
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONLINE ALGORITHM CONFIGURATION FOR MILP RE-
OPTIMIZATION WITH LLM GUIDANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we study the re-optimization setting for mixed-integer linear pro-
grams, where solving sequentially related instances can benefit from both adap-
tive solver parameter configuration and the reuse of historical information from
previous solves. However, modern solvers expose hundreds of tunable parame-
ters, yielding a large configuration space; and the effectiveness of re-optimization
techniques (e.g., warm starts or branching statistics) varies substantially across
problem families. To address these challenges, we formulate a generalized algo-
rithm configuration problem that jointly determines solver built-in parameters and
the selective use of historical information within a reduced configuration space.
Given the sequential nature of re-optimization and the limited number of available
instances, offline methods that require large datasets are impractical, so adaptive
online configuration selection becomes essential. We therefore propose a two-
stage framework: (i) configuration space reduction via large language models,
which generate a compact portfolio of candidate configurations; and (ii) adaptive
online selection using multi-armed bandit algorithms to minimize solving cost
over the sequence. Empirical results on the MIP Workshop 2023 re-optimization
benchmarks demonstrate that our method substantially outperforms default SCIP
and Gurobi configurations as well as strong baselines, achieving solving time re-
ductions of up to 54.18%, without requiring prior validation data or supervised
training.

1 INTRODUCTION

Many real-world decision problems are naturally modeled as mixed-integer programs (MIPs). When
the underlying system evolves over time, as in hybrid model predictive control Richards & How
(2005); Frick et al. (2019); Marcucci & Tedrake (2020), dynamic vehicle routing Dondo & Cerdá
(2006); Ozbaygin & Savelsbergh (2019); Andersen et al. (2024), unit commitment in power sys-
tems Morales-España et al. (2013); Gentile et al. (2017); He et al. (2024), and dynamic production
planning Wolsey (1997); Cedillo-Robles et al. (2020); Dunke & Nickel (2023), practitioners rarely
solve a single static instance. Instead, they face a sequence of closely related instances that share a
common structure but differ in parameters such as objective coefficients, constraint right-hand sides,
or variable bounds. We refer to this sequential setting as re-optimization; in this paper we focus on
the mixed-integer linear programs (MILPs) case.

Instead of solving each instance from scratch, in the setting of re-optimization one can exploit in-
formation from previous instances in three complementary ways: (i) warm starts from historical
solutions Berthold (2006); Gamrath et al. (2015); (ii) reuse branch-and-bound (B&B) information
such as pseudocosts or conflict statistics Achterberg et al. (2005); Patel (2024a); (iii) automated pa-
rameter tuning Xu et al. (2011). Although these approaches have been empirically effective, several
research gaps remain. First, their effectiveness is highly problem specific, simply enabling all re-
optimization mechanisms may not yield the best performance Patel (2024b). Second, many search-
based or learning-based parameter tuning methods require solving large numbers of instances offline
to train predictors or validate configurations, which is impractical in re-optimization scenarios where
only limited data are available and system dynamics evolve over time. Third, the parameter space
of modern MILP solvers is already very large, and re-optimization introduces additional tunable
options, further exacerbating the challenge of efficient exploration.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

These limitations motivate us to propose a generalized algorithm configuration framework for re-
optimization. To address the first gap, we treat the use of re-optimization mechanisms (e.g., warm
starts) as tunable options alongside built-in solver parameters. To address the second, we design a
lightweight online method based on multi-armed bandits (MAB), which avoids costly offline train-
ing or searching and adapts to dynamic changes. To address the third, we leverage the zero-shot
capabilities of large language models (LLMs) to reduce the algorithm configuration space, generat-
ing a compact but diverse configuration candidate set from which the bandit algorithm can adaptively
select. Our main contributions are as follows:

• We formally define the MILP re-optimization problem, where a solver faces a sequence
of structurally related instances and can leverage a finite history window of past solutions
and solver information. Within this setting, we cast the task as a generalized algorithm
configuration problem that jointly considers built-in solver parameters and re-optimization
techniques.

• We develop a lightweight two-stage approach that first introduces LLMs to generate con-
figuration candidates, thereby reducing the combinatorially large algorithm configuration
space to a compact candidate set, and then designs an MAB-based strategy for adaptive
online configuration selection.

• We demonstrate on challenging benchmarks with multiple varying components and large-
scale instances that our method consistently outperforms default SCIP and Gurobi solvers
as well as strong baselines, achieving solving-time reductions of up to 54.18%, without
requiring offline training or validation data.

2 LITERATURE REVIEW

Re-optimization for MILPs. Re-optimization of sequentially related MILP instances has been
investigated extensively, with prior work exploring techniques that leverage historical information
from previously solved similar instances to accelerate solving new ones. Modern solvers such as
Gurobi Gurobi Optimization (2023) and SCIP Bestuzheva et al. (2021) include warm-start features,
whereby feasible or incumbent solutions from past instances are provided as primal hints. Gamrath
et al. (2015) presents a branch-and-bound scheme in SCIP that reuses the search frontier from a
solved instance, mainly focusing on objective coefficient variations. More recently, Bolusani et al.
(2024) delivers extensive benchmarks covering variations in objective coefficients, variable bounds,
right-hand sides, and constraint matrix coefficients. Patel (2024b) achieves leading performance on
these benchmarks by combining reuse of primal solutions, branching history, and automated param-
eter tuning to adapt across multiple instances. Zhang et al. proposes a two-stage re-optimization
framework: first predicting a high-confidence solution subspace from historical solving trajecto-
ries, then partially fixing variables within this subspace using Thompson Sampling to accelerate the
search. The method is mainly effective for quickly identifying feasible solutions without necessar-
ily reaching optimality, and it does not extend to re-optimization scenarios with multiple varying
components.

Algorithm configuration. Modern MILP solvers such as SCIP expose hundreds of tunable pa-
rameters across many components (e.g., branching rules, cut separators, presolve options, heuris-
tics, conflict analysis, symmetry handling) Bestuzheva et al. (2021). In addition, the use of re-
optimization methods introduces further tunable choices. For example, when leveraging primal hints
from previously solved instances, one may decide how many incumbent solutions to carry forward
and from which instances, as well as whether to include only integer variables or all variables Patel
(2024b). These solver-native and re-optimization parameters yield a combinatorially large config-
uration space. The task of selecting suitable parameter values is typically framed as an algorithm
configuration problem, where extensive offline search is conducted to identify configurations that
perform well across a distribution of instances Hutter et al. (2007; 2009); Xu et al. (2011); Eryoldaş
& Durmuşoglu (2022). However, such approaches are computationally prohibitive in practice, as
they require evaluating various configurations on large training sets.

Learning-based methods have been proposed to predict good configurations or guide the search over
large configuration spaces Biedenkapp et al. (2020); Adriaensen et al. (2022); Valentin et al. (2022);
Li et al. (2023); Hosny & Reda (2024). Many of these approaches focus on instance-wise algorithm

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

configuration, where handcrafted or learned features are mapped to solver configurations. While
effective, such methods typically depend on costly feature engineering, supervised training, and
large datasets to ensure generalization. In the re-optimization setting, Patel (2024b) addresses algo-
rithm configuration by applying an MAB framework. Instead of time-consuming offline training,
they adaptively tune parameters online. However, their approach treats each parameter indepen-
dently as a separate bandit problem, which hampers convergence and forces them to restrict tuning
to only a small subset of parameters, limiting achievable performance. These observations motivate
our question: can we design a more lightweight, training-free approach that remains effective in
re-optimization scenarios?

Lawless et al. (2025) recently proposed an LLM-based method for separator configuration with min-
imal training data, leveraging instance descriptions and formulations. Yet, LLMs may hallucinate
and generate inconsistent configurations, necessitating an additional validation set—impractical in
re-optimization scenarios with limited instances. Furthermore, their scope is restricted to separa-
tors, whereas re-optimization exposes richer historical information and a broader range of tunable
parameters. These limitations motivate our work on generalized re-optimization algorithm config-
uration, leveraging the zero-shot capabilities of LLMs for space reduction and online bandit-based
adaptation for selection.

3 PROBLEM FORMULATION

In this section, we first present formal formulations of the MILP model and the re-optimization
setting. We then define the generalized algorithm configuration problem. Finally, we describe two
sub-tasks: (i) generating configuration portfolios to reduce the configuration space, and (ii) perform-
ing online configuration selection over these configuration candidates.

Mixed Integer Linear Programming (MILP). An MILP problem can be represented as follows:
min
x∈Rn

c⊤x, s.t. x ∈ XMILP = {x : Ax ◦ b, l ≤ x ≤ u, xj ∈ Z,∀j ∈ I} , (1)

where A ∈ Qm×n, c ∈ Qn, and b ∈ Qm. The symbols l and u denote the lower and upper bounds
of the variables, respectively, and each component satisfies lj ∈ Q ∪ {−∞} and uj ∈ Q ∪ {+∞}.
The relational operator ◦ indicates the type of constraint applied to each row, with entries ◦j ∈ {≤
,=,≥}. The index set I ⊂ {1, 2, . . . , n} identifies which variables xj are integer variables.

Re-optimization problem. We consider solving a sequence of MILP instances {Pt}Tt=1 ⊆ P
arising from the same problem family. The instances in each series have a fixed overall problem
structure: the number of constraints, and the number, order, and meaning of variables remain the
same across the instances in a series. Some or all of the following input data may vary over t:
objective function coefficients c, variable bounds l and/or u, constraint right-hand sides b, and
coefficients of the constraint matrix A Bolusani et al. (2024). At round t, the solver faces the current
instance Pt and may access a finite history window of length τ :

P(τ)
t = (Pt−τ , . . . , Pt), H

(τ)
t = (ht−τ , . . . , ht−1),

where h denotes information obtained from the solver, such as primal solutions, branching in-
formation, or cut statistics. After solving the MILP problem, the solver produces an output
zt = f(P(τ)

t , H
(τ)
t), where f denotes the (black-box) solver execution. The output zt captures

relevant performance signals, such as solving time, primal–dual integral, optimality gap, or objec-
tive value. The cost is then defined as a functional of this output, C(zt), which provides a scalar
performance measure for round t. The re-optimization problem is to design a policy that minimizes
the cumulative cost over the sequence:

min

T∑
t=1

C(zt).

Algorithm configuration. In our re-optimization setting, MILP solvers expose numerous tunable
built-in parameters. In addition, our framework treats optional re-optimization parameters as part
of the configuration space, controlling whether and how prior information is reused. The algorithm
configuration problem is to derive a policy that automatically selects these parameters to accelerate

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the solution for each forthcoming instance in a series. Let M = {1, . . . ,M} index the set of
configurable parameters. For each i ∈ M, let Si denote the finite set of admissible choices with
cardinality |Si| = Ki. For instance, one configurable parameter may be whether to use primal hints
from previous instances as a warm start in re-optimization (Ki = 2, with 0 indicating not used and
1 indicating used). Another parameter corresponds to separator aggressiveness as implemented in
commercial solvers such as Gurobi (Ki = 3, with 0 = off, 1 = moderate, and 2 = aggressive). The
overall configuration space is the Cartesian product S = S1 × · · · × SM , |S| =

∏M
i=1 Ki, and a

configuration is an element s = (s1, . . . , sM) ∈ S with si ∈ Si specifying the choice for algorithm
parameter i. Note that s ∈ S does not correspond to a single parameter choice, but rather to a
complete configuration across all parameters. For example, if M = 2 with parameters (Primal Hint,
CoverCuts), then s = (1, 2) denotes a configuration in which the primal hint is enabled and the
cover-cut separator is set to aggressive.

In the re-optimization setting, combining algorithmic choices (e.g., whether to use warm starts or
exploit historical branching information) with built-in solver parameters (e.g., separator aggressive-
ness) yields a combinatorially large configuration space, making direct exploration impractical. We
therefore formulate a configuration space reduction task as follows.

Configuration space reduction. To reduce the configuration space, given a problem description
φ (e.g., instance features or textual context), we seek a subset S ′ ⊆ S that still contains configu-
rations with strong performance. In this work, LLMs are used to generate a manageable portfolio
of candidate configurations. A multi-armed bandit algorithm then adaptively selects among these
candidates, where each configuration corresponds to an arm.

We formalize online configuration selection over the candidate portfolio as a regret–minimization
problem:

Policy and regret. A policy π selects configurations adaptively from the reduced space: st =

π(P(τ)
t , H

(τ)
t) ∈ S ′. Applying configuration st yields an output zt = (P(τ)

t , H
(τ)
t ; st) and corre-

sponding cost C(zt) as defined in the re-optimization problem. To align with the bandit literature,
we define the reward as the negative cost: rt(st) = −C

(
f(P(τ)

t , H
(τ)
t ; st)

)
. Since (P(τ)

t , H
(τ)
t) are

fixed at round t, we abbreviate the reward as rt(st). Performance is then measured by cumulative
regret:

RT (π) = max
s∈S′

T∑
t=1

E[rt(s)]−
T∑

t=1

E[rt(st)].

This quantifies the gap between the policy π and the best fixed configuration in hindsight.

4 METHODOLOGY

In this section, we present a two-stage approach for sequentially related MILP instances. First,
an LLM proposes configuration candidates s ∈ S; querying it N times yields a reduced portfolio
S ′ ⊆ S with |S ′| = N . Second, an MAB algorithm adaptively selects configurations from S ′ along
the re-optimization sequence. Figure 1 depicts the workflow.

4.1 OFFLINE CONFIGURATION SPACE REDUCTION WITH LLMS

Inspired by Lawless et al. (2025), we provide detailed descriptions of the re-optimization problem
series and the tunable parameters, so as to supply sufficient context for LLMs to generate reasonable
and diverse configurations. In what follows, we introduce the specific design choices made for the
re-optimization setting. Details of the LLM prompts are provided in Appendix A.3.

Problem description. The re-optimization datasets Bolusani et al. (2024) used in this work pro-
vide comprehensive context, including provenance, series-level metadata, and the components that
vary across instances. We convert this information into a structured prompt for each problem series
with three blocks: (i) Provenance & formulation. We provide a concise natural-language descrip-
tion along with the canonical IP/MIP formulation (sets, variables, and constraints). For example,
explicitly describing capacity constraints can guide the LLM to enable separators such as implied
bound cuts. (ii) Series metadata. This block specifies the problem size (number of variables and
constraints), the binary/continuous variable mix, and, when available, additional structural hints

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Agent

Config 2

Arm 2
Score	𝑈!,#

Config 4

Arm 4
Score	𝑈$,#

Config 5

Arm 5
Score	𝑈%,#

Instance

Solver

	𝒙∗= 𝑎𝑟𝑔𝑚𝑖𝑛 𝒄"𝒙:𝐀𝒙 ∘ 𝒃, 𝒍# ≤ 𝒙 ≤ 𝒖# , 𝑥$ ∈ 𝑍, ∀𝑗 ∈ 𝐼

Configuration

Solver output (e.g. solving time)

Store Solver Information

Solver Output

Solver Information (e.g. solution)

Environment

Solver Info

Instance

Solver Info

Instance 𝑃#&'

Instance

Solver Info

Instance 𝑃#&(

Instance
Instance …

Bandit

History
Buffer

Online Configuration Selection

Load Solver Information

Problem Description

	𝒙∗= 𝑎𝑟𝑔𝑚𝑖𝑛 𝒄"𝒙:𝐀𝒙 ∘ 𝒃, 𝒍 ≤ 𝒙 ≤ 𝒖, 𝑥$ ∈ 𝑍, ∀𝑗 ∈ 𝐼
Provenance & formulation: Single-machine scheduling; set-
partitioning, knapsack.
Series metadata: 50 instances; 1758 vars; 351 cons.
Re-optimization variation: Binary bounds vary (15–25%).

Parameter Description
Name: Primal Hint.
Content: Provide incumbent solution from prior instance.
Effect: Faster feasible solution, better pruning if consistent;
slower search, larger trees if poor quality.

LLM
Repeat N=3 times

Algorithm Configuration Space

Selected
Algorithm
Configuration
Candidates

Offline Configuration Space Reduction

s!s"
00Config 1

10Config 2

20Config 3

01Config 4

11Config 5

21Config 6

Figure 1: Two-stage framework for MILP re-optimization. Top: Offline configuration space reduc-
tion with LLMs. Given problem and parameter prompts, the LLM is queried N times to generate
compact portfolios. Bottom: online configuration selection via MABs. At each round t, the agent
should select a configuration for the current instance Pt, and the solver loads historical information.
After solving the instance, the environment returns solver output (e.g., solving time) for the agent to
update all arm scores and store solver information for future rounds.

such as sparsity or density. (iii) Re-optimization variation. We summarize which components vary
across the series, such as objective coefficients, right-hand sides, or variable bounds. For instance,
objective drift often encourages warm starts, whereas bound changes may reduce the reliability of
primal hints. Each block provides signals that help the LLM generate configurations aligned with
the structural and dynamic properties of the problem series.

Parameter description. For each solver, we list the tunable parameters together with their discrete
choices. We provide both the solver-specific names and a detailed description of each parameter.
These descriptions are consolidated from multiple sources, including research papers, textbooks,
solver documentation, and empirical insights. Since the parameter choices typically control not
only whether a function is enabled or disabled, but also to what extent, we explicitly summarize
the strengths and limitations of each parameter to guide LLMs in deciding both whether and how
aggressively to activate a function.

For example, Primal Hint (MIP warm-start) supplies an incumbent solution from previous instances.
This can significantly reduce time to derive a feasible solution at the early stage and improve pruning
efficiency when the hint is of high quality and structurally consistent across instances. However, if
the incumbent solution has a poor objective value, lower bounds cannot prune effectively, leading
to larger search trees. Another tunable parameter, Root-only cuts, controls whether cutting planes
are generated exclusively at the root node. On the one hand, enabling root-only can reduce the
overhead of cut separation and LP solves at non-root nodes. On the other hand, it may fail to
sufficiently strengthen the dual bound, thereby decreasing pruning opportunities and potentially
increasing the number of explored nodes. Describing such strengths and limitations is crucial for
LLM to generate algorithm configurations: it enables the model to weigh trade-offs (e.g., speed
versus pruning power) and to adapt recommendations more effectively in the re-optimization setting,
where historical context can amplify both the benefits and risks of these parameter choices.

4.2 ONLINE CONFIGURATION SELECTION VIA MULTI-ARMED BANDITS

Through offline configuration space reduction with LLMs, we derive a reduced candidate set S ′ ⊆
S. We then formulate the task of adaptively selecting configurations from S ′ as an MAB problem:
at each round t, the policy π chooses a configuration st ∈ S ′, observes the resulting reward rt(st),
and updates its decision rule based on past observations. The goal is to minimize the cumulative
cost relative to the best configuration in hindsight.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We instantiate the configuration selection policy π using the Upper Confidence Bound algorithm
with a tunable exploration coefficient α > 0 to scale the bonus term (Auer et al., 2002). For each
candidate configuration s ∈ S ′, let µ̂s(t) denote its empirical mean reward up to round t, and let
ns(t) denote the number of times s has been selected. UCB1 computes the score

Us(t) = µ̂s(t) + α

√
2 ln t

ns(t)
, (2)

and selects the configuration st = argmaxs∈S′ Us(t). The first term promotes exploitation of con-
figurations with high empirical rewards, while the second term is an exploration bonus that decays
with the number of pulls. More details of the MAB algorithm are provided in Appendix A.4.

5 EXPERIMENT

In this section, we evaluate our proposed framework against default solver configurations and rep-
resentative baselines. Our experiments are designed to address the following research questions: (i)
Comparative performance. How does our framework perform relative to default solver settings and
baselines? (ii) Offline configuration space reduction. Can LLMs efficiently reduce the algorithm
configuration space by generating reasonable and diverse candidate configurations? (iii) Online
configuration selection. Can bandit algorithms adaptively select effective configurations over the
sequential instances within a re-optimization series?

5.1 EXPERIMENT SETUP

All experiments are conducted on a high-performance computing cluster with Intel Xeon Platinum
8628 CPUs. All Gurobi experiments use Gurobi 12.0.3, and all SCIP experiments use SCIP 9.02.
We set the number of candidate configurations to N = 5 for each re-optimization problem series.
However, since single-shot LLM outputs may be noisy or redundant, and following prior work Law-
less et al. (2025), we deliberately over-generate a larger pool of 100 configurations and then apply
k-medoids clustering to condense them into N = 5 representative candidates. The exploration co-
efficient and the length of history window are fixed at α = 1 and τ = 5, respectively. We further
investigate the sensitivity of these parameter choices in this section.

Benchmarks. We evaluate our proposed method and baselines on the datasets provided by The
MIP Workshop 2023 Computational Competition ON Re-optimization Bolusani et al. (2024). We
select 10 datasets from this benchmark, each corresponding to a re-optimization problem series
consisting 50 sequential instances. To analyze performance across different difficulty levels, we
categorize the datasets into easy and hard groups. Easy datasets involve only a single varying (e.g.,
objective coefficients), and have relatively small problem sizes, with no more than 1,457 integer
variables. Hard datasets are characterized either by having at least two (up to four) varying com-
ponents, by significantly larger problem sizes (up to 63,009 integer variables), or by both. For each
dataset, we further split the 50 instances into 45 evaluation instances and 5 validation instances. Note
that validation instances are only used by one baseline method; our approach and all other baselines
do not require validation data. More details of the benchmarks are provided in Appendix A.2.

Evaluation metrics. We consider the average solving time across a re-optimization sequence as
the primary evaluation metric: Time = 1

T

∑T
t=1 z(t), where z(t) denotes the solving time of in-

stance t. We also report the relative improvement over default solvers: Improve = Timedefault−Timemethod
Timedefault

.
All instances are solved to optimality, subject to a maximum time limit of 400 seconds. If an in-
stance does not terminate within the limit, its solving time is set to the maximum, ensuring fairness
and preventing a few particularly hard instances from dominating the aggregate evaluation.

Baselines. We compare against four baselines: (i) Default solvers (Default). SCIP and Gurobi
with default configurations. (ii) Progressively Tuning (Tuning) Patel (2024b). The winning solu-
tion of the MIP Workshop 2023 re-optimization competition. Each parameter (primal hints, root
cuts, non-root cuts) is modeled as an independent bandit problem, with arms corresponding to its
discrete choices (e.g., on/off). Implemented only for SCIP, as Gurobi does not expose root/non-
root separation controls. (iii) LLM with validation (LLM-validation) Lawless et al. (2025). LLMs
generate separator configurations, followed by validation-set selection of the best candidate. This

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

constitutes a strong baseline, as it leverages additional validation instances to select the best config-
uration among the LLM-generated candidates. (iv) LLM-cold-start. LLM-generated configurations
are clustered using k-medoids, and the representative of the largest cluster is selected directly for
evaluation. Appendix A.1 provides additional details of the experimental setup.

5.2 EXPERIMENT RESULTS

Table 1: Comparison of different methods across 10 re-optimization benchmarks with SCIP solver.
Each method is evaluated by solving time (s) and relative improvement compare to Default SCIP
solver (%). The first 5 benchmarks are categorized as easy, and the last 5 as hard.

Default Tuning LLM-validation LLM-cold-start LLM-MAB (Ours)

Dataset Time ↓ Time ↓ Improv. ↑ Time ↓ Improv. ↑ Time ↓ Improv. ↑ Time ↓ Improv. ↑

Easy datasets

bnd 2 252.41(6.70) 244.66(6.33) 3.05 187.12(9.61) 25.77 235.97(5.67) 6.48 185.01(5.65) 26.64
bnd 3 355.04(3.81) 365.83(3.31) -3.04 349.02(17.03) 2.24 358.81(2.41) -0.79 343.79(1.10) 3.16
rhs 2 80.32(1.80) 62.25(1.04) 22.46 59.33(2.85) 26.06 47.04(0.46) 41.42 48.53(0.98) 39.58
rhs 4 77.04(0.59) 61.06(0.44) 20.73 59.01(2.05) 23.4 47.95(0.34) 37.76 47.53(1.58) 38.83
obj 1 306.71(8.83) 241.23(6.22) 21.32 236.28(2.79) 22.93 232.50(1.55) 24.16 229.50(8.83) 25.10

Hard datasets

rhs 3 311.94(15.96)291.27(13.86) 6.32 296.81(36.49) 4.35 289.24(39.02) 6.68 285.23(8.30) 8.30
obj 3 145.74(8.78) 74.30(6.75) 48.73 74.25(10.88) 48.65 67.40(5.42) 53.60 66.63(3.62) 54.18
rhs obj 397.14(1.09) 394.92(4.81) 0.56 391.46(4.95) 1.43 388.01(2.91) 1.95 387.99(1.69) 1.99
mat 368.77(4.73) 361.30(9.34) 2.00 336.55(8.86) 8.71 337.68(9.77) 8.42 335.42(9.50) 9.02
all 116.13(17.78) 86.78(12.52) 23.28 86.32(4.63) 24.03 86.24(5.95) 19.35 84.60(3.34) 25.99

Table 2: Comparison of different methods across 10 re-optimization benchmarks with Gurobi solver.
Each method is evaluated by solving time (s) and relative improvement compare to Default Gurobi
solver(%). The first 5 benchmarks are categorized as easy, and the last 5 as hard.

Default LLM-validation LLM-cold-start LLM-MAB (Ours)

Dataset Time ↓ Time ↓ Improv. ↑ Time ↓ Improv. ↑ Time ↓ Improv. ↑

Easy datasets

bnd 2 341.76(4.30) 336.55(6.92) 1.24(1.19) 400(0.00) -17.62(0.66)333.38(8.87) 2.18(1.77)
bnd 3 341.6(4.07) 330.75(1.29) 3.17(1.53) 400(0.00) -17.11(1.39)324.65(3.47) 4.95(2.15)
rhs 2 18.41(0.28) 18.25(0.03) 0.85(1.64) 19.39(0.02) -5.08(1.74) 18.14(0.06) 1.41(2.37)
rhs 4 18.26(0.18) 65.39(41.20) 0.35(3.55) 17.35(0.23) 4.98(1.19) 17.30(0.39) 5.25(1.76)
obj 1 89.24(1.27) 89.14(3.17) 0.08(4.97) 86.38(0.39) 0.73(4.62) 88.30(0.74) -2.23(6.88)

Hard datasets

rhs 3 33.03(4.12) 30.98(6.66) 4.54(28.67) 32.81(4.93) -0.43(19.92) 30.44(7.39) 6.65(28.18)
obj 3 14.38(0.33) 7.01(0.27) 51.30(2.12) 12.73(0.36) 11.42(4.12) 8.52(0.07) 40.73(0.88)
rhs obj 144.93(2.82)158.79(24.32) -9.42(15.34)160.42(11.06) -10.76(8.82)143.90(2.37) 1.52(1.45)
mat 44.52(1.55) 38.99(2.71) 12.44(5.15) 36.99(0.45) 16.77(5.11) 36.82(0.66) 15.81(3.66)
all 8.09(0.44) 8.20(0.77) -1.62(10.91) 8.12(0.22) -0.48(3.27) 8.05(0.19) 0.30(2.84)

Overall performance comparison. Table 1 and Table 2 summarize the results on SCIP and
Gurobi, respectively, reporting mean solving time with standard deviation as well as relative im-
provement over the default solvers. Our proposed method LLM-MAB achieves substantial speedups
compared to default SCIP across all benchmarks, outperforming existing baselines on 9 out of 10
benchmarks and remaining competitive with LLM-cold-start on rhs 2. On 6 benchmarks, LLM-
MAB delivers more than 25% relative improvement, reaching up to 54.18% on obj 3, a hard bench-
mark with 9599 integer variables. Notably, on the challenging all benchmark—where objective
coefficients, bounds, right-hand sides, and matrix coefficients all vary—LLM-MAB still achieves a
25.99% improvement, demonstrating its robustness under the most complex re-optimization sce-
narios. LLM-MAB also reduces the solving time of Gurobi across all benchmarks, outperforming

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

other baselines on 8 out of 10 datasets. On the 5 hard benchmarks, it achieves up to 40.73% relative
improvement, highlighting its effectiveness under challenging re-optimization scenarios.

LLM-validation serves as a strong baseline since it leverages additional validation instances to iden-
tify a single well-performing configuration. We observe that this strategy is particularly effective
when one configuration generalizes well across all instances in a series. For example, on obj 3
with Gurobi, it achieves a 51.3% relative improvement by selecting the best configuration from the
validation set. In contrast, although LLM-MAB attains 40.73% improvement on average, its use of
UCB inherently encourages exploration of multiple configurations in the early rounds, which incurs
overhead and slightly degrades the total average solving time. This effect is amplified in the re-
optimization benchmarks where each series contains only 50 instances (45 for testing), so the cost
of early exploration constitutes a larger fraction of the total runtime.

We observe that on certain datasets the solving time budget of 400 seconds is insufficient, as many
instances could not reach optimality within the limit. To ensure a fairer evaluation, we repeat the
experiments with an extended time limit of 600 seconds in Appendix A.5.

Table 3: Ablation of LLM-MAB without general solver parameters (i.e., restricted to separator con-
figurations only). Results are reported as relative solving time improvement (%) over Default SCIP
across 10 benchmarks. (Higher is better.)

Method bnd 2 bnd 3 rhs 2 rhs 4 obj 1 rhs 3 obj 3 rhs obj mat all

LLM-MAB (Ours)
26.64
(3.89)

3.16
(0.77)

39.58
(0.77)

38.83
(2.38)

25.10
(4.39)

8.30
(8.12)

54.18
(3.46)

1.99
(0.28)

9.02
(3.37)

25.99
(11.48)

LLM-MAB (Separators only)
17.48
(2.66)

1.78
(1.51)

36.07
(2.38)

34.42
(2.04)

22.92
(1.96)

6.64
(10.17)

53.50
(3.58)

0.45
(1.03)

8.55
(3.03)

15.64
(16.25)

Table 4: Ablation of LLM-MAB without online bandit adaptation (i.e., using validation-only selec-
tion of a fixed configuration). Results are reported as relative solving time improvement (%) over
Default SCIP across 10 benchmarks. (Higher is better.)

Method bnd 2 bnd 3 rhs 2 rhs 4 obj 1 rhs 3 obj 3 rhs obj mat all

LLM-MAB (Ours)
26.64
(3.89)

3.16
(0.77)

39.58
(0.77)

38.83
(2.38)

25.10
(4.39)

8.30
(8.12)

54.18
(3.46)

1.99
(0.28)

9.02
(3.37)

25.99
(11.48)

LLM-Validation (General)
18.42
(3.34)

-2.31
(2.87)

38.96
(2.07)

35.35
(0.61)

23.40
(1.46)

11.23
(2.27)

51.81
(4.66)

1.71
(0.66)

10.135
(0.50)

15.94
(16.22)

Effectiveness of algorithm configuration generation. We analyze this effectiveness from two
aspects. First, we evaluate the extension from separator-only tuning (as in prior work Lawless et al.
(2025)) to a more general re-optimization algorithm configuration problem that incorporates both
solver-native parameters and historical information. Table 3 reports the ablation study comparing
LLM-MAB with its separator-only variant, which is studied in recent papers Lawless et al. (2025);
Li et al. (2023). The results show that our full configuration space consistently outperforms the
separator-only setting across all benchmarks. While the margins vary by dataset, improvements
are observed on both easy benchmarks (e.g., +9.16% on bnd 2) and hard ones (e.g., +10.35% on
all), demonstrating that extending the configuration scope beyond separators yields tangible gains
in more challenging re-optimization scenarios.

As mentioned in Section 3, the combinatorially large algorithm configuration space makes direct
online bandit-based selection difficult to converge, and therefore necessitates selecting a small set of
candidate configurations in advance. The comparison with Tuning Patel (2024b) in Table 1 also il-
lustrates this: tuning all parameters independently with a shared reward and without space reduction
is ineffective, so they restricted to a few parameters, which still led to degraded results. In contrast,
LLM-cold-start achieves strong performance—surpassing default SCIP on 9 of 10 benchmarks and
default Gurobi on 4 of 10—simply by committing to a single configuration selected via clustering.
This highlights that LLMs are capable of producing high-quality solver configurations.

Effectiveness of online configuration selection. To assess the benefit of MAB-based online con-
figuration selection in LLM-MAB, we include the ablation LLM-Validation (General) in Table 4. In

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

this variant, the configuration space is identical to that of LLM-MAB, but the best algorithm config-
uration is chosen once from the validation set and then fixed for evaluation, without online adapta-
tion. The results show that LLM-MAB surpasses LLM-Validation (General) on 8 of 10 benchmarks,
achieving up to +10.06% additional improvement on all. This demonstrates that bandit-based on-
line selection provides robustness by adaptively exploiting different configurations throughout the
series, rather than committing prematurely to a single choice. We also note that when one config-
uration candidate is clearly superior (e.g., mat), LLM-Validation (General) may perform slightly
better, as it can directly identify this configuration from validation, while LLM-MAB incurs explo-
ration overhead before converging.

Table 5: Sensitivity analysis of the exploration coefficient α in the UCB scoring rule. We report
relative solving time improvement (%) over Default SCIP across 10 re-optimization benchmarks.

Method bnd 2 bnd 3 rhs 2 rhs 4 obj 1 rhs 3 obj 3 rhs obj mat all

LLM-MAB (α = 0.5)
17.69
(5.48)

1.72
(1.07)

50.37
(25.71)

33.82
(0.59)

20.23
(3.61)

6.43
(6.43)

49.81
(3.80)

1.64
(0.51)

9.09
(3.80)

18.67
(18.26)

LLM-MAB (α = 1)
26.64
(3.89)

3.16
(0.77)

39.58
(0.77)

38.83
(2.38)

25.10
(4.39)

8.30
(8.12)

54.18
(3.46)

1.99
(0.28)

9.02
(3.37)

25.99
(11.48)

LLM-MAB (α = 2)
20.57
(2.99)

2.22
(1.68)

36.74
(2.20)

34.28
(1.49)

19.16
(1.18)

9.63
(9.35)

50.49
(4.08)

0.44
(1.00)

10.71
(5.35)

17.42
(17.98)

Sensitivity analysis of the exploration coefficient α. We further analyze the sensitivity of LLM-
MAB to the exploration coefficient α in UCB, tested at α ∈ {0.5, 1, 2} (Table 5). All three settings
consistently outperform the default solver, indicating that the framework is robust to this hyperpa-
rameter. Among them, α = 1 provides the best overall trade-off, outperforming baselines on 8 out of
10 benchmarks and achieving the largest gains on hard instances such as obj 3 and all. By con-
trast, α = 0.5 favors exploitation and explores too little, resulting in faster convergence but is hard
to yield the strongest performance. On the other hand, α = 2 encourages aggressive exploration,
which occasionally discovers stronger configurations (e.g., two benchmark wins), but its overhead in
the early rounds often offsets these gains. These results suggest that moderate exploration (α = 1) is
most effective in practice, while also demonstrating that the overall framework remains stable across
a wide range of α values.

Sensitivity analysis of the configuration candidate set size N . Table 9 in Appendix A.5 reports
the performance of LLM-MAB under different numbers of configuration candidates, tested at N ∈
{1, 3, 5}. Note that N = 1 corresponds to LLM-cold-start, where a single configuration is selected
without online adaptation. We observe that when N = 5, LLM-MAB achieves the most stable
improvements and consistently outperforms default SCIP across all benchmarks, suggesting that
having a sufficiently diverse candidate set is crucial to include at least one effective configuration.
On the other hand, given the small size of the re-optimization benchmark (50 instances per problem
series, of which only 45 are used for testing in our setting), larger values of N are less practical:
convergence becomes more difficult and each arm must still be explored at least once, leading to
higher overhead and less reliable adaptation.

6 CONCLUSION

In this paper, we formulated the re-optimization problem for MILP by incorporating a finite his-
tory window of solver information, and we cast algorithm configuration as a joint problem of
configuration-space reduction and adaptive online selection. Building on this formulation, we de-
veloped a lightweight two-stage method that first leverages LLMs to generate a compact set of can-
didate configurations and then applies bandit algorithms for online adaptation. Empirical results on
the MIP Workshop 2023 re-optimization benchmarks demonstrate that our framework consistently
improves solver performance over strong baselines, achieving substantial reductions in solving time
without requiring offline training or validation data.

For future work, our framework can be extended by incorporating richer re-optimization techniques
as configurable options, such as learning-based solution prediction or adaptive branching strategies.
It is also promising to explore instance-wise configuration policies that exploit problem features
more directly while retaining the lightweight online nature of our approach.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our experiment setup (devices, solver settings, hyper-parameters, evaluation metrics, and baselines)
is detailed in Section 5.1 and Appendix A.1, and the re-optimization benchmark is summarized in
Section 5.1 and Appendix A.2. An anonymous code repository is provided in the supplemental
materials to reproduce the experiment results.

REFERENCES

Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Operations
Research Letters, 33(1):42–54, 2005.

Steven Adriaensen, André Biedenkapp, Gresa Shala, Noor Awad, Theresa Eimer, Marius Lindauer,
and Frank Hutter. Automated dynamic algorithm configuration. Journal of Artificial Intelligence
Research, 75:1633–1699, 2022.

Tiria Andersen, Shaun Belward, Mangalam Sankupellay, Trina Myers, and Carla Chen. Reoptimi-
sation strategies for dynamic vehicle routing problems with proximity-dependent nodes. Top, 32
(1):1–21, 2024.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Timo Berthold. Primal heuristics for mixed integer programs. PhD thesis, Zuse Institute Berlin
(ZIB), 2006.

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
Van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al. The scip
optimization suite 8.0. arXiv preprint arXiv:2112.08872, 2021.

André Biedenkapp, H Furkan Bozkurt, Theresa Eimer, Frank Hutter, and Marius Lindauer. Dynamic
algorithm configuration: Foundation of a new meta-algorithmic framework. In ECAI 2020, pp.
427–434. IOS Press, 2020.

Suresh Bolusani, Mathieu Besançon, Ambros Gleixner, Timo Berthold, Claudia D’ambrosio, Gon-
zalo Muñoz, Joseph Paat, and Dimitri Thomopulos. The mip workshop 2023 computational
competition on reoptimization. Mathematical Programming Computation, 16(2):255–266, 2024.

Juan Antonio Cedillo-Robles, Neale R Smith, Rosa G González-Ramirez, Julio Alonso-Stocker,
Joaquı́n Alonso-Stocker, and Ronald G Askin. A production planning milp optimization model
for a manufacturing company. In International Conference of Production Research–Americas,
pp. 85–96. Springer, 2020.

Rodolfo Dondo and Jaime Cerdá. An milp framework for dynamic vehicle routing problems with
time windows. Latin American applied research, 36(4):255–261, 2006.

Fabian Dunke and Stefan Nickel. Exact reoptimisation under gradual look-ahead for operational
control in production and logistics. International Journal of Systems Science: Operations &
Logistics, 10(1):2141590, 2023.

Yasemin Eryoldaş and Alptekin Durmuşoglu. A literature survey on offline automatic algorithm
configuration. Applied Sciences, 12(13):6316, 2022.

Damian Frick, Angelos Georghiou, Juan L Jerez, Alexander Domahidi, and Manfred Morari. Low-
complexity method for hybrid mpc with local guarantees. SIAM Journal on Control and Opti-
mization, 57(4):2328–2361, 2019.

Gerald Gamrath, Benjamin Hiller, and Jakob Witzig. Reoptimization techniques for mip solvers. In
International Symposium on Experimental Algorithms, pp. 181–192. Springer, 2015.

Claudio Gentile, Germán Morales-Espana, and Andres Ramos. A tight mip formulation of the unit
commitment problem with start-up and shut-down constraints. EURO Journal on Computational
Optimization, 5(1):177–201, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

LLC Gurobi Optimization. Gurobi optimizer reference manual. 2023.

Xuan He, Honglin Wen, Yufan Zhang, Yize Chen, and Danny HK Tsang. Fast unit commitment
constraint screening with learning-based cost model. In 2024 IEEE International Conference on
Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), pp.
295–300. IEEE, 2024.

Abdelrahman Hosny and Sherief Reda. Automatic milp solver configuration by learning problem
similarities. Annals of Operations Research, 339(1):909–936, 2024.

Frank Hutter, Holger H Hoos, and Thomas Stützle. Automatic algorithm configuration based on
local search. In Aaai, volume 7, pp. 1152–1157, 2007.

Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils: an automatic
algorithm configuration framework. Journal of artificial intelligence research, 36:267–306, 2009.

Connor Lawless, Yingxi Li, Anders Wikum, Madeleine Udell, and Ellen Vitercik. Llms for cold-
start cutting plane separator configuration. In International Conference on the Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, pp. 51–69. Springer,
2025.

Sirui Li, Wenbin Ouyang, Max Paulus, and Cathy Wu. Learning to configure separators in branch-
and-cut. Advances in Neural Information Processing Systems, 36:60021–60034, 2023.

Tobia Marcucci and Russ Tedrake. Warm start of mixed-integer programs for model predictive
control of hybrid systems. IEEE Transactions on Automatic Control, 66(6):2433–2448, 2020.

Germán Morales-España, Jesus M Latorre, and Andres Ramos. Tight and compact milp formulation
for the thermal unit commitment problem. IEEE Transactions on Power Systems, 28(4):4897–
4908, 2013.

Gizem Ozbaygin and Martin Savelsbergh. An iterative re-optimization framework for the dy-
namic vehicle routing problem with roaming delivery locations. Transportation Research Part
B: Methodological, 128:207–235, 2019.

Krunal Kishor Patel. Discounted pseudocosts in milp. arXiv preprint arXiv:2407.06237, 2024a.

Krunal Kishor Patel. Progressively strengthening and tuning mip solvers for reoptimization. Math-
ematical Programming Computation, 16(2):267–295, 2024b.

Arthur Richards and Jonathan How. Mixed-integer programming for control. In Proceedings of the
2005, American Control Conference, 2005., pp. 2676–2683. IEEE, 2005.

Romeo Valentin, Claudio Ferrari, Jérémy Scheurer, Andisheh Amrollahi, Chris Wendler, and Max B
Paulus. Instance-wise algorithm configuration with graph neural networks. arXiv preprint
arXiv:2202.04910, 2022.

Laurence A Wolsey. Mip modelling of changeovers in production planning and scheduling prob-
lems. European Journal of Operational Research, 99(1):154–165, 1997.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-mip: Automated algorithm
configuration and selection for mixed integer programming. In RCRA workshop on experimental
evaluation of algorithms for solving problems with combinatorial explosion at the international
joint conference on artificial intelligence (IJCAI), pp. 16–30, 2011.

Sijia Zhang, Shuli Zeng, Shaoang Li, Feng Wu, Shaojie Tang, and Xiangyang Li. Don’t restart, just
reuse: Reoptimizing milps with dynamic parameters. In Forty-second International Conference
on Machine Learning.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXPERIMENT SETUPS

Algorithm configuration space. In this work, we cast algorithm configuration as a joint selection
over (i) solver-native parameters and (ii) optional re-optimization mechanisms. To keep the algo-
rithm configuration space impactful yet tractable for MILP, we primarily target cutting-plane–related
controls, which strongly influence LP bound quality, node counts, and overall time. As an optional
re-optimization mechanism, we include Primal Hint (incumbent injection + light repair), which can
provide high-quality starting solutions and thereby accelerate early pruning.

Our framework is solver-agnostic, and in this study, we restrict attention to features that are available
in both SCIP and Gurobi. Consequently, we do not consider branching-information reuse here;
investigating it within our framework is left for future work.

Table 6 and Table 7 provide the parameter lists for SCIP and Gurobi, respectively.

Table 6: List of SCIP parameters used in our generalized algorithm configuration. Values: 1 = on, 0
= off, respectively.

Parameter Description Values
clique Clique inequalities from conflict graphs 0 / 1
root only Restrict cuts to root node only 0 / 1
Primal Hint Warm-start from prior solutions 0 / 1
cmir Mixed-integer rounding cuts 0 / 1
aggregation Flow-cover inequalities (aggregation) 0 / 1
mcf Flow path cuts (multi-commodity flow) 0 / 1
impliedbounds Implied bound cuts (bin-cont vars) 0 / 1
strongcg Strong Chvátal–Gomory cuts 0 / 1
zerohalf Zero-half inequalities 0 / 1
disjunction Disjunctive cuts 0 / 1
convexprojection Convex projection cuts (MINLP relaxations) 0 / 1
integerobjective Objective integrality cuts 0 / 1
gomory Gomory fractional cuts 0 / 1
cgmip Chvátal–Gomory cuts 0 / 1
oddcycle Odd cycle inequalities (graph-based) 0 / 1
rapidlearning Rapid learning heuristic cuts 0 / 1

Implementation of Primal Hints. The re-optimization dataset from the MIP Workshop 2023
Computational Competition on Re-optimization consists of problem series where different compo-
nents vary across instances (objective function coefficients(obj), constraint right-hand sides(rhs),
variable bounds(bnd), coefficients of the constraint matrix(mat). Changing obj does not affect
feasibility, whereas changes to rhs/bnd/mat can render a previously feasible incumbent infeasi-
ble. Guided by this, we adopt the following hinting policy.

• obj series: we reuse the entire historical incumbent as the Primal Hint.
• rhs/bnd/mat series: we reuse only the integer part of the incumbent. For SCIP, we fix

those integers and solve a continuous LP to repair the continuous variables; if a feasible
completion is found, the full repaired solution is passed as the Primal Hint. For Gurobi,
we provide the integer assignments as a partial MIP start and rely on its built-in repair
mechanism to complete missing values. For bnd changes specifically, integer values are
first clipped to the new bounds before repair.

Experiment Setup Details of Baselines. We compare against four baselines:

• Default solvers (Default). SCIP and Gurobi with default configurations.
• Progressively Tuning (Tuning) Patel (2024b). The winning solution of the MIP Workshop

2023 re-optimization competition. Each parameter (Provide hint or not, Use root node cuts

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 7: List of Gurobi parameters used in our generalized algorithm configuration. Values: 2 =
aggressive, 1 = on, 0 = off, respectively.

Parameter Description Values
Primal Hint Warm-start from prior solutions 0 / 1
CliqueCuts Clique inequalities from conflict graphs 0 / 1 / 2
CoverCuts Cover inequalities for knapsack sets 0 / 1 / 2
FlowCoverCuts Flow-cover cuts for fixed-charge flows 0 / 1 / 2
FlowPathCuts Path cuts in fixed-charge networks 0 / 1 / 2
GUBCoverCuts Cover cuts under generalized upper bounds 0 / 1 / 2
ImpliedCuts Implied bound inequalities (bin-cont vars) 0 / 1 / 2
InfProofCuts Infeasibility proof inequalities 0 / 1 / 2
LiftProjectCuts Lift-and-project cuts from disjunctions 0 / 1 / 2
MIRCuts Mixed-integer rounding cuts 0 / 1 / 2
MixingCuts Mixing inequalities (generalized MIR) 0 / 1 / 2
ModKCuts Modular arithmetic divisibility cuts 0 / 1 / 2
NetworkCuts Network structure cuts 0 / 1 / 2
RelaxLiftCuts Relax-and-lift cuts 0 / 1 / 2
SubMIPCuts SubMIP-based cuts 0 / 1 / 2
StrongCGCuts Strong Chvátal–Gomory cuts 0 / 1 / 2
ZeroHalfCuts Zero-half inequalities 0 / 1 / 2
ProjImpliedCuts Projected implied bound inequalities 0 / 1 / 2

or not, Use cuts at other nodes or not) is modeled as an independent bandit problem, with
arms corresponding to its discrete values (on/off). The score of each value is computed by
Upper Confidence Bound (UCB) Algorithm:

Sv = Qv +
C

Nv
.

This score involves two parts: (i) The running average of the base score (Qv), and (ii)
The uncertainty of the score, i.e., the confidence bound 1

Nv
, where Nv is the number of

score updates the value has received. When a value is not explored enough, the confidence
bound adds a higher number to the score to encourage more exploration for that value. C
is a weight constant that determines how fast the score converges and is fixed to 0.3 as
suggested by the paper. This baseline is implemented only for SCIP, as Gurobi does not
expose root/non-root separation controls.

• LLM with validation (LLM-validation) Lawless et al. (2025). Following LLM-MAB, we
prompt an LLM to generate 100 separator configurations for each re-optimization series,
then apply k-medoids to condense them into N = 5 representatives. We evaluate each
representative on a held-out validation set and select the configuration with the best average
reward. This forms a strong baseline because it exploits additional validation instances to
pick the best among LLM-generated candidates.

• LLM-cold-start. Again following LLM-MAB, we generate 100 separator configurations
per series and cluster them with k-medoids, but we directly take the single medoid of the
largest cluster without any validation as the chosen configuration for evaluation.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 RE-OPTIMIZATION BENCHMARKS

Benchmark datasets. Table 8 summarizes the re-optimization benchmarks used in our experi-
ments, including the size, domain/source, and which model components vary within each sequence.
Here, #Vars denotes the total number of variables (integer variables in parentheses), and #Cons de-
notes the number of constraints. An X indicates that the corresponding component changes across
instances in the sequence. To analyze performance across different difficulty levels, we categorize
the datasets into easy and hard groups. Easy datasets involve only a single varying (e.g., objective
coefficients), and have relatively small problem sizes, with no more than 1,457 integer variables.
Hard datasets are characterized either by having at least two (up to four) varying components, by
significantly larger problem sizes (up to 63,009 integer variables), or by both.

Table 8: Re-optimization benchmark datasets: size, source domain, and varying components. #Vars:
total number of variables (integer variables in parentheses). LO: variable lower bounds; UP: variable
upper bounds; OBJ: objective coefficients; LHS: left-hand sides; RHS: right-hand sides; MAT: con-
straint matrix coefficients. X indicates that the corresponding component varies within the instance
sequence.

Dataset #Vars #Constrs Domain/Source LO UP OBJ LHS RHS MAT

Easy datasets

bnd 2 1758 (1457) 351 MIPLIB’17 X X – – – –
bnd 3 1758 (1457) 351 MIPLIB’17 X X – – – –
rhs 2 1000 (500) 1250 Synthetic MILP – – – – X –
rhs 4 1000 (500) 1250 Synthetic MILP – – – X X –
obj 1 360 (360) 55 Stochastic multi 0–1 knapsack – – X – – –

Hard datasets

rhs 3 63009 (63009) 507 MIPLIB’17 – – – X X –
obj 3 9599 (9599) 27940 UCI Machine Learning – – X – – –
rhs obj 90983 (60146) 33438 Hydro unit commitment – – X X X –
mat 802 (500) 531 Vaccine allocation – – – – – X
all 7973 (5186) 3558 Mixed synthetic benchmark X X X X X X

After the table, we provide detailed descriptions of each dataset, including how instances were
generated and which variations are introduced:

bnd 2: Based on csched007 (MIPLIB 2017). Instances are generated via random fixings of
15%–25% of the binary variables, selected uniformly with respect to the original instance.

bnd 3: Also based on csched007. Instances are generated via random fixings of 5%–20% of
the binary variables (uniform selection). This series is relatively harder than bnd series 2 (as
reflected by the time limits).

rhs 2: Based on a synthetic MILP dataset. Instances are generated by taking a convex combination
of two different RHS vectors.

rhs 4: Also based on the synthetic MILP dataset as in rhs series 2, but using a different pair
of RHS vectors for the convex combination.

obj 1: Based on a stochastic multiple binary knapsack dataset. We consider one scenario at a time,
yielding a series in which roughly one third of the objective vector (corresponding to y-variables)
varies across instances.

rhs 3: Based on glass4 (MIPLIB). Instances are generated by perturbing nonnegative LHS and
RHS components via a discrete uniform distribution by up to ±70% of their values.

obj 3: Derived from the UCI MAGIC dataset. Instances are subproblems from a column generation
approach to decision trees; the final set stems from a public call for additional datasets.

rhs obj: Based on a hydro unit commitment (HUC) MILP for a fixed valley. Varying inputs
include electricity prices (objective), inflows, and initial/target reservoir volumes (constraint sides);
most other data remain unchanged, making sequential re-optimization especially relevant.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

mat: Based on an optimal vaccine allocation problem. Considering 500 scenarios at a time yields a
series where the constraint matrix of inequality constraints varies across instances.

mat rhs bnd obj (all): Also HUC-based (as in rhs obj), but here every input component
(objective, bounds, sides, and matrix) may vary.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 LLM PROMPT EXAMPLE

Figures 2 and 3 provide an example LLM dialogue for algorithm configuration. The LLM input
consists of (i) a meta prompt, (ii) a parameter description, and (iii) a problem description. The LLM
output is a proposed configuration accompanied by brief explanations.

Meta Prompt

You are configuring for MILP re-optimization: a sequence of closely related instances derived from the
same base model with small changes to objective function coefficients/variable bounds/constraint right-
hand sides/coefficients of the constraint matrix. You need to configure the following solver parameters and
global control options. Any configuration key not explicitly included in your final output will be set to 0
(disabled/default).

Parameter Description Example: Primal Hint

Name: Primal Hint

What it is. Provide an incumbent candidate solution before or during the solve (e.g., from a prior run or
predictor). The solver can accept it directly or attempt to repair it.

How it maps to solvers. When objective coefficients change, the entire historical incumbent can be reused
as the Primal Hint. When constraint right-hand sides, variable bounds, or matrix coefficients change, only
the integer part of the incumbent is reused. – In SCIP, these integer values are fixed, and a continuous LP
repair is attempted for the remaining variables; if feasible, the repaired solution is passed as the Primal Hint.
– In Gurobi, the integer assignments are provided as a partial MIP start, with its built-in repair mechanism
completing the solution. For bound changes, integer values are clipped to the new bounds before repair.

When it helps. Primal hints can significantly reduce time to derive a feasible solution at the early stage
and improve pruning efficiency when the hint is of high quality and structurally consistent across instances.
They are especially effective when only objective coefficients values vary, since the incumbent remains
mostly compatible. In contrast, when major structural changes occur (e.g., large-scale bound shifts or
constraint matrix modifications), reusing incumbents is less reliable and may even increase search tree size
if the hint is of poor quality.

LLM Output Example: Proposed Configuration

Setting levels: 0=disable, 1=use, 2=aggressive.
Parameter Level Explanation

primalhint 1 Given the series of 50 instances with common models, enabling primal hints
allows warm starting from previous solutions, potentially speeding up reopti-
mization.

root only 1 With primal hints, strong root relaxations can suffice, saving time without weak-
ening the initial solution quality. Larger search tree risk is mitigated by more
frequent feasible primal hints.

clique 1 Useful for binary decision variables, especially with potential binary onflicts in
multi-dimensional knapsack constraints.

impliedbounds 1 Exploiting logical bounds between binary variables in the problem, helping im-
prove LP relaxation efficiency given binary structure.

strongcg 1 With pure binary and integer covering or tight knapsack constraints, these
strengthen LP relaxation and combinatorial logic.

Figure 2: LLM dialogue example for algorithm configuration. From top to bottom: (i) Meta prompt
and (ii) Parameter Description Example. These two boxes are the materials provided to the LLM.
The final box shows the LLM output: a concrete configuration with multi-level settings.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Problem Description: Stochastic Multiple Binary Knapsack (obj series 1)

Name: Stochastic Multiple Binary Knapsack (single-scenario instantiation)

What it is. Choose binary items in two stages. First-stage selections x, z must satisfy multi-dimensional
covering constraints; after the scenario is revealed, a second-stage recourse y covers residual requirements.

The objective is linear, with scenario-dependent coefficients on y. This series varies (parts of) the objective
vector across instances.

Data and notation. Decision variables: x ∈ {0, 1}n, z ∈ {0, 1}n (first-stage), y ∈ {0, 1}n (second-
stage/recourse). Costs: c, d ∈ Rn

≥0 for x, z; scenario-specific q ∈ Rn
≥0 for y. Constraints: covering

matrices A,C,W, T and right-hand sides b, h with compatible dimensions.

Dataset metadata. Series size: 50 related instances (common model, varying data). Number of variables:
360 (all binary). Number of constraints: 55.

Objective. Minimize total cost of first-stage decisions plus recourse cost:

min
x,z,y

c⊤x+ d⊤z + q⊤y.

Integer programming formulation.
Minimize c⊤x+ d⊤z + q⊤y

Subject to Ax+ Cz ≥ b (multi-dimensional covering)

Wy ≥ h− Tx (recourse covers residual demand)

x ∈ {0, 1}n, z ∈ {0, 1}n, y ∈ {0, 1}n (binary variables).Constraints summary.
• Covering (multiple knapsacks): Ax+ Cz ≥ b.

• Recourse covering / linking: Wy ≥ h− Tx.

• Binary-only: all decision variables are binary.

• Optional stochastic view: in the general two-stage model, q is scenario-dependent and one may
minimize

∑
ω∈Ω pω Qω(x); here a single scenario is fixed per instance.

Re-optimization variant (obj1). Varying component: the objective coefficients (typically a subset associ-
ated with y) vary across instances; feasibility structure is preserved.

Figure 3: LLM dialogue example of problem description.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.4 MAB ALGORITHM IMPLEMENTATION

For completeness, we provide in Algorithm 1 the pseudocode of our bandit-based online configu-
ration selection procedure in (LLM-MAB). The algorithm maintains empirical mean rewards µ̂s and
counts ns for each candidate configuration s ∈ S ′. At each step t, given an instance Pt, if some
configurations have not yet been explored, they are selected to ensure every arm is tried at least once.
Otherwise, the next configuration is chosen according to the UCB1 score with exploration coeffi-
cient α. The solver is then run on the current re-optimization instance Pt, optionally reusing primal
hints from the last τ instances. The solving time is converted into a negative reward and used to
update statistics online. This procedure adaptively balances exploration of different configurations
with exploitation of the most promising ones.

Algorithm 1: LLM-MAB: Online Configuration Selection via UCB1
Input : Exploration coefficient α;

Candidate configurations S ′ = {s1, . . . , sN};
Sequential instance stream {Pt}Tt=1;
Historical window size τ (for optional reuse of primal hints).

Output: Per-instance record of chosen configuration and solving time.

Initialization: For each s ∈ S ′, set µ̂s(0)← 0, ns(0)← 0.
for t← 1 to T do

if ∃s : ns(t− 1) = 0 then
Select such untried configuration st = s. // ensure each tried once

else
Compute UCB1 score Us(t) = µ̂s(t− 1) + α

√
2 ln t

ns(t−1) for each s.

Select st = argmaxs∈S′ Us(t).
Run solver on Pt with configuration st (and hints from last τ instances if enabled).
Observe solving time zt, set reward rt = −zt.
Update statistics: nst(t)← nst(t− 1) + 1,
µ̂st(t)← µ̂st(t− 1) +

rt−µ̂st (t−1)

nst (t)
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.5 ADDITIONAL EXPERIMENT RESULTS

Sensitivity analysis of the configuration candidate set size. Table 9 reports the detailed results
of LLM-MAB with different candidate set sizes N ∈ {1, 3, 5} across all benchmarks. As discussed
in Section 5.2, increasing N to 5 provides more stable performance and ensures consistent improve-
ments over the default solver.

Table 9: Sensitivity analysis of the configuration candidate set size. We report relative solving time
improvement (%) over Default SCIP across 10 re-optimization benchmarks. (Higher is better.)

Method bnd 2 bnd 3 rhs 2 rhs 4 obj 1 rhs 3 obj 3 rhs obj mat all

LLM-MAB (N = 1)
6.48

(2.62)
-0.79
(1.77)

41.42
(1.56)

37.76
(0.67)

24.16
(1.80)

6.68
(17.52)

53.60
(6.38)

2.72
(0.47)

8.42
(2.99)

19.35
(18.92)

LLM-MAB (N = 3)
11.06

(12.79)
13.39
(3.01)

38.45
(2.17)

32.68
(1.04)

20.92
(2.14)

1.57
(12.49)

47.07
(4.54)

0.88
(0.32)

-0.84
(3.16)

10.36
(18.60)

LLM-MAB (N = 5)
26.64
(3.89)

3.16
(0.77)

39.58
(0.77)

38.83
(2.38)

25.10
(4.39)

8.30
(8.12)

54.18
(3.46)

1.99
(0.28)

9.02
(3.37)

25.99
(11.48)

Additional experiments with extended time limit. In preliminary experiments, we observed that
within each re-optimization sequence, the default solver’s solving times varied significantly across
instances. To prevent a few particularly hard instances from dominating the aggregate metrics,
we followed prior work Lawless et al. (2025) and imposed a global time limit of 400 seconds per
instance. However, on certain datasets this budget proved insufficient, as many instances could not
reach optimality within the limit. To ensure a fairer evaluation, we repeated the experiments with an
extended time limit of 600 seconds. The corresponding results are reported in Table 10.

We observe that LLM-MAB still achieves consistent improvements over Default SCIP. In particular,
substantial gains are observed on obj 1 (+33.42%) and mat (+12.29%), while on rhs obj the
performance is similar to the default. These results confirm that our approach remains effective
under more relaxed computational budgets.

Table 10: Additional experiments with extended time limit. We report solving time (s) and relative
improvement (%) over Default SCIP. Lower solving time and higher relative improvement are better.

Method bnd 3 rhs 3 obj 1 rhs obj mat

Default 493.16 (4.42) 434.04 (32.60) 409.32 (1.42) 570.95 (5.20) 504.33 (4.97)

LLM-MAB 462.32 (3.21) 394.25 (29.41) 272.55 (7.95) 569.46 (6.82) 442.21 (25.53)
Improv. 6.24 8.51 33.42 0.25 12.29

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.6 THE USE OF LARGE LANGUAGE MODELS

We used a large language model solely for language polishing and LATEXformatting, such as grammar
correction, stylistic editing, and minor reformatting of tables and figures. The LLM was not used
to design experiments, generate results, analyze data, or draw conclusions. All technical content,
algorithms, and empirical findings were authored and verified by the authors.

20

	Introduction
	Literature Review
	Problem Formulation
	Methodology
	Offline Configuration Space Reduction with LLMs
	Online Configuration Selection via Multi-Armed Bandits

	Experiment
	Experiment Setup
	Experiment Results

	Conclusion
	Appendix
	Experiment Setups
	Re-optimization Benchmarks
	LLM Prompt Example
	MAB Algorithm Implementation
	Additional Experiment Results
	The Use of Large Language Models

