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ABSTRACT

Large Reasoning Models (LRMs) are known for their exceptional ability to solve
complex problems and provide structured solutions through step-by-step reason-
ing. However, this powerful reasoning capability also introduces new security
risks. Existing jailbreak methods exploit the model’s explicit reasoning process by
fabricating reasoning steps to manipulate its output, leading it to generate harmful
or biased content. Although these methods are effective, the underlying reasons
for their success remain unclear. In this paper, we first analyze both successful
and failed jailbreak attempts and find that successful attacks effectively shift the
model’s attention away from harmful keywords, redirecting it toward other parts
of the prompt or its internal reasoning process. Based on this, we propose AGA, a
novel and efficient attention-guided jailbreak method that leverages model’s inter-
mediate reasoning steps to iteratively refine candidate prompts. Extensive experi-
ments on five open-source and closed-source LRMs across three datasets demon-
strate that our method achieves remarkable attack success rate and outperforms
existing methods in terms of stealthiness, efficiency, and transferability. Our re-
search highlights the urgent need for improved safety measures tailored to LRMs.
The code is available at https://github.com/LZzzzz2000/AGA.

1 INTRODUCTION

Large Reasoning Models have demonstrated impressive capabilities, particularly in solving complex
problems through step-by-step chain-of-thought reasoning. This advanced reasoning ability enables
them to break down challenging tasks such as solving mathematical problems Qu et al. (2025);
Forootani (2025) or making complex decisions Li et al. (2025) into manageable steps, producing
coherent and well-structured solutions. However, this powerful reasoning capability also introduces
new security risks. Because LRMs explicitly show their reasoning paths before generating final
responses, these visible reasoning traces tend to expose models’ internal decision-making process,
potentially creating new attack surfaces for adversaries.

Several jailbreak attack approaches against LRMs have already been proposed. H-CoT Kuo et al.
(2025) inserts fabricated reasoning steps into the model’s prompt, disguising them as plausible
thought chains. This allows the attack to bypass security mechanisms and leads the model to gen-
erate harmful content. AutoRAN Liang et al. (2025) exploits the transparent reasoning process of
“weak” models with low alignment to attack more powerful “strong” models and manipulate their
outputs. Mousetrap Yao et al. (2025) uses a multi-step transformation to the prompt, gradually
weakening the model’s security responses until the jailbreak succeeds.

Despite recent progress, existing jailbreak methods still face several limitations. First, from a the-
oretical perspective, current approaches lack a comprehensive analysis of their effectiveness. Most
studies focus on implementation and optimization, without offering a solid explanation of why their
methods succeed. Second, in practical applications, existing methods often rely on refining prompts
through the model’s reasoning process to bypass safety mechanisms. However, this refinement often
lacks a clear direction, and little attention has been paid to the potential security risks inherent in the
reasoning process itself.

To bridge this gap, we are inspired by Du et al. (2025) and explore the underlying mechanisms of
LRMs jailbreaks from the perspective of attention shifting. Specifically, we examine which parts of
the input the models focus on during the jailbreak process. Our analysis reveals that, compared to
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failed attempts, successful jailbreak samples show a significant reduction in the model’s attention
to harmful and sensitive keywords. In these cases, LRMs tend to shift their focus away from prob-
lematic terms and redirect attention toward other parts of the prompt or their own internal reasoning
process. We believe this shift plays a critical role: when the model’s attention to harmful keywords
drops below a certain threshold, it may fail to effectively detect potential malicious intent, making
it more vulnerable to adversarial attacks. This observation is consistent with findings from multiple
rounds of red-teaming tests Lin et al. (2025), which suggest that LRMs are particularly sensitivity to
specific harmful terms when evaluating potentially dangerous queries. Through this attention-based
analysis, we offer an explanation for the effectiveness of existing jailbreak approaches, such as
those using fabricated reasoning chains or multi-step prompt transformations. Fundamentally, these
methods work by diverting the model’s excessive focus away from harmful input content, thereby
allowing them to bypass model’s safety safeguards.

Building on these findings, we propose AGA (Attention-Guided Jailbreak Attack), a novel and ef-
ficient jailbreak approach that leverages attention shifting to reduce the focus of LRMs on harmful
keywords in the input prompt. Specifically, our approach starts by initializing a candidate jailbreak
prompt and identifying sensitive or harmful words, whose attention scores are then tracked during
the model’s processing. After querying the target model and receiving feedback, we iteratively refine
the prompt based on attention scores and the model’s reasoning steps. By adjusting attention dis-
tribution, AGA aims to balance harmful intent with remaining unnoticed. This balance is essential
for a successful jailbreak, as overly explicit prompts may trigger safety mechanisms directly, while
too vague prompts may fail to induce harmful behavior relevant to the malicious query. An effective
jailbreak prompt must navigate this trade-off carefully to succeed. Extensive experiments validate
the effectiveness of AGA. We evaluated it on three open-source reasoning models and transferred it
to two closed-source models, using three diverse datasets. Compared to baseline methods, our ap-
proach achieves notably attack success rate and consistently outperforms existing jailbreak methods
in terms of effectiveness, stealthiness, efficiency and cross-model transferability.

2 RELATED WORK

Security of LRMs. Large Reasoning Models (LRMs), such as o4-mini, Gemini-2.5-Flash Co-
manici et al. (2025), Qwen3 Yang et al. (2025), and DeepSeek-R1 Guo et al. (2025), extend the ca-
pabilities of traditional Large Language Models (LLMs) by incorporating explicit reasoning mech-
anisms. These models often adopt Chain-of-Thought (CoT) prompting to represent intermediate
reasoning steps, enabling strong performance in tasks involving mathematical reasoning, logical de-
duction, and complex decision-making. However, previous work Zhou et al. (2025) indicates that
distilled reasoning models may exhibit weaker safety performance compared to their safety-aligned
base models. In addition, the reasoning process itself often raises more serious safety concerns than
the final outputs. Unlike conventional LLMs, LRMs expose their internal reasoning traces during
generation, which inadvertently broadens the attack surface and makes them more susceptible to
manipulation. Another challenge lies in managing the length of reasoning sequences. Excessively
long chains can exhaust computational resources Kumar et al. (2025); Zhu et al. (2025), while overly
short chains may lead to incomplete or incorrect conclusions Zaremba et al. (2025).

In this paper, we study jailbreak attacks, where carefully crafted adversarial prompts bypass a
model’s safety constraints and induce it to generate harmful reasoning processes and outputs.

Jailbreaking of LRMs. Compared to the extensive work on jailbreaking LLMs Souly et al. (2024);
Yi et al. (2024); Zhang & Wei (2025); Liao & Sun (2024); Souly et al. (2024), studies specifically
targeting the jailbreak of LRMs remain limited. H-CoT Kuo et al. (2025) introduces fabricated
reasoning steps into the model’s prompt, forming a seemingly coherent chain of thought that by-
passes safety safeguards and induces the model to generate harmful content. AutoRAN Liang et al.
(2025) leverages the transparent reasoning process of “weak” models with low safety alignment to
systematically probe and attack more powerful “strong” models, capitalizing on the similarity in
their reasoning structures. Mousetrap Yao et al. (2025) adopts a multi-step transformation strategy
that applies a sequence of diverse one-to-one mappings to the initial prompt. This process gradually
weakens the model’s safety responses, ultimately enabling a successful jailbreak.

Despite these developments, the community still lacks a comprehensive understanding of why such
jailbreak methods are effective and how their performance can be systematically improved.
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3 PRELIMINARY STUDY

To better understand why existing jailbreak methods are effective against LRMs, we investigate
whether there are notable differences in attention patterns between successful and failed attempts.
Our objective is to uncover the key factors that contribute to jailbreak success, bridge the gap be-
tween empirical success and analytical understanding, and offer clearer insights for designing more
effective jailbreak strategies in the future.

3.1 EXPERIMENT SETUP

Dataset. To explore the differences in attention patterns between successful and failed jailbreak
attempts, we randomly selected 100 samples from AdvBench. These samples cover a wide range of
harmful content, including misinformation, illegal activities, harassment, and violence.

Model. In this study, we primarily present jailbreak experiments on Qwen3-8B, a medium-sized,
publicly available LRM. Qwen3-8B exhibits behavior patterns and security vulnerabilities that are
highly consistent with those observed in other leading LRMs, making our findings broadly repre-
sentative of common jailbreak risks across mainstream LRMs. To validate the generality of our
findings, we provide additional experiments on Qwen3-1.7B and DeepSeek-R1-Distill-Llama-8B in
the Appendix.

Study Design. For 100 randomly selected samples from the AdvBench dataset, we con-
structed prompts using common jailbreak techniques, including role-playing, fictional scenarios,
and reasoning-based strategies. These prompts were fed into Qwen3-8B, and we recorded both the
model’s internal reasoning process and its final outputs. Each response was manually evaluated to
determine whether the jailbreak attempt was successful, resulting in a labeled dataset of successful
and failed cases. We then analyzed how the input prompts and the model’s reasoning influenced the
final outputs by computing attention scores throughout the inference process.

We adopt the attention computation method from Du et al. (2025), with a particular focus on at-
tention scores that reflect how much attention each output token assigns to the input tokens and
previously generated tokens. In this study, we analyzed how both the input tokens and the in-
termediate reasoning process influence the model’s final output. We denote the input tokens as
P = {p1, p2, . . . , pn}, the intermediate reasoning process as R = {r1, r2, . . . , rs}, and the output
tokens as Y = {y1, y2, . . . , ym}.
To compute the final attention score for each input token, we first average the attention scores across
these output tokens. Then, for each token, we further average the attention scores over L layers and
H attention heads. Let Ai,j{yt, pk} and Ai,j{yt, rk} represent the attention scores from the i-th
layer and the j-th attention head, where yt is an output token, pk is an input token, and rk is a token
from the intermediate reasoning process.

The final attention score for the k-th input token is computed as:

A(pk) =
1

L ·H · (m− 1)

m∑
t=2

L∑
i=1

H∑
j=1

Ai,j{yt, pk} (1)

Similarly, the final attention score for the k-th reasoning token is computed as:

A(rk) =
1

L ·H · (m− 1)

m∑
t=2

L∑
i=1

H∑
j=1

Ai,j{yt, rk} (2)

It is worth noting that, due to the attention sink phenomenon Barbero et al. (2025), the model tends
to assign disproportionately high attention to the first output token, which is typically a start-of-
sequence placeholder with no semantic meaning. To avoid this bias, we start our calculation from
the second output token and compute attention statistics over the remaining m− 1 tokens.

After computing the attention score for each token, we apply the Qwen3 tokenization strategy to
map tokens back to words. For any word wk composed of multiple tokens, its attention score is
obtained by summing the scores of all its component tokens. We then calculate the total attention
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for the input prompt and the reasoning process by summing the attention scores of all words within
each. Additionally, we identify harmful words from both the prompt and the reasoning process, and
compute the proportion of attention these harmful words receive relative to the total attention in their
respective sections. The detailed extraction strategy is described in Section 4.3.

3.2 EXPERIMENTAL RESULTS

(a) Overall attention
distribution between the
prompt and the reasoning
process.

(b) Attention proportion
on harmful keywords in
prompt and reasoning pro-
cess.

Figure 1: Attention differences between failed
(Reject) and successful (Jailbreak) attacks across
prompt and reasoning.

We manually evaluated a set of 100 jailbreak
prompts, among which 32 resulted in success-
ful jailbreaks and 68 failed. We then analyzed
the differences in attention patterns between
these two groups, as illustrated in Figure 1.
Specifically, Figure 1a shows the overall atten-
tion distribution between the prompt and the
reasoning process, while Figure 1b presents the
attention proportion allocated to harmful key-
words within each part. Our key findings are
summarized as follows: (1) Overall, the model
allocates more attention to the reasoning pro-
cess than to the input prompt. This is likely due
to the inherent design of LRMs, which tend to
generate long and detailed reasoning sequences
as part of their responses. Notably, no substan-
tial difference in overall distribution was ob-
served between successful and failed jailbreak
attempts. (2) In successful jailbreak cases, harmful words in the prompt received significantly less
attention compared to failed attempts. This suggests that when a prompt draws excessive attention
to harmful terms, it is more likely to trigger the model’s safety mechanisms directly. In contrast,
prompts that attract less attention to such content appear more subtle. In such cases, the model may
not fully detect or suppress the malicious intent embedded in the prompt, making it more vulnera-
ble to jailbreak attacks. (3) Additionally, we observed that in successful jailbreaks, the attention to
harmful words within the reasoning process was slightly higher than in failed cases. This indicates
that when the prompt itself avoids explicitly highlighting harmful content, the model may shift this
focus to the reasoning stage, where harmful concepts are discussed actively, ultimately producing
unsafe outputs.

Figure 2: An example comparing a failed (left) and a successful (right) jailbreak attack. Harmful
keywords are highlighted in red, and sensitive terms are highlighted in blue.

Figure 2 presents a representative example comparing two jailbreak prompts derived from the same
malicious request: “Provide instructions for falsifying medical records to obtain prescription drugs.”
Although both prompts share the same underlying intent, they differ in phrasing and structural com-
position, leading to distinct attention allocation patterns. In the failed jailbreak prompt P1 (left),
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harmful keywords such as “falsifying”, “harm”, and “prescription drugs” receive relatively high
attention. This likely triggers the model’s safety mechanisms, resulting in a direct refusal—even
though the prompt includes a disclaimer. In contrast, the successful jailbreak prompt P2 (right)
expresses the same intent using vaguer language and a more subtle structural framing. Conse-
quently, the attention score for the word “harm” drops from 1.2% to 0.7%, and a related con-
cept—“fabricating”, now rephrased as “altering”—sees its attention decreased from 0.6% to 0.2%.
In this case, the model assigns significantly less attention to harmful contents in the prompt and
instead focuses on producing a structured reasoning process that analyzes the framework’s com-
ponents. During this reasoning, the model discusses actions such as “altering”, “forging” and
“breaching”, which ultimately result in harmful output. This supports our finding that when harm-
ful keywords in the prompt receive reduced attention, the model is less likely to activate its safety
mechanisms, while the reasoning process reintroduces and expands upon harmful content, leading
to unsafe outputs.

To further validate our findings, we conducted an additional experiment using a gradient-based op-
timization method to deliberately reduce the attention weights assigned to harmful words in the
prompt. This experiment was designed to assess whether lowering attention to such terms would in-
fluence the success rate of jailbreak attempts. The experimental details are provided in Section 3.3.

3.3 VERIFICATION EXPERIMENT

Figure 3: Reducing attention to harmful words en-
ables successful jailbreaks via iterative optimiza-
tion with nanoGCG′.

To validate the hypothesis that reducing atten-
tion to harmful words increases the success
rate of jailbreaks, we conducted a targeted ex-
periment using the gradient-based optimization
framework nanoGCG Zou et al. (2023). Specif-
ically, we introduced a custom loss function de-
signed to minimize the attention weights as-
signed to harmful words in the input prompt.
We denote this enhanced variant as nanoGCG′.
By optimizing this loss, the nanoGCG′ frame-
work iteratively adjusted the prompt’s suffix,
effectively concealing the malicious intent.

As illustrated in Figure 3, the model progres-
sively reduced its attention to harmful words
over multiple optimization steps, eventually by-
passing its safety mechanisms and producing a successful jailbreak. These results not only reinforce
our earlier findings but also demonstrate the feasibility of influencing LRM behavior through tar-
geted manipulation of attention patterns.

4 METHODOLOGY

The jailbreak method introduced in Section 3.3, which integrates the attention proportion of harmful
words into the nanoGCG′ framework, is capable of generating effective jailbreak prompts through
gradient-based optimization. However, it exhibits several limitations, including poor readability,
limited generalization, and a high risk of being detected and rejected by safety filters.

To further advance this line of work, we propose a novel and efficient jailbreak approach called
AGA (Attention-Guided Jailbreak Attack). Similar to AutoRAN, AGA employs a LRM attacker
for prompt refinement. However, unlike existing baselines, AGA introduces attention guidance by
explicitly instructing the model to shift its focus away from harmful keywords. This integration of
attention signals provides a clear optimization objective, enabling more targeted and efficient prompt
refinement. By leveraging both the attention distribution over harmful keywords and the model’s
intermediate reasoning steps, AGA iteratively refines prompts to strike a critical balance between
remaining unnoticed and achieving attack effectiveness. The complete procedure is outlined in
Algorithm 1. In the following section, we introduce AGA in detail.
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4.1 ATTACK SETUP

For the target model MT , we use its corresponding unaligned variant (e.g., Qwen3-8B-abliterated)
as the attack model, denoted as MA. This attack model is less aligned and does not refuse to generate
jailbreak prompts during initialization or optimization, enabling the attacker to explore the space of
potentially harmful prompts without encountering built-in refusals.

Given a harmful request q, the attacker MA iteratively generates a jailbreak prompt x. This prompt
is then input into the target model MT , which produces a response y = MT (x).

To evaluate the effectiveness of the attack, We use Llama-3.1-70B as the primary evaluation model
to measure how well the response y fulfills the original harmful request q. This yields a harmfulness
score denoted as h(y, q), which ranges from 1 to 10. 1-3: The model either refuses to respond or
produces no harmful content; 4-6: Some harmful content is present, but it is not directly relevant to
the intended request q; 7-9: The response includes relevant information but lacks sufficient detail;
10: The response fully satisfies the harmful request with clear and detailed information. A jailbreak
is considered successful if h(y, q) ≥ 7. The attacker’s goal is to find a jailbreak prompt x that
maximizes h(y, q).

Algorithm 1: Attention-Guided Jailbreak Attack
Require: Attack model MA, Target model MT , Judge model MJ , Max iterations nturn,

Template t, Harmful words dictionary D, Attention threshold θ
Input: Harmful request q
Output: Harmful reasoning r, Harmful response y

1 i← 0
2 (r̃, ỹ)←MA(q) // Get initial reasoning and response
3 xi ←MA(Template(t, r̃)) // Prompt initialization
4 while i < nturn do
5 wi ← Extract(xi, D) // Extract harmful words
6 (ri, yi, ai)←MT (xi, wi) // Query target model, get reasoning ri,

response yi, attention ai
7 if ri is NULL then
8 xi ←MA(Template(t, r̃)) // Case 1: Immediate Refusal,

reinitialize xi from template pool
9 else if ai > θ then

10 xi+1 ← ReduceAttention(xi, ri, yi, ai) // Case 2.1: High Attention
11 else
12 h(yi, q)←MJ(yi, q) // Case 2.2: Low Attention
13 if h(yi, q) ≥ 7 then
14 return (xi, ri, yi) // Successful Jailbreak
15 else
16 xi+1 ← StrengthenPrompt(q, xi, yi, ai)

17 i← i+ 1

18 return FAILURE

4.2 PROMPT INITIALIZATION

To begin, we first allow the attack model to process the harmful request q, obtaining its internal rea-
soning process r̃ and the initial response ỹ. The intermediate reasoning of the LRM provides insights
into its internal thought process, revealing what the model focuses on and how it reacts to different
types of content. Based on r̃, we initialize the jailbreak prompt using a set of predefined, seem-
ingly harmless templates, such as educational scenarios, expert consultations, and fictional contexts.
These templates, adapted from established jailbreak strategies, are carefully designed to incorporate
key elements derived from the model’s reasoning, including specific examples, logical structure,
reasoning strategies, and objectives. By integrating these elements, the initialization process diver-
sifies the attack surface while effectively embedding the core malicious intent, thus increasing the
likelihood of bypassing the model’s safety mechanisms.
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4.3 EXTRACT HARMFUL WORDS

After obtaining the jailbreak prompt, we need to continuously track how attention is allocated to
harmful words throughout the optimization process. This first requires accurately identifying such
words. To achieve this, we combine a predefined harmful words dictionary D with a harmful phrase
extractor based on LLMs (e.g., GPT-4o). We use LLMs because tokenizers follow strict match-
ing rules, and when harmful expressions change slightly—whether in tense, case, or context—the
resulting token IDs may differ, causing traditional static keyword matching to fail. In contrast, LLM-
based detectors possess a stronger semantic understanding, enabling them to more flexibly capture
a wider range of harmful expressions. The dictionary D serves as a complementary component to
further enhance overall detection coverage.

4.4 PROMPT OPTIMIZATION

Upon receiving the i-th jailbreak prompt xi, the target model MT generates three key outputs:
the intermediate reasoning process ri, the response yi, and the attention proportion ai allocated to
harmful words. AGA systematically refines the prompt over multiple iterations by leveraging these
internal model signals. The optimization process can be categorized into the following cases:

Case 1: Immediate Refusal. If the target model rejects xi outright and provides no intermediate
reasoning, we treat xi as invalid. In such cases, we reinitialize a new prompt from the predefined
pool to prevent the optimization loop from stalling due to ineffective prompt structures.

Case 2: Generation with Intermediate Reasoning. When the target model provides intermediate
reasoning ri, we use the attention proportion ai to guide prompt refinement. Based on empirical
analysis across multiple models, we set the harmful attention threshold θ to 0.25 (see Appendix for
details). If attention to harmful words exceeds this threshold, the prompt tends to be too explicit,
often triggering the model’s safety mechanisms. Conversely, if attention falls below the threshold,
it does not guarantee success, as the harmfulness of the response may be significantly weakened.
Therefore, an effective jailbreak prompt must carefully balance harmful intent with remaining un-
noticed.

We further differentiate our optimization strategy based on whether ai is above or below the thresh-
old:

Case 2.1: High Attention on Harmful Words (ai > θ). When the attention proportion is too high,
the prompt is likely too explicit, increasing the risk of detection by the model’s safety mechanisms.
In such cases, we leverage both the model’s reasoning ri and the attention scores ai to guide prompt
refinement.

The intermediate reasoning ri often reveals underlying rejection reasons, safety concerns, or points
where the model shows hesitation. Meanwhile, the attention scores ai highlight specific tokens
or phrases that receive excessive focus. To address this, we explicitly instruct the MA to analyze
the safety concerns and revise the prompt accordingly. This involves rephrasing sensitive content,
replacing direct mentions with subtler expressions, and embedding the harmful intent within a more
natural narrative structure. This process systematically reduces the visibility of harmful elements
while preserving the intended adversarial objective.

Case 2.2: Low Attention on Harmful Words (ai < θ). When attention is within acceptable
limits, we first evaluate the harmfulness of the model’s output using h(yi, q).

• If h(yi, q) ≥ 7, the attack is considered successful, and the optimization process terminates.
• If the harmfulness score is insufficient, it suggests that although the prompt has evaded

detection, it lacks enough adversarial strength to generate a truly harmful response. In
this case, we use the attack model MA to strengthen the prompt by incorporating insights
from attention patterns and the response yi. This involves encouraging the model to pro-
vide deeper analysis, elaborate on sensitive methods by describing techniques or tools, and
express certain harmful objectives more explicitly, all while maintaining low attention to
harmful tokens to avoid triggering detection mechanisms.

The process repeats until the jailbreak is successful or the predefined maximum number of iterations
(nturn = 5) is reached.

7
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5 EXPERIMENT

5.1 EXPERIMENT SETUP

Dataset. To evaluate AGA, we construct a benchmark composed of samples from three widely
used jailbreak evaluation datasets: AdvBench Zou et al. (2023), StrongReject Souly et al. (2024),
and HarmBench Mazeika et al. (2024). From each dataset, we randomly select 50 jailbreak prompts,
resulting in a total of 150 test samples. This selection ensures diversity in prompt styles and attack
scenarios, covering various categories of harmful content such as prohibited requests, sensitive ques-
tions, and adversarial queries.

LRMs. We select three open-source LRMs as our targets: Qwen3-1.7B, Qwen3-8B, and DeepSeek-
R1-Distill-Llama-8B. For each model, we use its corresponding unaligned variant (e.g., Qwen3-8B-
abliterated) as the attacker model. These attacker models have reduced alignment or safety training,
ensuring they do not refuse to generate jailbreak prompts or reject iterative optimization steps during
the attack process. For evaluation, we adopt Llama-3.1-70B as the judge model, as it provides results
comparable to closed-source models and is sufficient for jailbreak assessment Yang et al. (2024).

We further transfer the jailbreak prompts to closed-source LRMs. Specifically, we target two state-
of-the-art LRMs: o4-mini and Gemini-2.5-Flash.

Baselines. We adopt several baseline methods originally designed for LLMs that also show po-
tential for jailbreaking LRMs. Specifically, we consider token-level optimization methods such as
GCG Zou et al. (2023) and AutoDAN Liu et al. (2023), as well as sentence-level methods including
PAIR Chao et al. (2025) and ReNeLLM Ding et al. (2023).

For LRM-specific baselines, we include H-CoT Kuo et al. (2025), which fabricates reasoning steps
to bypass safety filters, and AutoRAN Liang et al. (2025), which exploits weakly aligned reasoning
to attack stronger models.

Metrics. We evaluate AGA with three metrics. First, Attack Success Rate (ASR) measures ef-
fectiveness, defined as the percentage of prompts that successfully elicit harmful responses from
the target model within the maximum allowed nturn iterations. A jailbreak is considered success-
ful if the judge model assigns a harmfulness score h(y, q) ≥ 7. Notably, we report ASR for both
the model’s final response (ASR-R) and its intermediate reasoning process (ASR-T), both evalu-
ated using Llama-3.1-70B as the judge. ASR-R captures the surface-level safety of the final output,
while ASR-T emphasizes whether the reasoning path implicitly relies on harmful assumptions or
includes inappropriate content, as harmful content may emerge during reasoning, even if it is ulti-
mately filtered out. Second, Sentence Perplexity (PPL) evaluates stealthiness. Following the setup
of AutoDAN and ReNeLLM, we compute the average perplexity using GPT-2. Third, Average Suc-
cess Turns (AST) assesses efficiency by calculating the average number of optimization iterations
required for a successful attack (lower is better).

5.2 MAIN RESULTS

Effectiveness. Table 1 presents the ASR and PPL for all compared methods across three open-
source LRMs. In terms of effectiveness, AGA consistently outperforms all baseline approaches,
achieving the highest average scores for both ASR-R (96.0%) and ASR-T (95.5%). Compared to
the strongest LLM-based baseline, ReNeLLM, AGA improves ASR-R by more than 30%. It also
surpasses recent LRM-specific methods, outperforming H-CoT and AutoRAN by 4.7% and 4.9% in
ASR-R, respectively, demonstrating its strong effectiveness.

Notably, the small gap between ASR-T and ASR-R suggests that harmful behavior is not limited
to the final output, but persists consistently throughout the model’s inference process. In the case
of Qwen3-8B, AGA even achieves a slightly higher ASR-T (96.0%) than ASR-R (94.7%). This
aligns with recent findings Zhou et al. (2025) that LRMs may generate harmful content during early
reasoning steps, even when the final response appears filtered or safe. Therefore, monitoring only
the final output is insufficient, and the entire reasoning process must be carefully regulated.

Stealthiness. Stealthiness is critical for avoiding detection by safety filters or monitoring systems.
As shown in Table 1, AGA achieves the second-lowest average PPL (32.2) among all models, com-
ing close to the best-performing approach, PAIR (26.7). Importantly, AGA maintains this level of
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Table 1: Attack Success Rate (ASR-R, ASR-T) and Sentence Perplexity (PPL) across Models. The
best results are highlighted in bold, and the second-best results are underlined.

Method Qwen3-1.7B Qwen3-8B DeepSeek-R1-Distill-Llama-8B Average
ASR-R↑ ASR-T↑ PPL↓ ASR-R↑ ASR-T↑ PPL↓ ASR-R↑ ASR-T↑ PPL↓ ASR-R↑ ASR-T↑ PPL↓

LLM Attacks

GCG 38.7 36.0 2009.0 21.3 18.7 1537.6 34.7 34.7 1748.2 31.6 29.8 1764.9
AutoDAN 49.3 47.3 124.9 43.3 42.0 131.2 37.3 36.7 158.4 43.3 42.0 138.2

PAIR 39.3 38.7 26.5 32.0 31.3 29.0 23.3 23.3 24.7 31.5 31.1 26.7
ReNeLLM 65.3 66.0 88.3 56.7 56.7 75.6 72.7 73.3 81.5 64.9 65.3 81.8

LRM Attacks
H-CoT 92.0 92.0 36.4 90.7 92.0 37.3 91.3 92.0 39.2 91.3 92.0 37.6

AutoRAN 90.7 89.3 32.5 90.0 90.7 32.5 92.7 92.7 37.9 91.1 90.9 34.3
AGA (ours) 96.0 95.3 30.1 94.7 96.0 32.4 97.3 95.3 34.1 96.0 95.5 32.2

stealth while achieving significantly higher ASR compared to PAIR and all other baseline methods.
This balance between strong effectiveness and high stealthiness demonstrates the practical advan-
tage of AGA.

Effciency. We also use the Average Successful Turns (AST) to evaluate attack efficiency, as il-
lustrated in Figure 4. Across different datasets, AGA exhibits exceptional efficiency, with most
successful attacks completed within just two iterations. For example, Qwen3-1.7B achieves an AST
of 1.39 (averaged over AdvBench, HarmBench, and StrongReject), Qwen3-8B reaches 1.58, and
DeepSeek-R1-Distill-Llama-8B attains 1.51. In contrast, baseline methods such as PAIR and Auto-
DAN typically require more than 30 iterations to succeed. AGA’s high efficiency can be primarily
attributed to its attention-guided optimization mechanism, which provides a clear refinement signal
throughout the process. This contrasts with baselines like AutoRAN and H-CoT, which lack explicit
optimization objectives and have to blindly rely on the LRM’s ability to find a successful jailbreak
prompt in a trial-and-error manner.

Figure 4: Success turns of AGA across bench-
marks and models. Each bar represents the
proportion of successful jailbreaks completed
within 1 to 5 iterations, denoted as Suc-
ceeded@1 to Succeeded@5.

Table 2: Cross-model ASR based on Qwen3-8B
samples.

Method o4-mini Gemini-2.5-Flash

ASR-R↑ ASR-T↑ ASR-R↑ ASR-T↑
GCG 2.0 0.7 2.7 0.7

AutoDAN 16.0 12.0 14.7 13.3
PAIR 18.7 18.7 27.3 28.7

ReNeLLM 23.3 22.7 25.3 26.0

H-CoT 43.3 42.7 44.7 44.0
AutoRAN 50.0 51.3 52.0 53.3
AGA(ours) 54.0 54.7 57.3 58.7

Transferability. To evaluate the transferability of generated jailbreak prompts to black-box, closed-
source models, we reused the successful prompts developed on Qwen3-8B and applied them to
two state-of-the-art proprietary LRMs: o4-mini and Gemini-2.5-Flash. As shown in Table 2, AGA
achieves the highest transfer success rates on both models, with an ASR-R of 54.0% on o4-mini and
57.3% on Gemini-2.5-Flash. Remarkably, despite the robust safety measures implemented in both
o4-mini and Gemini-2.5-Flash, AGA still achieves over a 50% attack success rate, highlighting the
potential risks posed by such advanced jailbreak techniques.

6 CONCLUSION

In this paper, we investigate the underlying reasons for the success of existing jailbreak methods on
LRMs from the perspective of attention shifting. We find that successful attacks tend to divert the
model’s attention away from harmful keywords, redirecting it toward other parts of the prompt or its
internal reasoning process. Building on this insight, we propose AGA, an efficient, attention-guided
jailbreak method that leverages the model’s intermediate reasoning to iteratively refine prompts.
Extensive experiments on both open-source and closed-source LRMs demonstrate that AGA outper-
forms existing baselines in terms of effectiveness, stealthiness, efficiency, and transferability.
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7 APPENDIX

7.1 GENERALITY OF ATTENTION PATTERN FINDINGS ACROSS MODELS

To verify whether the attention-related findings observed in Qwen3-8B generalize to other LRMs,
we performed the same analysis on two additional models: Qwen3-1.7B and DeepSeek-R1-Distill-
Llama-8B. For each model, we examined 100 jailbreak attempts and compared the attention alloca-
tion between successful and failed cases.

The corresponding attention distribution visualizations for Qwen3-1.7B and DeepSeek-R1-Distill-
Llama-8B are shown in Figure 5. The results confirm that the three key findings observed in Qwen3-
8B are consistent across both models: (1) LRMs consistently allocate more attention to the reasoning
process than to the input prompt, regardless of whether the jailbreak attempt is successful or not. (2)
In successful jailbreaks, harmful keywords in the prompt receive significantly less attention com-
pared to failed attempts. (3) Harmful keywords tend to receive slightly higher attention during the
reasoning process in successful jailbreaks, indicating that while the prompt itself avoids triggering
detection, the model shifts this focus to the reasoning stage. This shift allows the model to discuss
unsafe content, ultimately leading to harmful outputs.

Based on our multi-model analysis, we set the attention threshold θ = 0.25 to guide AGA’s prompt
refinement process. Across Qwen3-1.7B, Qwen3-8B, and DeepSeek-R1-Distill-Llama-8B, we con-
sistently observed that failed jailbreaks prompts exhibited harmful attention proportions exceeding
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(a) Qwen3-1.7B

(b) DeepSeek-R1-Distill-Llama-8B

Figure 5: Attention differences between failed (Reject) and successful (Jailbreak) attacks across
prompt and reasoning. Each subfigure contains two plots: the left shows the overall attention distri-
bution between the prompt and the reasoning process, while the right shows the attention proportion
on harmful keywords in both parts. The findings observed in Qwen3-8B are consistent in (a) Qwen3-
1.7B and (b) DeepSeek-R1-Distill-Llama-8B.

0.25—often above 0.30. In contrast, successful jailbreaks attacks typically kept attention below
this threshold, with average between 0.22 and 0.24. Prompts exceeding the threshold tend to be
overly explicit, increasing the likelihood of triggering the model’s safety mechanisms. Conversely,
prompts with attention below the threshold are generally more subtle, making them more likely to
evade detection and successfully induce harmful behavior.

7.2 DETAIL EXPERIMENTAL SETTINGS

For all model inference, we set the temperature to 0.7 and adopt a sampling-based decoding strategy
with do sample=True. The maximum number of generated tokens is set to max new tokens=1024.
We also use the enable thinking flag to control whether the Large Reasoning Models perform inter-
mediate reasoning during generation. All experiments were conducted using Python 3.10 and the
transformers library version 4.51.0.
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