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Abstract
Spurious correlations occur when a model learns
unreliable features from the data and are a well-
known drawback of data-driven learning. Al-
though there are several algorithms proposed to
mitigate it, we are yet to jointly derive the indica-
tors of spurious correlations. As a result, the solu-
tions built upon standalone hypotheses fail to beat
simple ERM baselines. We collect some of the
commonly studied hypotheses behind the occur-
rence of spurious correlations and investigate their
influence on standard ERM baselines using syn-
thetic datasets generated from causal graphs. Sub-
sequently, we observe patterns connecting these
hypotheses and model design choices.

1. Introduction
Spurious correlation is a well-studied problem in machine
learning literature and several solutions have been proposed
to mitigate it (Arjovsky et al., 2019). Despite these best
attempts, empirical risk minimization (ERM) (Vapnik, 1999)
remains a strong baseline (Gulrajani & Lopez-Paz, 2020).
We believe that the first step in developing robust solutions
against spurious correlations is recognizing when the models
trained using ERM succumb to spurious correlations.

Several factors have been proposed as indicators of spuri-
ous correlations. These include overparameterization, par-
tial predictiveness of invariant features, and the amount of
data from different environments. However, existing stud-
ies about the occurrence of spurious correlation limit their
scope to one or a few of these factors. For example, Sagawa
et al. (2020) study the effect of overparameterization on
underrepresented groups in the training data but do not in-
vestigate this phenomenon on easy-to-learn tasks. This was
theoretically analyzed by Nagarajan et al. (2020), although
they used maximum margin models.
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Figure 1. Our objective is to predict the binary variables A and B
from the observed data X . Causal modeling of the data generation
graph helps to study spurious correlation. (Section 3.1)

However, in practice, these factors may not appear sepa-
rately. For example, Hill et al. (2021) noted that SARS-
CoV-2 datasets were dominated by samples from the US
and the UK due to sampling bias, which “may lead to false
conclusions about true transmission pathways of virus lin-
eages”. Additionally, the connectedness of air networks is
a larger factor in the spread of air-borne diseases than geo-
graphical distance (Lemey et al., 2014). Thus, developed
countries can introduce both sampling bias and additional
confounders to the dataset.

Therefore, the interaction of these factors with the model
must be jointly analyzed. Our goal is to investigate how
these factors affect the models trained using ERM. To that
end, we develop synthetic datasets using causal modeling
that allow us to finely adjust the potential factors causing
spurious correlation. Knowing the causal model also facili-
tates relating spurious correlations to dependence relations
in the causal graph. We hope that the findings of this paper
serve as a guiding principle for the future development of
solutions to mitigate spurious correlations.

2. Background
Spurious correlations occur when a model learns correla-
tions from the observed data that do not hold under natural
distribution shifts1. A robust model is expected to use only
invariant features that are reliable during testing. Thus, ob-
served data X is assumed to consist of invariant (or core)

1“Natural” distribution shifts are found in passively collected
data. For instance, a “STOP” sign with chipped edges. An example
of an “unnatural” distribution shift is a green “STOP” sign.
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features Xinv and spurious features Xsp. In practice, spuri-
ous features could occur due to biases during data-collection
or measurement errors (Fan et al., 2014). Several hypothe-
ses exist about the origin of spurious correlations from a
learning perspective.

Partially-predictive invariant features: The most com-
mon hypothesis about spurious correlations is that a model
relies on spurious features when the invariant features are
only partially-predictive of the downstream task or are less
useful compared to spurious features (Sagawa et al., 2020).
This hypothesis has been further used to show how adver-
sarial attacks exploit a model’s dependence on spurious
features (Ilyas et al., 2019; Zhang et al., 2021).

Simplicity bias: A related hypothesis is that SGD-trained
neural networks prefer to learn simple features (Shah et al.,
2020; Valle-Perez et al., 2018). As a result, these models
may rely on simpler, but less predictive spurious features in-
stead of sophisticated, yet fully predictive invariant features.

Majority advantage: Another factor that may result in
spurious correlations is statistical bias (Nagarajan et al.,
2020). If spurious features are present in the majority of the
data samples, the model would rely on them to minimize the
training error. Mitigation tools derived from this hypothesis
usually exploit the diversity in training data to ensure that
the model sees enough examples without these spurious
features during training. (Arjovsky et al., 2019; Wang et al.,
2021; Idrissi et al., 2022).

Other hypotheses that have been studied include noisy in-
variant features (Khani & Liang, 2020), imperfect partitions
of the training data that allow group-specific spurious corre-
lations (Zhou et al., 2021) and invariant features given less
weight by the final layers (Kirichenko et al., 2022; Izmailov
et al., 2022).

In our experiments, we consider datasets in which the in-
variant features vary in their predictive power, proportion in
the training data, and complexity.

3. Setup
3.1. Causal interpretation of spurious correlation

Spurious correlations are often due to confounders and un-
observed correlated variables, and not due to true causal
relations. As a result, they are affected by natural distribu-
tion shifts. Therefore, causal graphs are a suitable choice to
model the occurrence of spurious correlations. By treating
prediction tasks as anti-causal learning, we can model the
observed data X as X = fX(UX , Y1, Y2, . . . , Yn) where
Y1, Y2, . . . , Yn are label variables and UX is an exogenous
variable denoting unobserved factors that affect X . The
label variables may be causally related to each other as
Yi = fYi

(Pa(Yi), UYi
) where Pa(Yi) denote the parent

variables of Yi in the causal graph and UYi
denote the unob-

served factors affecting Yi.

For the model to distinguish spurious features from invari-
ant features, the training set must contain samples where
spurious correlations do not hold. In (Arjovsky et al., 2019),
samples were collected from different environments to break
spurious correlations. Since we model our data-generating
process as a causal graph, different environments corre-
spond to different distributions of the label variables. One
way to induce different distributions is through interventions
on label variables. By intervening on, say, Yi, it becomes
independent of its parent variables Pa(Yi). Let FYi be the
feature learned by a model to predict Yi. If FYi

has spurious
information, it may have non-zero dependence with some
variable Yj ∈ Pa(Yi) during interventions.

3.2. Datasets

For our study, we consider the simplest causal graph with
two binary variables A and B. The causal model of the
data-generation process is shown in Figure 1a. Our task
is to predict the binary labels from the observed data X .
Note that X embodies both the invariant feature Xinv and
the spurious feature Xsp. Although invariant and spurious
features are treated as separate casual variables in existing
works (Khani & Liang, 2021; Arjovsky et al., 2019), we
model them jointly since they may be entangled in practice.
The unobserved factors of variation are collectively denoted
by U . Since A is a parent of B, a change in distribution
of A affects that of B. However, vice versa does not hold.
In our experiments, the potential spurious correlation that
a model may learn is to use features corresponding to B to
predict A.

We construct two synthetic datasets – (1) CIRCLES and
(2) WINDMILL. For each dataset, we collect observational
and interventional data points following Figure 1a and Fig-
ure 1b respectively. The exact functional formulations of
the datasets are provided in Appendix A.

CIRCLES dataset: The CIRCLES dataset consists of vectors
sampled from four circular regions in the R2-space (Fig-
ure 2a). Each cluster corresponds to (A = a,B = b) for
some a, b ∈ {0, 1}. A and B decide X1 and X2 in Figure 2a
respectively. When the clusters are well-separated, a linear
model can easily achieve zero test error. However, when
they overlap, it is impossible to find a zero-error decision
boundary (Figure 2b). We use the CIRCLES dataset to ana-
lyze spurious correlations in easy-to-learn and impossible-
to-learn tasks.

WINDMILL dataset: Our second dataset is designed to
explicitly prompt spurious correlations. The effects of the
variables A and B on the observed data X are entangled
and the true decision boundary for A is more difficult to
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Figure 2. Synthetic datasets constructed to study the occurrence of spurious correlations. Red and blue dotted lines indicate the optimal
decision boundaries of A and B respectively.

learn than that of B2. The complexity of the true decision
boundary of A is adjusted through a parameter λoff. Higher
the value of λoff, the higher the complexity is. As predicting
A using its invariant features alone becomes more difficult,
the model tends to use spurious features. Observational and
interventional data samples from WINDMILL dataset are
illustrated in Figure 2c.

3.3. Why synthetic data?

The key advantage of synthetic datasets over natural ones is
the ability to adjust their properties precisely. Specifically,
the WINDMILL dataset allows us to change the complexity
of its decision boundaries, and the CIRCLES dataset allows
us to alter the geometric coordinates and dimensions of the
clusters. Synthetic datasets have been used in prior works
to analyze the evolution of features learned by models (Her-
mann & Lampinen, 2020).

4. Experiments
We design experiments to study the impact of task difficulty,
statistical bias, and predictive power of invariant features.
We first distinguish tasks based on their difficulty – easy-to-
learn, difficult-to-learn, and impossible-to-learn. We then
vary the amount of interventional data in each dataset. Then
for each such dataset, we vary the capacities of the models
by changing the depth and the width of the MLPs.

Method: We do not propose any novel method to mitigate
spurious correlation. Our objective is to unify possible fac-
tors that contribute to spurious correlation in models trained
using ERM. We consider two commonly followed sub-
paradigms under ERM – (1) standard ERM (simply referred
to as ERM), (2) ERM with resampling (ERM-Resampled).
A single training batch in ERM comprises both observa-
tional and interventional samples. In contrast, observational
and interventional samples never appear in the same batch in
ERM-Resampled. Existing works (Idrissi et al., 2022; Gul-

2“Difficulty to learn” is measured in terms of the minimum
degree required by a polynomial to approximate it with zero test
error.

rajani & Lopez-Paz, 2020) indicate that ERM-Resampled is
a strong baseline against spurious correlation and in domain
generalization. Throughout our experiments, we use MLPs
with ReLU as the activation function.

Metrics: The standard sign of spurious correlations is a drop
in test accuracy due to a change in distribution. Therefore,
we quantify spurious correlations in the model using the
relative drop in test accuracy between observational and
interventional samples. Additionally, since we know that
the intervened variable must be independent of its parents,
we evaluate the robustness of the features by measuring the
dependence between the features on interventional samples.

Measuring dependence: Several methods have been pro-
posed to measure dependence between high-dimensional
vectors, of which kernel-based methods are popular (Gret-
ton et al., 2005; Bach & Jordan, 2002). However, these
are difficult to interpret from their absolute values. There-
fore, we devise a new independence measure based on
statistical independence testing called “ratio over indepen-
dent samples” (RoIS). Given two features FA and FB

with N samples, RoIS is measured as RoIS(FA, FB) =
dep(FA,FB)

1
K

∑K
i=1 dep

(
F

(πi)

A ,FB

) , where πi is some permutation of

N samples and dep is our choice of measure of depen-
dence. In our experiments, we use a normalized version of
HSIC (Gretton et al., 2005) as dep. Refer to Appendix B for
a detailed description.

4.1. Easy-to-learn tasks

We construct easy-to-learn tasks similar to those proposed
in (Nagarajan et al., 2020) using our CIRCLES dataset. The
true decision boundaries for A and B are linear in all cases,
i.e., a single non-trivial parameter is sufficient to learn the
true boundary for each label. We train MLPs for each task
through ERM-Resampled and measure the relative drop ac-
curacy between observational and interventional data during
testing.
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Figure 3. Effect of task complexity on ERM-Resampled models for difficult-to-learn tasks

4.1.1. EFFECT OF AMOUNT OF INTERVENTIONAL DATA

Each dataset contains N samples: βN observational and
(1 − β)N interventional, where 0 < β < 1. Varying β
creates what is referred to as “statistical skew” in (Nagarajan
et al., 2020).

Analysis: We trained models using the ERM-Resampled
scheme. Surprisingly, we found that there was no drop in
accuracy due to a variation of β. Even with just 1% inter-
ventional data, the model learned the true decision boundary.
We attribute this to ERM-Resampled being competitively
robust to spurious correlations. We do not report these re-
sults since they are trivial. Instead, we consider standard
ERM, which is a weaker baseline. We observe that even a
weak baseline like ERM is robust to spurious correlations
until β reaches around 0.99. Figure 4a visualizes the relative
accuracy drop for models trained using standard ERM.
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Figure 4. Relative drop in test accuracy of ERM models in easy-
to-learn tasks

4.1.2. EFFECT OF GEOMETRIC DISTORTION

We now consider the effect of the cluster shapes on spurious
correlation. We adjust the ratio between the radii along
the horizontal and vertical dimensions axis in our CIRCLES
dataset and observe the occurrence of spurious correlation.
The ratio can be written as rB

rA
where rA and rB are the

radii along horizontal and vertical directions respectively.
Changing the radius ratio essentially shears each circular
cluster into an ellipse. Since we found ERM susceptible
to spurious correlation only at larger values of β, we set
β = 0.99 during this experiment.

Analysis: Figure 4b shows the drop in test accuracy due
to the change in radius ratio. We observe the drop in test
accuracy is (1) very small (< 1%), and (2) limited to radius
ratio ≥ 1, i.e., only when the circular clusters are vertically
sheared. This could be due to horizontal shearing limiting

the number of decision boundaries that achieve zero training
error, especially when the number of interventional samples
is low. Furthermore, as the shearing increased along the
vertical dimension, the drop in test accuracy decreased. Re-
fer to Appendix D.1 for the visualization of corresponding
decision boundaries.

4.2. Difficult-to-learn tasks

We now design a task where spurious features are easier to
be learned compared to invariant features. The phenomenon
is commonly referred to as “simplicity bias”. To investi-
gate the occurrence of spurious correlation due to simplicity
bias, we design tasks where the model has to learn a com-
plex, but zero-test error decision boundary from the training
data. Here, the “complexity” of a decision boundary can be
roughly defined as the minimum degree required by a poly-
nomial to fully approximate it. Figure 7 illustrates different
complexity levels of WINDMILL dataset due to change in
λoff in Appendix A.2.
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Figure 5. Effect of amount of interventional data on ERM-
Resampled models for difficult-to-learn tasks

4.2.1. EFFECT OF VARIATION OF TASK DIFFICULTY

Our WINDMILL dataset allows us to adjust the complex-
ity of the decision boundary of A by varying λoff. We
hypothesize that a model with fixed capacity will increas-
ingly depend on spurious features to make predictions as
the complexity of the task increases.

Analysis: In Figure 3a, we vary the complexity of the task
via λoff, and calculate the relative drop in accuracy between
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observational and interventional data for a model trained us-
ing ERM-Resampled. We make the following observations:
(1) For a fixed task difficulty, the model becomes more ro-
bust as the capacity of the model increases, (2) With a fixed
capacity, the model tends to learn spurious correlations as
the task complexity increases.

For additional analysis, we measure the dependency be-
tween the features using our proposed RoIS score. A lower
RoIS score indicates that learned representations contain
fewer spurious features. Plotting RoIS values in Figure 3b
allows us to make two observations: (1) Spurious correla-
tion is always accompanied by a strong dependency between
the features, (2) However, strong dependency between the
features does not imply spurious correlations, as evident
when the task complexity is low.

4.2.2. EFFECT OF AMOUNT OF INTERVENTIONAL DATA

Similar to Section 4.1.1, we vary the amount of interven-
tional data in difficult-to-learn tasks. Following the same
convention, β denotes the proportion of observational data
points. We fix the task complexity by setting λoff = 2.

Analysis: Figure 5 visualizes the relative drop in test accu-
racy and RoIS between the features due to change in β. We
make the following observations: (1) As expected, spurious
correlations reduce with an increase in the amount of inter-
ventional data, irrespective of the model capacity, (2) For a
given amount of interventional data, larger models seem to
be robust against spurious correlations, (3) The variation in
dependency seems to be indicative of spurious correlation,
unlike in the previous case of varying task complexity.

4.3. Impossible-to-learn

Our final experiment tests the hypothesis about the predic-
tive power of invariant features. We modify the CIRCLES
dataset such that the circular regions partially overlap (Fig-
ure 2b). Due to this overlap, invariant features will no
longer be able to provide a zero-error decision boundary,
while spurious features can during training. Such situations
may occur due to high noise in the invariant features.

4.3.1. EFFECT OF AMOUNT OF INTERVENTIONAL DATA

Similar to our previous experiments, we vary β and compare
the relative drop in test accuracy for various models.

Analysis: When it is impossible to learn a zero-test error de-
cision boundary, the behavior of the model can vary due to
the data it sees, and is especially consequential when the in-
terventional samples are too few. This is evident in Figure 6
and allows us to make two interesting observations: (1) The
model becomes more robust as more interventional data is
available, (2) In contrast to difficult-to-learn tasks, larger
models are more prone to spurious correlation especially
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Figure 6. Effect of amount of interventional data on ERM-
Resampled models for impossible-to-learn tasks

when the amount of interventional data is limited, (3) De-
pendency between features seems to be positively correlated
with accuracy drop for lower amounts of interventional
while being negatively correlated everywhere else.

5. Concluding Remarks
Our work attempted to unify some of the commonly pur-
sued hypotheses behind spurious correlations – statistical
bias, simplicity bias, and predictive power of the invariant
features. We designed synthetic datasets that reflected these
qualities following a simple causal graph. We measured the
drop in test accuracy to quantify the spurious correlations
learned by models trained using variants of ERM. Further-
more, our causal formulation allowed us to measure the
dependence between features from interventional data.

Some of our findings were surprising. We found that SGD-
based solutions were robust against spurious correlations in
easy-to-learn tasks, unlike maximum margin solutions (Na-
garajan et al., 2020). We also found that larger models
were more robust than smaller models in difficult-to-learn
tasks, while smaller models were more robust in impossi-
ble prediction tasks. However, other findings were similar
to those reported previously. We noted that having more
interventional data improved the robustness of the model.
Additionally, we showed that models learn shortcuts from
data (Geirhos et al., 2020) when the task is disproportion-
ately difficult for the capacity of the model.

Our findings indicate that spurious correlations are a product
of the dataset, the model, and the training scheme. There-
fore, future algorithms that are proposed to mitigate spurious
correlations must evaluate using models with different ca-
pacities with varying proportions of interventional points.
In addition to drop in test accuracy, independence relations
between known causal variables can provide a deeper un-
derstanding of the algorithms.
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A. Dataset Generation
Notation: Bern(p) denotes a Bernoulli distribution with parameter p. U(a, b) denote a uniform distribution between a and b.
C(S) denote uniform categorical distribution over the elements of set S. B(α, β) denotes a beta distribution with parameters
α and β. Variables in uppercase denote random variables and those in lowercase denote scalar constants.

The structural causal model (SCM) (Peters et al., 2017) corresponding to the observational causal graph shown in Figure 1a
is as follows. fX and U vary with the dataset.

A ∼ Bern(p)
B = A (During observation, or)

B = B̃ (During intervention)
X = fX(A,B,U)

A.1. CIRCLES dataset generation

The parameters are:

Parameter Description Default value
Easy Impossible

r(max)
1 Maximum radius along X1 direction 2 2
r(max)
2 Maximum radius along X2 direction 2 2
µ1 Shift in center of ellipse along X1 direction 2.5 1.5
µ2 Shift in center of ellipse along X2 direction 2.5 1.5

Table 1. Parameters used for generating the CIRCLES dataset, what they mean, and their default values if applicable.

Θ ∼ U(0, 2π) (Sample polar angle)

R1 ∼ U(0, r(max)
1 ) (Sample polar distance along X1 direction)

R2 ∼ U(0, r(max)
2 ) (Sample polar distance along X2 direction)

R =
R1R2√

R2
1 cos

2 Θ+R2
2 sin

2 Θ
(Polar form of an ellipse)

X1 = (2A− 1)µ1 +R cosΘ (Shift according to value of A)
X2 = (2B − 1)µ2 +R sinΘ (Shift according to value of B)

X =

[
X1

X2

]

A.2. WINDMILL dataset generation

The parameters are:

Parameter Description Default value

narms Number of ”arms” in WINDMILL dataset 4
rmax Radius of the circular region spanned by the observed data 2
θwid Angular width of each arm 0.9π

narms
= 0.7068

λoff Offset wavelength. Determines the complexity of the dataset -
θmax-off Maximum offset for the angle π/6

Table 2. Parameters used for generating WINDMILL dataset, what they mean, and their default values if applicable.
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RB ∼ B(1, 2.5) (Sample radius)

R =
rmax

2
(BRB + (1−B)(2−RB)) (Modify sampled radius based on B)

ΘA ∼ C
({

2π
i

narms + 1
: i = 0, . . . , narms − 1

})
(Choose an arm)

U ∼ U(0, 1) (To choose a random angle)

Θoff = θmax-off sin

(
πλoff

R

rmax

)
(Calculate radial offset for the angle)

Θ = θwid (U − 0.5) +A

(
ΘA +

π

narms

)
+ (1−A)ΘA +Θoff (Angle is decided by A and the radial offset)

X1 = R cosΘ (Convert to Cartesian coordinates)
X2 = R sinΘ

X =

[
X1

X2

]
Figure 7 shows the various datasets generated by varying λoff.
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Figure 7. Difference in dataset generated by varying λoff

B. Quantifying dependence between features
Suppose we wish to measure the dependence between two random vectors X and Y using some kernel-based measure of
dependence D(X,Y ). Let X and Y consist of n samples and {Pi : i = 1, . . .m} be m permutations of these samples. We
can safely assume that X ⊥⊥ Y (Pi) for all Pi. Therefore, the average score from the measure of dependence for independent
samples can be written as,

d∗ =

∑m
i D(X,Y Pi)

m
(1)

d∗ can be interpreted as the highest value of the measure of dependence D that it may give for any pair of independent
random vectors. We use d∗ to define our metric “ratio over independent samples” (RoIS) as,

RoIS(X,Y ) =
D(X,Y )

d∗ + δ
(2)

where δ adjusts the smoothness of our metric. For our experiments, we use a normalized version of HSIC (Gretton et al.,
2005) in place of D, denoted by NHSIC.

NHSIC(X,Y ) =
HSIC(X,Y )√

HSIC(X,X)HSIC(Y, Y )
(3)

C. Connecting spurious correlations through causal graphs
Consider the causal graph provided in Figure 1. Due to the intervention on B, it becomes independent of its parent – A. On
the other hand, any change in A must affect B. Therefore, a robust model cannot use features corresponding to B to predict
A. However, a bad model may be tempted to do so if, say, the features corresponding to A are difficult to learn. Hence, a
bad model is prone to show a drop in validation accuracy in predicting A during interventions.
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D. Additional Results
D.1. Decision boundaries for easy-to-learn tasks
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Figure 8. Decision boundaries learned for different radius ratios


