the reading time depends significantly on the abnormality 
type [11]. It was therefore essential to separate the reading 
changes related to fatigue from the reading changes related 
to X-ray complexity. We designed a data randomization 
protocol for the chest X-ray reading, which allowed us to 
measure the statistical changes in chest coverage for indi-
vidual radiologists and individual lung abnormalities. By 
computing the changes in lung coverage for each radiologist 

Fig. 3  These illustrations demonstrate how lung coverage with radiol-
ogists’ gaze changes with the number of images analyzed by the radi-
ologists. a Linear regression models fitted to the lung coverage metric 
computed for each of the four radiologists participating in the experi-
ment. b Linear regression models fitted to gaze coverage data for all 

radiologist computed for each lung X-ray. These linear regression 
models are then aggregated for individual abnormalities. The linear 
regression models are overlapped with the corresponding data points; 
the points are averaged over 20 data samples for better visibility

Fig. 4  Box-whisker plots show 
the lung coverage of an X-ray 
with a specific pathology by 
each radiologist. The orange 
line shows the median, the 
whiskers show the interquartile 
range, the boxes extend from 
the first to the third quartile, 
and the whiskers extend to the 
1.5 × of the interquartile range. 
Outliers outside whiskers are 
not visualized for figure clarity
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(Fig. 3a), the intuitive assumption that the lung coverage for 
all radiologists reduces with the growth of the X-rays ana-
lyzed has been confirmed. At the same time, this trend was 
much stronger for radiologists C and D and less pronounced 
for radiologists A and B. This fact could be potentially 
explained by induvial reading style of radiologists A and B, 
or by the coincidence, where radiologists A and B got more 
challenging-to-diagnose X-rays at the end of the experiment 
while radiologists C and D — more challenging-to-diagnose 
X-rays at the beginning of the experiment. Using binomial 
distribution, we estimated the probability of getting 10 more 
challenging-to-diagnose X-rays images at the beginning/end 
of the experiment to be above 50%.

The regression models fitted to individual images 
(Fig. 3b) demonstrate that the coverage trends are almost the 
same for each abnormality, ranging from − 0.54e−4 for lung 
infiltrations to − 0.42e−4 for cardiomegaly. The lung cover-
age with gaze approximately reduces by 20% after reading 
400 X-rays. This confirms the assumption that the coverage 
drop is similar for all radiologists and the discrepancies we 
saw in Fig. 3a are due to different orders of X-rays assigned 
to each radiologist. The radiologists seem to cover a larger 
part of the lungs with their gaze when the patient has atelec-
tasis. One of the possible explanations is that nonobstruc-
tive atelectasis is caused by lung diseases such as pleural 
effusion, pneumonia, pneumothorax, and fibrosis [33]. The 
radiologists, therefore, need to search more thoroughly for 
comorbidities if they discover atelectasis. It is also impor-
tant to note that the lung coverage for healthy X-rays was on 
average lower than for the X-rays with pathologies.

Radiologists C and D on average cover smaller lung parts 
with their gaze than radiologists A and B. This observation 
may correlate with the level of expertise of the participants, 

as both radiologists C and D specialize exclusively in 
X-ray image analysis, while, in contrast, CT-specializing 
radiologist B demonstrated the highest level of lung cov-
erage. Moreover, radiologist D with 30 years of practice 
is the most experienced reader in the study. The literature 
review confirms our observation of a negative correlation 
between reading time and the level of expertise. Manning 
et al. [34] documented that radiologists read a chest X-ray 
in around 30 s, while novices spend around 41 s per X-ray. 
Burling et al. [32] found that experienced radiologists spend 
on average 11 s to identify and interpret colorectal cancer 
and detect colon polyps or their absence in CT images. This 
performance compares favorably to the 16 s needed for 
novice radiologists, and the 17 s needed for radiographic 
technicians. Wood et al. [35] compared the performance of 
musculoskeletal radiologists on pelvic, spine, palm, wrist, 
elbow, and ankle X-ray analysis and found that experts read 
the images almost two times faster than novices. Similar 
trends are observed if reading time is replaced with anatomy 
coverage [17]. Manning et al. [34] separated chest X-rays 
into 14 anatomical zones and observed that radiologists on 
average cover 12 zones per reading, while novices — 12.5 
zones. Drew et al. [36] separated the radiologists into drill-
ers, which use bottom-up reading, and scanners, which use 
top-down reading and compared their performance [37]. The 
authors found out that the drillers on average have 5 years 
less experience but cover 5% more lung volume with the 
gaze. It is, however, important to note that only 20% of doc-
tors were considered scanners, which may have skewed the 
results. Rubin et al. [38] observed that expert radiologists 
cover a 50% smaller portion of the lung volumes during 
decision-making in comparison to 1st-year radiology resi-
dents. In our study, the tendency that more experienced radi-
ologists to cover a smaller portion of lung fields with gaze 
persists during the whole experiment. The most experienced 
radiologist D demonstrates the lowest lung coverage nor-
malized to the X-ray viewing order in comparison to other 
participating radiologists.

One of the main advantages of the proposed randomized 
experiment is its ability to discover consistent image read-
ing patterns invariant to the viewing order of the X-rays for 
different radiologists. There is a visual tendency for lung 
coverage to reduce with the number of viewed images for 
all radiologists (Fig. 3a). Despite the overall trend, the lung 
coverage reduction significantly varied from 1.3% per 100 
X-rays for radiologist B to 7.6% per 100 X-rays for radi-
ologist C. When computing trend image-wise, variability 
reduces dramatically to 3.4% per 100 X-rays for cardiomeg-
aly and 4.1% per 100 X-rays for atelectasis. We wanted to 
additionally investigate whether this consistency is invariant 
to the performance of individual radiologists by artificially 
modifying their lung coverage trends (Fig. 3a). The artifi-
cial reduction/increase of coverage almost did not affect the 

Fig. 5  An ablation study demonstrating the model that captures the 
lung coverage with gaze against the number of images viewed by 
radiologists. Each regression model computes the changes in lung 
coverage over all X-rays using the data from all radiologists. Alter-
native regression models were generated by artificially increasing/
reducing the lung coverage for some radiologists
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trend lines (Fig. 5). Such invariance is expected and can be 
explained using an example. Suppose the lung coverage for 
radiologist A was reduced by 10% of their average lung cov-
erage. The slopes of the linear models (Fig. 3), where radi-
ologist A reads the X-rays in the first half of the experiment, 
will reduce. The slopes of the linear models, where radiolo-
gist A reads the X-rays in the second half of the experiment, 
will increase. These changes largely compensate for each 
other resulting in a stable slope of the averaged regression 
model. The ablation analysis indicates that the changes we 
see in Fig. 3b are not only applicable to radiologists A–D 
from our experiment but also likely capture the overall read-
ing pattern.

It is important to appreciate that the reported absolute val-
ues of the lung coverage depend on the view angle � = 2 °. 
The assumption on the view angle is in agreement with other 
studies on eye tracking in radiology [25–27]. This, how-
ever, does not mean that radiologists do not respond to any 
visual stimuli outside the view angle as their response may 
depend on the type of the depicted abnormality, its relative 
appearance, and size. We can assume that visual information 
capturing depends on more parameters than a single view 
angle. On the other hand, the proposed study aims to find 
the trends, which are relatively invariant to the view angle 
parameter. The discovery of such trends opens new direc-
tions for eye-tracking integration into clinical practice. By 
recording the changes in organ coverage with gaze, we can 
potentially recognize the moments when a radiologist is tired 
and a second opinion may be needed.

The presented study has limitations. The prevalence of 
X-rays with abnormalities in the analyzed database does 
not necessarily match a typical X-ray composition in a radi-
ology department. Moreover, radiologists have individual 
work schedules and can take short breaks outside predefined 
intervals. Another limitation is related to the gaze coverage 
approach. A fixed view angle value was used; however, this 
may differ for each radiologist. In addition, the peripheral 
vision was not considered when calculating eye coverage. 
Future discoveries and clarifications in the field of visual 
information perception will allow us to refine the absolute 
values of the lung field coverage and potentially discover 
additional patterns in chest X-ray readings.
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