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ABSTRACT

Vision transformers (ViTs) are quickly becoming the de-facto architecture for
computer vision, yet we understand very little about why they work and what they
learn. While existing studies visually analyze the mechanisms of convolutional
neural networks, an analogous exploration of ViTs remains challenging. In this
paper, we first address the obstacles to performing visualizations on ViTs. Assisted
by these solutions, we observe that neurons in ViTs trained with language model
supervision (e.g., CLIP) are activated by semantic concepts rather than visual
features. We also explore the underlying differences between ViTs and CNNs,
and we find that transformers detect image background features, just like their
convolutional counterparts, but their predictions depend far less on high-frequency
information. On the other hand, both architecture types behave similarly in the
way features progress from abstract patterns in early layers to concrete objects
in late layers. In addition, we show that ViTs maintain spatial information in all
layers except the final layer. In contrast to previous works, we show that the last
layer most likely discards the spatial information and behaves as a learned global
pooling operation. Finally, we conduct large-scale visualizations on a wide range
of ViT variants, including DeiT, CoaT, ConViT, PiT, Swin, and Twin, to validate
the effectiveness of our method.

1 INTRODUCTION

Recent years have seen the rapid proliferation of vision transformers (ViTs) across a diverse range
of tasks from image classification to semantic segmentation to object detection (Dosovitskiy et al.,
2020; He et al., 2021; Dong et al., 2021; Liu et al., 2021; Zhai et al., 2021; Dai et al., 2021). Despite
their enthusiastic adoption and the constant introduction of architectural innovations, little is known
about the inductive biases or features they tend to learn. While feature visualizations and image
reconstructions have provided a looking glass into the workings of CNNs (Olah et al., 2017; Zeiler &
Fergus, 2014; Dosovitskiy & Brox, 2016), these methods have shown less success for understanding
ViT representations, which are difficult to visualize. In this work we show that, if properly applied to
the correct representations, feature visualizations can indeed succeed on VITs. This insight allows us
to visually explore ViTs and the information they glean from images.

Edges Textures Patterns Parts Objects

Figure 1: The progression for visualized features of ViT B-32. Features from early layers capture
general edges and textures. Moving into deeper layers, features evolve to capture more specialized
image components and finally concrete objects.
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In order to investigate the behaviors of vision transformers, we first establish a visualization framework
that incorporates improved techniques for synthesizing images that maximally activate neurons.
Through dissecting and visualizing the internal representations in the transformer architecture, we
find that patch tokens preserve spatial information, even in individual channels, throughout all layers
except the last attention block. The last layer of ViTs learns a token-mixing operation akin to average
pooling, such that the classification head exhibits comparable accuracy when ingesting a random
token instead of the CLS token.

After probing the role of spatial information, we delve into the behavioral differences between ViTs
and CNNs. When performing activation maximizing visualizations, we notice that ViTs consistently
generate higher quality image backgrounds than CNNs. Thus, we try masking out image foregrounds
during inference, and find that ViTs consistently outperform CNNs when exposed only to image
backgrounds. These findings bolster the observation that transformer models extract information
from many sources in an image to exhibit superior performance on out-of-distribution generalization
(Paul & Chen, 2021) as well as adversarial robustness (Shao et al., 2021). Additionally, convolutional
neural networks are known to rely heavily on high-frequency texture information in images (Geirhos
et al., 2018). In contrast, we find that ViTs perform well even when high-frequency content is
removed from their inputs.

We further visualize the effects of language model supervision, i.e. CLIP (Radford et al., 2021), on
the features extracted by vision transformers. While both ImageNet-trained ViTs and CLIP-trained
vision transformers possess neurons that are activated by visual features (e.g. shapes and colors) and
distinct classes, the neurons of CLIP-trained vision transformers are also activated by features that do
not represent physical objects, such as visual characteristics relating to parts of speech (e.g. epithets,
adjectives, and prepositions) or broader concepts such as morbidity.

Our contributions are summarized as follows:

I. We observe that uninterpretable and adversarial behavior occurs when applying standard methods
of feature visualization to the relatively low-dimensional components of transformer-based models,
such as keys, queries, or values. However, applying these tools to the relatively high-dimensional
features of the position-wise feedforward layer results in successful and informative visualizations.
We conduct large-scale visualizations on a wide range of transformer-based vision models, including
ViTs, DeiT, CoaT, ConViT, PiT, Swin, and Twin, to validate the effectiveness of our method.

II. We show that patch-wise image activation patterns for ViT features essentially behave like saliency
maps, highlighting the regions of the image a given feature attends to. This behavior persists even
for relatively deep layers, showing the model preserves the positional relationship between patches
instead of using them as global information stores.

III. We compare the behavior of ViTs and CNNs, finding that ViTs make better use of background
information and rely less on high-frequency, textural attributes. Both types of networks build progres-
sively more complex representations in deeper layers and eventually contain features responsible for
detecting distinct objects.

IV. We investigate the effect of natural language supervision with CLIP on the types of features
extracted by ViTs. We find CLIP-trained models include various features clearly catered to detecting
components of images corresponding to caption text, such as prepositions, adjectives, and conceptual
categories.

2 RELATED WORK

2.1 OPTIMIZATION-BASED VISUALIZATION

One approach to understanding what models learn during training is using gradient descent to produce
an image which conveys information about the inner workings of the model. This has proven to be a
fruitful line of work in the case of understanding CNNs specifically. The basic strategy underlying
this approach is to optimize over input space to find an image which maximizes a particular attribute
of the model. For example, Erhan et al. (2009) use this approach to visualize images which maximally
activate specific neurons in early layers of a network, and Olah et al. (2017) extend this to neurons,
channels, and layers throughout a network. Simonyan et al. (2014); Yin et al. (2020) produce images
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which maximize the score a model assigns to a particular class. Mahendran & Vedaldi (2015) apply a
similar method to invert the feature representations of particular image examples.

Recent work Ghiasi et al. (2021) has studied techniques for extending optimization-based class
visualization to ViTs. We incorporate and adapt some of these proposed techniques into our scheme
for feature visualization.

2.2 OTHER VISUALIZATION APPROACHES

Aside from optimization-based methods, many other ways to visualize CNNs have been proposed.
Dosovitskiy & Brox (2016) train an auxiliary model to invert the feature representations of a CNN.
Zeiler & Fergus (2014) use ‘deconvnets’ to visualize patches which strongly activate features in
various layers. Simonyan et al. (2014) introduce saliency maps, which use gradient information to
identify what parts of an image are important to the model’s classification output. Zimmermann et al.
(2021) demonstrate that natural image samples which maximally activate a feature in a CNN may be
more informative than generated images which optimize that feature. We draw on some aspects of
these approaches and find that they are useful for visualizing ViTs as well.

2.3 UNDERSTANDING VITS

Given their rapid proliferation, there is naturally great interest in how ViTs work and how they may
differ from CNNs. Although direct visualization of their features has not previously been explored,
there has been recent progress in analyzing the behavior of ViTs. Paul & Chen (2021); Naseer et al.
(2021); Shao et al. (2021) demonstrate that ViTs are inherently robust to many kinds of adversarial
perturbations and corruptions. Raghu et al. (2021) compare how the internal representation structure
and use of spatial information differs between ViTs and CNNs. Chefer et al. (2021) produce ‘image
relevance maps’ (which resemble saliency maps) to promote interpretability of ViTs. Park & Kim
(2022) demonstrates that multi-head self-attention are low-pass filters, but Convs are high-pass filters.
They also examined the effect of removing a specific frequency and concluded that ViTs are resistant
to high-frequency removal and CNNs are resistant to low-frequency removal.

3 VIT FEATURE VISUALIZATION

Like many visualization techniques, we take gradient steps to maximize feature activations starting
from random noise (Olah et al., 2017). To improve the quality of our images, we penalize total
variation (Mahendran & Vedaldi, 2015), and also employ the Jitter augmentation (Yin et al., 2020),
the ColorShift augmentation, and augmentation ensembling (Ghiasi et al., 2021). Finally, we find
that Gaussian smoothing facilitates better visualization in our experiments as is common in feature
visualization (Smilkov et al., 2017; Cohen et al., 2019).

Each of the above techniques can be formalized as follows. A ViT represents each patch p (of an
input x) at layer l by an array Al,p with d entries. We define a feature vector f to be a stack composed
of one entry from each of these arrays. Let fl,i be formed by concatenating the ith entry in Al,p for
all patches p. This vector f will have dimension equal to the number of patches. The optimization
objective starts by maximizing the sum of the entries of f over inputs x. The main loss is then

Lmain(x, l, i) =
∑

p

(fl,i)p. (1)

We employ total variation regularization by adding the term λTV (x) to the objective. TV represents
the total variation, and λ is the hyperparameter controlling the strength of its regularization effect.
We can ensemble augmentations of the input to further improve results. Let A define a distribution
of augmentations to be applied to the input image x, and let a be a sample from A. To create a
minibatch of inputs from a single image, we sample several augmentations {ak} from A. Finally, the
optimization problem is:

x∗ = argmax
x

∑

k

Lmain(ak(x), l, i) + λTV (ak(x)). (2)
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(a) (b)

Figure 2: (a): Example feature visualization from ViT feed forward layer. Left: Image optimized
to maximally activate a feature from layer 5. Center: Corresponding maximally activating ImageNet
example. Right: The image’s patch-wise activation map. (b): A feature from the last layer most
activated by shopping carts.

We achieve the best visualizations when A is GS(CS(Jitter(x))), where GS denotes Gaussian
smoothing and CS denotes ColorShift, whose formulas are:

GS(x) = x+ ϵ; ϵ ∼ N (0, 1)

CS(x) = σx+ µ; µ ∼ U(−1, 1); σ ∼ eU(−1,1).

Note that even though ϵ and µ are both additive noise, they act on the input differently since µ
is applied per channel (i.e. has dimension three), and ϵ is applied per pixel. For more details on
hyperparameters, refer to Appendix B.

To better understand the content of a visualized feature, we pair every visualization with images
from the ImageNet validation/train set that most strongly activate the relevant feature. Moreover, we
plot the feature’s activation pattern by passing the most activating images through the network and
showing the resulting pattern of feature activations. Figure 2(a) is an example of such a visualization.
From the leftmost panel, we hypothesize that this feature corresponds to gravel. The most activating
image from the validation set (middle) contains a lizard on a pebbly gravel road. Interestingly, the
gravel background lights up in the activation pattern (right), while the lizard does not. The activation
pattern in this example behaves like a saliency map (Simonyan et al., 2014), and we explore this
phenomenon across different layers of the network further in Section 4.

L1 F0 L1 F1 L1 F2 L11 F0 L11 F1 L11 F2
key

query

value

Figure 3: Left: Visualization of key, query, and value.
The visualization both fails to extract interpretable fea-
tures and to distinguish between early and deep layers.
High-frequency patterns and adversarial behavior domi-
nate. Right: ViT feed forward layer. The first linear
layer increases the dimension of the feature space, and
the second one brings it back to its initial dimension.

The model we adopt for the majority of
our demonstrations throughout the paper is
ViT-B16, implemented based on the work
of Dosovitskiy et al. (2020). In addition,
in the Appendix, we conduct large-scale
visualizations on a wide range of ViT vari-
ants, including DeiT Touvron et al. (2021a),
CoaT Xu et al. (2021), ConViT d’Ascoli
et al. (2021), PiT Heo et al. (2021), Swin
Liu et al. (2021), and Twin Chu et al.
(2021), 38 models in total, to validate the
effectiveness of our method. ViT-B16 is
composed of 12 blocks, each consisting
of multi-headed attention layers, followed
by a projection layer for mixing attention
heads, and finally followed by a position-
wise-feed-forward layer. For brevity, we
henceforth refer to the position-wise-feed-
forward layer simply as the feed-forward
layer. In this model, every patch is always
represented by a vector of size 768 except in the feed-forward layer which has a size of 3072 (4 times
larger than other layers).

We first attempt to visualize features of the multi-headed attention layer, including visualization of
the keys, queries, and values, by performing activation maximization. We find that the visualized
feed-forward features are significantly more interpretable than other layers. We attribute this difficulty
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Figure 5: Feature activation maps in internal layers can effectively segment the contents of an
image with respect to a semantic concept. For each image triple, the visualization on top shows the
result of our method, the image on the bottom left is the most activating image from the validation set
and the image on the bottom right shows the activation pattern.

of visualizing other layers to the property that ViTs pack a tremendous amount of information into
only 768 features, (e.g. in keys, queries, and values) which then behave similar to multi-modal
neurons, as discussed by Goh et al. (2021), due to many semantic concepts being encoded in a low
dimensional space. Furthermore, we find that this behaviour is more extreme in deeper layers. See
Figure 3 for examples of visualizations of keys, queries and values in both early and deep layers of
the ViT. Inspired by these observations, we visualize the features within the feed-forward layer across
all 12 blocks of the ViT. We refer to these blocks interchangeably as layers.

FC1
Input Shape: (b, p, d) 

Output Shape: (b, p, t x d) 

GELU

FC2
Input Shape: (b, p, t x d) 
Output Shape: (b, p, d) 

+

Figure 4: ViT feed forward
layer. The first linear layer
increases the dimension of the
feature space, and the second
one brings it back to its initial
dimension.

The feed-forward layer depicted in Figure 4 takes an input of size
d = 768, projects it into a t = 4 times higher dimensional space,
applies the non-linearity GELU, and then projects back to d dimen-
sional space. Unless otherwise stated, we always visualize the output
of the GELU layers in our experiments. We hypothesize that the
network exploits these high-dimensional spaces to store relatively
disentangled representations. On the other hand, compressing the
features into a lower dimensional space may result in the jumbling
of features, yielding uninterpretable visualizations.

4 LAST-LAYER TOKEN MIXING

In this section, we investigate the preservation of patch-wise spa-
tial information observed in the visualizations of patch-wise feature
activation levels which, as noted before, bear some similarity to
saliency maps. Figure 2(a) demonstrates this phenomenon in layer
5, where the visualized feature is strongly activated for almost all
rocky patches but not for patches that include the lizard. Additional
examples can be seen in Figure 5 and the Appendix, where the acti-
vation maps approximately segment the image with respect to some
relevant aspect of the image. We find it surprising that even though
every patch can influence the representation of every other patch,
these representations remain local, even for individual channels in
deep layers in the network. While a similar finding for CNNs, whose
neurons may have a limited receptive field, would be unsurprising,
even neurons in the first layer of a ViT have a complete receptive
field. In other words, ViTs learn to preserve spatial information,
despite lacking the inductive bias of CNNs. Spatial information in patches of deep layers has been
explored in Raghu et al. (2021) through the CKA similarity measure, and we further show that spatial
information is in fact present in individual channels.

The last layer of the network, however, departs from this behavior and instead appears to serve a role
similar to average pooling. Figure 2(b) shows one example of our visualizations for a feature from
the last layer that is activated by shopping carts. The activation pattern is fairly uniform across the
image. For classification purposes, ViTs use a fully connected layer applied only on the class token
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(the CLS token). It is possible that the network globalizes information in the last layer to ensure that
the CLS token has access to the entire image, but because the CLS token is treated the same as every
other patch by the transformer, this seems to be achieved by globalizing across all tokens.

Table 1: After the last layer, every patch contains the same information. “Isolating CLS” denotes the
experiment where attention is only performed between patches before the final attention block, while
“Patch Average” and “Patch Maximum” refer to the experiment in which the classification head is
placed on top of individual patches without fine-tuning. Experiments conducted on ViT-B16.

Accuracy Natural Accuracy Isolating CLS Patch Average Patch Maximum

Top 1 84.20 78.61 75.75 80.16
Top 5 97.16 94.18 90.99 95.65

Based on the preservation of spatial information in patches, we hypothesize that the CLS token plays
a relatively minor role throughout the network and is not used for globalization until the last layer.
To demonstrate this, we perform inference on images without using the CLS token in layers 1-11,
meaning that in these layers, each patch only attends to other patches and not to the CLS token. At
layer 12, we then insert a value for the CLS token so that other patches can attend to it and vice versa.
This value is obtained by running a forward pass using only the CLS token and no image patches;
this value is constant across all input images.

The resulting hacked network that only has CLS access in the last layer can still successfully classify
78.61% of the ImageNet validation set as shown in Table 1. From this result, we conclude that
the CLS token captures global information mostly at the last layer, rather than building a global
representation throughout the network.
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Figure 6: Heat map of classification accuracy
on the validation set when we apply the clas-
sification head trained to classify images on
the top of the CLS token to the other patches.

We perform a second experiment to show this last-
layer globalization behaviour is not exclusive to the
CLS token, but actually occurs across every patch
in the last layer. We take the fully connected layer
trained to classify images on top of the CLS token,
and without any fine-tuning or adaptation, we apply
it to each patch, one at a time. This setup still suc-
cessfully classifies 75.75% of the validation set, on
average across individual patches, and the patch with
the maximum performance achieves 80.16% accu-
racy (see Table 1), further confirming that the last
layer performs a token mixing operation so that all to-
kens contain roughly identical information. Figure 6
contains a heat-map depicting the performance of this
setup across spatial patches. This observation stands
in stark contrast to the suggestions of Raghu et al.
(2021) that ViTs possess strong localization through-
out the entire network, and their further hypothesis
that the addition of global pooling is required for
mixing tokens at the end of the network.

We conclude by noting that the information structure
of a ViT is remarkably similar to a CNN, in the sense that the information is positionally encoded
and preserved until the final layer. Furthermore, the final layer in ViTs appears to behave as a learned
global pooling operation that aggregates information from all patches, which is similar to its explicit
average-pooling counterpart in CNNs.

5 COMPARISON OF VITS AND CNNS

As extensive work has been done to understand the workings of convolutional networks, including
similar feature visualization and image reconstruction techniques to those used here, we may be able
to learn more about ViT behavior via direct comparison to CNNs. An important observation is that
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Figure 7: Complexity of features vs depth in ViT B-32. Visualizations suggest that ViTs are similar
to CNNs in that they show a feature progression from textures to parts to objects as we progress from
shallow to deep features.

in CNNs, early layers recognize color, edges, and texture, while deeper layers pick out increasingly
complex structures eventually leading to entire objects (Olah et al., 2017). Visualization of features
from different layers in a ViT, such as those in Figures 1 and 7, reveal that ViTs exhibit this kind of
progressive specialization as well.

On the other hand, we observe that there are also important differences between the ways CNNs and
ViTs recognize images. In particular, we examine the reliance of ViTs and CNNs on background and
foreground image features using the bounding boxes provided by ImageNet Deng et al. (2009). We
filter the ImageNet-1k training images and only use those which are accompanied by bounding boxes.
If several objects are present in an image, we only take the bounding boxes corresponding to the true
class label and ignore the additional bounding boxes. Figure 8(b) shows an example of an image and
variants in which the background and foreground, respectively, are masked.

(a) (b)

Figure 8: (a): ViT-B16 detects background features. Left: Image optimized to maximally activate a
feature from layer 6. Center: Corresponding maximally activating example from ImageNet. Right:
The image’s patch-wise activation map. (b): An example of an original image and masked-out
foreground and background.

Figure 8(a) displays an example of ViTs’ ability to detect background information present in the
ImageNet dataset. This particular feature appears responsible for recognizing the pairing of grass and
snow. The rightmost panel indicates that this feature is solely activated by the background, and not at
all by the patches of the image containing parts of the wolf.

To quantitatively assess each architecture’s dependence on different parts of the image on the
dataset level, we mask out the foreground or background on a set of evaluation images using the
aforementioned ImageNet bounding boxes, and we measure the resulting change in top-5 accuracy.
These tests are performed across a number of pretrained ViT models, and we compared to a set of
common CNNs in Table 2. Further results can be found in Table 3.

We observe that ViTs are significantly better than CNNs at using the background information in
an image to identify the correct class. At the same time, ViTs also suffer noticeably less from the
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removal of the background, and thus seem to depend less on the background information to make
their classification. A possible, and likely, confounding variable here is the imperfect separation of
the background from the foreground in the ImageNet bounding box data set. A rectangle containing
the wolf in Figure 8(a), for example, would also contain a small amount of the grass and snow at the
wolf’s feet. However, the foreground is typically contained entirely in a bounding box, so masking
out the bounding box interiors is highly effective at removing the foreground. Because ViTs are
better equipped to make sense of background information, the leaked background may be useful
for maintaining superior performance. Nonetheless, these results suggest that ViTs consistently
outperform CNNs when information, either foreground or background, is missing.

Table 2: ViTs more effectively correlate background infor-
mation with correct class. Both foreground and background
data are normalized by full image top-5 accuracy.

Normalized Top-5 ImageNet Accuracy

Architecture Full Image Foreground Background

ViT-B32 98.44 93.91 28.10
ViT-L16 99.57 96.18 33.69
ViT-L32 99.32 93.89 31.07
ViT-B16 99.22 95.64 31.59

ResNet-50 98.00 89.69 18.69
ResNet-152 98.85 90.74 19.68

MobileNetv2 96.09 86.84 15.94
DenseNet121 96.55 89.58 17.53

Next, we study the role of texture
in ViT predictions. To this end, we
filter out high-frequency components
from ImageNet test images via low-
pass filtering. While the predictions
of ResNets suffer greatly when high-
frequency texture information is re-
moved from their inputs, ViTs are
seemingly resilient. See Figure 15
for the decay in accuracy of ViT and
ResNet models as textural informa-
tion is removed.

6 VITS WITH LANGUAGE
MODEL SUPERVISION

Recently, ViTs have been used as a
backbone to develop image classifiers
trained with natural language supervi-
sion and contrastive learning techniques (Radford et al., 2021). These CLIP models are state-of-the-art
in transfer learning to unseen datasets. The zero-shot ImageNet accuracy of these models is even
competitive with traditionally trained ResNet-50 competitors. We compare the feature visualizations
for ViT models with and without CLIP training to study the effect of natural language supervision on
the behavior of the transformer-based backbone.

The training objective for CLIP models consists of matching the correct caption from a list of options
with an input image (in feature space). Intuitively, this procedure would require the network to extract
features not only suitable for detecting nouns (e.g. simple class labels like ‘bird’), but also modifying
phrases like prepositions and epithets. Indeed, we observe several such features that are not present
in ViTs trained solely as image classifiers.

(a) Before and after/Step-by-step (b) From above (c) Many

Figure 9: Left: Feature optimization shows sharp boundaries, and maximally activating ImageNet
examples contain distinct, adjacent images. Middle: Feature optimization and maximally activating
ImageNet photos all show images from an elevated vantage point. Right: Feature optimization shows
a crowd of people, but maximally activating images indicate that the repetition of objects is more
relevant than the type of object.

Figure 9(a) shows the image optimized to maximally activate a feature in the fifth layer of a ViT
CLIP model alongside its two highest activating examples from the ImageNet dataset. The fact that
all three images share sharp boundaries indicates this feature might be responsible for detecting
caption texts relating to a progression of images. Examples could include “before and after," as in the
airport images or the adjective “step-by-step" for the iPod teardown. Similarly, Figure 9(b) and 9(c)
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(a) Category of morbidity (b) Category of music

Figure 10: Features from ViT trained with CLIP that relates to the category of morbidity and
music. Top-left image in each category: Image optimized to maximally activate a feature from layer
10. Rest: Seven of the ten ImageNet images that most activate the feature.

depict visualizations from features which seem to detect the preposition “from above", and adjectives
relating to a multitude of the same object, respectively.

The presence of features that represent conceptual categories is another consequence of CLIP training.
Unlike ViTs trained as classifiers, in which features detect single objects or common background
information, CLIP-trained ViTs produce features in deeper layers activated by objects in clearly
discernible conceptual categories. For example, the top left panel of Figure 10(a) shows a feature
activated by what resembles skulls alongside tombstones. The corresponding seven highly activating
images from the dataset include other distinct objects such as bloody weapons, zombies, and skeletons.
From a strictly visual point of view, these classes have very dissimilar attributes, indicating this
feature might be responsible for detecting components of an image relating broadly to morbidity. In
Figure 10(b), we see that the top leftmost panel shows a disco ball, and the corresponding images
from the dataset contain boomboxes, speakers, a record player, audio recording equipment, and a
performer. Again, these are visually distinct classes, yet they are all united by the concept of music.

Given that the space of possible captions for images is substantially larger than the mere one thousand
classes in the ImageNet dataset, high performing CLIP models understandably require higher level
organization for the objects they recognize. Moreover, the CLIP dataset is scraped from the internet,
where captions are often more descriptive than simple class labels.

7 DISCUSSION

In order to dissect the inner workings of vision transformers, we introduce a framework for
optimization-based feature visualization. We then identify which components of a ViT are most
amenable to producing interpretable images, finding that the high-dimensional inner projection of the
feed-forward layer is suitable while the key, query, and value features of self-attention are not.

Applying this framework to said features, we observe that ViTs preserve spatial information of the
patches even for individual channels across all layers with the exception of the last layer, indicating
that the networks learn spatial relationships from scratch. We further show that the sudden disap-
pearance of localization information in the last attention layer results from a learned token mixing
behavior that resembles average pooling.

In comparing CNNs and ViTs, we find that ViTs make better use of background information and are
able to make vastly superior predictions relative to CNNs when exposed only to image backgrounds
despite the seemingly counter-intuitive property that ViTs are not as sensitive as CNNs to the loss
of high-frequency information, which one might expect to be critical for making effective use of
background. We also conclude that the two architectures share a common property whereby earlier
layers learn textural attributes, whereas deeper layers learn high level object features or abstract
concepts. Finally, we show that ViTs trained with language model supervision learn more semantic
and conceptual features, rather than object-specific visual features as is typical of classifiers.
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REPRODUCIBILITY STATEMENT

We make our code repository available at: https://github.com/anonymous2023iclr/
ViTVis
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A FAILED EXAMPLES

Figure 11 shows few examples of our visualization method failing when applied on low dimensional
spaces. We attribute this to entanglement of more than 768 features when represented by vectors of
size 768. We note that, due to skip connections, activation in previous layers can cause activation in
the next layer for the same feature, consequently, the visualizations of the same features in different
layers can share visual similarities.
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Figure 11: Some examples of failed visualizations on the input of the attention layers. Same
visualization technique fails when applied on low dimensional (e.g. on key, query, value, etc) spaces.
We believe that the visualization shows roughly meaningful and interpretable visualizations in early
layers, since there are not many different features to be embedded. However, in deeper layers the
features are entangled, so it is more difficult to visualize them. For every example, the picture on the
left shows the results of optimization and the picture on the right shows the most activating image
from ImageNet1k validation set.
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B EXPERIMENTAL SETUP AND HYPERPARAMETERS

As mentioned before, we ensemble augmentations to the input. More specifically, we use A is
GS(CS(Jitter(x))) as our augmentation. The bound for Jitter is (−32, 32) for both directions
vertical and horizontal. The hyper parameters for CS are always mean = 1.0 and std = 1.0 in all
of the experiments. For GS, the mean is always 0, however, for the std we have a linear scheduling,
where at the beginning of the optimization the std = 0.5 and at the end of the optimization std = 0.0.
We use a batch-size n = 8 for all of our experiments. We use ADAM as our choice of optimizer with
β = (0.5, 0.99). Optimization is done in 400 steps and at every step, we re-sample the augmentations
Jitter, GS and CS. We also use a CosineAnealing learning rate scheduling, starting from lr = 0.1
at the beginning and l = 0 the end. The hyper-parameter used for total variation λtv = 0.00005.

For all ViT experiments, we use the pretrained models from https://github.com/lukemelas/PyTorch-
Pretrained-ViT. For clip models, we use pretrained models by Wightman (2019). The rest of models
we use are from https://github.com/pytorch/vision.

For all of our experiments, we use GeForce RTX 2080 Ti GPUs with 12GB of memory. All inferences
on ImageNet are done under 20 minutes on validation set and under 1 hour on training set using only
1 GPU. All visualization experiments take at most 90 seconds to complete.

C MODELS

In our experiments, we use publicly available pre-trained models from various sources. The following
tables list the models used from each source, along with references to where they are introduced in
the literature.

Name Paper
B_16_imagenet1k Dosovitskiy et al. (2021)
B_32_imagenet1k Dosovitskiy et al. (2021)

Figure 12: Pre-trained models used from : https://github.com/lukemelas/PyTorch-Pretrained-ViT.

Name Paper
deit_base_patch16_224 Touvron et al. (2021b)

deit_base_distilled_patch16_384 Touvron et al. (2021b)
deit_base_patch16_384 Touvron et al. (2021b)

deit_tiny_distilled_patch16_224 Touvron et al. (2021b)
deit_small_distilled_patch16_224 Touvron et al. (2021b)
deit_base_distilled_patch16_224 Touvron et al. (2021b)

Figure 13: Pre-trained models from Touvron et al. (2021a) .
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Name Paper
coat_lite_mini Xu et al. (2021)
coat_lite_small Xu et al. (2021)
coat_lite_tiny Xu et al. (2021)

coat_mini Xu et al. (2021)
coat_tiny Xu et al. (2021)

convit_base d’Ascoli et al. (2021)
convit_small d’Ascoli et al. (2021)
convit_tiny d’Ascoli et al. (2021)
pit_b_224 Heo et al. (2021)

pit_b_distilled_224 Heo et al. (2021)
pit_s_224 Heo et al. (2021)

pit_s_distilled_224 Heo et al. (2021)
pit_ti_224 Heo et al. (2021)

pit_ti_distilled_224 Heo et al. (2021)
swin_base_patch4_window7_224 Liu et al. (2021)

swin_base_patch4_window7_224_in22k Liu et al. (2021)
swin_base_patch4_window12_384 Liu et al. (2021)

swin_base_patch4_window12_384_in22k Liu et al. (2021)
swin_large_patch4_window7_224 Liu et al. (2021)

swin_large_patch4_window7_224_in22k Liu et al. (2021)
swin_large_patch4_window12_384 Liu et al. (2021)

swin_large_patch4_window12_384_in22k Liu et al. (2021)
swin_small_patch4_window7_224 Liu et al. (2021)
swin_tiny_patch4_window7_224 Liu et al. (2021)

twins_pcpvt_base Chu et al. (2021)
twins_pcpvt_large Chu et al. (2021)
twins_pcpvt_small Chu et al. (2021)

twins_svt_base Chu et al. (2021)
twins_svt_large Chu et al. (2021)
twins_svt_small Chu et al. (2021)

Figure 14: Pre-trained models used from: Wightman (2019)
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D EFFECT OF LOW-PASS FILTERING

0.5 0.4 0.3 0.2 0.1
Low-pass threshold

0

20

40

60

80

100

To
p-

1 
ac

cu
ra

cy
 o

n 
Im

ag
eN

et
 (%

)
ViT-B/16
ViT-L/16

ResNet-50
ResNet152-d

Figure 15: Effect of low-pass filtering on top-1 ImageNet accuracy. CNNs are more dependent on
high frequency textural image information than ViTs.

E ADDITIONAL VISUALIZATIONS
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Figure 16: Visualization of ViT-base-patch16
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Figure 17: (Cont.) Visualization of ViT-base-patch16
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Figure 18: Visualization of a CLIP model with ViT-base-patch16 as its visual part.
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Figure 19: (Cont.) Visualization of a CLIP model with ViT-base-patch16 as its visual part.
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Figure 20: (Cont.) Visualization of a CLIP model with ViT-base-patch16 as its visual part.
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Figure 21: Visualization of ViT-base-patch32
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Figure 22: (Cont.) Visualization of ViT-base-patch32
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Figure 23: (Cont.) Visualization of ViT-base-patch32
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Figure 24: Visualization of a CLIP model with ViT-base-patch32 as its visual part.
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Figure 25: (Cont.) Visualization of a CLIP model with ViT-base-patch32 as its visual part.
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Figure 26: Visualization of features in Deit base p-16 im-224
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Figure 27: (Cont.) Visualization of features in Deit base p-16 im-224
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Figure 28: Visualization of features in DeiT base p-16 im-384
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Figure 29: (Cont.) Visualization of features in DeiT base p-16 im-384
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Figure 30: Visualization of features in DeiT base p-16 im-384
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Figure 31: Visualization of features in DeiT tiny distilled p-16 im-224
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Figure 32: Visualization of features in DeiT small distilled p-16 im-224
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Figure 33: Visualization of features in DeiT small distilled p-16 im-224
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Figure 34: Visualization of features in DeiT base distilled p-16 im-224
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Figure 35: (Cont.) Visualization of features in DeiT base distilled p-16 im-224
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Figure 36: Visualization of features in Coat lite mini
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Figure 37: Visualization of features in Coat lite small

33



Under review as a conference paper at ICLR 2023

L9 F2 L9 F4 L9 F5 L9 F7 L9 F8 L9 F11 L9 F13

Tr
ai

n
V

al
O

ur
s

L9 F15 L9 F19 L8 F1 L8 F11 L8 F12 L8 F13 L8 F17

Tr
ai

n
V

al
O

ur
s

Figure 38: Visualization of features in ConViT base
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Figure 39: Visualization of features in ConViT small.
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Figure 40: (Cont.) Visualization of features in ConViT small.
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Figure 41: Visualization of features in ConViT tiny.
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Figure 42: (Cont.) Visualization of features in ConViT tiny.
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Figure 43: Visualization of features in Pit base im-224
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Figure 44: Visualization of features in Pit base distilled im-224.
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Figure 45: Visualization of features in Pit small im-224.
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Figure 46: Visualization of features in Pit small distilled im-224.
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Figure 47: Visualization of features in Pit tiny im-224.
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Figure 48: Visualization of features in Pit tiny distilled im-224.
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Figure 49: Visualization of features in Swin base p-4 w-7 im-224.
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Figure 50: Visualization of features in Swing base base p-4 w-7 im-224 imagenet 22k.
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Figure 51: Visualization of features in Swin base p-4 w-12 im-384.
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Figure 52: Visualization of features in Swin large p-4 w-7 im-224.
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Figure 53: Visualization of features in Swin large p-4 w-7 im-224 imagenet 22k.
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Figure 54: Visualization of features in Swin large p-4 w-12 im-384.
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Figure 55: Visualization of features in Swin small p-4 w-7 im-224.
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Figure 56: Visualization of features in Twins pcpvt base.
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Figure 57: Visualization of features in Twins pcpvt large.
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Figure 58: Visualization of features in Twins pcpvt small.
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Figure 59: Visualization of features in Twins svt base.
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Figure 60: Visualization of features in Twins svt large.
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Figure 61: Visualization of features in Twins svt small.
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Table 3: ViTs more effectively correlate background information with correct class. Both
foreground and background data are normalized by full image top-1 accuracy.

Normalized Top-1 ImageNet Accuracy

Architecture Full Image Foreground Background

ViT-B32 89.25 91.53 15.04
ViT-L16 95.00 93.88 19.08
ViT-L32 94.64 90.63 17.67
ViT-B16 92.37 93.70 16.98

ResNet-50 87.67 85.59 9.25
ResNet-152 82.92 82.03 8.24

MobileNetv2 83.77 85.58 8.75
DenseNet121 90.58 86.53 9.72
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F SPATIAL INFORMATION PRESENCE - QUANTITATIVE EVALUATION

In the following experiments, we find the most activating images for each feature. Then, we forward
these images to the network. We call a patch active if the activation for this patch is higher than 0.5.
First we mask out all the inactive patches meaning that we replace them with black patches. Then,
we mask out x percent of the active patches in the current image. Then, we forward this new image
to the network. Finally, we plot the number/sum of active patches of the modified image divided
by the number/sum of the active patches in the initial image for different percentages. If the spatial
information is present in a layer, we expect this number to have a linear trend. As we see in figures
62, and 63, all the layers except for the last one, have a linear trend, indicating that the loss of spatial
information in individual channels is mostly made in the last layer.
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Figure 62: Number of active patches after drop divided by number of active patches before drop
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Figure 63: Sum of active patches after drop divided by number of active patches before drop
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