Under review as a conference paper at ICLR 2026

ONLINE ALGORITHM CONFIGURATION FOR MILP RE-
OPTIMIZATION WITH LLM GUIDANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we study the re-optimization setting for mixed-integer linear pro-
grams, where solving sequentially related instances can benefit from both adap-
tive solver parameter configuration and the reuse of historical information from
previous solves. However, modern solvers expose hundreds of tunable parame-
ters, yielding a large configuration space; and the effectiveness of re-optimization
techniques (e.g., warm starts or branching statistics) varies substantially across
problem families. To address these challenges, we formulate a generalized algo-
rithm configuration problem that jointly determines solver built-in parameters and
the selective use of historical information within a reduced configuration space.
Given the sequential nature of re-optimization and the limited number of available
instances, offline methods that require large datasets are impractical, so adaptive
online configuration selection becomes essential. We therefore propose a two-
stage framework: (i) configuration space reduction via large language models,
which generate a compact portfolio of candidate configurations; and (ii) adaptive
online selection using multi-armed bandit algorithms to minimize solving cost
over the sequence. Empirical results on the MIP Workshop 2023 re-optimization
benchmarks demonstrate that our method substantially outperforms default SCIP
and Gurobi configurations as well as strong baselines, achieving solving time re-
ductions of up to 54.18%, without requiring prior validation data or supervised
training.

1 INTRODUCTION

Many real-world decision problems are naturally modeled as mixed-integer programs (MIPs). When
the underlying system evolves over time, as in hybrid model predictive control |[Richards & How
(2005); [Frick et al.| (2019); [Marcucci & Tedrake| (2020), dynamic vehicle routing [Dondo & Cerda
(2006); [Ozbaygin & Savelsbergh| (2019); |Andersen et al.| (2024)), unit commitment in power sys-
tems |Morales-Espafa et al.| (2013); |Gentile et al.| (2017); He et al.| (2024)), and dynamic production
planning [Wolsey| (1997)); |Cedillo-Robles et al.| (2020); Dunke & Nickel| (2023), practitioners rarely
solve a single static instance. Instead, they face a sequence of closely related instances that share a
common structure but differ in parameters such as objective coefficients, constraint right-hand sides,
or variable bounds. We refer to this sequential setting as re-optimization; in this paper we focus on
the mixed-integer linear programs (MILPs) case.

Instead of solving each instance from scratch, in the setting of re-optimization one can exploit in-
formation from previous instances in three complementary ways: (i) warm starts from historical
solutions |Berthold (2006)); Gamrath et al.| (2015)); (ii) reuse branch-and-bound (B&B) information
such as pseudocosts or conflict statistics |Achterberg et al|(2005)); Patel| (2024a); (iii) automated pa-
rameter tuning Xu et al.|(2011)). Although these approaches have been empirically effective, several
research gaps remain. First, their effectiveness is highly problem specific, simply enabling all re-
optimization mechanisms may not yield the best performance [Patel (2024b). Second, many search-
based or learning-based parameter tuning methods require solving large numbers of instances offline
to train predictors or validate configurations, which is impractical in re-optimization scenarios where
only limited data are available and system dynamics evolve over time. Third, the parameter space
of modern MILP solvers is already very large, and re-optimization introduces additional tunable
options, further exacerbating the challenge of efficient exploration.

Under review as a conference paper at ICLR 2026

These limitations motivate us to propose a generalized algorithm configuration framework for re-
optimization. To address the first gap, we treat the use of re-optimization mechanisms (e.g., warm
starts) as tunable options alongside built-in solver parameters. To address the second, we design a
lightweight online method based on multi-armed bandits (MAB), which avoids costly offline train-
ing or searching and adapts to dynamic changes. To address the third, we leverage the zero-shot
capabilities of large language models (LLMs) to reduce the algorithm configuration space, generat-
ing a compact but diverse configuration candidate set from which the bandit algorithm can adaptively
select. Our main contributions are as follows:

e We formally define the MILP re-optimization problem, where a solver faces a sequence
of structurally related instances and can leverage a finite history window of past solutions
and solver information. Within this setting, we cast the task as a generalized algorithm
configuration problem that jointly considers built-in solver parameters and re-optimization
techniques.

* We develop a lightweight two-stage approach that first introduces LLMs to generate con-
figuration candidates, thereby reducing the combinatorially large algorithm configuration
space to a compact candidate set, and then designs an MAB-based strategy for adaptive
online configuration selection.

* We demonstrate on challenging benchmarks with multiple varying components and large-
scale instances that our method consistently outperforms default SCIP and Gurobi solvers
as well as strong baselines, achieving solving-time reductions of up to 54.18%, without
requiring offline training or validation data.

2 LITERATURE REVIEW

Re-optimization for MILPs. Re-optimization of sequentially related MILP instances has been
investigated extensively, with prior work exploring techniques that leverage historical information
from previously solved similar instances to accelerate solving new ones. Modern solvers such as
Gurobi |Gurobi Optimization! (2023) and SCIP Bestuzheva et al.|(2021) include warm-start features,
whereby feasible or incumbent solutions from past instances are provided as primal hints. |Gamrath
et al.| (2015)) presents a branch-and-bound scheme in SCIP that reuses the search frontier from a
solved instance, mainly focusing on objective coefficient variations. More recently, |Bolusani et al.
(2024) delivers extensive benchmarks covering variations in objective coefficients, variable bounds,
right-hand sides, and constraint matrix coefficients. [Patel| (2024b) achieves leading performance on
these benchmarks by combining reuse of primal solutions, branching history, and automated param-
eter tuning to adapt across multiple instances. [Zhang et al.| proposes a two-stage re-optimization
framework: first predicting a high-confidence solution subspace from historical solving trajecto-
ries, then partially fixing variables within this subspace using Thompson Sampling to accelerate the
search. The method is mainly effective for quickly identifying feasible solutions without necessar-
ily reaching optimality, and it does not extend to re-optimization scenarios with multiple varying
components.

Algorithm configuration. Modern MILP solvers such as SCIP expose hundreds of tunable pa-
rameters across many components (e.g., branching rules, cut separators, presolve options, heuris-
tics, conflict analysis, symmetry handling) |Bestuzheva et al.| (2021). In addition, the use of re-
optimization methods introduces further tunable choices. For example, when leveraging primal hints
from previously solved instances, one may decide how many incumbent solutions to carry forward
and from which instances, as well as whether to include only integer variables or all variables [Patel
(2024b)). These solver-native and re-optimization parameters yield a combinatorially large config-
uration space. The task of selecting suitable parameter values is typically framed as an algorithm
configuration problem, where extensive offline search is conducted to identify configurations that
perform well across a distribution of instances Hutter et al.| (2007;|2009); [Xu et al.|(2011); [Eryoldas
& Durmusoglul (2022). However, such approaches are computationally prohibitive in practice, as
they require evaluating various configurations on large training sets.

Learning-based methods have been proposed to predict good configurations or guide the search over
large configuration spaces Biedenkapp et al.|(2020); |/Adriaensen et al.| (2022); Valentin et al.|(2022);
Li et al.|(2023); Hosny & Redal (2024). Many of these approaches focus on instance-wise algorithm

Under review as a conference paper at ICLR 2026

configuration, where handcrafted or learned features are mapped to solver configurations. While
effective, such methods typically depend on costly feature engineering, supervised training, and
large datasets to ensure generalization. In the re-optimization setting, [Patel| (2024b) addresses algo-
rithm configuration by applying an MAB framework. Instead of time-consuming offline training,
they adaptively tune parameters online. However, their approach treats each parameter indepen-
dently as a separate bandit problem, which hampers convergence and forces them to restrict tuning
to only a small subset of parameters, limiting achievable performance. These observations motivate
our question: can we design a more lightweight, training-free approach that remains effective in
re-optimization scenarios?

Lawless et al.[(2025) recently proposed an LLM-based method for separator configuration with min-
imal training data, leveraging instance descriptions and formulations. Yet, LLMs may hallucinate
and generate inconsistent configurations, necessitating an additional validation set—impractical in
re-optimization scenarios with limited instances. Furthermore, their scope is restricted to separa-
tors, whereas re-optimization exposes richer historical information and a broader range of tunable
parameters. These limitations motivate our work on generalized re-optimization algorithm config-
uration, leveraging the zero-shot capabilities of LLMs for space reduction and online bandit-based
adaptation for selection.

3 PROBLEM FORMULATION

In this section, we first present formal formulations of the MILP model and the re-optimization
setting. We then define the generalized algorithm configuration problem. Finally, we describe two
sub-tasks: (i) generating configuration portfolios to reduce the configuration space, and (ii) perform-
ing online configuration selection over these configuration candidates.

Mixed Integer Linear Programming (MILP). An MILP problem can be represented as follows:
m]iRn c'e, staxeXywp = {x:Axob, I<x<wu, z;€ZVjel}, €))
TeR™

where A € Q™*™, ¢ € Q™, and b € Q™. The symbols [and u denote the lower and upper bounds

of the variables, respectively, and each component satisfies [; € Q U {—oo} and u; € Q U {4o00}.

The relational operator o indicates the type of constraint applied to each row, with entries o; € {<

,=,>}. Theindex set I C {1,2,...,n} identifies which variables x; are integer variables.

Re-optimization problem. We consider solving a sequence of MILP instances {P;}L; C P
arising from the same problem family. The instances in each series have a fixed overall problem
structure: the number of constraints, and the number, order, and meaning of variables remain the
same across the instances in a series. Some or all of the following input data may vary over ¢:
objective function coefficients ¢, variable bounds ! and/or w, constraint right-hand sides b, and
coefficients of the constraint matrix A [Bolusani et al.|(2024). At round ¢, the solver faces the current
instance P; and may access a finite history window of length 7:

,Pt(T):(Pt—Tv"')Pt)y HzST):(ht—T)"'yht—l)?

where h denotes information obtained from the solver, such as primal solutions, branching in-
formation, or cut statistics. After solving the MILP problem, the solver produces an output

z = f (Pt(T)7 Hlt(T))7 where f denotes the (black-box) solver execution. The output z; captures
relevant performance signals, such as solving time, primal—dual integral, optimality gap, or objec-
tive value. The cost is then defined as a functional of this output, C'(z;), which provides a scalar
performance measure for round ¢. The re-optimization problem is to design a policy that minimizes
the cumulative cost over the sequence:

T
minz C(zt).
t=1

Algorithm configuration. In our re-optimization setting, MILP solvers expose numerous tunable
built-in parameters. In addition, our framework treats optional re-optimization parameters as part
of the configuration space, controlling whether and how prior information is reused. The algorithm
configuration problem is to derive a policy that automatically selects these parameters to accelerate

Under review as a conference paper at ICLR 2026

the solution for each forthcoming instance in a series. Let M = {1,..., M} index the set of
configurable parameters. For each ¢ € M, let S; denote the finite set of admissible choices with
cardinality |S;| = K;. For instance, one configurable parameter may be whether to use primal hints
from previous instances as a warm start in re-optimization (K; = 2, with 0 indicating not used and
1 indicating used). Another parameter corresponds to separator aggressiveness as implemented in
commercial solvers such as Gurobi (/; = 3, with 0 = off, 1 = moderate, and 2 = aggressive). The
overall configuration space is the Cartesian product S = &1 X -+ x Sy, |S| = H£1 K;, and a
configuration is an element s = (s1,...,sp) € S with s; € S; specifying the choice for algorithm
parameter 7. Note that s € S does not correspond to a single parameter choice, but rather to a
complete configuration across all parameters. For example, if M = 2 with parameters (Primal Hint,
CoverCuts), then s = (1,2) denotes a configuration in which the primal hint is enabled and the
cover-cut separator is set to aggressive.

In the re-optimization setting, combining algorithmic choices (e.g., whether to use warm starts or
exploit historical branching information) with built-in solver parameters (e.g., separator aggressive-
ness) yields a combinatorially large configuration space, making direct exploration impractical. We
therefore formulate a configuration space reduction task as follows.

Configuration space reduction. To reduce the configuration space, given a problem description
¢ (e.g., instance features or textual context), we seek a subset S’ C S that still contains configu-
rations with strong performance. In this work, LLMs are used to generate a manageable portfolio
of candidate configurations. A multi-armed bandit algorithm then adaptively selects among these
candidates, where each configuration corresponds to an arm.

We formalize online configuration selection over the candidate portfolio as a regret—-minimization
problem:

Policy and regret. A policy 7 selects configurations adaptively from the reduced space: s, =

71'(7715(7)7 Ht(T)) € §’. Applying configuration s; yields an output z; = (Pt(T), Ht(T); s¢) and corre-

sponding cost C(z;) as defined in the re-optimization problem. To align with the bandit literature,
we define the reward as the negative cost: 7¢(s;) = —C(f(Pt(T), a, s¢)). Since (P H) are
fixed at round ¢, we abbreviate the reward as 7;(s;). Performance is then measured by cumulative
regret: T T
=]E -]E .
Re(m) = max 2 [re(s)] ; [re(s0)]
This quantifies the gap between the policy 7 and the best fixed configuration in hindsight.

4 METHODOLOGY

In this section, we present a two-stage approach for sequentially related MILP instances. First,
an LLM proposes configuration candidates s € S; querying it N times yields a reduced portfolio
S’ C S with |§’| = N. Second, an MAB algorithm adaptively selects configurations from S’ along
the re-optimization sequence. Figure[T]depicts the workflow.

4.1 OFFLINE CONFIGURATION SPACE REDUCTION WITH LLMS

Inspired by [Lawless et al.| (2025)), we provide detailed descriptions of the re-optimization problem
series and the tunable parameters, so as to supply sufficient context for LLMs to generate reasonable
and diverse configurations. In what follows, we introduce the specific design choices made for the
re-optimization setting. Details of the LLM prompts are provided in Appendix [A.3]

Problem description. The re-optimization datasets [Bolusani et al.| (2024) used in this work pro-
vide comprehensive context, including provenance, series-level metadata, and the components that
vary across instances. We convert this information into a structured prompt for each problem series
with three blocks: (i) Provenance & formulation. We provide a concise natural-language descrip-
tion along with the canonical IP/MIP formulation (sets, variables, and constraints). For example,
explicitly describing capacity constraints can guide the LLM to enable separators such as implied
bound cuts. (ii) Series metadata. This block specifies the problem size (number of variables and
constraints), the binary/continuous variable mix, and, when available, additional structural hints

Under review as a conference paper at ICLR 2026

Offline Configuration Space Reduction

Problem Description
x'= argmin{crx:Axnb,leSu,x] EZ,vjEl])

Provenance & formulation: Single-machine scheduling; set- 2

partitioning, knapsack. Config 1

Series metadata: 50 instances; 1758 vars; 351 cons. , Config 2

Re-optimization variation: Binary bounds vary (15-25%). Selected
o0 Config 3

Parameter Description — Config 4 gura

Name: Primal Hint. Candidates

Content: Provide incumbent solution from prior instance. LLM Config 5

Effect: Faster feasible solution, better pruning if consistent; Repeat N=3 times Config 6

slower search, larger trees if poor quality.

Online Configuration Selection

et
Configuration e\, | Config2 Config 4
W
x'=argmin{c"x:Axob,l, < x <u,x; € Z,Vj €I} G ! Score Uy, Score Uyt
= | 2 g
Instance Solver Output Bandit | __Am2 | Am4 | AmS5 |
B R et B i ST
l - Load Solver Information| (775 | soyverinfo | SolverInfo
Solv = - Solver output (e.g. solving time) == !
otver - 1 Instance ! Instance
S === i
i

Solver Information (e.g. solution) . History |
/ Store Solver Information Quffer ! Instance Pr_; | Instance ..

,,,,,,,,,,, Iy

Figure 1: Two-stage framework for MILP re-optimization. Top: Offline configuration space reduc-
tion with LLMs. Given problem and parameter prompts, the LLM is queried [V times to generate
compact portfolios. Bottom: online configuration selection via MABs. At each round ¢, the agent
should select a configuration for the current instance P, and the solver loads historical information.
After solving the instance, the environment returns solver output (e.g., solving time) for the agent to
update all arm scores and store solver information for future rounds.

such as sparsity or density. (iii) Re-optimization variation. We summarize which components vary
across the series, such as objective coefficients, right-hand sides, or variable bounds. For instance,
objective drift often encourages warm starts, whereas bound changes may reduce the reliability of
primal hints. Each block provides signals that help the LLM generate configurations aligned with
the structural and dynamic properties of the problem series.

Parameter description. For each solver, we list the tunable parameters together with their discrete
choices. We provide both the solver-specific names and a detailed description of each parameter.
These descriptions are consolidated from multiple sources, including research papers, textbooks,
solver documentation, and empirical insights. Since the parameter choices typically control not
only whether a function is enabled or disabled, but also to what extent, we explicitly summarize
the strengths and limitations of each parameter to guide LLMs in deciding both whether and how
aggressively to activate a function.

For example, Primal Hint (MIP warm-start) supplies an incumbent solution from previous instances.
This can significantly reduce time to derive a feasible solution at the early stage and improve pruning
efficiency when the hint is of high quality and structurally consistent across instances. However, if
the incumbent solution has a poor objective value, lower bounds cannot prune effectively, leading
to larger search trees. Another tunable parameter, Root-only cuts, controls whether cutting planes
are generated exclusively at the root node. On the one hand, enabling root-only can reduce the
overhead of cut separation and LP solves at non-root nodes. On the other hand, it may fail to
sufficiently strengthen the dual bound, thereby decreasing pruning opportunities and potentially
increasing the number of explored nodes. Describing such strengths and limitations is crucial for
LLM to generate algorithm configurations: it enables the model to weigh trade-offs (e.g., speed
versus pruning power) and to adapt recommendations more effectively in the re-optimization setting,
where historical context can amplify both the benefits and risks of these parameter choices.

4.2 ONLINE CONFIGURATION SELECTION VIA MULTI-ARMED BANDITS

Through offline configuration space reduction with LLMs, we derive a reduced candidate set S’ C
S. We then formulate the task of adaptively selecting configurations from S’ as an MAB problem:
at each round ¢, the policy 7 chooses a configuration s; € S’, observes the resulting reward r(s;),
and updates its decision rule based on past observations. The goal is to minimize the cumulative
cost relative to the best configuration in hindsight.

Under review as a conference paper at ICLR 2026

We instantiate the configuration selection policy 7 using the Upper Confidence Bound algorithm
with a tunable exploration coefficient o > 0 to scale the bonus term (Auer et al., |2002). For each
candidate configuration s € &', let fi5(¢) denote its empirical mean reward up to round ¢, and let
n,(t) denote the number of times s has been selected. UCB1 computes the score

2Int
ns(t)’
and selects the configuration s; = arg maxgsess Us(t). The first term promotes exploitation of con-

figurations with high empirical rewards, while the second term is an exploration bonus that decays
with the number of pulls. More details of the MAB algorithm are provided in Appendix[A.4]

Us(t) = fus(t) + a)

5 EXPERIMENT

In this section, we evaluate our proposed framework against default solver configurations and rep-
resentative baselines. Our experiments are designed to address the following research questions: (i)
Comparative performance. How does our framework perform relative to default solver settings and
baselines? (ii) Offline configuration space reduction. Can LLMs efficiently reduce the algorithm
configuration space by generating reasonable and diverse candidate configurations? (iii) Online
configuration selection. Can bandit algorithms adaptively select effective configurations over the
sequential instances within a re-optimization series?

5.1 EXPERIMENT SETUP

All experiments are conducted on a high-performance computing cluster with Intel Xeon Platinum
8628 CPUs. All Gurobi experiments use Gurobi 12.0.3, and all SCIP experiments use SCIP 9.02.
We set the number of candidate configurations to N = 5 for each re-optimization problem series.
However, since single-shot LLM outputs may be noisy or redundant, and following prior work Law-
less et al.| (2025)), we deliberately over-generate a larger pool of 100 configurations and then apply
k-medoids clustering to condense them into N = 5 representative candidates. The exploration co-
efficient and the length of history window are fixed at « = 1 and 7 = 5, respectively. We further
investigate the sensitivity of these parameter choices in this section.

Benchmarks. We evaluate our proposed method and baselines on the datasets provided by The
MIP Workshop 2023 Computational Competition ON Re-optimization Bolusani et al.[(2024). We
select 10 datasets from this benchmark, each corresponding to a re-optimization problem series
consisting 50 sequential instances. To analyze performance across different difficulty levels, we
categorize the datasets into easy and hard groups. Easy datasets involve only a single varying (e.g.,
objective coefficients), and have relatively small problem sizes, with no more than 1,457 integer
variables. Hard datasets are characterized either by having at least two (up to four) varying com-
ponents, by significantly larger problem sizes (up to 63,009 integer variables), or by both. For each
dataset, we further split the 50 instances into 45 evaluation instances and 5 validation instances. Note
that validation instances are only used by one baseline method; our approach and all other baselines
do not require validation data. More details of the benchmarks are provided in Appendix [A.2]

Evaluation metrics. We consider the average solving time across a re-optimization sequence as

the primary evaluation metric: Time = 23:1 z(t), where z(t) denotes the solving time of in-

stance t. We also report the relative improvement over default solvers: Improve = T‘m‘%ﬁrﬁw’m‘
efault

All instances are solved to optimality, subject to a maximum time limit of 400 seconds. If an in-
stance does not terminate within the limit, its solving time is set to the maximum, ensuring fairness
and preventing a few particularly hard instances from dominating the aggregate evaluation.

Baselines. We compare against four baselines: (i) Default solvers (Default). SCIP and Gurobi
with default configurations. (ii) Progressively Tuning (Tuning) Patel (2024b). The winning solu-
tion of the MIP Workshop 2023 re-optimization competition. Each parameter (primal hints, root
cuts, non-root cuts) is modeled as an independent bandit problem, with arms corresponding to its
discrete choices (e.g., on/off). Implemented only for SCIP, as Gurobi does not expose root/non-
root separation controls. (iii) LLM with validation (LLM-validation) |Lawless et al.| (2025). LLMs
generate separator configurations, followed by validation-set selection of the best candidate. This

Under review as a conference paper at ICLR 2026

constitutes a strong baseline, as it leverages additional validation instances to select the best config-
uration among the LLM-generated candidates. (iv) LLM-cold-start. LLM-generated configurations
are clustered using k-medoids, and the representative of the largest cluster is selected directly for
evaluation. Appendix [A.T|provides additional details of the experimental setup.

5.2 EXPERIMENT RESULTS
Table 1: Comparison of different methods across 10 re-optimization benchmarks with SCIP solver.

Each method is evaluated by solving time (s) and relative improvement compare to Default SCIP
solver (%). The first 5 benchmarks are categorized as easy, and the last 5 as hard.

Default Tuning LLM-validation LLM-cold-start LLM-MAB (Ours)

Dataset Time | Time | Improv. T Time | Improv. T Time | Improv. © Time | Improv. 1

Easy datasets

bnd2 252.41(6.70) 244.66(6.33) 3.05 187.12(9.61) 25.77 235.97(5.67) 6.48 185.01(5.65) 26.64
bnd3 355.04(3.81) 365.83(3.31) -3.04 349.02(17.03) 224 358.81(2.41) -0.79 343.79(1.10) 3.16
rhs 2 80.32(1.80) 62.25(1.04) 2246 59.33(2.85) 26.06 47.04(0.46) 41.42 48.53(0.98) 39.58
rhs 4 77.04(0.59) 61.06(0.44) 20.73 59.01(2.05) 234 47.95(0.34) 3776 47.53(1.58) 38.83
obj-1 306.71(8.83) 241.23(6.22) 21.32 236.28(2.79) 22.93 232.50(1.55) 24.16 229.50(8.83) 25.10

Hard datasets

rhs .3 311.94(15.96)291.27(13.86) 6.32 296.81(36.49) 4.35 289.24(39.02) 6.68 285.23(8.30) 8.30
obj-3 145.74(8.78) 74.30(6.75) 48.73 74.25(10.88) 48.65 67.40(5.42) 53.60 66.63(3.62) 54.18
rhs_obj 397.14(1.09) 394.92(4.81) 0.56 391.46(4.95) 143 388.01(2.91) 1.95 387.99(1.69) 1.99
mat 368.77(4.73) 361.30(9.34) 2.00 336.55(8.86) 8.71 337.68(9.77) 8.42 335.42(9.50) 9.02
all 116.13(17.78) 86.78(12.52) 23.28 86.32(4.63) 24.03 86.24(5.95) 1935 84.60(3.34) 25.99

Table 2: Comparison of different methods across 10 re-optimization benchmarks with Gurobi solver.
Each method is evaluated by solving time (s) and relative improvement compare to Default Gurobi
solver(%). The first 5 benchmarks are categorized as easy, and the last 5 as hard.

Default LLM-validation LLM-cold-start LLM-MAB (Ours)

Dataset Time | Time | Improv. 1 Time | Improv. 1 Time | Improv. 1

Easy datasets

bnd2 341.76(4.30) 336.55(6.92) 1.24(1.19) 400(0.00) -17.62(0.66)333.38(8.87) 2.18(1.77)
bnd3 341.6(4.07) 330.75(1.29) 3.17(1.53) 400(0.00) -17.11(1.39)324.65(3.47) 4.95(2.15)
ths2 18.41(0.28) 18.25(0.03) 0.85(1.64) 19.39(0.02) -5.08(1.74) 18.14(0.06) 1.41(2.37)
rhs.4 18.26(0.18) 65.39(41.20) 0.35(3.55) 17.35(0.23) 4.98(1.19) 17.30(0.39) 5.25(1.76)
obi.l 89.24(1.27) 89.14(3.17) 0.08(4.97) 86.38(0.39) 0.73(4.62) 88.30(0.74) -2.23(6.88)

Hard datasets

rhs.3 33.03(4.12) 30.98(6.66) 4.54(28.67) 32.81(4.93) -0.43(19.92) 30.44(7.39) 6.65(28.18)
obj-3 14.38(0.33) 7.01(0.27) 51.30(2.12) 12.73(0.36) 11.42(4.12) 8.52(0.07) 40.73(0.88)
rhs_obj 144.93(2.82)158.79(24.32) -9.42(15.34)160.42(11.06) -10.76(8.82)143.90(2.37) 1.52(1.45)
mat 44.52(1.55) 38.99(2.71) 12.44(5.15) 36.99(0.45) 16.77(5.11) 36.82(0.66) 15.81(3.66)
all 8.09(0.44) 8.20(0.77) -1.62(10.91) 8.12(0.22) -0.48(3.27) 8.05(0.19) 0.30(2.84)

Overall performance comparison. Table [T] and Table [2] summarize the results on SCIP and
Gurobi, respectively, reporting mean solving time with standard deviation as well as relative im-
provement over the default solvers. Our proposed method LLM-MAB achieves substantial speedups
compared to default SCIP across all benchmarks, outperforming existing baselines on 9 out of 10
benchmarks and remaining competitive with LLM-cold-start on rhs_2. On 6 benchmarks, LLM-
MAB delivers more than 25% relative improvement, reaching up to 54.18% on ob5_3, a hard bench-
mark with 9599 integer variables. Notably, on the challenging a11 benchmark—where objective
coefficients, bounds, right-hand sides, and matrix coefficients all vary—LLM-MAB still achieves a
25.99% improvement, demonstrating its robustness under the most complex re-optimization sce-
narios. LLM-MAB also reduces the solving time of Gurobi across all benchmarks, outperforming

Under review as a conference paper at ICLR 2026

other baselines on 8 out of 10 datasets. On the 5 hard benchmarks, it achieves up to 40.73% relative
improvement, highlighting its effectiveness under challenging re-optimization scenarios.

LLM-validation serves as a strong baseline since it leverages additional validation instances to iden-
tify a single well-performing configuration. We observe that this strategy is particularly effective
when one configuration generalizes well across all instances in a series. For example, on obj_3
with Gurobi, it achieves a 51.3% relative improvement by selecting the best configuration from the
validation set. In contrast, although LLM-MAB attains 40.73% improvement on average, its use of
UCB inherently encourages exploration of multiple configurations in the early rounds, which incurs
overhead and slightly degrades the total average solving time. This effect is amplified in the re-
optimization benchmarks where each series contains only 50 instances (45 for testing), so the cost
of early exploration constitutes a larger fraction of the total runtime.

We observe that on certain datasets the solving time budget of 400 seconds is insufficient, as many
instances could not reach optimality within the limit. To ensure a fairer evaluation, we repeat the
experiments with an extended time limit of 600 seconds in Appendix [A.5]

Table 3: Ablation of LLM-MAB without general solver parameters (i.e., restricted to separator con-
figurations only). Results are reported as relative solving time improvement (%) over Default SCIP
across 10 benchmarks. (Higher is better.)

Method bnd.2 bnd3 rhs2 rhs4 obj.l rhs33 obj3 rhs.obj mat all

26.64 316 39.58 3883 2510 830 5418 1.99 9.02 2599
(3.89) (0.77) (0.77) (2.38) (4.39) (8.12) (3.46) (0.28) (3.37) (11.48)
1748 178 36.07 3442 2292 6.64 5350 045 855 15.64
(2.66) (1.51) (238) (2.04) (1.96) (10.17) (3.58) (1.03) (3.03) (16.25)

LLM-MAB (Ours)

LLM-MAB (Separators only)

Table 4: Ablation of LLM-MAB without online bandit adaptation (i.e., using validation-only selec-
tion of a fixed configuration). Results are reported as relative solving time improvement (%) over
Default SCIP across 10 benchmarks. (Higher is better.)

Method bnd2 bnd3 rhs2 rhs4 obj-l rhs:3 obj-3 rhs_obj mat all

26.64 3.16 39.58 38.83 2510 830 5418 1.99 9.02 25.99
(3.89) (0.77) (0.77) (2.38) (4.39) (8.12) (3.46) (0.28) (3.37) (11.48)
18.42 -231 3896 3535 2340 11.23 51.81 1.71 10135 15.94
(3.34) (2.87) (2.07) (0.61) (1.46) (2.27) (4.66) (0.66) (0.50) (16.22)

LLM-MAB (Ours)

LLM-Validation (General)

Effectiveness of algorithm configuration generation. We analyze this effectiveness from two
aspects. First, we evaluate the extension from separator-only tuning (as in prior work [Lawless et al.
(2025))) to a more general re-optimization algorithm configuration problem that incorporates both
solver-native parameters and historical information. Table [3| reports the ablation study comparing
LLM-MAB with its separator-only variant, which is studied in recent papers |[Lawless et al.| (2025);
Li et al.| (2023). The results show that our full configuration space consistently outperforms the
separator-only setting across all benchmarks. While the margins vary by dataset, improvements
are observed on both easy benchmarks (e.g., +9.16% on bnd_2) and hard ones (e.g., +10.35% on
all), demonstrating that extending the configuration scope beyond separators yields tangible gains
in more challenging re-optimization scenarios.

As mentioned in Section [3| the combinatorially large algorithm configuration space makes direct
online bandit-based selection difficult to converge, and therefore necessitates selecting a small set of
candidate configurations in advance. The comparison with Tuning Patel| (2024b)) in Table E] also il-
lustrates this: tuning all parameters independently with a shared reward and without space reduction
is ineffective, so they restricted to a few parameters, which still led to degraded results. In contrast,
LLM-cold-start achieves strong performance—surpassing default SCIP on 9 of 10 benchmarks and
default Gurobi on 4 of 10—simply by committing to a single configuration selected via clustering.
This highlights that LLMs are capable of producing high-quality solver configurations.

Effectiveness of online configuration selection. To assess the benefit of MAB-based online con-
figuration selection in LLM-MAB, we include the ablation LLM-Validation (General) in Table 4] In

Under review as a conference paper at ICLR 2026

this variant, the configuration space is identical to that of LLM-MAB, but the best algorithm config-
uration is chosen once from the validation set and then fixed for evaluation, without online adapta-
tion. The results show that LLM-MAB surpasses LLM-Validation (General) on 8 of 10 benchmarks,
achieving up to +10.06% additional improvement on a11. This demonstrates that bandit-based on-
line selection provides robustness by adaptively exploiting different configurations throughout the
series, rather than committing prematurely to a single choice. We also note that when one config-
uration candidate is clearly superior (e.g., mat), LLM-Validation (General) may perform slightly
better, as it can directly identify this configuration from validation, while LLM-MAB incurs explo-
ration overhead before converging.

Table 5: Sensitivity analysis of the exploration coefficient o in the UCB scoring rule. We report
relative solving time improvement (%) over Default SCIP across 10 re-optimization benchmarks.

Method bnd2 bnd3 rhs2 rhs4 obj_l rhs:3 obj.3 rhs.obj mat all

17.69 1.72 5037 3382 2023 643 4981 1.64 9.09 18.67
(5.48) (1.07) (25.71) (0.59) (3.61) (6.43) (3.80) (0.51) (3.80) (18.26)
26.64 3.16 3958 38.83 2510 830 5418 1.99 9.02 2599
(3.89) (0.77) (0.77) (2.38) (4.39) (8.12) (3.46) (0.28) (3.37) (11.48)
20.57 222 36.74 3428 19.16 9.63 5049 044 1071 1742
(2.99) (1.68) (2.20) (1.49) (1.18) (9.35) (4.08) (1.00) (5.35) (17.98)

LLM-MAB (o = 0.5)
LLM-MAB (o = 1)

LLM-MAB (o = 2)

Sensitivity analysis of the exploration coefficient a. We further analyze the sensitivity of LLM-
MAB to the exploration coefficient « in UCB, tested at « € {0.5,1,2} (Table . All three settings
consistently outperform the default solver, indicating that the framework is robust to this hyperpa-
rameter. Among them, o = 1 provides the best overall trade-off, outperforming baselines on 8 out of
10 benchmarks and achieving the largest gains on hard instances such as obj_3 and all. By con-
trast, « = 0.5 favors exploitation and explores too little, resulting in faster convergence but is hard
to yield the strongest performance. On the other hand, a = 2 encourages aggressive exploration,
which occasionally discovers stronger configurations (e.g., two benchmark wins), but its overhead in
the early rounds often offsets these gains. These results suggest that moderate exploration (o = 1) is
most effective in practice, while also demonstrating that the overall framework remains stable across
a wide range of « values.

Sensitivity analysis of the configuration candidate set size V. Table[9]in Appendix [A.5]reports
the performance of LLM-MAB under different numbers of configuration candidates, tested at N €
{1,3,5}. Note that N = 1 corresponds to LLM-cold-start, where a single configuration is selected
without online adaptation. We observe that when N = 5, LLM-MAB achieves the most stable
improvements and consistently outperforms default SCIP across all benchmarks, suggesting that
having a sufficiently diverse candidate set is crucial to include at least one effective configuration.
On the other hand, given the small size of the re-optimization benchmark (50 instances per problem
series, of which only 45 are used for testing in our setting), larger values of IV are less practical:
convergence becomes more difficult and each arm must still be explored at least once, leading to
higher overhead and less reliable adaptation.

6 CONCLUSION

In this paper, we formulated the re-optimization problem for MILP by incorporating a finite his-
tory window of solver information, and we cast algorithm configuration as a joint problem of
configuration-space reduction and adaptive online selection. Building on this formulation, we de-
veloped a lightweight two-stage method that first leverages LLMs to generate a compact set of can-
didate configurations and then applies bandit algorithms for online adaptation. Empirical results on
the MIP Workshop 2023 re-optimization benchmarks demonstrate that our framework consistently
improves solver performance over strong baselines, achieving substantial reductions in solving time
without requiring offline training or validation data.

For future work, our framework can be extended by incorporating richer re-optimization techniques
as configurable options, such as learning-based solution prediction or adaptive branching strategies.
It is also promising to explore instance-wise configuration policies that exploit problem features
more directly while retaining the lightweight online nature of our approach.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our experiment setup (devices, solver settings, hyper-parameters, evaluation metrics, and baselines)
is detailed in Section [5.1] and Appendix and the re-optimization benchmark is summarized in
Section [5.1 and Appendix [A.2] An anonymous code repository is provided in the supplemental
materials to reproduce the experiment results.

REFERENCES

Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Operations
Research Letters, 33(1):42-54, 2005.

Steven Adriaensen, André Biedenkapp, Gresa Shala, Noor Awad, Theresa Eimer, Marius Lindauer,
and Frank Hutter. Automated dynamic algorithm configuration. Journal of Artificial Intelligence
Research, 75:1633-1699, 2022.

Tiria Andersen, Shaun Belward, Mangalam Sankupellay, Trina Myers, and Carla Chen. Reoptimi-
sation strategies for dynamic vehicle routing problems with proximity-dependent nodes. Top, 32
(1):1-21, 2024.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235-256, 2002.

Timo Berthold. Primal heuristics for mixed integer programs. PhD thesis, Zuse Institute Berlin
(Z1B), 2006.

Ksenia Bestuzheva, Mathieu Besancon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
Van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al. The scip
optimization suite 8.0. arXiv preprint arXiv:2112.08872, 2021.

André Biedenkapp, H Furkan Bozkurt, Theresa Eimer, Frank Hutter, and Marius Lindauer. Dynamic
algorithm configuration: Foundation of a new meta-algorithmic framework. In ECAI 2020, pp.
427-434. 10S Press, 2020.

Suresh Bolusani, Mathieu Besangon, Ambros Gleixner, Timo Berthold, Claudia D’ambrosio, Gon-
zalo Muiioz, Joseph Paat, and Dimitri Thomopulos. The mip workshop 2023 computational
competition on reoptimization. Mathematical Programming Computation, 16(2):255-266, 2024.

Juan Antonio Cedillo-Robles, Neale R Smith, Rosa G Gonzalez-Ramirez, Julio Alonso-Stocker,
Joaquin Alonso-Stocker, and Ronald G Askin. A production planning milp optimization model
for a manufacturing company. In International Conference of Production Research-Americas,
pp- 85-96. Springer, 2020.

Rodolfo Dondo and Jaime Cerdd. An milp framework for dynamic vehicle routing problems with
time windows. Latin American applied research, 36(4):255-261, 2006.

Fabian Dunke and Stefan Nickel. Exact reoptimisation under gradual look-ahead for operational
control in production and logistics. International Journal of Systems Science: Operations &
Logistics, 10(1):2141590, 2023.

Yasemin Eryoldas and Alptekin Durmusoglu. A literature survey on offline automatic algorithm
configuration. Applied Sciences, 12(13):6316, 2022.

Damian Frick, Angelos Georghiou, Juan L Jerez, Alexander Domahidi, and Manfred Morari. Low-
complexity method for hybrid mpc with local guarantees. SIAM Journal on Control and Opti-
mization, 57(4):2328-2361, 2019.

Gerald Gamrath, Benjamin Hiller, and Jakob Witzig. Reoptimization techniques for mip solvers. In
International Symposium on Experimental Algorithms, pp. 181-192. Springer, 2015.

Claudio Gentile, German Morales-Espana, and Andres Ramos. A tight mip formulation of the unit
commitment problem with start-up and shut-down constraints. EURO Journal on Computational
Optimization, 5(1):177-201, 2017.

10

Under review as a conference paper at ICLR 2026

LLC Gurobi Optimization. Gurobi optimizer reference manual. 2023.

Xuan He, Honglin Wen, Yufan Zhang, Yize Chen, and Danny HK Tsang. Fast unit commitment
constraint screening with learning-based cost model. In 2024 IEEFE International Conference on
Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), pp.
295-300. IEEE, 2024.

Abdelrahman Hosny and Sherief Reda. Automatic milp solver configuration by learning problem
similarities. Annals of Operations Research, 339(1):909-936, 2024.

Frank Hutter, Holger H Hoos, and Thomas Stiitzle. Automatic algorithm configuration based on
local search. In Aaai, volume 7, pp. 1152-1157, 2007.

Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stiitzle. Paramils: an automatic
algorithm configuration framework. Journal of artificial intelligence research, 36:267-306, 2009.

Connor Lawless, Yingxi Li, Anders Wikum, Madeleine Udell, and Ellen Vitercik. Llms for cold-
start cutting plane separator configuration. In International Conference on the Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, pp. 51-69. Springer,
2025.

Sirui Li, Wenbin Ouyang, Max Paulus, and Cathy Wu. Learning to configure separators in branch-
and-cut. Advances in Neural Information Processing Systems, 36:60021-60034, 2023.

Tobia Marcucci and Russ Tedrake. Warm start of mixed-integer programs for model predictive
control of hybrid systems. IEEE Transactions on Automatic Control, 66(6):2433-2448, 2020.

German Morales-Espafia, Jesus M Latorre, and Andres Ramos. Tight and compact milp formulation
for the thermal unit commitment problem. [EEE Transactions on Power Systems, 28(4):4897—
4908, 2013.

Gizem Ozbaygin and Martin Savelsbergh. An iterative re-optimization framework for the dy-
namic vehicle routing problem with roaming delivery locations. Transportation Research Part
B: Methodological, 128:207-235, 2019.

Krunal Kishor Patel. Discounted pseudocosts in milp. arXiv preprint arXiv:2407.06237, 2024a.

Krunal Kishor Patel. Progressively strengthening and tuning mip solvers for reoptimization. Math-
ematical Programming Computation, 16(2):267-295, 2024b.

Arthur Richards and Jonathan How. Mixed-integer programming for control. In Proceedings of the
2005, American Control Conference, 2005., pp. 2676-2683. IEEE, 2005.

Romeo Valentin, Claudio Ferrari, Jérémy Scheurer, Andisheh Amrollahi, Chris Wendler, and Max B
Paulus. Instance-wise algorithm configuration with graph neural networks. arXiv preprint
arXiv:2202.04910, 2022.

Laurence A Wolsey. Mip modelling of changeovers in production planning and scheduling prob-
lems. European Journal of Operational Research, 99(1):154-165, 1997.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-mip: Automated algorithm
configuration and selection for mixed integer programming. In RCRA workshop on experimental
evaluation of algorithms for solving problems with combinatorial explosion at the international
Jjoint conference on artificial intelligence (IJCAI), pp. 16-30, 2011.

Sijia Zhang, Shuli Zeng, Shaoang Li, Feng Wu, Shaojie Tang, and Xiangyang Li. Don’t restart, just

reuse: Reoptimizing milps with dynamic parameters. In Forty-second International Conference
on Machine Learning.

11

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXPERIMENT SETUPS

Algorithm configuration space. In this work, we cast algorithm configuration as a joint selection
over (i) solver-native parameters and (ii) optional re-optimization mechanisms. To keep the algo-
rithm configuration space impactful yet tractable for MILP, we primarily target cutting-plane—related
controls, which strongly influence LP bound quality, node counts, and overall time. As an optional
re-optimization mechanism, we include Primal Hint (incumbent injection + light repair), which can
provide high-quality starting solutions and thereby accelerate early pruning.

Our framework is solver-agnostic, and in this study, we restrict attention to features that are available
in both SCIP and Gurobi. Consequently, we do not consider branching-information reuse here;
investigating it within our framework is left for future work.

Table[6]and Table [7] provide the parameter lists for SCIP and Gurobi, respectively.

Table 6: List of SCIP parameters used in our generalized algorithm configuration. Values: 1 = on, 0
= off, respectively.

Parameter Description Values
clique Clique inequalities from conflict graphs 0/1
root_only Restrict cuts to root node only 0/1
Primal Hint Warm-start from prior solutions 0/1
cmir Mixed-integer rounding cuts 0/1
aggregation Flow-cover inequalities (aggregation) 0/1
mcf Flow path cuts (multi-commodity flow) 0/1
impliedbounds Implied bound cuts (bin-cont vars) 0/1
strongcg Strong Chvatal-Gomory cuts 0/1
zerohalf Zero-half inequalities 0/1
disjunction Disjunctive cuts 0/1
convexprojection Convex projection cuts (MINLP relaxations) 0/ 1
integerobjective Objective integrality cuts 0/1
gomory Gomory fractional cuts 0/1
cgmip Chvatal-Gomory cuts 0/1
oddcycle 0Odd cycle inequalities (graph-based) 0/1
rapidlearning Rapid learning heuristic cuts 0/1

Implementation of Primal Hints. The re-optimization dataset from the MIP Workshop 2023
Computational Competition on Re-optimization consists of problem series where different compo-
nents vary across instances (objective function coefficients(ob j), constraint right-hand sides(rhs),
variable bounds(bnd), coefficients of the constraint matrix(mat). Changing ob 7 does not affect
feasibility, whereas changes to rhs/bnd/mat can render a previously feasible incumbent infeasi-
ble. Guided by this, we adopt the following hinting policy.

¢ ob7j series: we reuse the entire historical incumbent as the Primal Hint.

* rhs/bnd/mat series: we reuse only the integer part of the incumbent. For SCIP, we fix
those integers and solve a continuous LP to repair the continuous variables; if a feasible
completion is found, the full repaired solution is passed as the Primal Hint. For Gurobi,
we provide the integer assignments as a partial MIP start and rely on its built-in repair
mechanism to complete missing values. For bnd changes specifically, integer values are
first clipped to the new bounds before repair.

Experiment Setup Details of Baselines. We compare against four baselines:

* Default solvers (Default). SCIP and Gurobi with default configurations.

* Progressively Tuning (Tuning) Patel| (2024b). The winning solution of the MIP Workshop
2023 re-optimization competition. Each parameter (Provide hint or not, Use root node cuts

12

Under review as a conference paper at ICLR 2026

Table 7: List of Gurobi parameters used in our generalized algorithm configuration. Values: 2 =
aggressive, 1 = on, 0 = off, respectively.

Parameter Description Values
Primal Hint Warm-start from prior solutions 0/1

CliqueCuts Clique inequalities from conflict graphs 0/1/2
CoverCuts Cover inequalities for knapsack sets 0/1/2
FlowCoverCuts Flow-cover cuts for fixed-charge flows 0/1/2
FlowPathCuts Path cuts in fixed-charge networks 0/1/2
GUBCoverCuts Cover cuts under generalized upper bounds 0/1/2
ImpliedCuts Implied bound inequalities (bin-cont vars) 0/1/2
InfProofCuts Infeasibility proof inequalities 0/1/2
LiftProjectCuts Lift-and-project cuts from disjunctions 0/1/2
MIRCuts Mixed-integer rounding cuts 0/1/2
MixingCuts Mixing inequalities (generalized MIR) 0/1/2
ModKCuts Modular arithmetic divisibility cuts 0/1/2
NetworkCuts Network structure cuts 0/1/2
RelaxLiftCuts Relax-and-lift cuts 0/1/2
SubMIPCuts SubMIP-based cuts 0/1/2
StrongCGCuts Strong Chvatal-Gomory cuts 0/1/2
ZeroHalfCuts Zero-half inequalities 0/1/2
ProjlmpliedCuts Projected implied bound inequalities 0/1/2

or not, Use cuts at other nodes or not) is modeled as an independent bandit problem, with
arms corresponding to its discrete values (on/off). The score of each value is computed by
Upper Confidence Bound (UCB) Algorithm:

S’U = Qv +]\%
This score involves two parts: (i) The running average of the base score (Q),), and (ii)
The uncertainty of the score, i.e., the confidence bound N%’ where N, is the number of
score updates the value has received. When a value is not explored enough, the confidence
bound adds a higher number to the score to encourage more exploration for that value. C
is a weight constant that determines how fast the score converges and is fixed to 0.3 as
suggested by the paper. This baseline is implemented only for SCIP, as Gurobi does not
expose root/non-root separation controls.

* LLM with validation (LLM-validation) Lawless et al.[| (2025). Following LLM-MAB, we
prompt an LLM to generate 100 separator configurations for each re-optimization series,
then apply k-medoids to condense them into N = 5 representatives. We evaluate each
representative on a held-out validation set and select the configuration with the best average
reward. This forms a strong baseline because it exploits additional validation instances to
pick the best among LLM-generated candidates.

e LLM-cold-start. Again following LLM-MAB, we generate 100 separator configurations
per series and cluster them with k-medoids, but we directly take the single medoid of the
largest cluster without any validation as the chosen configuration for evaluation.

13

Under review as a conference paper at ICLR 2026

A.2 RE-OPTIMIZATION BENCHMARKS

Benchmark datasets. Table [§| summarizes the re-optimization benchmarks used in our experi-
ments, including the size, domain/source, and which model components vary within each sequence.
Here, #Vars denotes the total number of variables (integer variables in parentheses), and #Cons de-
notes the number of constraints. An X indicates that the corresponding component changes across
instances in the sequence. To analyze performance across different difficulty levels, we categorize
the datasets into easy and hard groups. Easy datasets involve only a single varying (e.g., objective
coefficients), and have relatively small problem sizes, with no more than 1,457 integer variables.
Hard datasets are characterized either by having at least two (up to four) varying components, by
significantly larger problem sizes (up to 63,009 integer variables), or by both.

Table 8: Re-optimization benchmark datasets: size, source domain, and varying components. #Vars:
total number of variables (integer variables in parentheses). LO: variable lower bounds; UP: variable
upper bounds; OBJ: objective coefficients; LHS: left-hand sides; RHS: right-hand sides; MAT: con-
straint matrix coefficients. X indicates that the corresponding component varies within the instance
sequence.

Dataset #Vars #Constrs Domain/Source LO UP OBJ LHS RHS MAT

Easy datasets

bnd_2 1758 (1457) 351 MIPLIB’17 X X - - - -
bnd_3 1758 (1457) 351 MIPLIB’17 X X - - - -
rhs_2 1000 (500) 1250 Synthetic MILP - - - - X -
rhs_4 1000 (500) 1250 Synthetic MILP - - - X X -
obj_1 360 (360) 55 Stochastic multi 0-1 knapsack - - X - - -
Hard datasets

rhs_3 63009 (63009) 507 MIPLIB’17 - - - X X -
obj-3 9599 (9599) 27940 UCI Machine Learning - - X — -

rhs_obj 90983 (60146) 33438 Hydro unit commitment - - X X X -
mat 802 (500) 531 Vaccine allocation - - - - - X
all 7973 (5186) 3558 Mixed synthetic benchmark X X X X X X

After the table, we provide detailed descriptions of each dataset, including how instances were
generated and which variations are introduced:

bnd_2: Based on csched007 (MIPLIB 2017). Instances are generated via random fixings of
15%-25% of the binary variables, selected uniformly with respect to the original instance.

bnd_3: Also based on csched007. Instances are generated via random fixings of 5%-20% of
the binary variables (uniform selection). This series is relatively harder than bnd series 2 (as
reflected by the time limits).

rhs_2: Based on a synthetic MILP dataset. Instances are generated by taking a convex combination
of two different RHS vectors.

rhs_4: Also based on the synthetic MILP dataset as in rhs series 2, but using a different pair
of RHS vectors for the convex combination.

obj_1: Based on a stochastic multiple binary knapsack dataset. We consider one scenario at a time,
yielding a series in which roughly one third of the objective vector (corresponding to y-variables)
varies across instances.

rhs_3: Based on glass4 (MIPLIB). Instances are generated by perturbing nonnegative LHS and
RHS components via a discrete uniform distribution by up to +70% of their values.

obj_3: Derived from the UCI MAGIC dataset. Instances are subproblems from a column generation
approach to decision trees; the final set stems from a public call for additional datasets.

rhs_obj: Based on a hydro unit commitment (HUC) MILP for a fixed valley. Varying inputs
include electricity prices (objective), inflows, and initial/target reservoir volumes (constraint sides);
most other data remain unchanged, making sequential re-optimization especially relevant.

14

Under review as a conference paper at ICLR 2026

mat: Based on an optimal vaccine allocation problem. Considering 500 scenarios at a time yields a
series where the constraint matrix of inequality constraints varies across instances.

mat_rhs_bnd.obj (all): Also HUC-based (as in rhs_ob), but here every input component
(objective, bounds, sides, and matrix) may vary.

15

Under review as a conference paper at ICLR 2026

A.3 LLM PROMPT EXAMPLE

Figures [2| and [3| provide an example LLM dialogue for algorithm configuration. The LLM input
consists of (i) a meta prompt, (ii) a parameter description, and (iii) a problem description. The LLM
output is a proposed configuration accompanied by brief explanations.

You are configuring for MILP re-optimization: a sequence of closely related instances derived from the
same base model with small changes to objective function coefficients/variable bounds/constraint right-
hand sides/coefficients of the constraint matrix. You need to configure the following solver parameters and
global control options. Any configuration key not explicitly included in your final output will be set to 0
(disabled/default).

Name: Primal Hint

What it is. Provide an incumbent candidate solution before or during the solve (e.g., from a prior run or
predictor). The solver can accept it directly or attempt to repair it.

How it maps to solvers. When objective coefficients change, the entire historical incumbent can be reused
as the Primal Hint. When constraint right-hand sides, variable bounds, or matrix coefficients change, only
the integer part of the incumbent is reused. — In SCIP, these integer values are fixed, and a continuous LP
repair is attempted for the remaining variables; if feasible, the repaired solution is passed as the Primal Hint.
— In Gurobi, the integer assignments are provided as a partial MIP start, with its built-in repair mechanism
completing the solution. For bound changes, integer values are clipped to the new bounds before repair.

When it helps. Primal hints can significantly reduce time to derive a feasible solution at the early stage
and improve pruning efficiency when the hint is of high quality and structurally consistent across instances.
They are especially effective when only objective coefficients values vary, since the incumbent remains
mostly compatible. In contrast, when major structural changes occur (e.g., large-scale bound shifts or
constraint matrix modifications), reusing incumbents is less reliable and may even increase search tree size
if the hint is of poor quality.

Setting levels: O=disable, 1=use, 2=aggressive.

Parameter Level Explanation

primalhint 1 Given the series of 50 instances with common models, enabling primal hints
allows warm starting from previous solutions, potentially speeding up reopti-
mization.

root_only 1 With primal hints, strong root relaxations can suffice, saving time without weak-

ening the initial solution quality. Larger search tree risk is mitigated by more
frequent feasible primal hints.

clique 1 Useful for binary decision variables, especially with potential binary onflicts in
multi-dimensional knapsack constraints.

impliedbounds 1 Exploiting logical bounds between binary variables in the problem, helping im-
prove LP relaxation efficiency given binary structure.

strongcg 1 With pure binary and integer covering or tight knapsack constraints, these

strengthen LP relaxation and combinatorial logic.

Figure 2: LLM dialogue example for algorithm configuration. From top to bottom: (i) Meta prompt
and (ii) Parameter Description Example. These two boxes are the materials provided to the LLM.
The final box shows the LLM output: a concrete configuration with multi-level settings.

16

Under review as a conference paper at ICLR 2026

Name: Stochastic Multiple Binary Knapsack (single-scenario instantiation)
What it is. Choose binary items in two stages. First-stage selections x, z must satisfy multi-dimensional
covering constraints; after the scenario is revealed, a second-stage recourse y covers residual requirements.

The objective is linear, with scenario-dependent coefficients on y. This series varies (parts of) the objective
vector across instances.

Data and notation. Decision variables: = € {0,1}", z € {0,1}" (first-stage), y € {0,1}" (second-
stage/recourse). Costs: c,d € RZ, for z, z; scenario-specific ¢ € R%, for y. Constraints: covering
matrices A, C, W, T and right-hand sides b, h with compatible dimensions.

Dataset metadata. Series size: 50 related instances (common model, varying data). Number of variables:
360 (all binary). Number of constraints: 55.

Objective. Minimize total cost of first-stage decisions plus recourse cost:

min ¢z + d'z + qu.
r,z,y

Integer programming formulation.
Minimize ¢ z+d' z+ qu
Subjectto Az +Cz > b (multi-dimensional covering)
Wy > h—Tx (recourse covers residual demand)
Constraints summary.
* Covering (multiple knapsacks): Ax + Cz > b.
* Recourse covering / linking: Wy > h — T'x.

* Binary-only: all decision variables are binary.
* Optional stochastic view: in the general two-stage model, g is scenario-dependent and one may
minimize) o puw Qu(); here a single scenario is fixed per instance.

Re-optimization variant (obj1l). Varying component: the objective coefficients (typically a subset associ-
ated with y) vary across instances; feasibility structure is preserved.

Figure 3: LLM dialogue example of problem description.

17

Under review as a conference paper at ICLR 2026

A.4 MAB ALGORITHM IMPLEMENTATION

For completeness, we provide in Algorithm |l| the pseudocode of our bandit-based online configu-
ration selection procedure in (LLM-MAB). The algorithm maintains empirical mean rewards i, and
counts ns for each candidate configuration s € S’. At each step ¢, given an instance P;, if some
configurations have not yet been explored, they are selected to ensure every arm is tried at least once.
Otherwise, the next configuration is chosen according to the UCB1 score with exploration coeffi-
cient a. The solver is then run on the current re-optimization instance P;, optionally reusing primal
hints from the last 7 instances. The solving time is converted into a negative reward and used to
update statistics online. This procedure adaptively balances exploration of different configurations
with exploitation of the most promising ones.

Algorithm 1: LLM-MAB: Online Configuration Selection via UCB1

Input : Exploration coefficient «;

Candidate configurations S’ = {s1,...,Sn};

Sequential instance stream {P; }]_;;

Historical window size 7 (for optional reuse of primal hints).
Output: Per-instance record of chosen configuration and solving time.

Initialization: For each s € &', set is(0) < 0, ns(0) « 0.
fort < 1toT do
if 3s: ns(t — 1) = 0 then
L Select such untried configuration s; = s. // ensure each tried once

else
L Compute UCBI1 score Uy (t) = fis(t — 1) + ay /2B for each s.

ns(t—1)
Select s; = arg maxges: Usg(t).
Run solver on P, with configuration s, (and hints from last 7 instances if enabled).
Observe solving time 2, set reward r, = —2;.
Update statistics: ng, (t) < ns, (¢ — 1) + 1,

fis, (£) 4= s, (£ = 1)+ bermt).

18

Under review as a conference paper at ICLR 2026

A.5 ADDITIONAL EXPERIMENT RESULTS

Sensitivity analysis of the configuration candidate set size. Table [0 reports the detailed results
of LLM-MAB with different candidate set sizes N € {1, 3,5} across all benchmarks. As discussed
in Section[5.2] increasing N to 5 provides more stable performance and ensures consistent improve-
ments over the default solver.

Table 9: Sensitivity analysis of the configuration candidate set size. We report relative solving time
improvement (%) over Default SCIP across 10 re-optimization benchmarks. (Higher is better.)

Method bnd2 bnd3 rhs2 rths4 obj.l rhs3 obj3 rhs.obj mat all

648 -0.79 4142 3776 24.16 6.68 53.60 272 842 1935
(2.62) (1.77) (156) (0.67) (1.80) (17.52) (6.38) (0.47) (2.99) (18.92)
11.06 13.39 3845 3268 2092 157 4707 088 -0.84 10.36
(1279) (3.01) (2.17) (1.04) (2.14) (1249) (4.54) (0.32) (3.16) (18.60)
2664 3.6 3958 3883 2510 830 5418 199 9.02 25.99
(3.89) (0.77) (0.77) (2.38) (4.39) (8.12) (3.46) (0.28) (3.37) (11.48)

LLM-MAB (N = 1)
LLM-MAB (N = 3)

LLM-MAB (N = 5)

Additional experiments with extended time limit. In preliminary experiments, we observed that
within each re-optimization sequence, the default solver’s solving times varied significantly across
instances. To prevent a few particularly hard instances from dominating the aggregate metrics,
we followed prior work [Lawless et al.| (2025) and imposed a global time limit of 400 seconds per
instance. However, on certain datasets this budget proved insufficient, as many instances could not
reach optimality within the limit. To ensure a fairer evaluation, we repeated the experiments with an
extended time limit of 600 seconds. The corresponding results are reported in Table [I0]

We observe that LLM-MAB still achieves consistent improvements over Default SCIP. In particular,
substantial gains are observed on obj_1 (+33.42%) and mat (+12.29%), while on rhs_ob the
performance is similar to the default. These results confirm that our approach remains effective
under more relaxed computational budgets.

Table 10: Additional experiments with extended time limit. We report solving time (s) and relative
improvement (%) over Default SCIP. Lower solving time and higher relative improvement are better.

Method bnd_3 rhs_3 obj-1 rhs_obj mat
Default 493.16 (4.42) 434.04 (32.60) 409.32 (1.42) 570.95(5.20) 504.33 (4.97)
LLM-MAB 462.32 (3.21) 394.25(29.41) 272.55(7.95) 569.46 (6.82) 442.21 (25.53)
Improv. 6.24 8.51 33.42 0.25 12.29

19

Under review as a conference paper at ICLR 2026

A.6 THE USE OF LARGE LANGUAGE MODELS

We used a large language model solely for language polishing and IX[gXformatting, such as grammar
correction, stylistic editing, and minor reformatting of tables and figures. The LLM was not used
to design experiments, generate results, analyze data, or draw conclusions. All technical content,
algorithms, and empirical findings were authored and verified by the authors.

20

	Introduction
	Literature Review
	Problem Formulation
	Methodology
	Offline Configuration Space Reduction with LLMs
	Online Configuration Selection via Multi-Armed Bandits

	Experiment
	Experiment Setup
	Experiment Results

	Conclusion
	Appendix
	Experiment Setups
	Re-optimization Benchmarks
	LLM Prompt Example
	MAB Algorithm Implementation
	Additional Experiment Results
	The Use of Large Language Models

