
Under review as a conference paper at ICLR 2022

ANALYZING POPULATIONS OF NEURAL NETWORKS
VIA DYNAMICAL MODEL EMBEDDING

Anonymous authors
Paper under double-blind review

ABSTRACT

A core challenge in the interpretation of deep neural networks is identifying com-
monalities between the underlying algorithms implemented by distinct networks
trained for the same task. Motivated by this problem, we introduce DYNAMO,
an algorithm that constructs low-dimensional manifolds where each point corre-
sponds to a neural network model, and two points are nearby if the corresponding
neural networks enact similar high-level computational processes. DYNAMO takes
as input a collection of pre-trained neural networks and outputs a meta-model that
emulates the dynamics of the hidden states as well as the outputs of any model in
the collection. The specific model to be emulated is determined by a model em-
bedding vector that the meta-model takes as input; these model embedding vectors
constitute a manifold corresponding to the given population of models. We apply
DYNAMO to both RNNs and CNNs, and find that the resulting model embedding
spaces enable novel applications: clustering of neural networks on the basis of
their high-level computational processes in a manner that is less sensitive to repa-
rameterization; model averaging of several neural networks trained on the same
task to arrive at a new, operable neural network with similar task performance; and
semi-supervised learning via optimization on the model embedding space. Using
a fixed-point analysis of meta-models trained on populations of RNNs, we gain
new insights into how similarities of the topology of RNN dynamics correspond
to similarities of their high-level computational processes.

1 INTRODUCTION

A crucial feature of neural networks with fixed network architecture is that they form a manifold
by virtue of their continuously tunable weights, which underlies their capability to be trained by
gradient descent. However, this conception of the space of neural networks is inadequate for un-
derstanding the computational processes they perform. For example, two neural networks trained
to perform the same task may have vastly different weights, and yet implement the same high-level
algorithms and computational processes (Maheswaranathan et al., 2019b).

In this paper, we construct an algorithm which provides alternative parametrizations of the space
of RNNs and CNNs with the goal of endowing a geometric structure that is more compatible with
the high-level computational processes performed by neural networks. In particular, given a set of
neural networks with possibly different architectures (and possibly trained on different tasks), we
find a parametrization of a low-dimensional submanifold of neural networks which approximately
interpolates between these chosen “base models”, as well as extrapolates beyond them. We can
use such model embedding spaces to cluster neural networks and even compute model averages
of neural networks. A key feature is that two points in model embedding space are nearby if they
correspond to neural networks which implement similar high-level computational processes, in a
manner to be described later. In this way, two neural networks may correspond to nearby points in
model embedding space even if those neural networks have distinct weights or even architectures.

The model embedding space is parametrized by a low-dimensional parameter θ ∈ Rd, and each base
model is assigned a value of θ in the space. This allows us to apply traditional ideas from clustering
and interpolation to the space of neural networks. Moreover, each model embedding space has an
associated meta-model which, upon being given a θ, is rendered into an operable neural network. If
a base model is mapped to some θ, then the meta-model, upon being given that θ, will emulate the

1

Under review as a conference paper at ICLR 2022

Figure 1: A conceptual diagram of the DYNAMO algorithm and model embedding space. A set
of neural networks labelled 1, ..., N called the base models are mapped to corresponding points
θ1, ..., θN in the model embedding space. Two points in the model embedding space are nearby if
they correspond to neural networks with similar dynamics for their hidden and output states. There
is an associated neural network called the meta-model which, when given a θi , becomes a neural
network that emulates the hidden and output dynamics of the corresponding base model. The meta-
model produces a viable neural network for any given any value of θ, including points in the model
embedding space that do not correspond to any base model.

Figure 2: Left: The hidden states ht of Fn are close to the hidden states hθn,t of F̃ after the
transformation map V is applied. Right: The visible states G(ht) of Fn are close to the visible
states G̃(hθn,t).

corresponding base model. See Figure 1 for a diagrammatic depiction. An interesting application
is that given two models assigned to parameters θ1 and θ2, we can consider the averaged model
corresponding to the value (θ1 + θ2)/2. We find that this averaged model performs similarly on
the task for which the base models in the average were trained. We also use the model embedding
space to extrapolate outside the space of base models, and find cases in which the model embedding
manifold specifies models that perform better on a task than any trained base model. Later on we
will explain how this can be regarded as a form of semi-supervised learning.

The rest of the paper is organized as follows. We first provide the mathematical setup for our al-
gorithmic construction of model embedding spaces. After reviewing related work, we then present
results of numerical experiments which implement the algorithm and explore clustering, model av-
eraging, and semi-supervised learning on the model embedding space. We further examine how
topological features of the dynamics of RNNs in model embedding spaces are reflective of classes
of high-level computation processes. Finally, we conclude with a discussion.

2 DYNAMICAL MODEL EMBEDDING

2.1 MATHEMATICAL SETUP

In this section, we provide the mathematical setup for construction of model embedding spaces. We
treat this in the RNN setting, and relegate the CNN setting to Section A of the Appendix.

2

Under review as a conference paper at ICLR 2022

Algorithm 1 DYNAMO algorithm
Input: Base models {(Fn, Gn)}Nn=1, loss functions {(Ln,hidden,Ln,output)}Nn=1,

datasets {Dn}Nn=1, output loss weight λ ≥ 0

Output: Meta-model (F̃ , G̃), state maps {Vn}Nn=1, model embeddings {θn}Nn=1

Initialize networks F̃ , G̃, {Vn}Nn=1
Initialize model embeddings θn = 0
for τ = 1, . . . , τmax do

Sample base model (Fi, Gi) uniformly at random
Sample input {xt} from dataset Di
Compute base model hidden states {ht} and outputs {Gi(ht)}
Compute meta-model hidden states {hθi,t} and outputs {G̃(hθi,t)}
Compute mapped meta-model states {Vi(hθi,t)}
Compute loss L̂ = Li,hidden + λLi,output

Update F̃ , G̃, Vi, θi using∇L̂
end for
return (F̃ , G̃), {Vn}, {θn}

Notation. Let an RNN be denoted by F (x, h) where x is the input and h is the hidden state. We fur-
ther denote the hidden-to-output map byG(h). We consider a collection ofN RNNs {(Fn, Gn)}Nn=1
we call the base models which may each have distinct dimensions for their hidden states, but all have
the same dimension for their inputs as well as the same dimension for their outputs. A sequence of
inputs is notated as {xt}Tt=0 which induces a sequence of hidden states by ht+1 = F (xt, ht) where
the initial hidden state h0 is given. A collection of sequences of inputs, possibly each with different
maximum lengths T , is denoted by D which we call an input data set. We suppose that each base
model RNN has an associated input data set.

2.2 META-MODELS FOR RNNS

Given a collection base model RNNs, we would like to construct a meta-model which emulates
the behavior of each of the base models. In this case, the meta-model is itself an RNN with one
additional input θ ∈ Rd and a corresponding map F̃ (θ, x, h) whose output is the next hidden
state. Given a sequence of input states {xt}Tt=0, we have a corresponding sequence of output states
hθ,t+1 = F̃ (θ, xt, hθ,t) starting from an initial hidden state h0 (which we suppose does not depend
on θ). The meta-model also includes a hidden-to-output map G̃(h) that is independent of θ.

For the meta-model (F̃ , G̃) to emulate a particular base model (Fn, Gn) with respect to its corre-
sponding data set Dn, we consider the following criteria: there is some θn for which

1. G̃(hθn,t) ≈ Gn(ht) for all t > 0 and all input sequences in the data set

2. Vn(hθ,t) ≈ ht for all t > 0 and all input sequences in the data set,

where Vn is a transformation of a meta-model’s hidden activity. We emphasize that θn and Vn
depend on the particular base model under consideration. The first criterion means that at some
particular θn, the outputs of the meta-model RNN dynamics are close to the outputs of the base
model RNN dynamics. The second criterion means that at the same θn, there is a time-independent
transformation Vn (i.e., Vn does not depend on t) such the transformed hidden state dynamics of the
meta-model are close to the hidden state dynamics of the base model. See Figure 2 for a visualiza-
tion. As depicted in the figure, it is convenient to regard the meta-model RNN as having input states
(θn, x). As such, a sequence of inputs {xt}Tt=1 is appended by θn to become {(θn, xt)}Tt=1.

3

Under review as a conference paper at ICLR 2022

The desired properties of the meta-model are enforced in the loss function. Defining the functions

Loutput[F̃ , G̃, θn] :=
1

T

T∑
t=1

d(G̃(hθn,t), Gn(ht)) (1)

Lhidden[F̃ , θn, Vn] :=
1

T

T∑
t=1

‖Vn(hθn,t)− ht‖
2
2 (2)

where d is some suitable distance or divergence, we can construct the loss function

E{xt}∼Dn

[
Lhidden[F̃ , θn, Vn] + λLoutput[F̃ , G̃, θn]

]
(3)

where we average over the choice of sequence {xt} coming from the input data set Dn. Above,
λ is a hyperparameter. Our aim is to minimize the above over a suitable class of F̃ , G̃, Vn,
as well as θn; this can be implemented computationally via the DYNAMO algorithm (see Algo-
rithm 1). As a side remark, it appears that a suitable alternative choice to equation 2 would be
1
T

∑T
t=1 ‖hθn,t −Wn(ht)‖22 where here Wn is a map from the hidden states of the base model to

the hidden states of the meta-model. However, this would be problematic since minimization may
pressure Wn to be the the zero map (or otherwise have outputs which are small in norm) and ac-
cordingly pressure the dynamics of the meta-model to be the trivial (or have small norm). As such,
we opt to formulate Lhidden as it is written in equation 2.

Suppose we want the meta-model to be able to emulate an entire collection of base models
{(Fn, Gn)}Nn=1. In particular, the meta-model will attempt to assign to the nth base model a θn
and Vn so that the two criteria listed above are satisfies for that base model. These desiderata can be
implemented by minimizing the loss function

L[F̃ , G̃, {θn}Nn=1, {Vn}Nn=1] :=
1

N

N∑
n=1

E{xt}∼Dn

[
Ln,hidden[F̃ , θn, Vn] + λLn,output[F̃ , G̃, θn]

]
.

(4)

In some circumstances, we may want to consider base models with distinct dimensions for their
output states. For instance, suppose half of the base models perform a task with outputs in Rd1 and
the other half perform a task without outputs in Rd2 . To accommodate for this, we can have two
hidden-to-output maps G̃1, G̃2 for the meta-model, where the maps have outputs in Rd1 and Rd2
respectively. The loss function is slightly modified so that we use G̃1 where compare the meta-
model to the first kind of base model, and G̃2 when we compare the meta-model to the second kind
of base model. This construction generalizes to the setting where the base models can be divided up
into k groups with distinct output dimensions; this would necessitate k hidden-to-output functions
G̃1, ..., G̃k for the meta-model.

3 RELATED WORK

There is a substantial body of work on interpreting the computational processes implemented neural
networks by studying their intermediate representations. Such analyses can be performed either on
individual models (Simonyan et al., 2013; Zeiler & Fergus, 2014; Lenc & Vedaldi, 2015) or on col-
lections of models (Li et al., 2016; Raghu et al., 2017; Morcos et al., 2018; Kornblith et al., 2019).
Prior work in this latter category has focused on pairwise comparisons between models. For exam-
ple, SVCCA (Raghu et al., 2017) uses canonical correlation analysis to measure the representational
similarity between pairs of models. While these methods can also be used to derive model repre-
sentations by embedding the pairwise distance matrix, our approach does not require the Θ(N2)
computational cost of comparing all pairs of base models. Moreover, DYNAMO yields an executable
meta-model that can be called with model embedding vectors other than those corresponding to the
base models.

There is a related body of work in the field of computational neuroscience. CCA based techniques
and representational geometry are standard for comparing neural networks to the neural activations
of animals performing vision tasks (Yamins & DiCarlo, 2016) as well as motor tasks. In an example

4

Under review as a conference paper at ICLR 2022

of the latter, the authors of (Sussillo et al., 2015) used CCA techniques to compare brain recordings
to those of neural networks trained to reproduce the reaching behaviors of animals, while the authors
of (Maheswaranathan et al., 2019b) used fixed point analyses of RNNs to consider network similarity
from a topological point of view.

DYNAMO can be viewed as a form of knowledge distillation (Hinton et al., 2015), since the outputs
of the base models serve as targets in the optimization of the meta-model. However, unlike typical
instances of knowledge distillation involving an ensemble of teacher networks (Hinton et al., 2015;
Fukuda et al., 2017) where individual model predictions are averaged to provide more accurate
target labels for the student, our approach instead aims to preserve the dynamics and outputs of each
individual base model. FitNets (Romero, 2015) employ a form a knowledge distillation using maps
between hidden representations to guide learning; this is similar to our use of hidden state maps in
training the meta-model.

Our treatment of the model embedding vectors {θn} as learnable parameters is similar to the ap-
proach used in Generative Latent Optimization (Bojanowski et al., 2018), which jointly optimizes
the image generator network and the latent vectors corresponding to each image in the training set.
Bojanowski et al. (2018) find that the principal components of the image representation space found
by GLO are semantically meaningful. We likewise find that the principal components of the model
embeddings found by DYNAMO are discriminative between subsets of models.

Unlike methods such as hypernetworks (Ha et al., 2017) and LEO (Rusu et al., 2019) that use a
model to generate parameters for a separate network, our approach does not attempt to reproduce
the parameters of the base models in the collection. Instead, the meta-model aims to reproduce only
the hidden states and outputs of a base model when conditioned on the corresponding embedding
vector.

The core focus of this work also differs from that of the meta-learning literature (Santoro et al.,
2016; Ravi & Larochelle, 2017; Finn et al., 2017; Munkhdalai & Yu, 2017), which primarily con-
cerns the problem of few-shot adaptation when presented with data from a new task. Our empirical
study centers on the post-hoc analysis of a given collection of models, which may or may not have
been trained on different tasks. However, we remark that our exploration of optimization in low-
dimensional model embedding space is related to LEO (Rusu et al., 2019), where a compressed
model representation is leveraged for efficient meta-learning.

4 EMPIRICAL RESULTS

In this section, we describe the results of our empirical study of meta-models trained using DYNAMO
on collections of RNNs trained on NLP tasks, and collections of CNNs trained for image classifica-
tion. For RNN base models, we parameterize the meta-model as a GRU where the model embedding
vector θ is presented as an additional input in each time step. For CNN base models, we use a ResNet
meta-model where θ is an additional input for each ResNet block. In all our experiments, we hold
out half the available training data for use as unlabeled data for training the meta-model; the base
models were trained on the remaining training data (or a fraction thereof).1 By default, we set the
output loss hyperparameter λ to 1. We defer further details on model architectures and training to
the Appendix.

4.1 VISUALIZING MODEL SIMILARITY IN EMBEDDING SPACE

The base model embeddings {θn}Nn=1 can be used for cluster analysis to evaluate the similarity
structure of a collection of models. We illustrate this use case of DYNAMO via a series of example
applications on NLP and vision tasks. Figure 3 shows model embeddings learned by DYNAMO on
collections of RNNs. In these plots, we observe a clear separation of these networks according to the
size of the available training data, the RNN model architecture used, and the specific NLP task used
for training. By computing the eigenvalues of the covariance matrix corresponding to the N model
embeddings, we obtain a measure of the intrinsic dimensionality of the corresponding collections of

1For example, our IMDB sentiment base models trained on 100% of the available training data were trained
on 12,500 examples, with the remaining 12,500 examples used as unlabeled data for training the meta-model.

5

Under review as a conference paper at ICLR 2022

Figure 3: PCA plots of DYNAMO model embeddings on collections of RNNs. From left to right:
(1) The model embedding space for GRUs trained on IMDB sentiment classification dataset (Maas
et al., 2011) with varying training set sizes (100%, 50% and 25% of the training data); (2) training
trajectories of sentiment classification GRUs over 20 epochs, with each point corresponding to an
epoch of training (low-opacity points indicate networks early in training); (3) two RNN architectures
trained for IMDB sentiment classification (GRUs and vanilla RNNs); (4) GRUs trained on two NLP
tasks: IMDB sentiment classification and AG News classification (Zhang et al., 2015). The second
row shows the spectrum for each set of embeddings, with a dotted line indicating the number of
components needed to explain 95% of the variance.

Figure 4: PCA plots of DYNAMO model embeddings on collections of ResNet-34s trained on
CIFAR-100. Left two panels: Model embeddings cluster according to the size of the training
dataset and the data augmentation policy used for training. Right two panels: When trained only
by comparing hidden representations (i.e., with output loss weight λ = 0), DYNAMO does not
identify a clustering effect when varying the training dataset size. In the case of differing data aug-
mentation policies, there is a weak clustering effect that suggests a consistent difference in feature
representation.

6

Under review as a conference paper at ICLR 2022

Figure 6: Meta-model test accuracies over model embedding space. We plot the relative test
accuracies (normalized by the maximal test accuracy of the base models) realized by meta-models
for GRUs trained on IMDB sentiment classification with varying training set size (left), and for
GRUs trained on IMDB and on AG News classification (right). In these examples, the embedding
vectors that maximize test accuracy (marked with an 5) do not correspond to any single base model,
suggesting that meta-models are capable of generalizing beyond the base models used for training.

models. In Figure 3, we find that 2 to 6 components are sufficient to explain 95% of the variance in
the model embeddings.

Figure 5: 2D multidimensional scaling (MDS)
embeddings of the SVCCA pairwise representa-
tional distances between RNN models trained on
the IMDB sentiment dataset.

By tuning the output loss hyperparameter λ in
equation 4, we can adjust the degree of empha-
sis placed on reproducing the hidden dynamics
of the base networks versus their outputs. We
demonstrate this effect in Figure 4: with λ = 1,
we observe clear separation of ResNet-34 mod-
els trained on CIFAR-100 with different data
augmentation policies (“weak”, with shifts and
horizontal flips vs. “strong”, with RandAug-
ment (Cubuk et al., 2020)), and with different
training set sizes. In contrast, with λ = 0, we
observe a weak clustering effect with differing
data augmentation, and no detectable separa-
tion with different training set sizes. We infer
that the change in data augmentation policy re-
sults in a larger difference in the learned feature representations than the change in training set size.
In Appendix B, we illustrate the effect of setting λ = 0 for RNN models.

We additionally compare the embeddings obtained using DYNAMO to those derived from
SVCCA (Raghu et al., 2017), a pairwise comparison technique that aligns the representations pro-
duced by a pair of networks using canonical correlation analysis (CCA). In Figure 5, we plot the 2D
embeddings obtained using multidimensional scaling (MDS) on the pairwise distance matrix com-
puted using SVCCA (modified to output L2 distances instead of correlations). Unlike the principal
components of the DYNAMO model embeddings plotted in Figure 3, the MDS coordinates are not
semantically interpretable. Additionally, the cluster structure of the collection of GRUs trained with
varying training set sizes is less apparent in this representation.

Lastly, we note that DYNAMO allows for flexibility in defining the metric used to compare the
hidden states and outputs of the base models with those of the meta-model. In Appendix B.3, we
demonstrate the benefit of using the L1 distance for clustering CNN representations.

4.2 EXTRAPOLATION BEYOND BASE MODEL EMBEDDINGS

We study the model embedding space corresponding to a trained meta-model by conditioning it on
model embedding vectors θ other than those assigned to the set of base models. Figure 6 visualizes
the landscape of test accuracies for two meta-models: (i) a meta-model for 10 GRUs trained with

7

Under review as a conference paper at ICLR 2022

50% of the IMDB training data, and 10 GRUs trained with 25% of the data, and (ii) a meta-model
for 10 IMDB sentiment GRUs and 10 AG News classification GRUs.

We note two particularly salient properties of these plots. First, the test accuracy varies smoothly
when interpolating θ between pairs of base model embeddings—we would in general not observe
this property when interpolating the parameters of the base GRUs directly, since they were trained
with different random initializations and orderings of the training examples. Second, we observe
that the embedding vector that realizes the highest test accuracy lies outside the convex hull of the
base model embeddings. This is perhaps surprising since typical training and inference protocols
involve the use of convex combinations of various objects: for instance, averaging of predictions
in model ensembles, and averaging of model parameters during training (e.g., using exponential
moving averages, or with Stochastic Weight Averaging (Izmailov et al., 2018)). This extrapolatory
phenomenon suggests that DYNAMO is able to derive a low-dimensional manifold of models that
generalizes beyond the behavior of the base models used for training the meta-model.

4.3 SEMI-SUPERVISED LEARNING IN MODEL EMBEDDING SPACE

Figure 7: Semi-supervised learning with low-
dimensional model embeddings. The red line
shows the trajectory of 100 SGD iterates in model
embedding space, starting from θinit = 0 and ter-
minating at θfinal. White and orange points indi-
cate the base model embeddings.

The existence of model embeddings that im-
prove on the accuracy of the base models sug-
gests a natural semi-supervised learning (SSL)
procedure involving a trained meta-model. In
particular, we minimize the loss incurred by the
meta-model on a small set of additional labeled
examples by optimizing the value of θ. This
is done by backpropagating gradients through
the meta-model, with the meta-model parame-
ters held fixed. Figure 7 shows the result of this
procedure on an IMDB sentiment meta-model
(previously depicted in Figure 6) with a set of
additional labeled examples (disjoint from the
test set) of size equal to 1% of the full training
set. This procedure successfully finds a θ that
improves on the test accuracy of the best base
model by 6% (86.4% vs. 80.3%).

We observe that this SSL procedure achieves
lower accuracy when we train the meta-model
using fewer base models. In particular, a meta-
model only on the 10 GRUs trained with 50%
of the training data yields a test accuracy of
85.4%, and a meta-model on only a single GRU out of these 10 yields 81.6%. This result sug-
gests that a diversity of base models helps improve the accuracy achievable by the meta-model.

5 DYNAMICS OF META-MODELS FOR RNNS

In this section we perform an analysis of the dynamical features of the dynamics generated by
the meta-models trained on base models that perform the sentiment classification task. The senti-
ment classification task has a well-understood dynamical structure (Sussillo & Barak, 2013; Mah-
eswaranathan et al., 2019a;b; Aitken et al., 2020) that we can use as a basis for understanding the
behavior of a corresponding meta-model. To a first approximation, the sentiment analysis task can
be solved by a simple integrator that accumulates sentiment corresponding to each word (positive
words such as ‘good’ or ‘fantastic’ adding positive sentiment, and negative words such as ‘bad’ or
‘terrible’ adding negative sentiment). It has been shown that simple sentiment analysis models ap-
proximate this integrator by constructing a line attractor in the space of hidden states. For instance,
for the zero input x∗ = ~0, it has been observed that the dynamical system generated by the map
Fx∗(h) = F (x∗, h) has a tubular region with very little movement, in the sense that ‖Fx∗(h)− h‖2
is very small for hidden states h in this region.

8

Under review as a conference paper at ICLR 2022

Figure 8: Model embedding space as a space of line attractors. We plot the model embeddings
of 20 base models trained on the IMDB sentiment classification task (left), along with the centroids
of each cluster. The green cluster corresponds to models trained on 100% of the data and the blue
cluster corresponds to models trained on a fixed 50% fraction of the training data. A model having
better test accuracy than any trained base model is also plotted (marked with an 5). For several of
the points of interest, we (right) find the structure of a line attractor in the hidden state space by
computing approximate fixed points of the map h 7→ F (x∗, h). The line attractors are shown for
the point marked with an 5, the two centroids, and two interpolated values in the model embedding
space. We also chose two values from each cluster to compare the line attractor at the centroid to
the models in the structure, corresponding to the top left and bottom right model in each cluster.

To investigate the dynamical behavior of the meta-model space, we trained a meta-model on a set
of 20 base models which were themselves trained on the IMDB sentiment analysis task. Of these
20 base models, 10 were trained with 50% of the available training data and the remaining 10 were
trained on 100% of the training data. The θ points corresponding to these base models clustered
in the model embedding space according to the amount of training data. In Figure 8 we perform a
fixed-point analysis of several models corresponding to points of interest in the model embedding
space.

The fixed-point analysis was run according to the procedure described in (Golub & Sussillo, 2018).
First we selected a set of candidate hidden states hj by running the model on a typical batch of inputs.
For each hidden state hj obtained in this way, we used gradient descent on the loss ‖F (x∗, h)−h‖22
to find the nearest approximate fixed point.

An interesting finding is that the meta-model found line attractor structures that were very geomet-
rically similar for models within a cluster. An interpretation of this result pertaining to topological
conjugacy in dynamical systems theory is discussed in Section C of the Supplementary Materials.
Moreover, we find that the meta-model finds a continuous interpolation between line attractors that
are relatively fat and thin (corresponding to models trained on 50% of the data), and models that are
elongated (corresponding to models trained on 100% of the data).

6 DISCUSSION

We have introduced the algorithm DYNAMO, which maps a set of neural network base models to a
low dimensional feature space. Our results show that the model embeddings provided by DYNAMO
capture relevant computational features of the base models. Moreover, the model embedding spaces
produced by DYNAMO are a sufficiently smooth that model averaging can be performed, and even
model extrapolation to reach new models with better performance than any base model. Indeed,
in our experiments where the base models were trained on the sentiment analysis task, the model
embedding space describes a space of line attractors which vary smoothly in the parameter θ.

We have demonstrated that DYNAMO can be applied broadly to neural networks that have a dynam-
ical structure; for example, we used the demarcation of layers of convolutional neural networks as
a proxy for a dynamical time variable. This also suggests possible scientific applications of DY-
NAMO to dynamical systems arising in nature. A present limitation of DYNAMO is the need for all
base models to have the same input structure. For example, one cannot presently utilize DYNAMO

9

Under review as a conference paper at ICLR 2022

to compare language models trained with different encodings (character-based vs. word-based, for
example).

REFERENCES

Kyle Aitken, Vinay V Ramasesh, Ankush Garg, Yuan Cao, David Sussillo, and Niru Ma-
heswaranathan. The geometry of integration in text classification rnns. arXiv preprint
arXiv:2010.15114, 2020.

Piotr Bojanowski, Armand Joulin, David Lopez-Pas, and Arthur Szlam. Optimizing the latent space
of generative networks. In International Conference on Machine Learning, 2018.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, 2017.

Takashi Fukuda, Masayuki Suzuki, Gakuto Kurata, Samuel Thomas, Jia Cui, and Bhuvana Ramab-
hadran. Efficient knowledge distillation from an ensemble of teachers. In Interspeech, 2017.

Matthew D Golub and David Sussillo. Fixedpointfinder: A tensorflow toolbox for identifying and
characterizing fixed points in recurrent neural networks. Journal of Open Source Software, 2018.

David Ha, Andrew Dai, and Quoc V. Le. HyperNetworks. In International Conference on Learning
Representations, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning Workshop, 2015.

P Izmailov, AG Wilson, D Podoprikhin, D Vetrov, and T Garipov. Averaging weights leads to wider
optima and better generalization. In Conference on Uncertainty in Artificial Intelligence, 2018.

Anatole Katok and Boris Hasselblatt. Introduction to the modern theory of dynamical systems.
Number 54. Cambridge University Press, 1997.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International Conference on Machine Learning, 2019.

Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their equivari-
ance and equivalence. In IEEE Conference on Computer Vision and Pattern Recognition, 2015.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John E Hopcroft. Convergent learning:
Do different neural networks learn the same representations? In International Conference on
Learning Representations, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Annual Meeting of the Association for Compu-
tational Linguistics, 2011.

Niru Maheswaranathan, Alex H Williams, Matthew D Golub, Surya Ganguli, and David Sussillo.
Reverse engineering recurrent networks for sentiment classification reveals line attractor dynam-
ics. Advances in Neural Information Processing Systems, 2019a.

Niru Maheswaranathan, Alex H Williams, Matthew D Golub, Surya Ganguli, and David Sussillo.
Universality and individuality in neural dynamics across large populations of recurrent networks.
Advances in Neural Information Processing Systems, 2019b.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. Advances in Neural Information Processing Systems, 2018.

10

Under review as a conference paper at ICLR 2022

Tsendsuren Munkhdalai and Hong Yu. Meta Networks. In International Conference on Machine
Learning, 2017.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. SVCCA: Singular Vector
Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability. In Interna-
tional Conference on Neural Information Processing Systems, 2017.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
Conference on Learning Representations, 2017.

Adriana Romero. Polytechnique montréal, y. bengio, université de montréal, adriana romero, nicolas
ballas, samira ebrahimi kahou, antoine chassang, carlo gatta, and yoshua bengio. fitnets: Hints for
thin deep nets. In International Conference on Learning Representations, 2015.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-Learning with Latent Embedding Optimization. In International
Conference on Learning Representations, 2019.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International Conference on Machine
Learning, 2016.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
sualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural Computation, 2013.

David Sussillo, Mark M Churchland, Matthew T Kaufman, and Krishna V Shenoy. A neural network
that finds a naturalistic solution for the production of muscle activity. Nature Neuroscience, 2015.

Daniel LK Yamins and James J DiCarlo. Using goal-driven deep learning models to understand
sensory cortex. Nature Neuroscience, 2016.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European Conference on Computer Vision, 2014.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in Neural Information Processing Systems, 2015.

11

Under review as a conference paper at ICLR 2022

A META-MODELS FOR CNNS

Our setup in Section 2.2 above can be readily adapted to CNNs, or feedforward neural networks
more broadly. For instance, in the case of ResNets, there is a single input x0 followed by a sequence
of blocks which operate on different numbers of channels. We let the meta-model likewise be a
ResNet with the same block structure. Moreover, we consider the output bt of the tth block in place
of theGn(ht)’s in equation 1, and take the hidden states between the t and t+1 blocks to be the ht’s
in equation 2. Since each block of a ResNet is distinct, we consider a family of maps Vn,t which
depend on the base model n and the block layer t. Suppose B is the total number of blocks. Then
we can more explicitly write

LCNN
output[F̃ , θ] :=

1

B

B∑
t=1

d(bθn,t, bt) (5)

LCNN
hidden[F̃ , θn, {Vn,t}Bt=1] :=

1

B

B∑
t=1

‖Vn,t(hθn,t)− ht‖
2
2 . (6)

Then the total loss function accounting for all N of the ResNet base models is

LCNN[F̃ , {θn}Nn=1, {{Vn,t}Bt=1}Nn=1]

:=
1

N

N∑
n=1

Ex0∼Dn

[
LCNN
n,hidden[F̃ , θn, {Vn,t}Bt=1] + λLCNN

n,output[F̃ , θn]
]

(7)

where we note that in the expectation value we are only sampling over x0’s in Dn since x0’s are the
only form of input data.

B ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide further details on our experiments as well as additional empirical results.

B.1 META-MODEL ARCHITECTURES

RNN architecture. We parameterize the meta-model for RNNs as a GRU that takes the model
embedding vector as an additional input at each time step. Specifically, the meta-model GRU takes
as input the vector [xt ; θ] at each time step, where xt is an input token embedding and [· ; ·] denotes
concatenation. The model embedding vector θ therefore serves as a time-independent bias for the
meta-model.

CNN architecture. We parameterize the meta-model for CNNs with a modified ResNet architec-
ture. In each residual block, we use a linear transformation W to map the model embedding vector
θ to the corresponding channel dimension of convolutional layer. We then add the vector Wθ to
the channels at each spatial location of the feature map. This design emulates the approach used in
our parametrization of the RNN meta-model, with the model embedding θ serving as a bias term in
each residual block. We reuse the weight matrix W for all residual blocks with the same channel
dimension.

Algorithm 2 Meta-Model Residual Block
Input: features x, model embedding vector θ
z = BatchNorm(Conv(x))
z = ReLU(z+Wθ)
z = BatchNorm(Conv(x))
z = ReLU(x+ z)
return z

The standard ResNet architecture consists of a sequence of four layers, with each layer consisting of
a sequence of residual blocks. To compute the hidden state loss Lhidden in DYNAMO, we compute
distances between the output representations of each of these four layers, averaging over the number
of channels and spatial locations in each set of features.

12

Under review as a conference paper at ICLR 2022

B.2 TRAINING DETAILS

Table 1 lists the hyperparameters used for training our RNN base models and meta-models, and
Table 2 lists the hyperparameters used for our CNN base models and meta-models. By default, we
use a model embedding dimension of 16. In the case of visualizing the training trajectories of IMDB
sentiment GRUs (Figure 3, second column), we use a model embedding dimension of 32 due to the
relatively larger number of base models.

Hyperparameter Base Model Meta-Model
optimizer AdamW (Loshchilov & Hutter, 2018) AdamW

- learning rate 10−3 (10−4 for vanilla RNN) 10−3

- learning rate annealing cosine with freq. 7/32 cosine with freq. 7/32
- β (0.9, 0.999) (0.9, 0.999)
- ε 10−8 10−8

- weight decay 5× 10−4 1× 10−4

number of training epochs 20 (50 for vanilla RNN) 100
batch size 128 128
input token embedding dimension 256 256
hidden dimension 256 512

Table 1: Hyperparameters used for RNN base models and meta-models.

Hyperparameter Base Model Meta-Model
optimizer SGD with Nesterov momentum SGD with Nesterov momentum

- learning rate 0.03 0.03
- learning rate annealing cosine with freq. 7/32 cosine with freq. 7/32
- momentum 0.9 0.9
- weight decay 5× 10−4 5× 10−4

number of training batches 216 216

batch size 512 512

Table 2: Hyperparameters used for CNN base models and meta-models.

B.3 SUPPLEMENTARY EMPIRICAL RESULTS

Effect of output loss weight. Figure 9 shows the effect of setting the output loss weight λ = 0 for
meta-models on RNNs. These plots illustrate that model clustering can be performed on the basis
of comparing hidden state dynamics alone. We note that the change in the λ hyperparameter results
in qualitative changes in the resulting clustering. In particular, the model embeddings for GRUs
trained on AG News classification (rightmost column of Figure 9) are much more tightly coupled
relative to the GRUs trained on the IMDB dataset when λ = 0. This indicates that the dynamics
implemented by the AG News GRUs are much more similar than those implemented by the IMDB
sentiment GRUs.

Clustering with other loss functions. As noted in Sec. 4.1, the loss functions used to compare
hidden states and outputs can be easily changed to better match the characteristics of the base mod-
els under consideration. We demonstrate the benefit of this additional flexibility by replacing the L2

distance in Lhidden (equation 6) with the L1 distance for comparing the intermediate representations
of ResNets. This choice is motivated by the observation that the use of the ReLU nonlinearity results
in sparse representations, which suggests the use of the L1 metric. Figure 10 shows a comparison
between these two distance functions in the case of ResNet-34 models trained on CIFAR-100 with
“weak” data augmentation (random shifts and horizontal flips) and with “strong” data augmenta-
tion (RandAugment). Here, we parameterized the meta-model with a ResNet-50 architecture. The
use of the L1 distance results in a clearer separation between the two sets of models. This is re-
flected qualitatively in the distribution of the base model embeddings in model embedding space,
and quantitatively in the relative scale of the variance captured by the first principal component.

13

Under review as a conference paper at ICLR 2022

Figure 9: PCA plots of DYNAMO model embeddings on collections of RNNs with output loss
weight λ = 0. For ease of comparison, we have also included the plots from Figure 3 with λ = 1.

Figure 10: CIFAR-100 ResNet-34 model embeddings using L1 distance to compare intermediate
representations (left) vs. L2 distance (right). The use of the L1 distance results in a clearer separa-
tion between the two sets of models.

14

Under review as a conference paper at ICLR 2022

Figure 11: A map of the word scores (described in equation 8) as a function of the parameter in
model embedding space. Higher scores indicate models that should have better interpretations of
words. There is a noisy but discernible trend that the score increases as θ2 decreases (and is highest
near the value of the optimal model embedding).

B.4 FURTHER INVESTIGATION OF THE DYNAMICS OF SENTIMENT ANALYSIS

Recall that our trained RNN’s implemented sentiment analysis via line attractor dynamics, in which
inputted words kicked the hidden state in the ‘positive’ or ‘negative’ direction along the line attractor
according to the valence of the word (i.e. how positive or negative the word is). Figure 11 investigates
how valences assigned to words change as we scan across model embedding space. Given an RNN
corresponding to a value θ, we first find a fixed point h∗ with neutral readout G(h∗) ≈ 0. For this
fixed point, we compute G(F (x, h∗)) for a variety of word inputs x. To produce a “score” for the
model, we compute

Score(h∗) =
∑

x∈Wpositive

G(F (x, h∗))−
∑

x∈Wnegative

G(F (x, h∗))−
∑

x∈Wneutral

|G(F (x, h∗))|, (8)

where the set of positive words Wpositive, negative words Wnegative, and neutral words Wneutral are
listed in Table 3. Note that here we are not analyzing context effects, for instance how the string
‘not terrible’ would be rendered into a net-positive valence.

Positive words good, awesome, terrific, exciting, fantastic, amazing, fine, superior, outstanding, superb, magnificent, marvelous, exceptional, tremendous

Negative words bad, awful, horrible, terrible, poor, inferior, unacceptable, shoddy, atrocious, crap, rubbish, garbage

Neutral words it, the, is, a, if, then, are, were, can, will, has, had, been, was, when, who, to, what

Table 3: Lists of good, negative, and neutral words selected to assess the “word valence” quality of
a model.

C META-MODELS AND TOPOLOGICAL CONJUGACY

In this section we describe the notion of topological conjugacy, its relationship to the loss function
Lhidden , and provide speculation as to the interpretation of the results from Section 5.

A topological conjugacy (Katok & Hasselblatt, 1997) between two dynamical systems defined by
maps F : X → X and E : Y → Y is a homeomorphism Φ : X → Y satisfying

F (x) = (Φ−1 ◦ E ◦ Φ)(x). (9)

Note that the dynamical systems F and E can have distinct domains. The significance of the rela-
tionship in equation 9 is that dynamics obtained from iterated applications of the map F and E are

15

Under review as a conference paper at ICLR 2022

related to each other by the formula

Fn(x) = (Φ−1 ◦ En ◦ Φ)(x).

Thus, if F and E are topologically conjugate, then their iterates are also topologically conjugate and
this means that the dynamics are related by a change of variables. Notice that topological conjugacy
is an equivalence relation; as such the transitive property tells us that if F ∼ E and E ∼ D then
F ∼ D.

The notion of topological conjugacy is an important motivation for defining the loss functionLhidden ,
which we recall is given by

Lhidden[F , θ, V] :=
1

T

T∑
t=1

‖V (hθ,t)− ht‖22,

where the hidden states ht are dynamics obtained from a base model F , the hidden states hθt are
dynamics obtained from the meta-model F̃ with parameter θ, and V is the map from the meta-model
hidden states to the base model hidden states. One way of obtaining zero loss is to find a topological
conjugacy with map V between the meta-model F̃ (at fixed θ) and the base model F , meaning a
relationship of the form

F (x, h) = (V ◦ F̃)(θ, x, V −1h).

It is convenient to define the notation Fx(h) := F (x, h) and F̃θ,x(h) := F̃ (θ, x, h). Then we have

ht = (Fxt
◦ Fxt−1

◦ · · · ◦ Fx1
)(h0) = (V ◦ F̃θ,xt

◦ F̃θ,xt−1
◦ · · · ◦ F̃θ,x1

)(V −1h0) = V hθ,t

with hθ,0 = V −1h0 , so that Lhidden[F , θ, V] = 0 would hold. As depicted in Figure 2, to obtain
zero loss it would actually suffice to find a weaker relationship of the form

F (x, V h) = (V ◦ F̃)(θ, x, h).

The difference here is that V need not be invertible.

Using the language of topological conjugacy, we can describe a speculative but plausible interpreta-
tion of the results of Section 5. In that section we observed that models from the same cluster had
very similar dynamical features and performed similarly to the model average of the cluster. This
suggests that for each model Fn in the same cluster, we have

Fn(x, Vnh) ≈ (Vn ◦ F)(θ, x, h)

where θ is the centroid of the cluster to which Fn belongs. Note that here we replaced θn with θ,
thus assuming both that Lhidden is small and that θn is sufficiently close to θ. Second, making the
hypothesis that there exists an inverse V −1

n to the map Vn, the map Vn may provide a topological
conjugacy between the base model Fn and the meta-model F̃θ evaluated at θ. Assuming further that
our assumptions hold for all models in the cluster, using the transitivity of topological conjugacy
we would conclude that base models belonging to the same cluster are topologically conjugate to
one another. This would justify the intuition suggested by Figure 8 that DYNAMO clusters models
according to commonalities of topological structures of dynamics.

16

	Introduction
	Dynamical Model Embedding
	Mathematical Setup
	Meta-Models for RNNs

	Related Work
	Empirical Results
	Visualizing Model Similarity in Embedding Space
	Extrapolation Beyond Base Model Embeddings
	Semi-Supervised Learning in Model Embedding Space

	Dynamics of Meta-Models for RNNs
	Discussion
	Meta-models for CNNs
	Additional Experimental Details
	Meta-Model Architectures
	Training Details
	Supplementary Empirical Results
	Further investigation of the dynamics of sentiment analysis

	Meta-models and topological conjugacy

