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ABSTRACT

Due to the challenges in acquiring tactile perception during mechanical dex-
terous hand grasping and the complexity of multi-finger contact, robotic dex-
terous hand grasping remains a difficult problem. This study addresses two
main tasks: (1) Acquiring tactile information from everyday objects using vi-
sion, termed ”pseudo-tactile” information, and (2) Building a Dexterous Hand
(RH8D) model in Isaac Sim for real-time fingertip contact localization. Utiliz-
ing Isaac Sim allows for safe, cost-effective experimentation and high-precision
simulations, facilitating data collection for model validation. The research es-
tablishes a scientific connection between simulated 3D coordinates, actual 3D
coordinates, and pseudo-tactile information derived from point clouds, quan-
tified through normal vectors and grayscale variance analysis. Experimental
results demonstrate the ability to extract clear object surface textures, accu-
rately locate fingertip contact points in real-time (with precision up to 0.001
m), and provide tactile information at contact points. This framework enhances
robotic grasping capabilities and offers low-cost sensory data. The source code
and dataset are publicly available at https://github.com/Fenbid0605/Vision-Based-
Tactile-Information-Extraction-and-Localization-for-Dexterous-Grasping.

1 INTRODUCTION

Dexterous manipulation remains a cutting-edge research direction in robotics, posing challenges for
both hardware performance and algorithm development. This study introduces a novel method for
vision-based tactile information extraction and contact point localization.

In machine vision, an object’s surface tactile information is reflected through its texture, and three-
dimensional point clouds, compared to two-dimensional images, better capture surface characteris-
tics. Using an Intel RealSense camera Lourenço & Araujo (2021), we generate point cloud data

Figure 1: RH8D Adult Robot Hand: 1) Inspired by the human hand, capable of performing critical
grips; 2) 19 Degrees of freedom (DoF).
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Figure 2: By real-time linking the degrees of freedom of each joint with actual dexterous hand
movements and the simulation platform, the RH8D grasping actions are precisely extracted. a, b:
From reality to simulation; c, d: Enlarging the clear 2D tactile information at the dexterous hand
grasping contact fingertips.

and extract textures by analyzing surface normal vectors and grayscale variance. To address the
challenge of localizing contact points during dexterous hand grasping, the study simulates various
illumination angles and object materials in Isaac Sim, providing real-time fingertip contact coordi-
nates.

The Seed Robotics RH8D hand, shown in Figure 1, is the primary focus of this study. The RH8D,
inspired by the human hand, features an opposable thumb and a spherical wrist joint. By analyzing
the grasping of objects with different types, sizes, materials, and weights, we focus on extracting
tactile information through vision and accurately localizing fingertip contact points. The point cloud
data is processed using a filtering algorithm that calculates normal vectors and grayscale variance.
Points, where both the Y-component of the normal vector and grayscale variance exceed a predefined
threshold, are classified as texture feature points Kim et al. (2018).

By transmitting the real-time grasping joint states of the dexterous hand to the Isaac Sim platform,
the hand’s grasping actions are accurately replicated and analyzed, as shown in Figure 2. Utiliz-
ing the platform’s high-precision simulations, fingertip contact point coordinates are calculated with
the wrist as the origin and transmitted to real-world applications, determining the RH8D dexter-
ous hand’s spatial contact coordinates. This approach enables the extraction of detailed grasping
perceptual information. Thus, this study introduces an innovative method for vision-based tactile
information extraction and precise localization.

2 RELATED WORK

2.1 VISION-BASED GRASPING AND POSITIONING

In recent years, the integration of machine vision and sensing technologies has significantly en-
hanced robotic hands’ environmental perception capabilities. The positioning and grasping tech-
nologies of robotic hands are advancing toward more intelligent and adaptive directions. For in-
stance, Teulière & Marchand (2012) used RGB-D data for visual servoing, while Endres et al.
(2012) and Whelan et al. (2015) extended SLAM technology to RGB-D data. These integrated
perception systems enable robotic hands to more accurately recognize and manipulate objects in
complex or dynamically changing environments.

In the field of deep learning, Bai et al. (2022) introduced Spatial-Aware Tokens, a method based on
the self-attention mechanism to capture long-distance feature dependencies in images, significantly
improving the accuracy of object positioning. Similarly, Flintoff et al. (2018) proposed the Single-
Grasp system, which analyzes RGB-D images through neural networks to predict object locations
and optimal grasping points.

Building on previous studies, we introduce the concept of “pseudo-tactile” information—tactile-like
data derived from visual analysis of an object’s surface, in contrast to traditional tactile sensing that
relies on physical interaction. This distinction is crucial for recognizing the strengths and limitations
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of our approach, as the surface textures we extract are visual representations rather than direct tactile
feedback.

2.2 DEXTEROUS HAND PERCEPTION

After years of development, robotic perception systems for positioning and tracking have become
highly mature Bullock et al. (2013) . With continuous advancements in robotics Bicchi (2000),
perception capabilities have become key to achieving high precision and efficiency in robotic opera-
tions Ujitoko & Ban (2021). Robotic manipulation technology has evolved from simple mechanical
models to complex sensing and control paradigms. Modern methods prioritize real-time perception
and dynamic adjustment, where tactile sensors play a crucial role Zapata-Impata et al. (2021) For
example, Zapata-Impata et al. (2021) used 3D vision to generate tactile data, enabling real-time
mechanical perception during robotic grasping, such as force and friction.

With the development of humanoid robots, dexterous hands have emerged as essential tools for
complex operations, requiring highly flexible grasping capabilities and precise positioning Yam-
aguchi et al. (2013). However, the grasping and positioning of dexterous hands still face significant
limitations, such as reliance on high-precision LiDAR or expensive external sensors Ratnasingam
& McGinnity (2011). Moreover, existing tactile sensing systems for dexterous hands are generally
costly Michelman (1998), and the diverse working principles of these sensors greatly limit their
widespread application Hachisu et al. (2011). Therefore, researching a low-cost, high-performance
tactile sensing and grasping positioning system for dexterous hands is the primary goal of this study.

2.3 “PSEUDO-TACTILE” BASED ON VISUAL SENSORS

Pseudo-haptic technology, as explored by Xavier et al. (2024), simulates haptic feedback by lever-
aging the brain’s processing of tactile and kinesthetic inputs, creating the illusion of tactile signals.
This approach allows users to perceive shapes, textures, and other physical properties in virtual
environments without physical contact. Xavier et al. (2024) also proposed a new taxonomy for
pseudo-haptics, combining multiple feedback mechanisms not addressed in prior research and pre-
senting a multimodal strategy with potential applications in various fields.

Similarly, Sato et al. (2020) introduced a pseudo-haptic feedback framework that provides tactile
sensations of objects without physical haptic devices. Their framework visualizes bumpy, slippery,
and soft sensations and modulates the intensity of these sensations without inducing unnatural ex-
periences. However, despite these advancements, their system’s effectiveness can be influenced by
external factors such as ambient light and projection quality, limiting its robustness.

In contrast, our approach of deriving tactile feature information from point cloud images effectively
mitigates these limitations, particularly by reducing sensitivity to lighting variations. Additionally,
Ujitoko & Ban (2021) synthesized prior research to provide a comprehensive overview of pseudo-
haptics, highlighting its potential applications in training, assistive technologies, and entertainment.

Our ”pseudo-tactile” technique fundamentally differs from traditional pseudo-haptic methods. In-
stead of relying solely on visual cues, we use Intel RealSense cameras to capture detailed point
cloud data, from which we extract surface undulations to simulate tactile textures. This approach
generates ”pseudo-tactile” information that accurately reflects the object’s physical properties. By
precisely locating fingertip contact points and matching them with the corresponding pseudo-tactile
data, we enhance tactile feedback reliability in robotic grasping. Unlike existing methods, our ap-
proach is less sensitive to lighting and environmental variations, providing more consistent tactile
information.

3 METHODOLOGY AND ALGORITHMS

3.1 GENERATION AND PREPROCESSING OF TACTILE INFORMATION ON OBJECT SURFACES

In machine vision, an object’s tactile information is represented by its surface texture, and 3D point
clouds more effectively capture these characteristics compared to 2D images. To simulate the gen-
eration of surface information through vision, this study employs the Intel RealSense Camera for
point cloud acquisition.
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3.1.1 ROBOT VISION ACQUIRING POINT CLOUD INFORMATION

For accurate contact point localization, the object is placed on a horizontal surface with the point
cloud acquisition device positioned 60 cm away. The system is calibrated to align the camera’s
coordinate system with both the workpiece and the global coordinates. Once the object is secured
on the platform, data acquisition begins. The robotic arm moves the device around the object,
capturing depth and image frames, which are then aligned to generate depth and RGB maps. Using
the camera’s internal and external parameters (see Table 1), the point cloud is generated within
the world coordinate system. A filtering algorithm is applied to identify texture feature points by
calculating the normal vector and grayscale variance for each point. Points are classified as texture
features if both the Y-component and grayscale variance exceed empirically determined thresholds,
optimizing feature identification and minimizing false positives.

Table 1: Camera Internal and External References and Their Meanings
Intrinsics & Extrinsics Meaning
X Coordinate (PPx) X coordinate of the optical center in the pixel coordinate system
Y Coordinate (PPy) Y coordinate of the optical center in the pixel coordinate system
Focal Length in X Direction (fx) Focal length in the X direction
Focal Length in Y Direction (fy) Focal length in the Y direction
Rotation Matrix (R3×3) Rotation matrix
Translation Vector (T3×1) Translation vector

*Descriptions of the camera internal and external references.

The entire feature extraction process is visualized in Fig. 4, which presents a flowchart outlining the
steps from data acquisition to feature point selection.

According to the transformation relationship between the world coordinate system, the camera co-
ordinate system, and the pixel coordinate system, if we know a point within the pixel coordinate
system and the depth d of the point, the following relationships between this point and the point
under the world coordinate system can be deduced:
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Wherein, the values of the rotation matrix R3×3, and translation vector T3×1 are respectively
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(4)

In the world coordinate system, the Y-axis serves as the vertical coordinate axis, and the object is
positioned vertically, perpendicular to the XOZ plane.

3.1.2 POINT CLOUD PREPROCESSING

The camera’s field of view captures both the object and the surrounding background, such as hor-
izontal and vertical surfaces, resulting in a point cloud that includes both object and background
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information. Since the background data does not contribute to the tactile information of the object,
we preprocess the point cloud to isolate the object’s data within the camera’s field of view.

Coordinate Transformation: The point cloud visualization indicates that the center point of the
generated cloud is located near (0,0,0). The first step in preprocessing is to translate the point cloud
so that the minimum values xmin, ymin, and zmin of the X, Y, and Z coordinates are set to zero.
This facilitates the estimation of the upper and lower bounds for pass-through filtering.

Pass-Through Filtering: Background point cloud data exists in the X, Y, and Z directions of the
world coordinate system. To filter out this background information, we define upper and lower
bounds for pass-through filtering in all three directions and retain only the points within these
bounds. In this paper, we apply the bisection method to determine the filtering intervals, ensur-
ing the background is removed and the object’s point cloud is fully isolated within the camera’s
view.

3.2 TEXTURE EXTRACTION BASED ON NORMAL VECTORS AND GRAYSCALE VALUE
VARIANCE

Due to the discrete nature of the point cloud data acquired by the camera, the points are independent
of each other. The texture feature describes the degree of undulation of a certain area of the object’s
surface, which cannot be characterized by a single point alone. So it is necessary to establish the
neighborhood relationship between the points to further extract the texture feature from the point
cloudBudiyanta et al. (2021). The flowchart of this tactile feature extraction algorithm is shown in
Figure 3.

KD tree is a data structure that is very efficient in neighborhood queries. In this paper, we use the
filtered point cloud information to construct and integrate coordinate information and color infor-
mation in the search process to achieve the extraction of texture features. The algorithm is divided
into the following steps:

KD Tree Construction: Use the coordinate information of the point cloud P = {p1, p2, · · · , pn}
to construct a KD tree, which facilitates efficient neighborhood search.

Neighborhood Search: Specify the neighborhood radius, for each point pi ∈ P , the KD tree will
search and return its neighboring point indexes within the radius r, the current point pi and its
neighboring points can be accessed via these indexes and these points satisfy:

N(pi, r) =
〈
pj ∈ P | (pi − pj)

2 + (pi − pj)
2 + (pi − pj)

2 ≤ r
〉

(5)

where px, py, pz, pi is the component of the point in X, Y and Z directions respectively.

Normal Vector Calculation: The PCA-based method is used to solve the covariance matrix C
of the neighboring point set N(pi, r), and then calculate its eigenvalue and eigenvector. Take the
eigenvector corresponding to the smallest eigenvalue of point pi as the normal vector ni of it:

C =
1

|N(pi, r)|
∑

pj∈N(pi,r)

(pj − µ)(pj − µ)T (6)

ni = eigenvectorargminλ(C) (7)

Where µ is the mean vector of the neighboring point set N(pi, r).

Gray Value Variance Calculation: Calculate the gray value variance σ2
i of the neighboring point

set of the current point pi:

σ2
i =

1

|N(pi, r)|
∑

pj∈N(pi,r)

(gray(pj)− gray(pj))
2 (8)

Where gray(pi) is the gray value of point pi and gray(pj) is the average gray value of the neighboring
point set N(pi, r).
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Figure 3: Texture Feature Extraction Flow Chart

Texture feature point determination: Specify the threshold ny, thresh of the Y component of the
unit normal vector and the threshold σ2

thresh of the variance of the grayscale information, for each
point pi ,calculate the absolute value abs(|n⃗0

i,y|) of the Y component of the unit normal vector of it,
and if the following conditions are satisfied, it is considered to be a texture feature point:

abs
(
|n⃗0

i,y|
)
≥ n0

y,thresh (9)

σ2
i ≥ σ2

thresh (10)

Classification and Visualization: The points that meet the conditions are classified as texture fea-
ture points, while the rest are classified as non-texture feature points. The texture feature points are
visualized to illustrate the extracted texture features of the point cloud, allowing the dexterous hand
to obtain more valid target information and providing more comprehensive perceptual information
for the dexterous hand to manipulate precisely.

3.3 SPATIALLY ACCURATE LOCALIZATION OF FINGERTIP CONTACT POINTS

In automation and robotics engineering, achieving high-precision grasping is essential for the com-
mercial deployment of dexterous hands. This study employs the NVIDIA Isaac Sim platform for
precise spatial localization of dexterous hand contact points, facilitating accurate acquisition of tac-
tile texture data at the contact points. This approach allows for precise control of experimental con-
ditions and parameters, enabling the collection of contact point coordinates and the corresponding
degrees of freedom for various grasping postures.

A highly realistic dexterous hand model and corresponding operational environment were con-
structed to replicate the physical properties and conditions of the real world. Leveraging the ad-
vanced physical engines and graphics rendering capabilities of the Isaac Sim platform, we simulate
various grasping scenarios with objects of different materials, shapes, and sizes (see Figure 6, top
row).
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Figure 4: Dexterous hand five-finger grasp between the spatial coordinates of the contact point
flowchart: Based on NVIDIA Isaac Sim’s dexterous hand grasping, fingertip contact points are
spatially accurately located.

To address the contact point localization issue in dexterous hand grasping operations, we simulate
various illumination angles and different materials and shapes of objects during the simulation pro-
cess. We also employ policy fine-tuning techniques, using a small amount of real-world grasping at-
tempt data to fine-tune the model, further reducing the gap between simulation and reality. Through
high-precision calculations and simulations based on Isaac Sim, we use the wrist as the coordinate
origin and accurately determine the coordinates of the dexterous hand’s five fingertip contact points
and the corresponding joint angles based on the object’s three-dimensional geometric features and
surface material (as shown in Figure 4).

Combining the tactile texture information at the fingertip contact points provides finer localization
and sensory information for grasping in complex environments, offering low-cost multimodal sen-
sory information for the field of embodied intelligent agents.

4 EXPERIMENT

• Provide a detailed description of the dataset, experimental setup, and dexterous hand ma-
nipulation process.

• Evaluate whether robot vision alone can capture 3D tactile surface data during multi-finger
grasps.

• Assess the ability of our approach to compute real-time fingertip positions for five fingers
and validate the results in practical scenarios.

4.1 EXPERIMENT SETTINGS

Dataset: We collected point cloud images of over 200 everyday objects, encompassing a wide va-
riety of materials, shapes, and surface textures, to build a comprehensive open-source test dataset.
Lighting parameters (brightness and color temperature) were adjusted to simulate different condi-
tions, enhancing the algorithm’s robustness to light variations. Additionally, we conducted grasping
operations with a robotic hand to gather real grasping data, including fingertip contact points coor-
dinates and joint angles at various time points. To ensure broad applicability, the dataset includes
diverse objects (e.g., glass, plastic) and shapes (e.g., round, square) for training and validation. From
these, 49 representative objects were selected for deep learning experiments, and 15 were used for fi-
nal validation. To promote scientific transparency and reproducibility, the public dataset is available
(see Appendix A.2 for details).

Experimental Procedure: In this study, we first captured clear and complete point cloud images of
objects by placing them within the visual range of an RGBD camera, ensuring that the entire visible
surface of each object was recorded by rotating the point cloud acquisition device around the target
object. This meticulous process allowed us to accurately capture the geometric shapes and surface
textures of the objects, facilitating precise data collection and texture extraction.
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Figure 5: Dexterous manipulation platform with a Seed Robotic Hand, an AGILE ROBOTS Diana
7 arm, an Intel RealSense Camera, an optical platform, and a work processing center.

Next, we used the proposed point cloud processing algorithm to extract texture features accurately.
During the dexterous hand grasping phase, we controlled the dexterous hand to perform stable grasp-
ing with two, three, four, and five fingers, as demonstrated in Figure. 1, recording the rotation angles
of each joint throughout the grasping process. In the simulation phase, we imported the dexterous
hand model into the simulation environment and accurately replicated the grasping state of the dex-
terous hand by following the previously recorded fingertip coordinates and joint angles at different
time points. This real-time linkage of each joint’s degrees of freedom with actual dexterous hand
movements and the simulation platform allowed us to record the spatial coordinates of each grasping
contact point in the simulation accurately.

Finally, based on the spatial coordinates of the five fingertip contact points obtained from the simu-
lation, we determined the corresponding spatial coordinates of the dexterous hand fingertip contact
points in the real world. This comprehensive approach ensured a high degree of accuracy in repli-
cating and analyzing the dexterous hand’s grasping actions.

Realistic Experimental Scenario: We developed a production line to simulate industrial envi-
ronments for gripping tasks. The setup includes AGILE ROBOTS DIANA 7 robotic arms, Intel
RealSense cameras for depth sensing (0.11 to 10 meters, with sub-millimeter accuracy), and LIPP-
MANN L50pro adjustable lighting (3200K-5600K, 0%-100% brightness). The experimental table
is positioned near a wall, with the robotic arm and dexterous hand connected via the Falan. The cam-
era, placed at a 45-degree angle, captures point cloud data from various objects (e.g., cups, bottles,
PCB boards, and flashlights). The system runs on a 13th-generation Intel Core i9-13900K proces-
sor and an NVIDIA RTX 4090 GPU. The experimental platform, illustrated in Figure 5, accurately
simulates industrial conditions, ensuring the reliability and practicality of the research results.

Texture Feature Point Determination: Specify the threshold ni,thresh of the Y component of the
unit normal vector and the threshold σi,thresh of the variance of the grayscale information, for each
point pi, calculate the absolute value of axis (|ni|Y ) of the Y component of the unit normal vector
of it, and if the following conditions are satisfied, it is considered to be a texture feature point:

4.2 RESULTS

Our experiments evaluated the accuracy of 3D fingertip contact point localization and pseudo-tactile
information extraction, focusing on two key aspects: localization precision and tactile data integra-
tion. The system was tested under various finger configurations and object materials to assess its
robustness.

• Localization Precision Localization precision was assessed by comparing simulated 3D fin-
gertip coordinates with real-world measurements over 100 trials per object. The root mean
square error (RMSE) remained low, with slight variations depending on the number of fin-
gers used, as shown in Table 4, which provides the estimated 3D contact point coordinates
for two, three, four, and five-finger grasps.
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• Material-Based Performance The system was evaluated across different materials, includ-
ing glass, plastic, metal, and feather-like textures. As shown in Table A.3, the localization
error remained consistent across most materials, with feather-like objects exhibiting the
largest deviation due to surface irregularities.

• Pseudo-Tactile Data Integration The system effectively integrated 3D fingertip localization
with pseudo-tactile information by matching contact point coordinates with extracted tex-
ture features. This demonstrated the framework’s capability to simulate tactile feedback
based on visual data, without the need for physical sensors.

Overall, the system demonstrated high precision in both localization and pseudo-tactile integration.
The average RMSE across 49 objects was 0.92 mm, highlighting the reliability of the approach in
various real-world scenarios. These results emphasize the potential of vision-based tactile sensing
for robotic manipulation.

5 CONCLUSION AND FUTURE WORK

This study introduces a novel vision-based framework for extracting pseudo-tactile information and
accurately localizing fingertip contact points during dexterous hand manipulation. Experimental
results demonstrate that our approach effectively simulates tactile characteristics using visual data,
achieving a localization accuracy of 1 mm and maintaining robustness across varied environmental
conditions. The precise localization of fingertip contact points, combined with the corresponding
pseudo-tactile information, enhances tactile feedback reliability for robotic grasping, as shown in
Figure 6. This integration improves both the dexterous hand’s performance and its understanding
of object interactions. Future work will focus on increasing the framework’s adaptability through
dynamic filtering strategies that respond to environmental changes. We also plan to expand the
dataset to cover a broader range of object shapes, materials, and lighting conditions, improving the
algorithm’s generalizability. Additionally, we aim to incorporate multiple sensory inputs, such as
additional camera perspectives or tactile feedback systems, to further enrich pseudo-tactile informa-
tion and enhance the dexterous hand’s interaction capabilities. To promote scientific transparency
and facilitate reproducibility, we have made our source code and dataset publicly available. This
accessibility encourages further exploration and refinement of our approach, paving the way for
advancements in robotic grasping technologies.

Figure 6: Schematic diagrams of dexterity in grasping objects with different fingers and obtaining
surface texture and spatial coordinates of contact points.
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A APPENDIX

A.1 OPEN DATASET AND PRESENTATION OF RESULTS

Figure 7: Partial dataset: 15 of 200 common objects with different surface tex-
tures and very different sizes.Open data set link: https://drive.google.com/drive/folders/
1Pt3kzDJRNTKejL4G8GHUoytgcM9pCAds?usp=sharing.

A.2 POINT CLOUD EXTRACTION OF TACTILE FEATURE DETAILS

Table 2: 3D Coordinate Data for Each Fingertip (Unit: m)
Finger Name Opposable

Thumb
Index
Finger

Middle
Finger

Ring Finger Little
Finger

X Coordinate 0.0398 0.0308 0.0074 -0.0116 -0.0357
Y Coordinate -0.0694 -0.0577 -0.0560 -0.0577 -0.0585
Z Coordinate 0.2062 0.2757 0.2773 0.2731 0.2681

*The coordinates of the contact points of the fingertips of the five fingers of the dexterous hand
grasping the object are shown in in Table 2.
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Table 3: Parameter Values and Corresponding Hand Index

Parameter Cup Cup# Can Can# Cap Cap# Vial Vial#
A1 32 32 32 32 32 32 32 32
A2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
A3 0.15 0.15 0.15 0.16 0.2 0.2 0.2 0.13
A4 0.002 0.002 0.0015 0.002 0.01 0.01 0.002 0.0015
n Five Four Three Two

*The meanings of the parameters in Table 3 are as follows:
• A1: leaf size: The minimum number of searches in a KD-tree.
• A2: kdtree radius: The radius of the neighborhood.
• A3: threshold normal y: A threshold for the Y component of the unit normal vector.
• A4: threshold color var: A threshold for the variance of the color value (gray value).
• n: Number of fingers used.
• #: Backside of the object.

A.3 RESULTS OF THE EXPERIMENT

Table 4: Estimated coordinates of contact points in different states (Unit: m)
2 Fingers 3 Fingers 4 Fingers 5 Fingers

A(Thumb) coordinate (0.2557,-0.0634,-0.0634) (0.0316,-0.0714,0.2054) (0.0313,-0.0675,0.2159) (0.0201,-0.0658,0.2203)
B(Index) coordinate (0.0246,-0.0580,0.2557) (0.0300,-0.0615,0.2708) (0.0327,-0.0515,0.2763) (0.0276,-0.0543,0.2727)

C(Middle) coordinate \ (0.0069,-0.0579,0.2623) (0.0080,-0.0478,0.2781) (0.0036,-0.0488,0.2706)
D(Ring) coordinate \ \ (-0.0128,-0.0485,0.2773) (-0.0160,-0.0458,0.2671)
E(Small) coordinate \ \ \ (-0.0398,-0.0472,0.2613)

Table 5: Localization error in different gripping situations
2 Fingers 3 Fingers 4 Fingers 5 Fingers

Localization Error (m) 0.0007 0.0009 0.0011 0.0012

Table 6: Localization error in different gripping material
Glass Plastic Metal Feather

Localization Error (m) 0.0008 0.0009 0.0006 0.0010
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