
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNLOCKING GRAPH STRUCTURE LEARNING WITH
TREE-GUIDED LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, the emergence of large language models (LLMs) has prompted re-
searchers to integrate language descriptions into graphs, aiming to enhance model
encoding capabilities from a data-centric perspective. This graph representation is
called text-attributed graphs (TAGs). A review of prior advancements highlights
that graph structure learning (GSL) is a pivotal technique for improving data utility,
making it highly relevant to efficient TAG learning. However, most GSL methods
are tailored for traditional graphs without textual information, underscoring the
necessity of developing a new GSL paradigm. Despite clear motivations, it remains
challenging: (1) How can we define a reasonable optimization objective for GSL
in the era of LLMs, considering the massive parameters in LLMs? (2) How can we
design an efficient model architecture that enables seamless integration of LLMs for
this optimization objective? For Question 1, we reformulate existing GSL optimiza-
tion objectives as a tree optimization framework, shifting the focus from obtaining
a well-trained edge predictor to a language-aware tree sampler. For Question 2,
we propose decoupled and training-free model design principles for LLM integra-
tion, shifting the focus from computation-intensive fine-tuning to more efficient
inference. Based on this, we propose Large Language and Tree Assistant (LLaTA),
which leverages tree-based LLM in-context learning to enhance the understanding
of topology and text, enabling reliable inference and generating improved graph
structure. Extensive experiments on 11 datasets demonstrate that LLaTA enjoys
flexibility—incorporated with any backbone; scalability—outperforms other LLM-
based GSL methods; and effectiveness—achieving SOTA predictive performance
across a variety of datasets from different domains.

1 INTRODUCTION

In recent years, the rise of LLMs in graph ML Yan et al. (2023); Chen et al. (2024) has led to
the emergence of text-attributed graphs (TAGs) as a novel data representation. This data structure
leverages textual information to provide fine-grained descriptions of graphs, driving a significant
shift in data-centric graph learning Li et al. (2024). Inspired by this, efficiently and robustly learning
TAGs has become an urgent priority.

To achieve this, graph structure learning (GSL) is a promising approach to enhancing data utility
for vanilla graph neural networks (GNNs). However, most existing GSL methods Zhiyao et al.
(2024) are designed for traditional graphs and cannot effectively process rich textual information,
leading to suboptimal performance. Despite recent efforts in LLM-based GSL approaches, such as
GraphEdit Guo et al. (2024) and LLM4RGNN Zhang et al. (2024), their optimization objectives
and model architectures still follow traditional GSL paradigms, inheriting unnecessary complexities.
Specifically, these prominent GSL methods Zhao et al. (2021); Wu et al. (2022b; 2023); Zhang et al.
(2024) rely on carefully designed loss functions to maintain a graph learner (i.e., structure optimizer)
coupled with well-defined instruction datasets or specific GNN backbones (i.e., improved structure
tailored for the downstream encoder). Based on this, we make two key observations and aim to
explore them to guide the development of a new GSL paradigm in the era of LLMs.

Observation 1 (Optimization Objective): The graph learner often serves as an edge predictor, heavily
relying on end-to-end training with a specific downstream backbone. In the era of LLMs, LLMs
will play a crucial role in graph learners. In this context, performing full-parameter LLM training to
obtain an edge predictor is infeasible. While two recent fine-tuning methods have been proposed, the
complexity of constructing instruction datasets and tuning still hinders their efficiency. This leads to
Question 1: How can we define a reasonable optimization objective for LLM-enhanced GSL?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Answer 1: In Sec. 3.1, we present a new optimization framework that reformulates the existing GSL
optimization objective (well-trained edge predictor) as a tree-based optimization task (well-defined
language-aware tree sampler) to achieve topology-preserving structural optimization.

Observation 2 (Model Architecture): To obtain a well-trained edge predictor, the existing graph
learner is often coupled with customized instruction datasets or a specific graph learning backbone,
with gradient supervision for model parameter updates in a collaborative manner. The complexity
of this model architecture hinders the adaptability of the improved graph structure to real-world
scenarios (i.e., deployment efficiency, instruction-free, and backbone-free). In the era of LLMs,
LLMs possess remarkable in-context learning capability with textual information, paving the way for
efficiently obtaining improved structure. Based on this and Observation 1, we adopt a tree-oriented
in-context learning approach. However, we must address Question 2: How can LLM be seamlessly
integrated into the model architecture for efficient GSL?

Answer 2: In Sec. 3.2, we establish the decoupled and training-free model design principles by
revisiting existing GSL, emphasizing efficient LLM inference over computation-intensive fine-tuning.

Based on the insights from the previous section, we propose the Large Language and Tree Assistant
(LLaTA) as follows: (1) Topology-aware In-context Construction: We quantify the dynamic com-
plexity of graph topology via structural entropy. By applying a greedy algorithm to minimize this
measure, we construct a hierarchical structural encoding tree that captures topology insights focused
on multi-level communities (i.e., non-leaf nodes). (2) Tree-prompted LLM Inference: The tree serves
as a high-quality prompt, enabling LLMs to perform in-context learning for a deeper understanding
of both topology and text. Specifically, we use LLMs to uncover textual semantic relationships
within the leaf community. Based on these insights, we reallocate leaf dependencies to refine the tree
structure, optimizing it within the context of the existing communities. (3) Leaf-oriented Two-step
Sampling: Finally, we perform LLM-guided leaf selection to identify nodes for edge addition or
removal, achieving training-free GSL. The core idea of LLaTA is to facilitate LLM in-context learning
through topology-aware tree prompts, eliminating the need for costly fine-tuning. In Sec. 3.3, we
provide empirical results demonstrating the effectiveness of this new GSL paradigm.

Our contributions. (1) New Perspective. We systematically review existing GSL methods and
provide empirical investigations, revealing the challenges and opportunities for GSL in the era
of LLMs. (2) Innovative Approach. We reformulate the existing GSL and propose a tree-based
optimization framework with model design principles. Based on this, we introduce LLaTA, which
seamlessly integrates both topology and text insights by tree-driven prompts to facilitate LLM
in-context learning and generate improved graph structure, with complete theoretical support. (3)
SOTA Performance. Extensive experiments demonstrate the superior performance of LLaTA. It
outperforms recent LLM-based methods by 1.3%-2.5% in accuracy while running 2.5h-9.2h faster.

2 PRELIMINARIES

2.1 NOTATIONS AND PROBLEM FORMULATION

Node-wise Text-Attributed Graph. In this paper, we consider a TAG G = (V, E) with |V| = n
nodes, |E| = m edges. It can be described by a symmetrical adjacency matrix A(u, v). Each node
has a feature vector of size f and a one-hot label of size c, the feature and label matrix are represented
as X ∈ Rn×f and Y ∈ Rn×c. Meanwhile, G has node-oriented language descriptions, which are
represented as ti ∈ T for each node and associated with its features xi.

Graph Structure Learning in TAGs. In this paper, we aim to improve the graph structure A⋆

for any downstream task by incorporating original topology and textual information. Given the
output predictions Ŷ from the downstream backbone with improved structure, the general loss is
formulated as Ltask (Ŷ,Y) + αLreg (A⋆,A), where Ltask evaluates specific task performance (e.g.,
node classification), and Lreg establishes the guiding principles for improved structure.

2.2 COMPLEXITY METRICS OF GRAPH TOPOLOGY

Structural Entropy. Motivated by Shannon entropy Shannon (1948), structural entropy (SE) Li &
Pan (2016) is an effective measurement for quantifying the dynamic complexity of graph topology.
By minimizing SE, we can reduce structure uncertainty and capture inherent patterns, thereby
supporting downstream tasks in a robust and interpretable manner. In other words, this approach

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

uncovers meaningful structural patterns and ensures that it aligns more effectively with task-specific
requirements. This has made it a pivotal tool for GNNs, gaining significant attention in recent years.

Structural Encoding Tree. By minimizing SE using the greedy algorithm, we can construct a
structural encoding tree T . This tree reorganizes the original graph and simulates the natural evolution
of the graph through its inherent hierarchical structure. Specifically, its leaf nodes correspond to the
original graph nodes, and non-leaf nodes represent multi-level communities. Low-level communities
capture connected leaf nodes with high homophily, while higher levels reflect unseen structural
patterns. It offers GSL a new perspective. More details can be found in Appendix A-B.

2.3 RELATED WORKS

SE-based Methods. Existing SE-based methods utilize the structural encoding tree for various graph
tasks, such as node clustering Pan et al. (2021), community detection Liu et al. (2019), multi-layer
coarsening Wu et al. (2022a), and embedding dimension estimation Yang et al. (2023). Recent
SEGSL Zou et al. (2023) improves edge connectivity and quality with SE-based encoding tree, but it
still relies on end-to-end tree-based training without incorporating LLMs.

Traditional GSL. These methods can be categorized into metric-based Yu et al. (2020); Zhang &
Zitnik (2020); Li et al. (2022), probabilistic sampling Zheng et al. (2020); Luo et al. (2021); Liu et al.
(2022a), and directly learnable methods Jin et al. (2020); Liu et al. (2022b). Specifically, they refine
graph structure using well-designed measurement (e.g., homophily and connectivity), edge re-weight,
random sampling, or direct topology optimization without textual information.

LLM-based GSL. GraphEdit Guo et al. (2024) improves node connectivity by adding neighbors
through a edge predictor and refines the structure using a fine-tuned LLM. LLM4RGNN Zhang et al.
(2024) leverages a fine-tuned LLM to infer node relevance, which is used to train an edge predictor. In
contrast, LangGSL Su et al. (2024) integrates LLMs with graph structure learning to jointly optimize
node features and graph structure, improving performance across various tasks. In Appendix C.2, we
detail the advantages of LLaTA over SEGSL and LLM-based methods.

3 GSL IN THE ERA OF LLMS

3.1 GSL OPTIMIZATION OBJECTIVES REFORMULATION

As highlighted by Obs.1 in Sec. 1, existing GSL methods aim to train an effective edge predictor as
the graph learner. This typically requires coupling the graph learner with a specific backbone and
jointly optimizing them. Although effective, this objective becomes inefficient for LLMs due to their
large number of parameters. Our investigation shows that current LLM-based GSL approaches often
adopt instruction fine-tuning to mitigate full-parameter training. However, understanding complex
graph structures and crafting appropriate instruction datasets can be labor-intensive, as reflected in
their elaborate workflows Guo et al. (2024); Zhang et al. (2024). To address this, we reformulate
GSL and introduce a tree-based optimization framework that avoids edge predictors, as illustrated
in Fig. 1 (a)-(c). The core idea is to develop a language-aware tree sampler for efficient GSL.
Specifically, (a) Tree Construction first reorganizes the original graph to assist LLMs in understanding
the topology. Based on this, (b) Tree Optimization leverages textual information and LLM to perform
tree optimization. Finally, (c) Improved Structure is generated by a language-aware tree sampler.
Please refer to Sec.3.2 and Sec.4 for implementation of the above framework in LLaTA.

3.2 MODEL ARCHITECTURE REVIEW

As outlined by Obs. 2 in Sec. 1, integrating LLMs in GSL remains a challenge. To establish model
design principles for tree optimization, we revisit existing GSL paradigms. The Coupled Paradigm
tightly integrates the graph learner and backbone for task-specific learning. However, it faces
limitations such as unstable performance due to restricted generalizability and module dependent, and
inflexible deployment as switching tasks or backbones requires retraining. In contrast, the Decoupled
Paradigm trains the graph learner and backbone independently, offering better compatibility with
LLMs for GSL. Although recent LLM-based GSL methods adopt this approach, they still face
challenges such as indirect integration of topology and text, reliance on instruction datasets, and
the complexity of fine-tuning. For a more efficient and reliable approach, we recommend a fully
decoupled paradigm, reducing fine-tuning reliance and focusing on high-quality in-context prompts.
Detailed discussion about the GSL paradigms is provided in the Appendix C.1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Input TAG � = �, ℰ, �����
Structural Entropy Quantify ℎ-level
topological uncertainty in � by random
walk yields entropy measurement ℋ�

Hierarchical Encoding Tree Construct
�-height structural encoding tree � by
minimizing ℋ�via greedy algorithm

1
3

3

3

4
2

2

4 2

1

2

1

2 1
3

1

1

2

1

2

1

Construct a 3-height Structural
Encoding Tree by �, ℰ [Topology]

(b) Tree Optimization

1 3 42

1

3 421

1

21

2

321

1

321

2

1
3
4

2
1

3
4 2
1 1 2

12

Node-wise Text
Description

3
2

1 1

2
13 2

Large Language M
odel

1 3 4

1

1

2

2321

1 1

1 3 22

2 1

2

1

2

3 41

1

2

2

Leaf D
ependency A

llocation [Text]

LLM Inference Allocate node
dependency by text understand
and topology-aware encoding tree

(c) Improved Structure

Leaf Sampling Leaf start and leaf
end, with sampling probabilities
depend on node representations

LLM Encoding Generate final node
representations by infusing tree
knowledge into text-only Embedding

Improved Graph Structure Gener-
ate improved graph structure by
add/delete edges based on sampling

Large Language M
odel

1 3 42

1

3 421

1

21

2 …

…
�� �� �� �� �� �� �� �� �� ��

1
3

3

4

2

4 2

2

1

1

32

Positive

1

2

1

1

214

31

Negative

1

2

1

2 1

4

3

(d) Empirical Evaluation(a) In-context Construction
Dataset: Citeseer GNN Backbone: GCN

GraphEdit
LLM4RGNN
LangGSL

SEGSL
GAUGO
HESGSL

SUBLIME
DHGR
BORF

Traditional GSL LLM-based GSL

GCN

2×
Time

4.5×
Time

1×Time

A
cc

ur
ac

y
(%

)

Accuracy

Over-SmoothingA
cc

ur
ac

y
(%

)

Over-Smoothing
Accuracy

Over-Squashing

A
cc

ur
ac

y
(%

)

Over-Squashing

Downstream task: Node Classification

1 3 4

1

3 4 21

1

21 321

1

1 3 22

22 1 12

1

1
2

Edge
Addition

Edge
Removal

LLaTA
2.5×
Time

GCN LLaTA

LLaTAGCN

Figure 1: The overview of our proposed tree-based GSL optimization pipeline and empirical results.

To achieve this, we leverage the in-context learning ability of LLMs to jointly understand graph
topology and node text for reliable inference. Specifically, (a) Tree Construction: we first build
a structural encoding tree to generate topology-aware in-context prompts, enhancing the LLM’s
understanding of graph structure. Then, (b) Tree Optimization: based on these prompts, we use
LLMs to infer semantic relationships among nodes from their textual descriptions, and reassign
leaf dependencies to optimize the tree structure based on the community structure. The resulting
hierarchical tree integrates both structural and textual information, forming a strong basis for GSL.
Finally, (c) Improved Structure: we apply a leaf-oriented two-step sampling to select the current
node and a candidate set for edge modification, yielding an improved graph for any downstream
scenario. For deeper insights into the leaf-oriented sampler within GSL, please refer to Appendix B.

3.3 EMPIRICAL INVESTIGATION

To demonstrate the effectiveness of our proposal in Sec. 3.1-3.2, we present empirical results in
Fig. 1 (d). Due to space constraints, detailed experimental settings and analysis are provided in
Appendix D. In our reports, over-smoothing (↓) reflects the distinguishability of node embeddings,
while over-squashing (↑) indicates the ability of nodes to perceive distant ones. These metrics are
commonly used in recent GSL studies to quantify the quality of improved structure, as they not only
directly impact downstream accuracy (↑) but also evaluate method robustness. They demonstrate that
LLM-based GSL methods generate higher-quality structures than traditional ones, underscoring the
necessity of LLMs. Furthermore, LLaTA achieves the best performance, validating the effectiveness
of our proposed new GSL paradigm.

4 OUR METHOD

We instantiate the three components outlined in Fig. 1 and propose LLaTA, shown in Fig. 2. The
correspondences are: (a)-(1) Topology-aware In-context, (b)-(2) Tree-prompted LLM Inference and
(c)-(3) Leaf-oriented Two-step Sampling.

4.1 TOPOLOGY-AWARE IN-CONTEXT CONSTRUCTION

Motivation. To address the potential performance decline caused by the absence of fine-tuning and
obtain reliable inference, we enable efficient in-context learning with high-quality prompts. Based
on Sec. 2.2, structural entropy is a promising strategy for constructing these prompts, as it offers an
interpretable theory for capturing both local and global topology insights.

To establish a hierarchical encoding tree that simulates the natural evolution of graph topology, we
constrain the height of this tree to K and minimize K-dimensional SE proposed by Li & Pan (2016);
Zou et al. (2023). The optimization objective definition:

T ⋆=argmin
T
HT (G), HT (G) =

∑
ϕ∈T ,ϕ̸=λ

HT (G, ϕ) = −
∑

ϕ∈T ,ϕ ̸=λ

gϕ
vol(G)

log
vol (ϕ)

vol (ϕ+)
, (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Overview of LLaTA

1
3

3

3

4
2

2

4 2

1

2

1

2
1

3

1

1

2

1

2

1

Node Text
Description

1
3

4

2
1

3
4 2
1 1 2

12

3
2

1 1

2
13 2

Graph
Topology

Structural
Entropy

Minimization

Greedy
Algorithm

Structural
Encoding

Tree Large
Language

Model

Optimized
Tree

Tree
Sampler

Positive Negative

Improved Graph

Structure for

any backbone & any

downstream task

1
3

3

3

4 2

2

4 2

1

2

1

2
1

3

1

1
3

3

3

4
2

2

4 2

1

2

1

2
1

3

1

1

2

1

2

1

Input Graph

෍
∀𝑡∈𝒯,𝑡≠𝜆

 ℋ𝒯 𝒢 = −
𝑔𝑡

vol(𝒱)
log

vol(𝑡)

vol(𝑡+)

Tree Height Constrained
Structural Entropy Minimization

ℋ𝒯 𝒢 → 𝐾-height 𝒯-based
𝐾-dimensional Measurement

Tree Initialization

Node Combining

Node Lifting

I
teratio

n
O

ptim
iz

atio
n

L
L
M

1

3

4

1

Probability
[Softmax]

1

3
4

1

Text-oriented
Propagation &
Aggregation

Prompt 1: Here is a Paper X which belongs to

one of the following 3 Categories: ___, ...
~The description of each Category: ___, ...
~The abstract of Paper X: ___, as well as the
abstracts of Other Papers /*select from same
leaf communtiy with paper X*/ related to its
content : ___, ...

Prompt 2: Based on the abstract of Paper X
and Other Papers, please provide the Prob-
ability that Paper X belongs to each Category.
~ For the Paper X , please focus on the topic,
methodology, keywords and conclusions.
~ For the Other Papers, please focus on the
similar parts with Paper X.
~ Use integers from 0 to 9 to represent the
probabilities. The example format is: [8, 4, 1].

Leaf Logits of Each Label Class

Silhouette Coefficient
Adaptive Clustering

1 3 42

1

3 421

1

21

2

321

1

321

2

1

1
3

41
34

1
1

2

2

1

3

2

2

2
2 3

21
1

1 3 4

1

3 4 21

1

21 321

1

1 3 22

22 1 12

Leaf-Community
Cluster Initialization

…

1 1

…

1 2

…

…

Step1 Topology Uncertainty Sampling

Structural
Entropy

Measurement
[Per-community]

2

Step2 Semantic Similarity Sampling

2

…

Positive
Edge

Addition

Negative
Edge

Removal

2

Greedy
Algorithm

1 1 2 1

Cluster
Discovery

Cluster
Refinement

LLM
Semantic
Encoding

Space

… …

2
3

1 21

1
3

4

2
2

1

3 2

1

Iteration Optimization

…

Structural Encoding Tree

New

1
1

3

2

1

Optimized
Tree

Figure 2: (Left) The overview of LLaTA; (Right) The detailed pipeline of LLaTA, which includes:
topology-aware tree prompts, reliable LLM inference and language-aware tree sampler.

where vol(G) denotes the total degree of G, gϕ is the sum of edges crossing the tree node, vol(ϕ) is the
sum of the degrees of nodes in ϕ, ϕ+ is the parent of ϕ, λ is the root node, T ⋆ denotes the optimized
tree that minimizes its structural entropy HT (G). We employ a greedy algorithm to minimize the
structural entropy HT (G) and construct a hierarchical encoding tree T ⋆ with a predefined height
K. The algorithm starts by initializing a tree of height 1, where each graph node is a leaf under a
common root. It then iteratively combines node pairs to reduce HT (G), followed by node lifting
operations to further optimize the structure. The node lifting process continues until the tree height is
reduced to K. The full algorithm and the operations involved is detailed in Appendix E.1.

Theorem 1 (Topological Information Capturing Properties of Encoding Tree). Given an encoding
tree T and a non-leaf node ϕ ∈ T , the error of topological information εh(ϕ) in community Cϕ is

upper bounded by: gϕ
2m log2

vol(ϕ+)
gϕ

, and εh(ϕ) gradually decreases as the community level descends.

Theorem 2 (Implicit Global Constraints in Low-Level Communities). In a structural encoding tree
T , each low-level community Cℓ captures localized topology but implicitly retains global structure
constraints due to the hierarchical, random-walk-based formulation of structural entropy.

Drawing on Theorems 1 and 2, we infer that low-level communities in the encoding tree provide a
more faithful representation of the graph’s topology, as they simultaneously preserve local connectivity
and global structural constraints. Accordingly, for each leaf node α, we assign its associated low-level
community Cℓα+ as a topological context to enhance the accuracy of downstream inference by the
LLMs. The proof process of Theorems 1 and 2 is provided in Appendix F.1-F.2.

4.2 TREE-PROMPTED LLM INFERENCE

Motivation: Based on the structural encoding tree T , we further integrate node language descriptions
to enable comprehensive in-context learning with LLMs, fostering a better understanding of both
topology and textual information in the original graph. This allows LLMs to make reliable inferences
without fine-tuning. These inferences are then used to optimize the encoding tree, enhancing
homophily within low-level communities and laying a strong foundation for subsequent GSL.

Reception-aware Leaf Augmentation. To construct effective in-context prompts for LLMs, the
quality of node-specific text is essential. Thus, we perform tree-guided text propagation and aggre-
gation within each low-level community Cℓ to achieve leaf augmentation for ϵ-guaranteed t⋆. The
key idea is that nodes in low-level communities typically show high connectivity and homophily,
enabling efficient text sharing. Using this property, we filter and combine relevant texts for each leaf

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

node based on a similarity threshold ϵ, helping to reduce noise. This process is formally defined as:

t⋆α = Concat
({

tα} ∪ {tj | j ∈ Topk

({
wαβ | β ∈ Cℓα+

})
, wαβ ≥ ϵ

})
, (2)

wαβ =
exp (sim(xα, xβ))∑

γ∈Cℓ
α+

exp (sim(xα, xγ))
, sim(xα, xβ) =

∑f -dim
i=1 xi

α · xi
β√∑f -dim

i=1 (xi
α)

2
∑f -dim

i=1 (xi
β)

2
. (3)

Community of Thought. Building on the enhanced leaf nodes, we propose a Community of Thought
(CoT) prompt mechanism, where each node is represented together with its community-aware
descriptions and related neighbors. This design enables LLMs to jointly capture topological and
semantic information, thereby supporting more reliable inference. Through this mechanism, the
LLM can (i) infer the probability distribution over label classes for each node, and (ii) generate high-
quality embeddings within its semantic space. These embeddings are then employed for fine-grained
optimization of the structural encoding tree. In summary, CoT facilitates efficient in-context learning
for LLMs by leveraging the structure-aware encoding tree. Formally, given a target leaf node α, the
LLM inference with CoT can be expressed as:

zα = Ψ(LLM-CoT(Dtask,Dtopo,Dsema, t
⋆
α)) , Ψ : ANSα 7→ RNclass , (4)

yclsα ∼ Categorical(pθ(y | zα)) , pθ(y = i | zα) =
exp(zα,i)∑Nclass

j=1 exp(zα,j)
, i = 1, . . . , Nclass, (5)

where Φ(·) is the extraction function that maps the LLM’s textual answer ANSα into a numerical
logit vector zα ∈ RNclass , yclsα ∈ ∆Nclass−1 denotes the soft label probability simplex for node α. Here,
Dtask specifies the task, while Dtopo and Dsema encode topological and semantic context, respectively.
An illustration of prompt construction is provided in Fig. 2.
Theorem 3 (Error Bound Between Soft labels and True Labels). Given two leaf nodes α and β in T ,
the error between soft label similarity and true label similarity is bounded by:
εy(αβ) = | sim(yclsα , yclsβ)− sim(yα, yβ)| ≤ δ · (1− ϵ), where δ is a constant that depends on the
LLM’s in-context learning ability and yα is the true label of α. (The proof is detailed in Appendix F.3.)

Based on Theorem 3, we have that the similarity of soft labels ycls can approximate the similarity of
ground-truth labels y with controllable bias εy(αβ). This provides robust theoretical guarantee and
support for the subsequent Leaf Dependency Allocation and Semantic Similarity Sampling.

Leaf Dependency Allocation. While the structural encoding tree captures graph topology, effective
GSL also requires incorporating text-driven node attributes. To this end, we optimize low-level
communities by reallocating leaf dependencies under the guidance of LLM-derived soft labels.
Specifically, we (i) initialize clusters from the original structural encoding tree, (ii) reassign minority-
label nodes to align with the dominant class, and (iii) adaptively refine cluster granularity using
the silhouette coefficient to form communities with stronger homophily. This yields the optimized
structural encoding tree T ⋆, which serves as the foundation for tree sampling (see Fig. 2). The
procedure can be compactly expressed as:

P⋆ = argmax
P

{∑
C∈P

max
c

∑
v∈C

yclsv,c + β
∑
C∈P

Sil(C;Ycls)

}
, T ⋆ = UpdateTree(T ,P⋆). (6)

Here, P denotes a partition of the leaf nodes into communities, yclsv,c is the probability of node
v belonging to class c, and Sil(C;Ycls) is the silhouette coefficient evaluating the homophily of
community C. The optimized partition P⋆ is then used to update the structural encoding tree T ,
yielding the refined tree T ⋆. The adaptive clustering algorithm is detailed in Appendix E.2.

4.3 LEAF-ORIENTED TWO-STEP SAMPLING

Motivation. Although structural optimization can be applied to all leaf nodes, we adopt a two-step
sampling technology to balance running efficiency and practical performance. Specifically, we first
identify a limited set of nodes requiring optimization from a topological perspective. Subsequently,
we select a candidate set of nodes closely related to these nodes from a text semantic perspective.
Finally, through edge addition or removal, we facilitate training-free GSL. The detailed algorithm of
the two-step sampling can ben found in Appendix E.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 4 (High-Entropy Nodes Require Supervision). In a structural encoding tree T constructed
via entropy minimization, nodes with higher structural entropyHT (G, α) indicate: higher topological
uncertainty within their local structural context. (The proof is detailed in Appendix F.4.)

We perform two-step sampling under the guidance of the following two probability functions:

Ptopo(α) =
exp(HT (G, α))∑

γ∈Cℓ
α+

exp(HT (G, γ))
, Pα

sema(β) =
exp(sim(yclsβ , yclsα))∑

γ∈Cℓ
α+ ,γ ̸=α

exp(sim(yclsγ , yclsα))
. (7)

Topology Uncertainty Sampling. The core of GSL is to eliminate structural noise and enhance data
utility. Notably, this noise usually appears only in certain substructures rather than the entire graph.
According to Theorem 4, nodes with higher structural entropy are more likely to lie in topologically
uncertain regions and therefore benefit more from structure refinement. Based on Ptopo(α) in Eq. 7,
we prioritize nodes for sampling within each leaf community Cℓ according to their structural entropy,
improving efficiency by focusing on nodes most in need of optimization.

Semantic Similarity Sampling. After selecting a node α, we further determine candidate neighbors
using Pα

sema(β) in Eq. 7, which measures LLM-empowered semantic similarity between soft labels
ycls. A θ-sized candidate set is formed from the remaining leaf nodes, and edges are updated
accordingly: for edge addition, nodes are ranked by descending similarity; for edge removal, by
ascending similarity. This ensures that edge modifications are guided by both semantic consistency
and structural refinement.

5 EXPERIMENT

In this section, we conduct a wide range of experiments and aim to answer: Q1: Effectiveness.
Compared with other state-of-the-art GSL methods, can LLaTA achieve better performance? Q2:
Interpretability. If LLaTA is effective, what contributes to its outstanding performance? Q3:
Robustness. How does LLaTA perform when deployed in real-world complex scenarios? Q4:
Efficiency. How efficient is LLaTA compared to other competitive GSL methods?

5.1 EXPERIMENT SETUP

We evaluate LLaTA and 14 GSL baselines on 11 widely adopted TAG datasets across multiple
domains. The details on these datasets and baselines can be found in Appendix G-H. Due to space
limitations, more experimental setup and hyperparameter details are provided in Appendix I.

5.2 PERFORMANCE COMPARISON

Node Classification. To answer Q1, we first present the node classification performance results
in Table 1, where LLaTA consistently outperforms other baselines. For instance, LLaTA outper-
forms the second-best method by 1.18%, 1.02%, and 1.07% on the Cora, WikiCS, and Instagram
datasets, respectively. Moreover, LLaTA demonstrates significant gains in complex History and
Photo, outperforming the second-best methods by 2.45% and 2.78%. Notably, on the Child dataset,
LLaTA achieves an impressive improvement of 9.87%, highlighting its strong capability in handling
heterophily. These results underscore LLaTA’s effectiveness in achieving superior performance.
Node Clustering. To further answer Q1, we conducted a comprehensive comparison of LLaTA with
GSL methods that have demonstrated strong performance in node classification, extending to node
clustering. As shown in Table 2, LLaTA consistently outperforms competing methods across all
four datasets, significantly enhancing the effectiveness of GNNs in unsupervised tasks. These results
confirm that LLaTA is applicable to diverse tasks, demonstrating its generalization and adaptability.

5.3 ABLATION STUDY

To answer Q2, we conduct an ablation study shown in Table 3 and provide a case study in Appendix J,
which provides a detailed analysis of our method’s pipeline by visualizing the data flow. Meanwhile,
we provide LLM backbone analysis in Appendix K. In the ablation study, we use TO to denote tree
optimization, while TOLLM and SAMLLM denote the tree optimization and sampling processes with
LLM. For the ablation setup, the LLM inference results are replaced by the initial features. Addition-
ally, LLMNE and LLMRW represent LLM inference with topology-aware tree in-context information
derived from 1-hop neighbors and random walk sequences, rather than the tree, respectively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Node classification accuracy(%) on 11 TAG datasets. Highlighted are the top first, second,
and third accuracy. "OOM" denotes out of memory and "OOT" denotes out of time.

Method Cora Citeseer Pubmed WikiCS Instagram Reddit Ratings Child History Photo ArXiv
IDGL 86.81±0.31 75.39±0.27 87.25±0.22 79.78±0.14 63.68±0.09 65.03±0.13 43.29±0.29 45.33±0.26 80.46±0.31 82.33±0.33 OOM
SLAPS 79.89±0.50 73.51±0.64 86.41±0.49 72.50±0.27 60.91±0.13 OOM 40.76±0.23 47.46±0.21 OOM OOM OOM
GAUGO 85.24±0.27 75.24±0.43 87.12±0.38 70.74±0.29 63.34±0.21 OOM 40.19±0.24 47.27±0.19 OOM OOM OOM
HESGSL 85.91±0.45 76.03±0.31 87.17±0.27 73.29±0.22 63.83±0.16 OOM 38.71±0.42 47.81±0.25 OOM OOM OOM
SEGSL 86.90±0.54 76.52±0.20 87.42±0.38 79.68±0.29 65.26±0.21 64.87±0.26 43.20±0.47 51.80±0.39 OOT OOT OOT

ProGNN 84.18±0.23 75.08±0.21 86.89±0.14 71.90±0.16 64.45±0.19 OOM OOM OOM OOM OOM OOM
SUBLIME 84.81±0.33 75.55±0.47 87.63±0.70 78.06±0.38 64.78±0.24 58.82±0.21 39.90±0.17 49.54±0.16 OOM OOM OOM
STABLE 84.21±0.43 75.34±0.60 87.27±0.39 76.93±0.33 65.66±0.18 59.78±0.24 40.55±0.10 50.90±0.09 OOM OOM OOM
CoGSL 86.16±0.45 75.45±0.36 86.52±0.49 OOM OOM OOM OOM OOM OOM OOM OOM
BORF 87.08±0.18 76.43±0.17 87.45±0.11 80.56±0.08 64.07±0.06 63.07±0.09 42.72±0.60 50.92±0.54 82.83±0.14 82.63±0.15 73.08±0.33
DHGR 86.72±0.42 76.18±0.14 86.76±0.33 79.25±0.17 64.26±0.26 66.41±0.29 43.33±0.36 52.41±0.40 82.61±0.16 81.92±0.18 73.47±0.28

GraphEdit 86.26±1.06 76.33±1.12 87.14±0.29 79.92±0.63 64.23±1.01 OOT 42.53±0.97 OOT OOT OOT OOT
LLM4RGNN 86.73±0.73 76.96±0.58 87.37±0.21 OOT 64.85±0.66 OOT OOT OOT OOT OOT OOT
LangGSL 87.65±0.67 76.69±0.73 87.24±1.21 80.26±0.45 66.25±0.39 66.87±0.12 44.01±1.37 49.66±1.05 OOT OOT OOT

LLaTA (Ours) 88.26±0.26 78.21±0.18 88.39±0.23 81.58±0.20 66.73±0.13 67.60±0.19 44.47±0.08 62.28±0.56 85.28±0.24 85.41±0.24 75.39±0.41

Table 2: Comparison of node clustering.
Method Cora Citeseer Pubmed Instagram
SEGSL 67.70±0.17 71.15±0.12 79.05±0.04 64.63±0.01
BORF 67.54±0.16 70.62±0.10 79.46±0.03 64.49±0.02
DHGR 66.85±0.63 70.14±0.21 78.64±0.15 64.52±0.06

LLM4RGNN 67.63±0.11 71.72±0.13 78.90±0.06 OOT
LangGSL 67.82±0.16 71.38±0.14 79.95±0.07 65.03±0.01
LLaTA 68.39±0.14 72.18±0.15 80.25±0.06 65.37±0.02

Table 3: Ablation study result of LLaTA.
Component Pubmed WikiCS Instagram Ratings
w/o TO 85.34±0.35 78.63±0.28 64.06±0.23 42.05±0.14
w/o TOLLM 86.81±0.26 80.03±0.22 64.94±0.15 42.87±0.11
w/o SAMLLM 86.68±0.30 80.23±0.25 64.81±0.18 42.72±0.13
w/ LLMNE 87.04±0.21 80.09±0.20 65.13±0.14 41.96±0.09
w/ LLMRW 87.23±0.21 80.46±0.19 65.57±0.15 42.40±0.11

LLaTA 88.39±0.23 81.58±0.20 66.73±0.13 44.47±0.08

From the ablation study, we obtain the following key conclusions: (1) Removing TO leads to a
significant performance decline, indicating that the tree plays a crucial role in LLM-based GSL.
(2) Replacing LLM inference results with initial node features to guide TO and SAM leads to a
performance decline. This highlights the critical role of LLM-generated contextual information, as
initial node features alone are inadequate for capturing complex semantic relationships. (3) Utilizing
1-hop neighbors and random walk sequences to provide topology-aware in-context information
also results in performance degradation. This highlights the necessity of the SE-based hierarchical
structural encoding tree. Meanwhile, SE provides valuable guidance for node sampling, a capability
that cannot be effectively achieved solely with 1-hop neighbors or random walk sequences.

5.4 ROBUSTNESS ANALYSIS

To answer Q3, we conduct a thorough analysis of the LLaTA’s robustness from the following aspects:
Downstream Backbones. According to Table 4, LLaTA consistently improves performance of the
backbones across all four datasets, with gains ranging from 0.56% to 10.18%. These enhancements
are observed not only on conventional GNN backbones (GCN, GAT, GraphSAGE) but also on
LLM-GNN backbones (GLEM, ENGINE), highlighting the effectiveness and applicability of our
structure optimization across diverse downstream architectures.
Real-world Scenarios. To evaluate the robustness of LLaTA against sparsity and noise scenarios in
practical applications, we randomly remove or add edges to the original graph structure. As illustrated
in Fig. 3, LLaTA demonstrates strong predictive performance in both scenarios. In the sparse setting,
LLaTA achieves optimal performance across most perturbation levels. In the noisy scenario, LLaTA
performs competitively, with only LLM4RGNN surpassing it, as the latter is specifically designed to
handle graph adversarial attack settings. Notably, as the edge addition rate increases, the performance
of LLaTA gradually deteriorates, which can be attributed to the irreversible negative impact of such
perturbations on the tree initialization. Further experimental results are provided in the Appendix L.
Hyperparameter. We conducted a comprehensive analysis of the four key hyperparameters of
LLaTA: K, ϵ, θ, and r. The experimental results for K, θ, and r are presented in Fig. 4, while the
more experimental analysis and the detailed selection guidance of the four hyperparameters are
provided in Appendix M. In Fig. 4 (left), the optimal tree height K differs across datasets, reflecting
varying graph complexity. However, when K reaches 6, performance drops markedly for all datasets,
suggesting that excessive tree depth may cause overfitting or loss of structural information. In Fig. 4
(right), we analyze LLaTA’s sensitivity to the candidate set size θ in semantic similarity sampling
and the two-step sampling frequency r on the History dataset. The results indicate that an r value
between 3 and 10 yields higher accuracy, corresponding to an appropriately improved graph density.
In contrast, LLaTA is less sensitive to the choice of θ, achieving stable performance within the range
of θ ∈ [5, 15]. A smaller θ may result in insufficient semantic similarity sampling, whereas a larger θ
could introduce noise into the candidate set, negatively impacting performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Improvements of LLaTA over different
GNN/LLM-GNN backbones.

Backbone Reddit Child History Photo
LLaTAGCN 67.60±0.19 62.28±0.56 85.28±0.24 85.41±0.24
LLaTAGAT 63.80±0.23 62.65±0.71 85.30±0.29 85.38±0.33
LLaTASAGE 60.73±0.30 63.53±0.99 84.67±0.45 82.20±0.51

LLaTAGLEM 68.37±0.08 64.49±0.35 87.52±0.29 86.99±0.26
LLaTAENGINE 69.57±0.31 64.75±0.52 88.43±0.21 87.59±0.22

Improvement ↑ 1.79∼2.76 ↑ 8.27∼10.18 ↑ 0.56∼3.07 ↑ 1.14∼2.98

Table 5: Time complexity analysis of LLaTA and
other GSL method.

Method Time Complexity

SEGSL O(n2 + nlog2n+ n)

GraphEdit O(ptLLM-r + qd2 + n2 + (m+ nk)tLLM-i)
LLM4RGNN O(ptLLM-r +mtLLM-i + qd2 + n2)
LangGSL O(ntLLM-i + ntLM-e + n2 + nd2 + n2d)

LLaTA O(nlog2n+ n|C|2 + ntLLM-i + n)

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

Edge Removal Rate Edge Addition Rate

GCN SEGSL BORF LLM4RGNN LLaTALangGSL

Cora Cora

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

Edge Removal Rate Edge Addition Rate

GCN SEGSL BORF LLM4RGNN LLaTALangGSL

Citeseeer Citeseeer

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

Edge Removal Rate Edge Addition Rate

GCN SEGSL BORF LLM4RGNN LLaTALangGSL

Pubmed Pubmed

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

Edge Removal Rate Edge Addition Rate

GCN SEGSL BORF LLM4RGNN LLaTAGraphEdit

WikiCS WikiCS

Figure 3: Node classification performance on the Cora and Pubmed dataset under real-world scenarios
(Sparsity [Edge Removal] and Noise [Edge Addition]).

A
cc

ur
ac

y
(%

)

Re
la

ti
ve

 A
cc

ur
ac

y
(%

)
Re

la
ti

ve
 A

cc
ur

ac
y

(%
)

A
cc

ur
ac

y
(%

)

WikiCS
ArXiv

Pubmed
Instagram

Figure 4: Hyperparameter analysis of K, θ and
r. θ and r are analyzed on the History dataset.

In
fe

re
nc

e
Ti

m
e

(h
)

Tr
ai

ni
ng

 T
im

e
(h

)

(a) Times on Cora (b) Times on Citeseer

LLaTA GraphEdit LLM4RGNN LLaTA GraphEdit LLM4RGNN

In
fe

re
nc

e
Ti

m
e

(h
)

Tr
ai

ni
ng

 T
im

e
(h

)

In
fe

re
nc

e
Ti

m
e

(h
)

Tr
ai

ni
ng

 T
im

e
(h

)

(a) Times on Cora (b) Times on Citeseer

LLaTA GraphEdit LLM4RGNN

In
fe

re
nc

e
Ti

m
e

(h
)

Tr
ai

ni
ng

 T
im

e
(h

)

LangGSL

In
fe

re
nc

e
Ti

m
e

(h
)

Tr
ai

ni
ng

 T
im

e
(h

)

(a) Times on Cora (b) Times on Citeseer

LLaTA GraphEdit LLM4RGNN

In
fe

re
nc

e
Ti

m
e

(h
)

Tr
ai

ni
ng

 T
im

e
(h

)

LangGSL

Figure 5: Comparison of training and inference
time for LLM-based GSL method.

5.5 EFFICIENCY ANALYSIS

To answer Q4, we conduct a theoretical analysis of the algorithm time complexity of LLaTA and
empirically demonstrate its efficiency in integrating LLMs with GSL.

In Table 5, we analyze the theoretical time complexity of LLaTA and existing LLM-based GSL
methods. Where q and p is the number of samples for fine-tuning and edge predictor training, d
denotes the feature dimension and tLM-e represents the LM encoding time. tLLM-r and tLLM-i denote
the fine-tuning and inference time of LLM, respectively. The magnitude of tLLM-i should be adaptively
determined according to the specific requirements of different inference tasks. For LLaTA, The time
complexity can be divided into three parts: (a) The complexity for tree construction in Sec. 4.1 is
O(nlog2n), (b) The complexity of tree-prompted LLM inference in Sec. 4.2 is O(n|C|2 + ntLLM-i),
(c) The complexity of the two-step sampling in Sec. 4.3 is O(θn). Complete runtime results and
scalability analysis of LLaTA across all datasets are provided Appendix N.

To practically evaluate the efficiency of LLaTA, we compare its training and inference time with
existing LLM-based GSL methods. The training time includes the fine-tuning process of the LLM
and the training of the edge predictor, while the inference time encompasses LLM inference and other
GSL modules. As shown in Fig. 5, the experimental results demonstrate that our method requires
significantly less inference time, particularly when compared to LLM4RGNN. Furthermore, our
approach eliminates the need for any training during the structure learning phase, resulting in zero
training time. This highlights the efficiency of our method in seamlessly integrating LLMs with GSL.

6 CONCLUSION

In this paper, we first introduce a novel optimization framework for GSL by rethinking its integration
with LLMs, addressing the challenges of incorporating textual information. Subsequently, We propose
LLaTA as an instantiation of this novel framework, which leverages a structural encoding tree to
achieve efficient LLM in-context learning. This enables the LLM to comprehensively understand
both topology and text insights from the original graph, ultimately relying on reliable inference to
obtain improved graph structure. To this end, LLaTA eliminates the need for costly fine-tuning and
achieves SOTA performance. Inspired by the noise experiments, a promising direction is developing
more robust tree optimization algorithms, laying a solid foundation for LLM-empowered GSL.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed LLaTA’s model architecture design, theoretical analysis,
and algorithm pseudocode in Sec. 3.2, Sec. 4, Appendix F and Appendix E. The detailed information
of the dataset used in the experiment can be found in Appendix G, the introduction of the baselines
used in the experiment can be found in Appendix H, and detailed experimental and hyperparameter
settings can be found in the Appendix I and Appendix M. Codes and other necessary materials are
provided in our supplementary materials.

REFERENCES

Wendong Bi, Lun Du, Qiang Fu, Yanlin Wang, Shi Han, and Dongmei Zhang. Make heterophilic
graphs better fit gnn: A graph rewiring approach. IEEE Transactions on Knowledge and Data
Engineering, 2024.

Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural networks:
Better and robust node embeddings. Advances in neural information processing systems, 33:
19314–19326, 2020.

Zhikai Chen, Haitao Mao, Jingzhe Liu, Yu Song, Bingheng Li, Wei Jin, Bahare Fatemi, Anton
Tsitsulin, Bryan Perozzi, Hui Liu, et al. Text-space graph foundation models: Comprehensive
benchmarks and new insights. arXiv preprint arXiv:2406.10727, 2024.

Enyan Dai, Shijie Zhou, Zhimeng Guo, and Suhang Wang. Label-wise graph convolutional network
for heterophilic graphs. In Learning on Graphs Conference, LoG, pp. 26–1. PMLR, 2022.

Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang. Gbk-
gnn: Gated bi-kernel graph neural networks for modeling both homophily and heterophily. In
Proceedings of the ACM Web Conference, WWW, pp. 1550–1558, 2022.

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves structure
learning for graph neural networks. Advances in Neural Information Processing Systems, 34:
22667–22681, 2021.

Zirui Guo, Lianghao Xia, Yanhua Yu, Yuling Wang, Zixuan Yang, Wei Wei, Liang Pang, Tat-Seng
Chua, and Chao Huang. Graphedit: Large language models for graph structure learning. arXiv
preprint arXiv:2402.15183, 2024.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Xuanwen Huang, Kaiqiao Han, Yang Yang, Dezheng Bao, Quanjin Tao, Ziwei Chai, and Qi Zhu. Can
gnn be good adapter for llms? In Proceedings of the ACM on Web Conference 2024, pp. 893–904,
2024.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 66–74, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Angsheng Li and Yicheng Pan. Structural information and dynamical complexity of networks. IEEE
Transactions on Information Theory, 62(6):3290–3339, 2016.

Kuan Li, Yang Liu, Xiang Ao, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Reliable
representations make a stronger defender: Unsupervised structure refinement for robust gnn. In
Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, pp.
925–935, 2022.

Xunkai Li, Zhengyu Wu, Jiayi Wu, Hanwen Cui, Jishuo Jia, Rong-Hua Li, and Guoren Wang. Graph
learning in the era of llms: A survey from the perspective of data, models, and tasks. arXiv preprint
arXiv:2412.12456, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nian Liu, Xiao Wang, Lingfei Wu, Yu Chen, Xiaojie Guo, and Chuan Shi. Compact graph structure
learning via mutual information compression. In Proceedings of the ACM web conference 2022,
pp. 1601–1610, 2022a.

Yiwei Liu, Jiamou Liu, Zijian Zhang, Liehuang Zhu, and Angsheng Li. Rem: From structural entropy
to community structure deception. Advances in Neural Information Processing Systems, 32, 2019.

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards unsupervised
deep graph structure learning. In Proceedings of the ACM Web Conference 2022, pp. 1392–1403,
2022b.

Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang Zhang.
Learning to drop: Robust graph neural network via topological denoising. In Proceedings of the
14th ACM international conference on web search and data mining, pp. 779–787, 2021.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh Nguyen.
Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In International
Conference on Machine Learning, pp. 25956–25979. PMLR, 2023.

Yicheng Pan, Feng Zheng, and Bingchen Fan. An information-theoretic perspective of hierarchical
clustering. arXiv preprint arXiv:2108.06036, 2021.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Yunchong Song, Chenghu Zhou, Xinbing Wang, and Zhouhan Lin. Ordered gnn: Ordering message
passing to deal with heterophily and over-smoothing. International conference on learning
representations, ICLR, 2023.

Guangxin Su, Yifan Zhu, Wenjie Zhang, Hanchen Wang, and Ying Zhang. Bridging large language
models and graph structure learning models for robust representation learning. arXiv preprint
arXiv:2410.12096, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. Structural entropy guided graph hierarchical
pooling. In International conference on machine learning, pp. 24017–24030. PMLR, 2022a.

Lirong Wu, Haitao Lin, Zihan Liu, Zicheng Liu, Yufei Huang, and Stan Z Li. Homophily-enhanced
self-supervision for graph structure learning: Insights and directions. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022b.

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin, Peiyan
Zhang, Weihao Han, Hao Sun, et al. A comprehensive study on text-attributed graphs: Bench-
marking and rethinking. Advances in Neural Information Processing Systems, 36:17238–17264,
2023.

Zhenyu Yang, Ge Zhang, Jia Wu, Jian Yang, Quan Z Sheng, Hao Peng, Angsheng Li, Shan Xue,
and Jianlin Su. Minimum entropy principle guided graph neural networks. In Proceedings of the
sixteenth ACM international conference on web search and data mining, pp. 114–122, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, and Yiming Yang. Graph-revised
convolutional network. In Joint European conference on machine learning and knowledge discovery
in databases, pp. 378–393. Springer, 2020.

Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adversarial
attacks. Advances in neural information processing systems, 33:9263–9275, 2020.

Zhongjian Zhang, Xiao Wang, Huichi Zhou, Yue Yu, Mengmei Zhang, Cheng Yang, and Chuan Shi.
Can large language models improve the adversarial robustness of graph neural networks? arXiv
preprint arXiv:2408.08685, 2024.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning
on large-scale text-attributed graphs via variational inference. arXiv preprint arXiv:2210.14709,
2022.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In Proceedings of the aaai conference on artificial
intelligence, volume 35, pp. 11015–11023, 2021.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458–11468. PMLR, 2020.

Yilun Zheng, Zhuofan Zhang, Ziming Wang, Xiang Li, Sitao Luan, Xiaojiang Peng, and Lihui Chen.
Rethinking structure learning for graph neural networks. arXiv preprint arXiv:2411.07672, 2024.

Zhou Zhiyao, Sheng Zhou, Bochao Mao, Xuanyi Zhou, Jiawei Chen, Qiaoyu Tan, Daochen Zha,
Yan Feng, Chun Chen, and Can Wang. Opengsl: A comprehensive benchmark for graph structure
learning. Advances in Neural Information Processing Systems, 36, 2024.

Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang. Deep graph structure
learning for robust representations: A survey. arXiv preprint arXiv:2103.03036, 14:1–1, 2021.

Yun Zhu, Yaoke Wang, Haizhou Shi, and Siliang Tang. Efficient tuning and inference for large
language models on textual graphs. arXiv preprint arXiv:2401.15569, 2024.

Dongcheng Zou, Hao Peng, Xiang Huang, Renyu Yang, Jianxin Li, Jia Wu, Chunyang Liu, and
Philip S Yu. Se-gsl: A general and effective graph structure learning framework through structural
entropy optimization. In Proceedings of the ACM Web Conference 2023, pp. 499–510, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ENCODING TREE AND STRUCTURAL ENTROPY

In this section, we provide a detailed exposition of the formal definitions of the encoding tree
and related structural entropy. Based on this, we present a visualized toy example in Fig. 6 to
intuitively illustrate the practical significance of leaf nodes, low-level communities, and higher-level
communities, offering readers a clearer conceptual understanding.
Definition 1. Encoding Tree. The language-aware encoding tree T of a node-wise TAG
G = (V, E ,T) satisfies the following properties:

(1) The root node λ has a community Cλ = V , where V represents the set of all vertices in G.

(2) Each non-root node α corresponds to a community Cα ⊂ V . If α is a leaf node, Cα is a singleton
with one vertex from V .

(3) For each leaf node α with Cα = vi, xα = xi is the initial embedding of α, and tα = ti is the raw
text of α.

(4) For each non-root node α, the parent node corresponding to its community which it belongs to is
denoted as α+.

(5) Each non-leaf node α, its i-th child node is denoted as α⟨i⟩, where the children are ordered from
left to right as i increases. If α is not λ, it can be considered as a community.

(6) For each non-leaf node α, assuming it has m children, the communities of its children Cα⟨i⟩

together form the community of Cα, so that Cα =
⋃m

i=1 Cα⟨i⟩ and
⋂m

i=1 Cα⟨i⟩ = ∅. If the height of
the encoding tree is restricted to K, it is called a K-level encoding tree.

Definition 2. Structural Entropy. Based on the above definition, structural entropy can be used to
quantify the dynamic complexity of such hierarchical trees, revealing their inherent topology insights.
For the K-height encoding tree T , the K-dimensional structural entropy of G is defined as:

HK(G) = min
∀T :height(T)≤K

{HT (G)} (8)

HT (G) =
∑

α∈T ,α ̸=λ

HT (G, α) = −
∑

α∈T ,α̸=λ

gα
vol(G)

log2
vol(α)

vol(α+) (9)

where gα represents the sum of the weights of cross-node edges that connect nodes within partition
Cα to nodes outside Cα. vol(α) denotes the sum of the degrees of all nodes within Cα. HT (G, α) is
the structural entropy of node α, representing the K-dimensional structural entropy of α when the
height of T is K. The core of this measurement lies in the observation that, in a highly connected
graph, nodes frequently interact with their neighbors. By employing random walks, these interactions
can be captured, and entropy can be introduced as a measure of topology uncertainty Li & Pan
(2016). Specifically, the one-dimensional structural measurement of G can be quantified using the
stationary distribution of its degrees d and Shannon entropy. This concept can be generalized to
K-dimensional measurements using the structural encoding tree in Definition 1.

B ANALYSIS OF HIERARCHICAL COMMUNITY

In the encoding tree, the communities of leaf nodes are referred to as low-level communities, which
are directly instantiated through the parent nodes of the leaf nodes. In contrast, communities at higher
levels are referred to as higher-level communities. Low-level communities primarily capture local
topological structures, often exhibiting homophily (i.e., connected nodes are more likely to share
similar feature distributions or the same labels.) in TAGs, and represent local clusters or groups
within the graph. These communities typically include strongly interrelated nodes, such as teams or
social groups. Higher-level communities, on the other hand, are more abstract and loosely connected,
formed by aggregating multiple low-level communities. They reveal high-level structural patterns or
inter-community relationships, focus more on capturing global topological structures.

In Fig. 6, we present a toy example illustrating hierarchical semantics in a social network. It
represents student social interactions, where nodes correspond to individual students, and edges
denote relationships between them. Nodes of the same color represent students belonging to the same
class (C-1, C-2, C-3), while red and blue nodes represent students sharing the same major (M-1), and

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

24

4

1

1 2

3

2 3

3

1 1
3

4
2
C-1

1
3

2
4

C-2
M-1

2
3

1

C-3

M-2
1 3 42

1

3 421

2

321

3

1 2

Encoding TreeOriginal Graph Hierarchical Semantics

Low-level

Higher-level

Figure 6: An illustrative example of hierarchical communities (semantics) in a simple social network.

green nodes represent students from a different major (M-2). The structural encoding tree reveals that
low-level communities correspond to tightly connected classmates, while higher-level communities
represent majors encompassing multiple classes. Although connections exist from different classes,
they are less cohesive than those within the same class.

In LLaTA, we focus on low-level communities as they capture local relationships between nodes,
which are critical for specific downstream tasks. Specifically, these communities reveal clearer and
more concrete structural patterns, making them directly applicable to enhance GSL. In contrast,
higher-level communities often represent latent high-level structural patterns, which is unclear and
unintuitive. This makes them not well-suited for direct application in GSL. Furthermore, unlike naive
neighborhood-based clusters, bottom-level communities capture local structural patterns while being
shaped by global structural constraints.

While low-level communities are primarily focused on capturing local topological structure, they are
not simple local neighborhoods. Under the global structural entropy minimization principleLi & Pan
(2016), the construction of the encoding tree ensures that each module, including those at the bottom
level, is formed in a way that minimizes global uncertainty and boundary complexity.

From the random walk perspective, the structural entropyHT (G) quantifies the average uncertainty
of a walker’s position in the network under a hierarchical modular encoding. As shown in Li & Pan
(2016), the structural entropy with respect to a flat partition P can be decomposed as:

HP(G) =
∑
ϕ∈T

vol(ϕ)

vol(G)
·H

({
d
(ϕ)
i

vol(ϕ)

}nϕ

i=1

)
−
∑
ϕ∈T

gϕ
vol(G)

log2
vol(ϕ)

vol(G)
(10)

where vol(ϕ) =
∑

v∈Cϕ
dv is the volume of community Cϕ, d(ϕ)i is the degree of node i in Cϕ and gϕ

is the sum of degrees crossing from Cϕ to other communities.

The first term is the intra-community entropy, describing the uncertainty of locating a node within
its community given the walker is in Cϕ:

H

({
d
(ϕ)
i

vol(ϕ)

})
= −

nϕ∑
i=1

d
(ϕ)
i

vol(ϕ)
log2

d
(ϕ)
i

vol(ϕ)
(11)

The second term measures the inter-community entropy, i.e., the cost of describing which commu-
nity the walker is in. This includes a penalty for community boundary size gϕ, effectively discouraging
communities with weak modularity or noisy boundaries.

Thus, during entropy minimization, a low-level community Cϕ is chosen not merely to cluster
adjacent nodes, but to: - Minimize internal entropy by concentrating walk probability on structurally
coherent nodes; - Minimize boundary cost gϕ, ensuring the community is isolated under random walk
dynamics; - And globally reduce the overall coding length of paths on G. This gives rise to low-level
communities that are both locally tight and globally consistent, satisfying structural objectives
beyond local adjacency. Importantly, since gϕ and vol(ϕ) are both computed relative to vol(G), each
community even at the low-level is evaluated in a global context. Hence, low-level communities are
globally optimized compression units of random walk behavior, fundamentally distinct from simple
neighborhood clusters.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

In summary, we leverage the low-level communities of the encoding tree as the basis for high-quality
topological context construction, and perform leaf-level sampling within them to facilitate graph
structure optimization with both local and global insight.

C EXISTING GSL PARADIGMS AND METHODS

C.1 EXISTING GSL PARADIGMS

The existing graph structure learning models can be broadly classified into two paradigms: Coupled
and Decoupled. Below, we will analyze these two paradigms and discuss which one should be
adopted for new graph structure learning in the era of LLMs.

Coupled Paradigm. The graph learner and backbone are tightly coupled Chen et al. (2020); Fatemi
et al. (2021); Wu et al. (2023) to learn improved structure by specific downstream tasks (e.g.,
node, link, and graph level). Limitations: (1) Unstable Performance: This task- and backbone-
specific architecture limits the generalizability of the improved structure. Moreover, the strong
dependency between the structure learning module and the downstream GNN makes performance
vulnerable to low-quality graphs: if the original graph is poor, the resulting low-quality embeddings
from the GNN directly degrade the effectiveness of the structure learning module. (2) Inflexible
Deployment: Switching the downstream backbone or task requires retraining, which significantly
limits its adaptability and scalability.

Decoupled Paradigm. The graph learner and downstream backbone are trained independently Liu
et al. (2022b;a); Bi et al. (2024), avoiding co-training, thereby enabling better compatibility with
LLMs for GSL. We observe that recent LLM-based GSL methods also tend to adopt this decoupled
paradigm Guo et al. (2024); Zhang et al. (2024). However, these methods exhibit a different form
of coupling (i.e., fine-tuning based on the pre-defined instruction datasets), which leads to the
following issues: (1) They fail to directly and jointly incorporate topology and text, relying instead on
instruction datasets. Moreover, they are highly sensitive to the quality of these datasets. (2) They
rely on complex mechanisms and significant time to construct instruction datasets and fine-tuning.
Therefore, from a model design perspective, we recommend adopting a comprehensive decoupled
paradigm to integrate GSL and LLMs, minimizing reliance on fine-tuning and instead prioritizing
more efficient and reliable inference with high-quality in-context prompts.

C.2 COMPARATIVE ANALYSIS WITH SE-GSL AND LLM-BASED METHODS

In this section, we provide a detailed comparative analysis between our proposed LLaTA and existing
approaches, including SE-GSL Zou et al. (2023), GraphEdit Guo et al. (2024), LLM4RGNN Zhang
et al. (2024), and LangGSL Su et al. (2024). The goal is to highlight the fundamental differences in
design and demonstrate the advantages of our method.

SE-GSL. SE-GSL follows a coupled paradigm, where a GNN is first used to obtain node embeddings,
and the graph is then enhanced based on the similarity between embeddings. An encoding tree is
subsequently constructed on the enhanced graph, followed by sampling to recover the structure. The
updated graph is then fed back into the GNN for retraining, forming an iterative loop. In contrast,
our LLaTA adopts a decoupled paradigm: we directly construct the encoding tree on the original
graph and reformulate graph structure learning as an encoding tree optimization task. By leveraging
the encoding tree to represent multi-level community structures, we enable the LLM to generate
embeddings that integrate textual and structural information, which then guide the refinement of the
tree and update the graph structure, all without retraining or coupling with a specific backbone.

LLM-based Methods. GraphEdit and LLM4RGNN both rely on fine-tuned LLMs to directly infer
edge existence. GraphEdit improves connectivity through an edge predictor and LLM-guided node
relevance evaluation, while LLM4RGNN emphasizes adversarial robustness by detecting malicious
edges and predicting missing ones. However, both approaches suffer from high computational
overhead since edge-level inference scales with the number of edges, which grows rapidly with
graph size. Moreover, their edge-level predictions often ignore higher-order structural constraints,
making the optimized graphs less consistent with the original community structure. LangGSL takes
a different route by jointly optimizing node features and graph structures through an end-to-end
framework where LLMs denoise attributes and GSL models refine connectivity. While effective, this

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

approach remains tied to specific GSL backbones and requires additional training, limiting scalability
and generalization across diverse settings. In contrast, our LLaTA reformulates GSL as an encoding
tree optimization task, where the tree provides a compact, hierarchical representation of community
structures. This allows us to exploit LLMs for generating embeddings that integrate textual semantics
and structural context at the node/community level rather than the edge level. As a result, our method
is significantly more efficient, since the inference complexity depends on the number of nodes instead
of the number of edges. Furthermore, by aligning edge updates with the optimized encoding tree,
LLaTA produces graph structures that are more faithful to the original topology, thereby improving
both robustness and effectiveness in downstream tasks. Unlike prior methods, LLaTA achieves these
benefits in a training-free and backbone-agnostic manner, making it more practical and scalable.

Summary of Advantages. Overall, our LLaTA introduces several innovations that distinguish it
from prior work. (1) It reformulates GSL as a tree optimization task, rather than relying on iterative
retraining or direct edge prediction. (2) It is training-free and decoupled, requiring no fine-tuning
of LLMs or dependency on specific GNN backbones. (3) It achieves higher efficiency by shifting
complexity from the edge level to the node/community level, significantly reducing inference cost.
(4) By refining the encoding tree, it ensures that structural updates respect the original community
divisions, leading to improved robustness, interpretability, and generalization.

D EMPERICAL STUDY

In this section, we demonstrate why our proposed tree-based GSL optimization pipeline outperforms
other well-trained edge predictor-based methods through node classification experiments on the
Citeseer dataset. Specifically, we compare the structure improvement quality of LLaTA against 7
prevalent traditional GSL methods and 3 recent LLM-based GSL methods using 3 metrics: Accuracy,
Over-Smoothing, and Over-Squashing.

Accuracy. An intuitive method to evaluate the quality of the improved graph structure is to directly
compare the downstream performance. In our implementation, we use a 2-layer GCN to perform
node classification, with the resulting accuracy serving as a measure of improved structure.

Over-smoothing and Over-squashing. They are two common challenges in graph learning Nguyen
et al. (2023); Zheng et al. (2024). Specifically, over-smoothing occurs when node features become
indistinguishable as they converge to similar values, while over-squashing arises when nodes fail to
capture information from distant neighbors, particularly in the presence of local bottlenecks in the
graph. Both issues are strongly tied to the quality of the graph structure. To evaluate graph structure
quality in light of these challenges, we employ the following analysis method: To begin with, we train
a GCN on the improved graph to generate node embeddings. Then, we compute over-smoothing and
over-squashing values by randomly sampling several node pairs: (1) Over-smoothing: We randomly
sample 0.2× |V| pairs of heterophilous nodes and compute their average cosine similarity based on
the GCN-generated node embeddings. (2) Over-squashing: We randomly sample 0.2× |V| pairs of
distant homophilous nodes and compute their average cosine similarity using the same embeddings.

The experimental results are presented in Fig.1(d) in Sec.3 of the main text. In our reports, higher
accuracy (↑) reflects the improved performance of the downstream GNN on the enhanced graph.
Lower over-smoothing (↓) values indicate that the improved graph better distinguishes nodes of
different classes, enabling the GNN to learn more discriminative node embeddings. Higher over-
squashing (↑) values suggest that the improved graph establishes more connections between distant
homophilous nodes, enhancing the model’s ability to capture information from long-range node pairs.
According to the experimental results, our proposed decoupled and training-free LLaTA achieves
the best performance across all three metrics, demonstrating the effectiveness of the tree-based GSL
optimization pipeline compared to other well-trained edge predictor-based methods. Furthermore, we
observe that LLM-based GSL methods often outperform traditional GSL approaches, highlighting
the importance of developing effective GSL frameworks with text-processing capabilities in the era
of LLMs for TAGs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E ALGORITHM

E.1 STRUCTURAL ENTROPY MINIMIZATION

To effectively capture graph topology, we introduce a structural entropy minimization algorithm to
construct a structural encoding tree. This tree reorganizes the graph hierarchically, simulating its
topology evolution. Based on this, we generate tree-based high-quality prompts for reliable inference
without fine-tuning. This section presents the proposed algorithm and defines its three fundamental
operations as follows:
Definition 3. Node Initializing. Consider a node-wise TAG G = (V, E) and a root node λ in
structural encoding tree T . Let v be a node in G. Node Initializing NIT (v, α) create node α for v
with Cα = v and α+ = λ.

Definition 4. Node Combining. Consider an encoding tree T for G = (V, E), and let α and β be
two nodes in T that share the same parent γ. Node combining NCT (α, β) can be represented as:
γ ← ϕ+; ϕ← α+; ϕ← β+. Here, ϕ replaces γ as the new parent of α and β.

Definition 5. Node Lifting. Consider an encoding tree T for G = (V, E), and let α, β and γ be
the nodes in T , satisfying α+ = β and β+ = γ. Node Lifting NLT (α, β) can be represented as:
γ ← α+; IF Cβ = ∅, delete(β). Here, α is lifted to the same height as its parent node β, and if β
has no children after the lifting, it is removed from T .

Based on this, the core of our employed greedy algorithm is as follows: (1) Initialization. The
structural encoding tree is initialized with 1 height. Then, a root node is created and each original
graph node is a leaf node. (2) Node Combination. Pairs of nodes in the tree are iteratively combined
to minimizeHT (G) at each step. This process continues until the root node has at most two children.
(3) Node Lifting. Nodes are iteratively lifted to minimizeHT (G) after each operation. This process
is repeated until the tree height is reduced to K, resulting in a final encoding tree T K with height K.

The pseudo-code of the high-dimensional structural entropy minimization algorithm is shown in
Algorithm E.1.

Algorithm 1: Structural Entropy Minimization
1 Input: A graph G, the height of encoding tree K.
2 Output: Encoding tree T K with height K.
3 // Initialize encoding tree T with height 1
4 Create root node λ;
5 for vi ∈ V do
6 NIT (vi, αi) according to Definition. 3;
7 // Node combining
8 while λ has more than 2 children do
9 Select α and β in T , conditioned on α+ = β+ = λ and

argmax
α,β

(
HT (G)−HT

NCT (α,β)(G)
)

;

10 NCT (α, β) according to Definition. 4;
11 // Node lifting
12 while height(T) > K do
13 Select non-root nodes α and β in T , conditioned on α+ = β and

14 argmax
α,β

(
HT (G)−HT

NLT (α,β)(G)
)

;

15 NLT (α, β) according to Definition. 5;

16 Return T K ← T ;

The structural entropy minimization algorithm reorganizes the graph into a hierarchical encoding
tree, minimizing structural entropy to capture topological patterns. Through operations like Node
Initializing, Node Combining, and Node Lifting, the algorithm refines the tree by combining nodes
and adjusting their positions to reduce entropy. The final tree provides high-quality prompts for
reliable inference, enhancing graph structure learning without fine-tuning, and improving efficiency
for various tasks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.2 TREE-BASED ADAPTIVE CLUSTERING

To optimize the structural encoding tree obtained by Appendix E.1 using text-driven node features,
we introduce an adaptive clustering approach based on tree structures and the silhouette coefficient.
This method reallocates leaf nodes according to text-driven insights from LLMs. By maximizing
homophily within communities, we ensure that nodes with similar label classes are effectively
grouped, aligning with structural patterns commonly observed in real-world applications. For graphs
exhibiting heterophily, which are less common but still present, recent studies have demonstrated that
uncovering their intrinsic higher-order homophilous patterns is an effective strategy Dai et al. (2022);
Du et al. (2022); Song et al. (2023).

Specifically, we first initialize the leaf-community clusters using the original structural encoding
tree. Based on this, we perform adaptive clustering by silhouette coefficient. The core intuition is to
maximize homophily within low-level communities, ensuring that nodes within the same community
predominantly belong to the same label class. In other words, (1) it considers the majority label
classes within each low-level community, reallocating minority-class leaf nodes; and (2) it leverages
the silhouette coefficient to adaptively increase clusters, thereby creating new low-level communities
that enhance the tree’s ability to reveal potential homophily patterns.

The following part provides a detailed explanation of this adaptive clustering approach, which
enhances the tree’s capability to uncover potential homophily patterns. The pseudo-code of the
proposed tree-based adaptive clustering algorithm is presented in Algorithm E.2.

Algorithm 2: Tree-based Adaptive Clustering

1 Input: Encoding tree T , soft labels Ycls for each leaf node, hyperparameter s.
2 Output: Optimized encoding tree T ⋆.
3 for Cℓ ∈ T do
4 Let Ycls

Cℓ = {ycls1 , ycls2 , . . . , yclsm } be the soft labels of all nodes in Cℓ;
5 Let k⋆ = 0 and silmax = −1;
6 for 2 < k < m

2 do
7 Perform k-means(Ycls

Cℓ , k) and calculate average silhouette coefficient silk of all clusters;
8 if silk − silmax < s then
9 break;

10 else
11 silmax = silk; k⋆ = k;

12 Perform k-means(Ycls
Cℓ , k⋆) and get a set of clusters {C1, C2, . . . , Ck⋆};

13 for Ci ∈ {C1, C2, . . . , Ck⋆} do
14 if |Ci| > 1 then
15 Construct the leaf nodes in Ci as a new community and set the parent node of the new

community to be the same as the parent node of Cℓ;
16 else
17 Reallocate the leaf node in Ci to other low-level communities based on Ycls;

18 Return T ⋆ ← T ;

In Algorithm E.2, Cℓ is the low-level community, m is the number of nodes in Cℓ, Ci denotes the
i-th cluster in the k-means result, k⋆ is the best number of clusters, silmax is the current maximum
average silhouette coefficient, and s is a hyperparamter and is typically a small value.

Based on the adaptive clustering approach described above, we have optimized the structural en-
coding tree by reallocating leaf nodes using text-driven node features. In experiments, this method
significantly enhanced the homophily within the graph structure. By maximizing homophily within
communities, we effectively grouped nodes with similar label classes, improving the expressiveness
of the graph structure and resulting in higher accuracy and generalization in graph learning tasks.
Specifically, for graphs exhibiting heterophily, we successfully modeled the higher-order homophilic
patterns, demonstrating the method’s robustness in handling complex graph structures.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.3 LEAF-ORIENTED TWO-STEP SAMPLING

To efficiently reconstruct edge connections from the tree, we propose leaf-oriented two-step sampling.
This approach balances running efficiency and practical performance by carefully selecting the subset
of leaf nodes. Specifically, this method consists of two key phases: first, it identifies nodes that
require optimization by analyzing their topological properties within the graph structure; second, it
selects candidate nodes based on semantic similarity to enhance connectivity. By strategically adding
or removing edges between these nodes, the method enables effective, training-free GSL, enhancing
the representation quality without additional model fine-tuning. The pseudo-code of the proposed
leaf-oriented two-step sampling method is detailed in Algorithm E.3.

Algorithm 3: Leaf-oriented Two-step Sampling

1 Input: Original Graph G, Optimized encoding tree T ⋆, soft label Ycls for each leaf node,
hyperparameters θ, r.

2 Output: Optimized graph G⋆.
3 for Cℓ ∈ T ⋆ do
4 for i = 1 to m× r do
5 // Step 1: Sample a leaf node α from Cℓ
6 Let set1 = {α|α ∈ Cℓ};
7 for α ∈ set1 do
8 ComputeHT ⋆

(G, α) according to Eq. (9);
9 Compute Ptopo(α) according to Eq. (7);

10 Sample a leaf node α based on Ptopo(α) from set1;
11 // Step 2: Sample an edge for α
12 Let set2 = {β|β ∈ Cℓ and β ̸= α};
13 if |set2| < θ then
14 // Expand the candidate set
15 Let ϕ be the grandparent of α;
16 for γ ∈ ϕ and γ ̸= α+ do
17 Compute yclsγ = 1

m

∑
α∈γ y

cls
α ;

18 Compute sim(yclsγ , yclsα) according to Eq. (3);

19 for |set2| < θ do
20 Choose low-level community with highest sim and add its children to set2;

21 for β ∈ set2 do
22 Compute sim(yclsβ , yclsα) according to Eq. (3);
23 Compute Pα

sema(β) according to Eq. (7);
24 if |set2| > θ then
25 Keep the top θ nodes in set2 based on the soft label similarity with α.
26 For edge addition, sample a leaf node β from set2 based on Pα

sema(β) ranked in
descending order;

27 For edge removal, sample a leaf node β from set2 based on Pα
sema(β) ranked in

ascending order;
28 Add edge to or remove edge from graph G;

29 Return G⋆ ← G;

The leaf-oriented two-step sampling method optimizes edge connections by first identifying nodes
that require optimization based on their topological properties, ensuring that critical parts of the graph
are prioritized for enhancement. In the second phase, candidate nodes are selected using semantic
similarity to improve connectivity, focusing on nodes that are contextually relevant. This approach
strikes a balance between computational efficiency and practical performance, enabling effective
graph structure learning without the need for training. By incorporating both topological and semantic
insights, the method refines the graph’s structure, improving its representation quality while ensuring
robustness, adaptability, and minimal computational overhead for various graph tasks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F THEOREM PROOF

In this section, we provide proofs for all theorems stated in the main text.

F.1 TOPOLOGICAL INFORMATION CAPTURING CAPABILITY OF THE ENCODING TREE

Theorem 1 (Topological Information Capturing Properties of Encoding Tree). Given an encoding
tree T and a non-leaf node ϕ ∈ T , the error of topological information εh(ϕ) in community Cϕ is

upper bounded by: gϕ
2m log2

vol(ϕ+)
gϕ

, and εh(ϕ) gradually decreases as the community level descends.

Proof. We partition the proof into two components: (i) derivation of the upper bound for topological
information error, and (ii) demonstration of error variation across community hierarchy levels.

Part 1: Upper Bound on Topological Information Error

Suppose a network G = (V, E) is given, along with a encoding tree T of height K. Let ϕ be an
non-leaf node (community) in T located at level k, and denote the corresponding community as
Vϕ ⊆ V . Let Gϕ = (Vϕ, Eϕ) be the actual subgraph induced by the community Cϕ. Then, the
topological information error εh(ϕ) is defined as the absolute difference between the true structural
entropy of the subgraph Gϕ and the approximate structural entropy derived from the encoding tree
representation:

εh(ϕ) =
∣∣H(Gϕ)−HT (G, ϕ)

∣∣ , (12)

where H(Gϕ) denotes the optimal value of structural entropy for the true subgraph Gϕ, HT (G, ϕ)
denotes the local structural entropy corresponding to community ϕ as defined by the encoding tree T .

First, since the true structural entropyH(Gϕ) is defined based on the optimal internal sub-community
partitioning, it must be less than or equal to the entropy under a completely random structure. In the
worst case, if the internal structure of community ϕ is entirely random, the upper bound of its true
structural entropy is:

H(Gϕ) ≤ −
gϕ
2m

log2
gϕ

vol(ϕ+)
(13)

The intuition here is that when the internal structure of community ϕ is entirely random, the uncer-
tainty of a random walk entering community ϕ reaches its maximum, resulting in the highest possible
entropy.

On the other hand, the structural entropy defined by the encoding tree T is given by:

HT (G;ϕ) = −
gϕ
2m

log2
vol(ϕ)

vol(ϕ+)
(14)

Now, we consider the worst-case scenario, that is, the difference between the maximally random
structure (with highest entropy) and the simplified approximation provided by the tree (with smaller
entropy). Substituting the expressions in Eq. 12 according to Eq. 13 and Eq. 14, we obtain:

εh(ϕ) = |H(Gϕ)−HT (G;ϕ)| ≤
∣∣∣∣− gϕ

2m
log2

gϕ
vol(ϕ+)

+
gϕ
2m

log2
vol(ϕ)

vol(ϕ+)

∣∣∣∣ (15)

Simplifying the expression, we get:

εh(ϕ) ≤ gϕ
2m

∣∣∣∣log2 vol(ϕ)

gϕ

∣∣∣∣ (16)

Since for any community ϕ, it always holds that vol(ϕ) ≥ gϕ (as the volume of a community must
be greater than or equal to the number of its external edges), we can further loosen the bound by
replacing vol(ϕ) with the larger and more general parent volume vol(ϕ+) ≥ vol(ϕ), yielding a
broader upper bound:

εh(ϕ) ≤ gϕ
2m

log2
vol(ϕ+)

gϕ
(17)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

This forms the desired expression for the upper bound of the topological information error in the
Theorem. 1.

Part 2: Error Decay Across Hierarchical Community Levels

In this part, we prove that the topological information error becomes progressively smaller as we
descend into lower layers (finer communities) of the partitioning tree.

Lemma 1 (Locality and Additivity of Structural EntropyLi & Pan (2016)). Let G = (V, E) be a
network and let T be a hierarchical encoding tree of G. For any non-leaf node ϕ ∈ T with children
β1, . . . , βc, the structural entropy of the subgraph Gϕ induced by community Cϕ satisfies:

H(Gϕ) =
c∑

i=1

H(Gβi) +Hcross(ϕ), Hcross(ϕ) = −
c∑

i=1

gβi

2m
log2

vol(βi)

vol(ϕ)
(18)

whereHcross(ϕ) is the cross-community contribution that accounts for the uncertainty incurred when
identifying sub-communities within Cϕ.

Let ϕ be a community at height k in the tree T , and let its children be β1, . . . , βc. In Eq. 12, we
define the topological information error as: εh(ϕ) = |H(Gϕ)−HT (G, ϕ)|.
Expand the first term of the error using Lemma 1:

εh(ϕ) =

∣∣∣∣∣
c∑

i=1

H(Gβi
) +Hcross(ϕ)−HT (G, ϕ)

∣∣∣∣∣ . (19)

Applying the triangle inequality, we obtain an upper bound:

εh(ϕ) ≤

∣∣∣∣∣
c∑

i=1

(
H(Gβi

)−HT (G;βi)
)∣∣∣∣∣+Hcross(ϕ). (20)

To rigorously demonstrate that the error decreases as we move to lower levels (smaller k), we analyze
the two terms contributing to the error:

1. Local structure approximation error |
∑c

i=1

(
H(Gβi)−HT (G;βi)

)
|:

For each child community βi, the local approximation error satisfies the following upper
bound (as established in part 1):∣∣H(Gβi

)−HT (G;βi)
∣∣ ≤ gβi

2m

∣∣∣∣log2 vol(βi)

gβi

∣∣∣∣ . (21)

As we move to lower-level communities (i.e., smaller k), both vol(βi) and gβi decrease due
to finer partitions and reduced external connectivity. Thus, each term on the right-hand side
of Eq. 21 becomes smaller, and so does their sum.

2. Cross-community entropy termHcross(ϕ):

Recall that the cross-community entropy term in Eq. 18, as we go deeper in the tree (i.e.,
lower communities), both the volumes and gβi shrink, making this term smaller. Hence,
Hcross(ϕ) also decreases as the community level descends.

Combining the above, since both |
∑c

i=1

(
H(Gβi

)−HT (G;βi)
)
| andHcross(ϕ) tend to decrease as

we move to lower-level communities in the encoding tree (i.e., toward finer communities), the overall
error εh(ϕ) also tends to decrease with depth. This supports the claim that topological information
error decays along the hierarchical levels.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F.2 GLOBAL INFORMATION CONSTRAINTS OF THE LOW-LEVEL COMMUNITIES

Theorem 2 (Implicit Global Constraints in Low-Level Communities). In a structural encoding tree
T , each low-level community Cl captures localized topology but implicitly retains global structure
constraints due to the hierarchical, random-walk-based formulation of structural entropy.

Proof. We partition the proof into two components: (i) low-level communities capture localized
topology, and (ii) low-level communities implicitly retains global structure constraints.

Part 1: Low-level Communities Capture Localized Topology

From the definition perspective, the structural entropy of a community Cϕ ∈ T is defined as:

HT (G,ϕ) = − gϕ
2m

log2

(
vol(ϕ)

vol(ϕ+)

)
, (22)

where gϕ is the sum of the cross-node edges that connect nodes within ϕ to nodes outside ϕ,
vol(ϕ) =

∑
v∈ϕ deg(v) is the volume of ϕ, and ϕ+ is the parent of ϕ in the tree. This expression

depends only on the volume and cut-size between ϕ and ϕ+, rather than direct interaction with distant
or global components of the graph.

Moreover, since the low-level community Cℓϕ typically satisfy:

vol(ϕ)≪ vol(ϕ+), and gϕ ≪ gλ = 2m, (23)

the entropy term of the low-level community Cℓϕ becomes more localized Li & Pan (2016).

From the algorithmic perspective, the construction of T through structural entropy minimization
encourages the formation of tightly connected, sparsely separated communities. As a result, commu-
nities near the leaves tend to consist of closely connected nodes with minimal external edges.

Therefore, low-level communities, both by definition and by optimization, are structurally biased
toward encoding localized topological patterns.

Part 2: Low-level Communities Implicitly Retains Global Structure Constraints

We consider a graph G = (V, E) and its stationary random walk process, where transition probabilities
are defined by:

Puv =
A(u, v)

deg(u)
, and πu =

deg(u)

2m
, (24)

where A is adjacency matrix of G and deg is the degree of the node.

Let the encoding tree T be constructed by minimizing the structural entropy, which reflects the
minimum cost of encoding a random walk trajectory under a hierarchical community structure.

The structural entropy is defined as:

HT (G) =
∑

ϕ∈T ,ϕ̸=λ

HT (G, ϕ) =
∑

ϕ∈T , ϕ ̸=λ

− gϕ
2m

log2

(
vol(ϕ)

vol(ϕ+)

)
. (25)

Now let ϕ(k) = λ, ϕ(k−1), . . . , ϕ(1) = ϕ be the path in the tree from the root to a low-level community
Cℓϕ. Then the random walk conditional entry probability into ϕ given hierarchy is:

P (enter ϕ) =
k−1∏
i=1

vol(ϕ(i)))

vol(ϕ(i+1))
. (26)

This encodes the fact that the deeper a community lies, the more global decisions influence its
encoding, each ratio vol(ϕ(i)))

vol(ϕ(i+1))
reflects how the random walk transitions between communities at

each level.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Thus, the total information needed to encode the walk into ϕ can be defined as the path entropy:

HT
path(ϕ) = −

gϕ
2m

log2

(
vol(ϕ)

vol(ϕ(2))

)
+ · · ·+−

gϕ(1)

2m
log2

(
vol(ϕ(k−1))

vol(λ)

)
(27)

This quantity corresponds to a subset of the full structural entropy Hpath
T (α) ⊆ HT (G), indicating

that it reflects only the contribution of a specific path in the tree, while the full entropy aggregates
over all nodes in T .

From the perspective of path entropy, although only HT (G, ϕ) contributes directly to the total
structural entropy in Eq. 25, the encoding of a random walk into ϕ must traverse the full ancestral
path λ→ ϕ(k−1) → · · · → ϕ. Thus, the effective information cost of encoding a transition into ϕ is
represented byHT

path(ϕ), which includes contributions from all higher-level communities.

Moreover, since T is obtained by minimizing the total structural entropyHT (G), theHT
path(ϕ) is also

simultaneously subject to the minimization constraint, which means the division and refinement of
communities—including low-level ones—are jointly optimized under global constraints. In particular,
each local partition is chosen not independently, but in the context of its position within the tree, as
reflected in equation Eq. 27.

Therefore, Even though the structure of ϕ is small and local, its encoding depends on the full sequence
of volume and boundary terms from all ancestors ϕ(i), which are determined by global topology.
Hence, low-level communities capture local topological patterns while implicitly preserving global
structural constraints.

F.3 THE ERROR BOUND BETWEEN SOFT LABELS AND TRUE LABELS

Theorem 3 (Error Bound Between Soft labels and True Labels). Given two leaf nodes α and β in T ,
the error between soft label similarity and true label similarity is bounded by:

εy(αβ) = | sim(yclsα , yclsβ)− sim(yα, yβ)| ≤ δ · (1− ϵ), where δ is a constant that depends on the
LLM’s in-context learning ability, yα is the true label of α and ϵ is the text similarity threshold.

Proof. The proof leverages three key lemmas derived from the Transformer architecture in Vaswani
et al. (2017).

Lemma 2 (Attention-Induced Local Homophily). Let t⋆α be the aggregated text of node α using
threshold ϵ (Eq. 2). The raw soft label error ∆raw

α = |yclsα − yα| satisfies:

∆raw
α ≤ δ1 · (1− ϵ), (28)

where δ1 depends on the attention weight distribution, and ∆raw
α is the raw prediction error before

residual connections and layer normalization, directly generated by the output of the attention
mechanism.

Proof. From the scaled dot-product attention mechanism:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V, (29)

the threshold ϵ filters neighbors with wαβ ≥ ϵ (Eq. 2 and Eq. 3). The multi-head attention reinforces
local semantic consistency across subspaces, bounding the error proportionally to (1− ϵ) Vaswani
et al. (2017).

Lemma 3 (Stability via Residual Connections). The residual connections and layer normalization
compress the error:

∆α ≤ δ2 ·∆raw
α , (30)

where δ2 < 1 is a normalization gain factor.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. The residual structure LayerNorm(x+ Sublayer(x)) suppresses feature drift, with dmodel as
the hidden dimension Vaswani et al. (2017):

∥∆α∥ ≤
|∆raw

α |√
dmodel

≤ δ2 · |∆raw
α |, (31)

where dmodel is the model dimension. The normalization operation stabilizes training by scaling the
gradient direction, reducing the magnitude of error propagation.

Lemma 4 (Representation Capacity). The hidden dimension dmodel governs semantic precision:

δ1 ∝ d−0.5
model. (32)

Proof. The learning rate design lrate = d−0.5
model ·min(·) indicates that increasing the model dimension-

ality necessitates a reduction in learning rate to preserve training stability. A larger dmodel enhances
the model’s feature representation capacity, while the error decay rate per unit dimension scales
proportionally with d−0.5

model Vaswani et al. (2017).

Recall the definition of cosine similarity, the similarity between two vectors is defined as:

sim(xi, xj) =
xi · xj

∥xi∥∥xj∥
(33)

Substituting this into our error analysis yields:

εy(αβ) =
∣∣sim(yclsα , yclsβ)− sim(yα, yβ)

∣∣ = ∣∣∣∣∣ yclsα · yclsβ

∥yclsα ∥∥yclsβ ∥
− yα · yβ

∣∣∣∣∣ . (34)

Since the ground truth labels are one-hot encoded, satisfying ∥yα∥ = ∥yβ∥ = 1, the similarity can be
simplified as: yα · yβ .

Through error decomposition and application of the triangle inequality, we obtain:

εy(αβ) ≤

∣∣∣∣∣ yclsα · yclsβ

∥yclsα ∥∥yclsβ ∥
− yclsα · yβ

∣∣∣∣∣︸ ︷︷ ︸
Term 1

+
∣∣yclsα · yβ − yα · yβ

∣∣︸ ︷︷ ︸
Term 2

. (35)

Bounding Term 2: Since yβ is one-hot (non-zero at index j):

Term 2 =
∣∣(yclsα − yα) · yβ

∣∣ ≤ ∆α · |yβ | ≤ δ1δ2(1− ϵ). (By Lemma 2& 3.) (36)

Lemma 5 (Normalization Perturbation). For any vectors u, v ∈ Rd where v is normalized (∥v∥ = 1)
and ∥u− v∥ ≤ η, the following inequality holds for their normalized difference:∥∥∥∥ u

∥u∥
− v

∥∥∥∥ ≤ 2η

∥u∥
≤ 2η

where the second inequality follows from ∥u∥ ≥ 1− η (by the reverse triangle inequality).

Bounding Term 1: Using the vector normalization Lemma 5 with u = yclsβ and v = yβ . if
∥yclsβ − yβ∥ ≤ δ1δ2(1− ϵ) = η, then:

Term 1 ≤ ∥yclsα ∥ ·

∥∥∥∥∥ yclsβ

∥yclsβ ∥
− yβ

∥∥∥∥∥ ≤ 2δ1δ2(1− ϵ). (37)

Final Bound: Combining both terms and incorporating Lemma 4:

εy(αβ) ≤ 3δ1δ2(1− ϵ) ≤ δ · (1− ϵ), (38)

where δ = 3δ1δ2 · d−0.5
model depends on the in-context learning ability of the LLMs.

In summary, we have proven that the similarity of soft labels ycls generated through our Community
of Thought mechanism can approximate the similarity of ground-truth labels y with controllable
bias εy , where this bias decreases as:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• Local homophily threshold ϵ increases (i.e., tighter neighbor selection),

• and LLM in-context learning capacity δ improves (e.g., via larger model size or better
training).

F.4 STRUCTURAL ENTROPY AND NODE TOPOLOGICAL UNCERTAINTY

Theorem 4 (High-Entropy Nodes Require Supervision). In a structural encoding tree T constructed
via entropy minimization, nodes with higher structural entropyHT (G, α) indicate: higher topological
uncertainty within their local structural context.

Proof. We begin by recalling the definition of structural entropy for a node ϕ ∈ T , derived from the
minimum encoding length of a random walk process:

HT (G, ϕ) = − gϕ
2m

log2

(
vol(ϕ)

vol(ϕ+)

)
, (39)

where gϕ is the sum of the cross-node edges that connect nodes within ϕ to nodes outside ϕ,
vol(ϕ) =

∑
v∈ϕ deg(v) is the volume of ϕ, and ϕ+ is the parent of ϕ in the tree.

Structural entropy encodes the uncertainty of random walk transitions. In the structural entropy
formulation, the graph is viewed as a Markov chain, and each term HT (G, ϕ) represents the expected
number of bits needed to encode a random walker’s transition from ϕ+ into ϕ along a hierarchical
path in the encoding tree.

Let us consider the conditional transition probability from ϕ+ to ϕ, denoted as:

P (ϕ | ϕ+) =
vol(ϕ)

vol(ϕ+)
. (40)

The negative log of this transition probability reflects the information content (surprisal) of the walk
entering ϕ. When vol(ϕ) is close to vol(ϕ+), i.e., P (ϕ | ϕ+) → 1, the encoding cost (entropy)
becomes small. But when this ratio becomes ambiguous (e.g., many similar-volume subregions),
entropy increases.

Moreover, the term gϕ acts as a weight reflecting how often the walker exits or enters ϕ. A larger gϕ
means more random walks intersect the boundary of ϕ, suggesting weaker internal cohesion and a
blurrier community boundary.

From the above, the entropy termHT (G, ϕ) grows when:

• vol(ϕ)
vol(ϕ+) ≈ 0.5, i.e., the walker has nearly equal chance to enter multiple subcommunities;

• gϕ is large, i.e., there are many transitions across community boundaries.

In such scenarios, the community ϕ has:

• a high encoding cost (random walk description length is large),

• and a weak structural separability, because the walker often crosses between α and other
regions.

Thus, a node v ∈ Cϕ inherits this high entropyHT (G, ϕ), reflecting the fact that its structural position
within the graph is more ambiguous. It is harder to determine whether it coherently belongs to a
community based solely on graph structure, and hence it exhibits higher topological uncertainty.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 6: Details of experimental datasets.

Dataset # Nodes # Edges # Classes # Train/Val/Test # Homophily Text Information Domains

Cora 2,708 10,556 7 60/20/20 0.81 Title and Abstract of Paper Citation
Citeseer 3,186 8,450 6 60/20/20 0.74 Title and Abstract of Paper Citation
Pubmed 19,717 88,648 3 60/20/20 0.80 Title and Abstract of Paper Citation
ArXiv 169343 2315598 40 60/20/20 0.66 Title and Abstract of Paper Citation

WikiCS 11,701 431,726 10 5/22.5/50 0.65 Title and Abstract of Article Knowledge

Instagram 11,339 144,010 2 10/10/90 0.59 Personal Profile of User Social
Reddit 33,434 269,442 2 10/10/90 0.59 Last 3 Posts of User Social

Ratings 24,492 186,100 5 25/25/50 0.38 Name of Product E-commerce
Child 23,327 240,604 12 60/20/20 0.42 Name and Description of Book E-commerce
History 41,551 503,180 12 60/20/20 0.64 Name and Description of Book E-commerce
Photo 48,362 873,793 12 60/20/20 0.74 User Review of Product E-commerce

G DATASETS

We evaluate LLaTA and baselines on 11 widely adopted TAG datasets across multiple domains,
including 4 citation networks Chen et al. (2024), 1 knowledge network Chen et al. (2024), 2 social
networks Huang et al. (2024), and 4 e-commerce networks Yan et al. (2023). Among these, the
Ratings and Child exhibit heterophily, while the remaining datasets follow homophily. The details
of these TAG datasets are shown in Table 6. The description of the datasets for each domain is as
follows:

• Citation Networks Chen et al. (2024). Cora, Citeseer, Pubmed and ArXiv are benchmark
datasets of citation networks. Nodes represent paper, and edges represent citation relation-
ships. The features are obtained through pre-trained language model, and labels denote their
academic fields.

• Knowledge Networks Chen et al. (2024); Mernyei & Cangea (2020). WikiCS is a bench-
mark dataset of knowledge networks. Nodes represent articles in the field of computer
science, and edges represent hyperlinks between these articles. The features are obtained
through pre-trained language model, and labels denote different branches of computer
science.

• Social Networks Huang et al. (2024). Instagram and Reddit are benchmark datasets of
social netowrks. Nodes represent users, and edges represent social relationhships. The
features are obtained through pre-trained language model, and labels correspond to different
types of users.

• E-commerce Networks Yan et al. (2023). Ratings, Child, History and Photo are bench-
mark datasets of e-commerce networks. Nodes represent products, and edges represent
relationships such as co-purchase or co-view. The features are obtained through pre-trained
language model, and labels correspond to product categories or user ratings.

H BASELINES

In this section, we provide a brief description for each baseline used in the experiments. It includes 5
coupled GSL methods Chen et al. (2020); Fatemi et al. (2021); Zhao et al. (2021); Wu et al. (2023);
Zou et al. (2023), 6 decoupled GSL methods Jin et al. (2020); Liu et al. (2022b); Li et al. (2022);
Liu et al. (2022a); Nguyen et al. (2023); Bi et al. (2024), and 3 LLM-based GSL methodsGuo et al.
(2024); Zhang et al. (2024). Based on this, we apply prevalent GNN (GCN Kipf & Welling (2016),
GAT Veličković et al. (2017), GraphSAGE Hamilton et al. (2017)) and mainstream LLM-GNN
(GLEM Zhao et al. (2022), ENGINE Zhu et al. (2024)) as the downstream backbone.

All baselines are briefly described as follows:

• GCN Kipf & Welling (2016). GCN is among the most widely adopted GNN architectures,
as it introduces a first-order approximation of a localized spectral filter for graph-structured
data.

• GAT Veličković et al. (2017). GAT incorporates a self-attention mechanism to compute
importance scores for different neighboring nodes, enabling more effective aggregation of
neighborhood information.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

• GraphSAGE Hamilton et al. (2017). GraphSAGE [14] is an inductive framework that gen-
erates node embeddings by leveraging node features and using a sampling-based approach
to aggregate information from the local neighborhood, enabling scalable representation
learning.

• GLEM Zhao et al. (2022). GLEM proposes a scalable framework that integrates LLMs
with GNNs through a variational EM algorithm. By alternating between optimizing LMs for
textual semantics and GNNs for structural information, GLEM enables mutual distillation
without costly end-to-end training, achieving promising performance on large-scale text-
attributed graphs.

• ENGINE Zhu et al. (2024). ENGINE introduces an LLM-enhanced graph learning frame-
work that combines LLMs with GNNs through a mutual integration mechanism. It leverages
LLMs to enrich node representations with semantic knowledge while using GNNs to capture
structural dependencies, and aligns the two via iterative refinement. This design improves
both effectiveness and robustness on text-attributed graphs, showing promising performance
across multiple benchmarks.

• IDGL Chen et al. (2020). IDGL is a framework that learns a refined graph structure by
leveraging cosine similarity of features and top-k threshold refinement, combining it with
the original graph for joint optimization.

• SLAPS Fatemi et al. (2021). SLAPS is a graph learning framework that uses MLP-based
embeddings and kNN to build the graph. The adjacency matrix is symmetrized and nor-
malized, and a self-supervised denoising autoencoder is used to update both the graph and
model parameters.

• GAUGO Zhao et al. (2021). GAUGO uses a graph auto-encoder to learn a new graph
structure. It predicts edges based on node features, refines the edge probabilities with
Gumbel sampling, and fuses the generated graph with the original one before training. Both
the generated graph and model parameters are updated during optimization.

• HESGSL Wu et al. (2023). HESGSL uses hierarchical embeddings to capture both local
and global graph structures. It employs self-supervised learning with clustering and attention
mechanisms to enhance feature representation and performance on downstream tasks.

• SEGSL Zou et al. (2023). SEGSL constructs a graph by fusing a kNN graph with the original
graph, leveraging structural entropy and encoding tree to refine edges and hierarchically
extract community structures. The graph and model parameters are optimized jointly during
training.

• ProGNN Jin et al. (2020). ProGNN refines graph structures by enforcing low-rank, sparsity,
and similarity constraints, jointly optimizing the learned graph and model parameters without
predefined GSL bases or graph fusion.

• SUBLIME Liu et al. (2022b). SUBLIME constructs GSL graphs using an anchor view
(original graph) and a learner view. The learn view is initialized with kNN and optimized
with parameterized or non-parameterized methods, followed by post-processing steps like
top-k filtering and symmetrization. Contrastive learning between the two views refines the
graph for downstream tasks.

• STABLE Li et al. (2022). STABLE employs Graph Contrastive Learning (GCL) to generate
robust graphs by perturbing node similarities and edges. Positive samples use slight pertur-
bations, while negative samples use shuffled features. The graph refinement step applies a
top-k filtering strategy on the node similarity matrix to retain helpful edges while removing
adversarial ones.

• CoGSL Liu et al. (2022a). CoGSL constructs GSL graphs by combining the original graph
with additional views, such as adjacency or kNN graphs. Node embeddings are generated
via GCNs, and connection probabilities are estimated and refined using InfoNCE loss to
maximize mutual information. The final graph is obtained through early fusion and updated
with model parameters.

• BORF Nguyen et al. (2023). BORF is a curvature-based graph rewiring approach aimed
at addressing over-smoothing and over-squashing in GNNs. It leverages Ollivier-Ricci
curvature to identify edges with extreme curvature values—positive for over-smoothing and

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

negative for over-squashing. This process preserves the graph’s topology while improving
message-passing efficiency and enhancing GNN performance on downstream tasks.

• DHGR Bi et al. (2024). DHGR enhances GNN performance on heterophily graphs by
preprocessing the graph structure through rewiring. It systematically adds homophilic edges
and removes heterophilic ones based on label and feature similarities, improving node
classification accuracy, particularly for heterophily settings.

• GraphEdit Guo et al. (2024). GraphEdit refines graph structures by integrating LLMs
with a lightweight edge predictor to enhance graph representation learning. By leverag-
ing instruction-tuning and training edge predictor, GraphEdit effectively denoises noisy
connections and identifies implicit relationships among nodes.

• LLM4RGNN Zhang et al. (2024). LLM4RGNN is a framework that enhances the adversar-
ial robustness of GNNs using LLMs. It detects malicious edges and restores critical ones
through a purification strategy, leveraging fine-tuned LLMs for edge prediction and correc-
tion. This approach effectively mitigates topology attacks, improving GNN performance
across attack scenarios.

• LangGSL Su et al. (2024). LangGSL presents a novel framework that integrates LLMs
with GSL in an end-to-end manner. It simultaneously optimizes node features and graph
connectivity by using LLMs to denoise textual attributes while GSL modules refine structural
relations. This joint design enhances both semantic understanding and topological quality,
leading to promising performance across diverse text-attributed graph datasets.

I EXPERIMENTAL SETUP

For LLaTA and all baselines, we uniformly adopt 2-layer GCN as encoder, the hidden dimensional is
set to 64, and dropout (rate=0.5) is applied between GCN layers. The GNN encoder is optimized for
200 epochs using the Adam optimizer, with an initial learning rate of 0.01 and weight decay of 5e-4.
We use early stopping with a patience of 20 epochs on the validation loss. For LLM-based methods,
we primarily select GLM-4-9B as the LLM backbone. For LLaTA, we utilize the GLM-4 to perform
inference on the node classification probabilities. For LLM4RGNN, we use the GLM-4 to construct
the fine-tuning dataset and fine-tune the Llama-3-8B for edge prediction; for GraphEdit, we use the
GLM-4 for both fine-tuning and edge prediction; for LangGSL, we use the GLM-4 for text cleaning
and use Sentence-BERT as the LM encoder.

All experiments are repeated 10 times with different random seeds, and results are reported as
mean± std. For the node clustering experiments, we adopt the k-means algorithm and use NAFS to
evaluate the clustering performance. NAFS (Normalized Adjusted F-score) is a metric ranging from
0 to 1 that measures the consistency between predicted clusters and ground-truth labels, where higher
values indicate better clustering quality. In the main text, we present the NAFS values in percentage
form. We run all the experiments on NVIDIA A100 (80G memory) GPUs with CUDA 11.2 and set
the time limit to 72 hours.

For LLaTA, the hyperparameters are searched as follows: The height of encoding tree K in Sec. 4.1
is chosen from {2, 3, 4, 5}, the similarity threshold ϵ in Sec. 4.2 is selected from [0.4, 0.6], while the
size of the candidate set θ in Sec. 4.3 is searched in {3, 5, 10, 15, 20}, and the two-step sampling
frequency r is tuned among {1, 3, 5, 10, 25}.

For other baselines and backbones, we primarily adopt the optimal hyperparameters reported in their
original papers. If no such configurations are available, we utilize Optuna to automatically determine
the best hyperparameter settings for these baselines.

J CASE STUDY

In this section, we conduct experiments on the Citeseer, focusing on a low-level community as a
case study to track and visualize the data flow within the LLaTA pipeline. Based on this, we aim to
provide a clear and intuitive explanation of our method, particularly focusing on LLM inference. Our
goal is to make the process transparent, thereby avoiding the uncontrollable nature of a black-box
approach.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Reviewing the three modules of LLaTA (detailed descriptions can be found in Sec. 4.1-4.3), we
observe that Step 1: Topology-aware In-context Construction (Sec. 4.1) and Step 3: Leaf-oriented
Two-step Sampling (Sec. 4.3) have relatively fixed computation in which LLMs do not actively
participate or play a secondary role. This is not directly related to our goal of visualizing the LLM
inference through the case study to provide a deeper analysis of LLaTA’s interpretability. Therefore,
we focus on Step 2: Tree-prompted LLM Inference (Sec. 4.2), specifically analyzing its three
components: Reception-aware Leaf Augmentation, Community of Thought, and Leaf Dependency
Allocation. In Fig. 7, we use a low-level community as an example and offer a detailed demonstration
of the LLaTA inference.

Reception-aware Leaf Augmentation. After tree initialization by minimizing SE, we aim to
construct high-quality, topology-aware in-context for LLM inference. In this process, the quality of
node-wise textual information is crucial, as it directly impacts the LLM’s semantical understanding
and the confidence of inference results. Therefore, we first perform text propagation and aggregation
within each community, guided by the tree, to achieve leaf augmentation. Specifically, we input
a low-level community and perform text propagation and aggregation within this community to
enrich the text of each node. As illustrated in Fig. 7, we take red node 1 as an example. After text
propagation and aggregation, this node acquires the text of red node 2 for enhancement. The text of
red node 1 is then combined with that of red node 2 using the following prompt:

Prompt 1 - Part I: Here is a paper 1 which belongs to one of the following categories:
Agents, Machine Learning, Information Retrieval, Database, Human-Computer Interaction,
Artificial Intelligence.

The description of Agents: This research area encompasses topics such as multi-agent systems,
reinforcement learning, and agent-based modeling...

The description of Machine Learning: This research area focuses on developing algorithms
that enable systems to learn from data and make predictions or decisions without explicit
programming...

The description of ...

Prompt 1 - Part II: The abstract of paper 1: The Computational Theory of Neural Networks
In the present paper a detailed taxonomy of neural network models with various restrictions is
presented with respect to their computational properties. The criteria of classification include
e.g. feedforward and recurrent architectures, discrete...

Prompt 1 - Part III: The abstract of other papers related to its content: A Computational
Taxonomy and Survey of Neural Network Models We survey and summarize the existing
literature on the computational aspects of neural network models, by presenting a detailed
taxonomy of the various models according to their computational characteristics...

Community of Thought. Leveraging the enhanced leaf nodes, we propose a Community of Thought
(CoT) prompt mechanism, which incorporates community-enhanced descriptions for each node
and its related neighbors, facilitating more reliable LLM inference. Specifically, we combine
the previously obtained enhanced textual information (obtained by Prompt 1) with the community-
enhanced descriptions and the specific requirements of the inference task (Prompt 2). These combined
inputs are then fed into the LLM to predict the probability of the node belonging to each category.
Based on the LLM’s output, we apply the softmax function to obtain the node’s soft label, mapping
it into the semantic vector space encoded by the LLM. As an illustrative example, we present the
formulation of Prompt 2, the corresponding LLM output, and the derived soft label for red node 1, as
shown below.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

1 2 12

LLM

Probability [Softmax]

Text-oriented
Propagation &
Aggregation

1

1 2

2

Clustering Result

Silhouette Coefficient
Adaptive Clustering

1 2 1 2

Low-level Community Leaf Allocation Result

New low-level
communities with
higher homophily

1 ...
2 ...
2 ...
1 ...

1 ...
2 ...

2 ...
1 ...

1 2

2 1 2

2 1 2

1 2

Figure 7: A case study of the tree-prompted LLaTA inference.

Prompt 2: Based on the abstract of paper 1 and other papers, please provide the probability
that paper 1 belongs to each category.

For the current paper 1, please focus on the topic, methodology, keywords, and conclusions.

For the related papers, please focus on parts similar to those on paper 1.

Use integers from 0 to 9 to represent the probabilities. 0 means it is impossible to belong to
that category, and 9 means it definitely belongs to that category. The example format is: [8, 4,
1, 2, 5, 3].

LLM Answer: The probabilities of paper 1 belonging to each category are: [0, 7, 0, 0, 0, 9].

Soft Label of Red Node 1 [Softmax Function]:
[0.00, 0.12, 0.00, 0.00, 0.00, 0.88].

Leaf Dependency Allocation. Finally, based on the leaf soft labels, we perform silhouette coefficient-
based adaptive clustering on the four leaf nodes. As shown in Fig. 7, the clustering results indicate
that the two red nodes are grouped into one cluster, while the two blue nodes are assigned to another.
Following these clustering results, we reconstruct two new low-level communities to replace the
original ones. This process ultimately enhances community homophily and further optimizes the tree
through LLM inference.

Table 7: Performance of LLaTA with different LLM backbones.

LLM Pubmed WikiCS Instagram History
Llama-2-13B 87.79±0.31 80.64±0.32 66.12±0.21 84.21±0.28
Llama-3-8B 88.01±0.33 81.13±0.29 66.34±0.21 84.86±0.35
Mistral-7B 88.07±0.28 81.02±0.24 66.29±0.20 84.98±0.34

GLM-4-9B 88.39±0.23 81.58±0.20 66.73±0.13 85.28±0.24

K LLM BACKBONE ANALYSIS

To further answer Q2, we analyze the performance of LLaTA with different LLM backbones.
Specifically, we evaluate the node classification performance of LLaTA with different LLM backbones
on four datasets from different domains, with the results presented in Table 7.

The experimental results demonstrate that LLaTA performs effectively with different LLM backbones,
highlighting the versatility of our method. GLM-4-9B outperforms the other LLM backbones,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

particularly on the WikiCS and Instagram datasets, due to its stronger in-context learning ability and
stable outputs, which lead to higher inference accuracy. In contrast, Llama-2-13B shows the worst
performance, especially on WikiCS and History, likely due to its limited ability to grasp complex
contextual relationships and output instability. Llama-3-8B and Mistral-7B provide more balanced
results, with Mistral-7B offering a good trade-off between efficiency and performance. These findings
emphasize that LLaTA can effectively leverage various LLM backbones for downstream tasks.
Moreover, the performance differences highlight the importance of strong text inference abilities in
LLMs, when combined with GSL to enhance the performance of downstream tasks. Overall, the
experimental results demonstrate that LLaTA is a flexible and interpretable method, which effectively
integrates LLMs with GSL.

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

Edge Removal Rate Edge Addition Rate

GCN SEGSL BORF LLM4RGNN LLaTALangGSL

Cora Cora

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

Edge Removal Rate Edge Addition Rate

GCN SEGSL BORF LLM4RGNN LLaTALangGSL

Citeseer Citeseer

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)
Edge Removal Rate Edge Addition Rate

GCN SEGSL BORF LLM4RGNN LLaTALangGSL

Pubmed Pubmed

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

Edge Removal Rate Edge Addition Rate

GCN SEGSL BORF GraphEdit LLaTALangGSL

WikiCS WikiCS

Figure 8: Node classification performance on the Citeseer and WikiCS dataset under real-world
scenarios (Sparsity [Edge Removal] and Noise [Edge Addition]).

L ROBUSTNESS ANALYSIS

To further examine the robustness of LLaTA in practical environments, we conduct additional
experiments under sparsity and noise scenarios, where the graph structure is perturbed by randomly
removing or adding edges. The results on four benchmark datasets (Cora, Pubmed, Citeseer, and
WikiCS) are shown in Fig. 3 and Fig. 8.

Overall, LLaTA demonstrates strong robustness across both settings. In the sparsity scenario (edge
removal), LLaTA consistently outperforms all baselines across different perturbation levels. This
robustness stems from our tree-based optimization, where structural entropy guides the identification
of uncertain regions, ensuring that key communities remain stable even when connections are missing.
As a result, the information loss caused by sparsity is effectively mitigated.

In the noise scenario (edge addition), LLaTA also achieves competitive performance. The community-
aware tree prompts allow the model to suppress the influence of noisy edges by relying more heavily
on semantic consistency and hierarchical community information. Nevertheless, we observe that as
the edge addition rate becomes large (e.g., 0.6 or 0.8), LLaTA’s performance gradually deteriorates.
This phenomenon can be attributed to the irreversible negative effect of excessive noisy edges, which
interfere with the initialization of the structural encoding tree. Importantly, although LLaTA remains
among the top-performing methods, LLM4RGNN occasionally surpasses it under high noise rates.
This is expected, since LLM4RGNN is explicitly designed to handle adversarial settings by leveraging
fine-tuned LLMs for edge-level detection and correction.

In summary, these results highlight two key insights. First, LLaTA exhibits strong resilience to sparsity
and moderate levels of noise, validating the effectiveness of its topology-aware and community-
guided design. Second, the performance gap under severe noise suggests a promising direction for
future work: integrating more powerful noise detection mechanisms into our tree-based optimization
to further enhance robustness under adversarial or heavily corrupted graphs.

M HYPERPARAMETER ANALYSIS

To further answer Q3, we provide more detailed experimental results and analysis for the four
hyperparameters (K in Sec. 4.1, ϵ in Sec. 4.2, θ and r in Sec. 4.3).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

(a) Accuracy on Cora (c) Accuracy on WikiCS (d) Accuracy on History(b) Accuracy on Citeseer

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

Figure 9: The node classification accuracy of LLaTA with different ϵ on Cora, Citeseer, WikiCS and
History datasets.

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

(a) Accuracy on Cora (b) Accuracy on Reddit

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

(c) Accuracy on Child (d) Accuracy on Photo

Figure 10: The node classification accuracy of LLaTA with different θ and r on Cora, Reddit, Child
and Photo datasets.

M.1 ANALYSIS OF HYPERPARAMETER K

We further examine the effect of the encoding tree height K, with results shown in Fig. 4 (left). The
experiments reveal that the optimal K varies across datasets, reflecting differences in graph structural
complexity. Moderate depths (K = 2 or 3) generally achieve the best performance, as they strike
a balance between capturing multi-level community information and avoiding redundant hierarchy.
However, as K increases beyond 5, accuracy consistently drops for all datasets, and the decline
becomes pronounced at K = 6. This suggests that excessively deep trees may dilute meaningful
community structures and introduce noise, thereby harming the quality of structural optimization.
Overall, these findings highlight that K should be tuned according to graph complexity, while overly
large values should be avoided due to their adverse effect on performance.

M.2 ANALYSIS OF HYPERPARAMETER ϵ

We further study the effect of ϵ, which controls the threshold for constructing in-context information,
on four datasets: Cora, Citeseer, WikiCS, and History, as shown in Fig. 9.

The results confirm that ϵ plays a crucial role in balancing noise reduction and information preserva-
tion. When ϵ is too small (e.g., ϵ = 0.4), nodes from different classes are aggregated, introducing
noisy contexts and leading to reduced inference accuracy. In contrast, when ϵ becomes too large
(e.g., ϵ = 0.6), the model over-filters, discarding meaningful connections and thereby losing valuable
semantic and structural cues. Across datasets, the optimal ϵ varies slightly depending on graph
characteristics: Cora and History achieve peak performance at ϵ = 0.45, Citeseer at ϵ = 0.55, and
WikiCS at ϵ = 0.5. Despite these variations, the overall performance remains stable within the range
[0.45, 0.55], suggesting that this interval provides a reliable trade-off between minimizing cross-class
noise and preserving intra-class relationships.

In summary, ϵ is a sensitive yet well-bounded hyperparameter: choosing ϵ ∈ [0.45, 0.55] generally
yields robust performance across both homophilic and heterophilic graphs. This validates the
effectiveness of our design in constructing high-quality in-context information for LLMs, while also
offering practitioners practical guidance for parameter tuning in diverse real-world scenarios.

M.3 ANALYSIS OF HYPERPARAMETERS θ AND r

To provide a comprehensive understanding of how θ (semantic sampling size) and r (two-step
sampling frequency) influence LLaTA, we conduct experiments on five representative datasets, with
results summarized in Fig. 4 and Fig. 10.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Impact of r. We observe that r exerts a stronger dataset-dependent effect. On heterophilic graphs
such as Child, accuracy is highly sensitive to the choice of r: performance steadily improves up
to r = 10, but drops when r is further increased (e.g., r = 25). This degradation arises because
excessive edge additions overwrite useful heterophilic patterns, forcing the structure toward artificial
homophily. By contrast, on homophilic datasets such as History, Cora, and Photo, performance
remains stable across a wide range of r values, with fluctuations typically within 0.5%. These results
indicate that while heterophilic graphs require careful calibration of r to preserve structural integrity,
homophilic graphs tolerate larger r without substantial accuracy loss.

Impact of θ. The semantic sampling parameter θ exhibits remarkable stability across all datasets.
Within the range [5, 15], performance variations remain minor, typically under 1%. Extreme settings,
however, show performance degradation: when θ = 3, the sampling space becomes too restrictive,
limiting semantic coverage; when θ = 20, excessive candidate expansion introduces noise, weakening
the reliability of semantic similarity. Importantly, these effects are consistent across homophilic and
heterophilic datasets, demonstrating that θ primarily influences the quality of semantic sampling
rather than the structural optimization itself.

From these findings, two guidelines emerge: (1) r should be prioritized during tuning, especially for
heterophilic graphs where improper calibration may lead to over-homogenization of node neighbor-
hoods; (2) θ ∈ [5, 15] can be regarded as a reliable default choice for diverse graph types, providing a
balance between semantic coverage and efficiency. Taken together, these results not only validate the
robustness of LLaTA across varying parameter settings but also highlight its adaptability: while r
controls the sensitivity to graph topology, θ primarily refines semantic discrimination. This comple-
mentary role of the two hyperparameters further underscores the stability of our framework under
both homophilic and heterophilic conditions.

M.4 GENERAL GUIDANCE ON HYPERPARAMETER SELECTION

Here we provide additional guidelines for selecting the four key hyperparameters in LLaTA, based
on both theoretical considerations and empirical observations:

Encoding Tree Height K. As discussed in Sec. 4.1, the height of the encoding tree determines
the number of hierarchical community divisions. Its optimal value is closely related to the graph
scale and the number of node categories. Larger graphs with more categories typically exhibit more
complex hierarchical structures, thus requiring deeper trees. Empirically, we observe that the optimal
K usually falls within the range of 2 to 5 for most datasets.

Threshold ϵ. The threshold ϵ governs text propagation and aggregation. Its optimal setting depends
on the quality of both textual information and the encoding tree. When either is of low quality, a
higher ϵ enforces stricter filtering, thereby reducing noise and preventing unreliable information from
propagating. With higher-quality inputs, smaller ϵ values can be adopted to retain richer contextual
information.

Candidate Set Size θ. The parameter θ controls the size of the candidate set for semantic similarity
sampling. Its optimal value depends on both the quality of node text and the original graph structure.
When textual attributes and structural quality are high, LLM-generated semantic embeddings are
more reliable, allowing for a larger θ to improve coverage. Conversely, lower-quality data may benefit
from smaller θ values to reduce noise.

Sampling Frequency r. The frequency r in two-step sampling is influenced by the average degree
of the original and optimized graphs. For graphs with higher average degrees, larger r values are
generally needed to preserve sufficient structural connectivity. In contrast, for sparse graphs, moderate
r values are preferable to avoid excessive edge additions.

These guidelines offer practical insights for tuning LLaTA across diverse graph types, providing a
balance between general applicability and dataset-specific adaptability.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 8: Complete runtime(h) results of LLaTA across all 11 datasets.

Method Cora Citeseer Pubmed WikiCS Instagram Reddit Ratings Child History Photo ArXiv

LLaTAGCN 1.593 1.974 12.873 7.081 7.850 21.136 15.583 15.016 26.394 30.372 53.175
LLaTAGAT 1.598 1.980 12.881 7.124 7.861 21.145 15.589 15.025 26.451 30.468 53.479
LLaTASAGE 1.583 1.958 12.861 7.076 7.847 21.131 15.578 15.009 26.489 30.369 53.177

N EFFICIENCY ANALYSIS OF LLATA

In this section, we present the complete runtime performance of LLaTA across 11 tagged datasets in
Table 8, along with a comprehensive analysis of our method’s computational efficiency advantages.

Current graph structure learning (GSL) methods face significant efficiency bottlenecks, particularly
in large-scale or noisy graphs. Traditional approaches—including metric learning, probabilistic
modeling, and direct optimization—often require computationally expensive pairwise similarity
calculations (e.g., kernel functions or attention mechanisms) or iterative optimization of adjacency
matricesZhu et al. (2021). These operations exhibit quadratic or higher complexity relative to node
counts, limiting scalability. For LLM-based GSL Methods (e.g., GraphEdit Guo et al. (2024),
LLM4RGNN Zhang et al. (2024)), efficiency issues are further exacerbated by the inherent overhead
of large-model inference and fine-tuning. Empirical results reveal that these methods exceed 72 hours
on larger datasets among the 11 benchmarks (As shown in Table 1), primarily due to their reliance on
full-parameter tuning and dense graph operations.

Compared to existing paradigms, our framework achieves superior efficiency by: (a) Topology-
Aware Context Enhancement: The Community-of-Thought mechanism provides high-quality
topological context to guide LLM reasoning, eliminating the need for fine-tuning. By leveraging
the inherent structure-awareness of communities, we reduce the dependency on costly end-to-end
training while improving inference accuracy. (b) Parameter-Free Structure Reconstruction: A
tree-based sampler enables lightweight graph restructuring without trainable parameters. This avoids
the computational overhead of gradient-based adjacency matrix optimization (e.g., nuclear norm
regularization in ProGNN Jin et al. (2020)) or probabilistic sampling (e.g., Gumbel-Softmax in
NeuralSparse Zheng et al. (2020)).

Furthermore, we provide an efficiency-oriented acceleration scheme for large-scale graphs to
further enhance the scalability of our method. To reduce computational overhead while maintaining
the effectiveness of structure optimization, we introduce a composite scoring mechanism to identify
the most needed low-level communities for optimization.

Score(Cℓ) = λ1 · Hstruct(Cℓ) + λ2 · Hlabel(Cℓ) + λ3 ·
(
1− µtextsim(Cℓ)

)
, (41)

where Hstruct(Cℓ) denotes the structural entropy, quantifying topological complexity; Hlabel(Cℓ)
measures label distribution entropy, capturing heterogeneity; and µtextsim(Cℓ) is the mean pairwise
semantic similarity within the community. Thus, 1 − µtextsim(Cℓ) reflects semantic inconsistency,
assigning higher scores to communities with lower internal similarity. By ranking communities
with this score, we prioritize optimization and sampling on top-ranked candidates. This targeted
strategy significantly reduces computational overhead while preserving the effectiveness of structure
optimization, enabling LLaTA to scale to large datasets such as ArXiv within practical time limits.
In our experiments on the arXiv dataset, we applied the community sampling algorithm to select
40% of the communities for Tree-prompted LLM Inference process, which significantly improved
efficiency on large-scale graphs while preserving the effectiveness of our method.

(c) Efficiency-Oriented Community Selection: The composite scoring mechanism adaptively
identifies and optimizes only the most informative communities, reducing redundant computation
and ensuring scalability to large graphs.

Enabled by these design choices, our framework achieves superior efficiency through the following
three aspects: (1) Eliminating Fine-Tuning: By completely bypassing parameter updates of LLMs,
our method reduces both GPU memory footprint and training time by orders of magnitude. This
makes the framework applicable to resource-constrained environments where fine-tuning large

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

models is infeasible. (2) Sublinear Complexity: The tree-based sampler operates locally within
communities rather than across the entire graph, effectively reducing global pairwise computations.
This results in sublinear complexity with respect to the number of nodes, making our method scalable
to large and dense graphs. (3) Parallelizability and Efficiency-Oriented Community Selection:
Community-level operations are inherently parallelizable and can be distributed across multiple
processors, enabling scalability to graphs with 105+ nodes where prior LLM-GSL methods fail.
Moreover, our composite scoring mechanism further enhances scalability by adaptively identifying
and optimizing only the most promising communities, thereby reducing redundant computation while
maintaining the effectiveness of structure optimization (e.g., on the arXiv dataset we optimize only
40% of the communities while achieving competitive performance).

O USE OF LARGE LANGUAGE MODELS IN PAPER WRITING

In preparing this manuscript, we made use of generative artificial intelligence (GenAI) tools, specifi-
cally GPT-4o and GPT-5, to assist with text refinement and polishing, as well as with the drafting and
modification of auxiliary code snippets. These tools were employed solely to enhance clarity and
readability and to streamline the presentation of supporting materials. Importantly, GenAI was not
involved in the derivation of mathematical formulas, the design or implementation of core algorithms,
or the development of key scientific insights. All theoretical analyses, algorithmic contributions, and
experimental validations were carried out independently by the authors to ensure the originality and
integrity of the work. Furthermore, all AI-assisted outputs were rigorously reviewed and verified by
the authors to guarantee their accuracy and consistency with the scientific content, thereby upholding
the reliability of the results presented.

35

	Introduction
	Preliminaries
	Notations and Problem Formulation
	Complexity Metrics of Graph Topology
	Related Works

	GSL in the Era of LLMs
	GSL Optimization Objectives Reformulation
	Model Architecture Review
	Empirical Investigation

	Our Method
	Topology-aware In-context Construction
	Tree-prompted LLM Inference
	Leaf-oriented Two-step Sampling

	Experiment
	Experiment Setup
	Performance Comparison
	Ablation Study
	Robustness Analysis
	Efficiency analysis

	Conclusion
	Encoding Tree and Structural Entropy
	Analysis of Hierarchical Community
	Existing GSL Paradigms and Methods
	Existing GSL Paradigms
	Comparative Analysis with SE-GSL and LLM-based Methods

	Emperical Study
	Algorithm
	Structural Entropy Minimization
	Tree-based Adaptive Clustering
	Leaf-oriented Two-step Sampling

	Theorem Proof
	Topological Information Capturing Capability of the Encoding Tree
	Global information constraints of the low-level communities
	The Error Bound Between Soft Labels and True Labels
	Structural Entropy and Node Topological Uncertainty

	Datasets
	Baselines
	Experimental Setup
	Case Study
	LLM Backbone Analysis
	Robustness Analysis
	Hyperparameter Analysis
	Analysis of Hyperparameter K
	Analysis of Hyperparameter
	Analysis of Hyperparameters and r
	General Guidance on Hyperparameter Selection

	Efficiency Analysis of LLaTA
	Use of Large Language Models in paper writing

