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Abstract
We evaluate the feasibility of generating formally verified C code that adheres to both functional

and non-functional requirements using Large Language Models (LLMs) for three real industrial,
automotive safety-critical software modules. We explore the capabilities of ten LLMs and four
prompting techniques — Zero-Shot, Zero-Shot Chain-of-Thought, One-Shot, and One-Shot Chain-
of-Thought — to generate C programs for the three modules. Functional correctness of generated
programs is assessed through functional verification, and adherence to non-functional requirements
is evaluated using an industrial static analyzer, along with human evaluation. The results demon-
strate that it is feasible for LLMs to generate functionally correct code, with success rates of
540/800, 59/800, and 46/800 for the three modules. Additionally, the generated programs fre-
quently adhere to the defined non-functional requirements. In the cases where the LLM-generated
programs did not adhere to the non-functional requirements, deviations typically involve viola-
tions of single-read and single-write access patterns or minimal variable scope constraints. These
findings highlight the promise and limitations of using LLMs to generate industrial safety-critical
C programs, providing insight into improving automated LLM-based program generation in the
automotive safety-critical domain.

1. Introduction
Large Language Models (LLMs) have demonstrated astonishing capabilities in generating code from
natural language specifications (Vaithilingam et al., 2022; Ross et al., 2023). Furthermore, LLMs
have proven to be valuable in software development tasks, from code generation and debugging to
documentation creation (Wu et al., 2023; Huang et al., 2023, 2024). However, several studies discuss
limitations related to guaranteeing the quality and correctness of generated code (Tambon et al.,
2024; Zhong and Wang, 2024; Lin et al., 2025). This limits the applicability of LLMs in domains
where correctness is vital, such as in the safety-critical automotive software domain.

Recognizing challenges in guaranteeing quality and correctness, this paper examines whether
LLMs can generate functionally correct C programs that adhere to both functional and non-
functional requirements for industrial automotive embedded software. To guarantee adherence to
functional requirements, we formally verify that the generated programs meet formal specifications
written in ANSI/ISO C Specification Language (ACSL) (Baudin et al., 2021), a widely adopted
annotation language for C. Regarding Non-Functional Requirements (NFRs), it is important to
note that industrial safety-critical code must adhere to a large set of NFRs, as demanded by safety
standards, such as ISO 26262 (ISO, 2018). For example, in automotive software, compliance with
standardized coding guidelines, such as MISRA-C (MIRA Ltd, 2004), is a common requirement.
Furthermore, the architectural framework used in a particular software development context typi-
cally requires following specific syntax and interface requirements. To evaluate adherence to NFRs,
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we combine the use of an industrial static code analysis tool with manual inspection. To avoid
biased results caused by validation examples being part of the training data of the LLMs, we run
all experiments on code examples that have not been previously published.

Several previous papers have explored the use of formal verification methods to ensure that
LLM-generated code meets both functional and non-functional requirements. To ensure functional
correctness, (Patil et al., 2024), (Mukherjee and Delaware, 2024), and (Slama and Lemire, 2024)
integrate LLMs with formal verification tools to assess the functional correctness, safety, and po-
tential vulnerabilities of LLM-generated code. The work (Cramer and McIntyre, 2025) explores
the feasibility of using formal software verification, specifically the SPARK framework for Ada,
to ensure the reliability of LLM-generated code. Sevenhuijsen et al. (2024) introduce a tool that
combines LLMs with formal verification to automatically and iteratively generate formally verified
C programs. The tool is evaluated on problems presented in Codeforces competitions. Regarding
adherence to NFRs, (Almonte et al., 2025) find that LLMs can generate NFR specifications aligning
with industry-standard models. However, Lin et al. (2025) demonstrate that prompting LLMs to
meet NFRs may also negatively impact functional correctness, reflecting inherent trade-offs.

Although previous studies have begun investigating the use of LLMs for safety-critical software,
a comprehensive exploration to ensure both functional correctness and adherence to NFRs for LLM-
generated industrial code remains limited. Specifically, previous studies have not simultaneously
assessed adherence to both functional and non-functional requirements for the safety-critical auto-
motive domain. In our earlier work (Patil et al., 2024), we investigated the generation of C programs
for three real industrial safety-critical modules. The present paper provides three main extensions:
(1) exploring additional prompting techniques such as One-Shot; (2) broadening the evaluation by
evaluating ten recent LLMs; and (3) significantly extending the assessment of adherence to NFRs,
like interface consistency and adherence to safety-critical coding requirements.

The paper is organized as follows. Section 2 describes the case studies that form the basis
of the experiments. Section 3 presents the experimental design criteria, covering the creation of
specification types, the selection of LLMs, the design of prompts, and methods for evaluating
generated programs. Research questions are defined in Section 4. Section 5 presents and discusses
the experimental results, followed by a discussion in Section 6. The paper is concluded in Section 7.

2. Industrial Case Studies
To evaluate the capabilities of LLMs in the context of the safety-critical automotive domain, we
utilize three application software modules from real-world automotive C code developed by the
heavy-vehicle manufacturer Scania. These application software modules perform essential functions
in embedded systems, where correctness is critical for ensuring safe and reliable vehicle operation.
Throughout the paper, we refer to these application software modules as modules for conciseness.

Modules execute within an electronic control unit (ECU), where a static scheduler invokes the
main function of the module at fixed intervals. The execution is strictly sequential, ensuring deter-
ministic behavior by limiting recursion and dynamic memory allocation.
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Figure 1: ECU architecture with internal and external interactions.

A module interacts with multiple components in an automotive embedded system, as shown in
Figure 1. The Real-Time Database (RTDB) manages communication between different modules,
allowing a module to read and write shared signals. The diagnostics module handles fault detection
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and logging. The low-level software (SW) and hardware (HW) (Low-Level SW/HW) abstraction
layer provides access to peripherals, sensors, and actuators. External communication with other
ECUs occurs via the Controller Area Network (CAN) (ISO, 2015). Each module reads inputs from
the RTDB, representing sensor values, control signals, or stored internal states. The computed
outputs are written back to the RTDB or sent to the diagnostics module. We select three modules
with natural language specifications from Scania’s development based on four criteria: (1) the
module covers diverse functionalities; (2) the module includes a manually written and formally
verified reference implementation ranging from 50 to 150 Lines of Code (LoC), balancing feasibility
for LLM generation with sufficient complexity for evaluation; (3) the functional requirements are
formally verifiable using Frama-C, and (4) the module performs safety-critical functions, requiring
high reliability and correctness.

To enable verification, we structure each module as a single translation unit, abstracting interac-
tions with other components such as a RTDB. These abstractions are made by replacing functionality
with globally defined static variables. Crucially, the safety-critical nature and functionality of the
code remain consistent with the original implementation taken from Scania’s repository.

Module #ACSL Clauses #NL Requirements #LoC Reference
SGMM 13 5 89
BRAK 7 5 108
SFLD 59 10 102

Table 1: Overview of the safety-critical modules used as case studies.

Table 1 provides an overview of the three chosen modules. Column “#ACSL Clauses” details the
number of ACSL clauses present in the formal specification, column “#NL Requirements” presents
the number of natural language requirements, and “#LoC Reference“ shows the length of the ref-
erence implementation in terms of LoC. The gearbox activation module (SGMM) ensures the safe
engagement of a gearbox component by processing real-time sensor data related to motor speed,
magnetic field integrity, and gear position. The brake light module (BRAK) determines the activa-
tion of brake lights based on system state, remote requests, and voltage levels, handling conflicting
signals to ensure reliable operation. The oil level warning module (SFLD) monitors oil levels over
time and triggers diagnostic warnings when the oil level remains low for a predefined duration,
preventing false alarms while ensuring timely fault detection. SGMM and BRAK require fewer
ACSL clauses than SFLD, indicating that their verification involves fewer constraints and more
straightforward logical conditions.

3. Experimental Setup

3.1. Prompt Design and LLMs
In the experiments, we invoke LLMs using prompts to generate a program for the modules defined
in Section 2. Each generated program is referred to as an implementation. The aim is to produce
correct implementations that satisfy both functional and non-functional requirements. For each
module, we define five inputs used in the prompts: (1) ACSL specifications that formally define
the expected behavior; (2) natural language specifications describing the intended functionality in
English; (3) a function signature that specifies the function name, return type, and parameters; (4)
a header file containing the type definitions, struct definitions, and constants used in the reference
implementation; and (5) an interface definition that specifies RTDB signals and local variables that
the implementation can use. Appendix A exemplifies the inputs of a module.

These inputs are then used to construct structured prompts, which provide LLMs with informa-
tion for generating implementations for the specified modules. We define four prompting techniques
to investigate how different prompt formats affect the ability of LLMs to generate implementations
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that adhere to both functional and non-functional requirements: (1) the Zero-Shot Prompt (Wei
et al., 2023), only providing high-level task instructions; (2) the Zero-Shot Chain-of-Thought (CoT)
Prompt (Wei et al., 2023), augmenting the instructions with a step-by-step reasoning path; (3) the
One-Shot Prompt (Brown et al., 2020), including a single example of a completed module along
with its inputs (detailed in Appendix A) to employ in-context learning; and (4) One-Shot-CoT,
combining both One-Shot and CoT. An outline of the prompts is provided in Appendix B. Each
prompt begins with a system prompt that defines how the LLM should behave, followed by a user
prompt that provides the input to the LLM.

LLMs can leverage reasoning through prompting, typically via CoT prompts. In these prompts,
the reasoning steps can improve reasoning even in LLMs not specifically optimized for reasoning,
such as GPT-4.1 (OpenAI, 2025a) (non-reasoning LLM ). In contrast, LLMs exist that are explicitly
trained or fine-tuned for multi-step reasoning. These LLMs, such as DeepSeek-R1 (DeepSeek-AI,
2025), have a conversation with itself on how to answer the prompt. We refer to these LLMs as
reasoning LLMs. Note that for reasoning LLMs, the LLM still reasons, even if the prompt is not a
CoT variant. The reasoning steps present in the CoT act as a guide for the reasoning models, but
can also be helpful for non-reasoning LLMs.

We evaluate a diverse set of ten LLMs based on their strong performance in recent code gener-
ation benchmarks such as RepairBench (Silva and Monperrus, 2024), BigCodeBench (Zhuo et al.,
2024), and HumanEval (Chen et al., 2021), as well as their specialization in programming tasks.
From experiments conducted with 22 LLMs (listed in Appendix C), we select ten representative
LLMs—five closed-source and five open-source— of varying size and providers for focused anal-
ysis in this paper. The selection emphasizes the best-performing LLMs, regardless of their cost
or whether they are a reasoning LLM or not. Rather than comparing LLMs directly, the focus
is on assessing the feasibility of generating at least one implementation adhering to the imposed
requirements for each module with recent LLMs.

3.2. Evaluation of Generated Implementations
After an LLM generates an implementation, it is compiled. If the compilation is successful, the
implementation is evaluated for functional correctness. If successful, it is also assessed with respect
to non-functional requirements NFRs. To verify functional correctness, we use the so-called weak-
est precondition (WP) (Baudin et al., 2024) plugin in the state-of-the-art C source code analysis
framework Frama-c (Correnson et al., 2025) version 29.0. Frama-c is open-source and employs
plugins to formally verify that C programs adhere to formal ACSL (Baudin et al., 2021) specifica-
tions. ACSL specifications are placed within special comments (“ /*@ ...*/”) and primarily include
function contracts and code annotations.

To assess the adherence to defined NFRs, we use an industrial static analysis tool designed to
enforce coding standards and detect deviations from predefined NFRs. The employed static analysis
tool supports custom rules and is utilized in the automotive safety-critical domain. Additionally,
manual inspection is necessary to verify NFRs that the tool does not cover.

Previous work (Chen et al., 2021; Austin et al., 2021; Yu et al., 2024) assesses functional cor-
rectness by executing test cases and computing the unbiased Pass@k metric. In contrast, this study
introduces the Verify@k metric, which evaluates the feasibility of generating formally verified im-
plementations. Verify@k first checks whether the generated implementation compiles successfully.
If compilation succeeds, the implementation undergoes formal verification. An implementation is
considered verified under Verify@k only if it passes both compilation and verification. To compute
Verify@k, we generate n ≥ k implementations per module and determine how many of these suc-
cessfully verify. We use k ∈ {1, 5, 10} to analyze different likelihoods of success. k = 1 reflects the
effectiveness when generating a single function, while k = 5 and k = 10 provide insight into whether
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multiple attempts are necessary for generating success. From the generated implementations, we
count the number of formally verified implementations c ≤ n that pass both compilation and veri-
fication, using this to calculate the Verify@k metric: Verify@k := E

Specifications

[
(1−

(
n−c
k

)
)/
(
n
k

)]
.

3.3. Non Functional Requirements
In general, NFRs refer to safety-critical properties such as performance, security, and maintainabil-
ity, which do not specify the functional behavior of the code but rather its qualitative attributes.
We divide the NFRs into Code Guidelines and Implementation Constraints. The former specifies
requirements such as structured control flow derived from The Rules of Ten (Holzmann, 2006). The
latter, derived from experimental observations, captures constraints that ensure compatibility with
formal verification and adherence to safety-critical practices. When applicable, we map these NFRs
into a subset of MISRA-C (MIRA Ltd, 2004), which static analysis tools can automatically check.
All 11 NFRs are summarized in Figure 2 and fully explained in Appendix D.
Non-Functional Requirements 1

Safety-Critical Code Guidelines (Derived from Rules of 10)
NFR1 ( c o n t r o l f l ow ) . R e s t r i c t a l l code to s imp l e c o n t r o l f l ow con s t r u c t s , w i thout

r e c u r s i o n , goto , o r jumps .
NFR2 ( l o op s ) . A l l l o o p s must have a f i x e d upper bound .
NFR3 (memory ) . Do not use dynamic memory a l l o c a t i o n a f t e r i n i t i a l i z a t i o n .
NFR4 ( scope ) . Data o b j e c t s must be d e c l a r e d at the sm a l l e s t p o s s i b l e l e v e l o f scope .
NFR5 ( v a l i d a t i o n ) . Check r e t u r n v a l u e s and v a l i d a t e f u n c t i o n pa ramete r s .
NFR6 ( p o i n t e r s ) . The use o f p o i n t e r s must be r e s t r i c t e d .
Implementation Constraints (Derived from Observations)
NFR7 (RTDB) . Read from and w r i t e to each RTDB v a r i a b l e at most once .
NFR8 ( c o n s t r u c t s ) . Only use s t anda rd C c o n s t r u c t s o r header−d e f i n e d c o n s t r u c t s .
NFR9 ( i n t e r f a c e ) . Adhere to the p r o v i d ed i n t e r f a c e d e f i n i t i o n .
NFR10 ( impo r t s ) . Do not use e x t e r n a l impo r t s .
NFR11 ( f o rma l s p e c i f i c a t i o n l o g i c ) . Do not use f o rma l s p e c i f i c a t i o n l o g i c such as ghos t

v a r i a b l e s o r p r e d i c a t e s i n the imp l ementa t i on .

Figure 2: Defined non-functional requirements analyzed in this paper.

4. Research Questions and Experimental Methodology
RQ1 (functional correctness feasibility): In the domain of safety-critical software, how feasi-
ble is it to generate a functionally correct implementation using state-of-the-art LLMs, from given
functional requirements? Understanding feasibility is crucial, as it determines whether LLMs can
produce functionally correct implementations for use in safety-critical domains, such as automotive
software. To assess this, we generate 20 program implementations per prompting technique, LLM,
and module, using a temperature of 0.7. This temperature is chosen because prior work has shown it
balances diversity and coherence in generated code (Wen et al., 2024; Granberry et al., 2024). Lower
temperatures (e.g., 0.1) produce more deterministic output that limits exploration, while higher val-
ues (e.g., 0.9) can introduce syntactic or logical errors. For LLMs that do not allow temperature
control (i.e. o4-mini-high), the temperature is fixed. Each of the generated implementations is
compiled, and any that fail this are discarded. The remaining implementations undergo formal
verification to verify adherence to the functional requirements outlined in the formal specification.
We define that an LLM solves the problem of implementing a given module if at least one of its
generated implementations formally verifies successfully . We then check whether all modules are
solved; if so, then we say it is feasible to generate functionally correct implementations using LLMs.
RQ2 (prompting techniques influence): How do different prompting techniques influence the
likelihood of generating formally verified programs? Prompting techniques impact how LLMs gener-
ate implementations from requirements. Evaluating the influence of different prompting techniques
as defined in Section 3.1 helps determine whether structured instructions improve the success of
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generating correct implementations. We employ the Verify@k metric to measure the likelihood of
generating at least one formally verified implementation within k attempts, which is calculated for
multiple values of k —Verify@1, Verify@5, and Verify@10— across different prompting techniques.
RQ3 (non-functional compliance feasibility): In the domain of safety-critical software, how
feasible is it to generate an implementation adhering to non-functional requirements using state-of-
the-art LLMs? Even if a generated implementation passes formal verification, it may still violate
NFRs such as safety-critical coding guidelines. Understanding these deviations is crucial in de-
termining whether LLM-generated implementations are to be used in production. For RQ3, it is
deemed feasible only if each module has at least one implementation that is both formally verified
and fully compliant with NFRs defined in Figure 2.

Starting with the verified implementations from RQ1, we assess compliance using an industrial
static analysis tool, which checks NFR1 (control flow), NFR3 (memory usage), NFR5 (validation),
and NFR6 (pointers). To meet NFR8 (interface) and NFR10 (imports), only function bodies (thus
all custom-defined constructs and external imports are removed from the implementation) are eval-
uated. Compliance with NFR11 (formal specification logic) is ensured through compilation and
verification, which fail if specification-specific constructs are used.

Since the employed static analysis tool does not cover NFR2 (loops), NFR4 (scope), NFR7
(RTDB), and NFR9 (interface), we must manually inspect implementations to confirm adherence
to these NFRs. An exhaustive review of all implementations is infeasible due to time constraints
(possibly involving 2,400 implementations), so we allocate a 25-hour budget for manual inspection.
Within this time frame, we select a representative subset from every LLM and module, prioritizing
cases with fewer successful solves to ensure these underrepresented combinations are also analyzed.
Although the selection includes some randomness, finding at least one compliant implementation
per module is sufficient to demonstrate that such solutions are possible.

5. Experimental Results

RQ1 (functional correctness feasibility): Table 2 summarizes the formal verification outcomes
for the ten chosen LLMs across four prompting techniques and three safety-critical modules: SGMM,
BRAK, and SFLD. It is structured as follows. The first column, “Large Language Model ”, speci-
fies the name, version, and citation of the employed LLM. Additionally, the LLMs are categorized
by source availability (Closed-Source or Open-Source) and whether they are Reasoning or Non-
Reasoning LLMs. The second column, “Prompt Technique”, specifies the prompting technique used
as defined in Section 3.1. The remaining columns present the verification success rates for the
SGMM, BRAK, and SFLD modules. Each module is associated with four columns presenting four
metrics. The first three metrics, “v@1”, “v@5”, and “v@10”, show the verify@k metric as defined
in Section 3.2. The fourth metric, “vs/20”, shows the total number of verified implementations out
of 20 generated implementations. For these four metrics, the “-” symbol indicates that none of the
20 generated implementations pass verification. For each module, a total of 800 implementations
are generated (20 implementations using four prompting techniques and ten LLMs). The bottom
row presents the total number of formally verified implementations for each module. The results in
Table 2 indicate that generating formally verified implementations is feasible for all three defined
modules. However, the feasibility differs depending on the module. For SGMM, all LLMs are capa-
ble of generating at least one formally verified implementation. In total, 540 of the 800 generated
implementations are formally verified for SGMM, demonstrating that LLMs can consistently gen-
erate this module. The high success rate of SGMM can most likely be attributed to the relative
simplicity of generating implementations for the SGMM module. The module does not involve
complex logic, and its formal specifications closely align with an implementation.
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Large Language Model Prompt Technique SGMM BRAK SFLD
v@1 v@5 v@10 vs/20 v@1 v@5 v@10 vs/20 v@1 v@5 v@10 vs/20

GPT-4.1 Zero-Shot 0.75 1.00 1.00 15 0.10 0.45 0.76 2 0.05 0.25 0.50 1
2025-04-14 (OpenAI, 2025a) Zero-Shot-CoT 0.85 1.00 1.00 17 0.05 0.25 0.50 1 0.15 0.60 0.89 3
Closed-Source One-Shot 0.45 0.97 1.00 9 0.05 0.25 0.50 1 0.05 0.25 0.50 1
Non-Reasoning One-Shot-CoT 0.90 1.00 1.00 18 0.30 0.87 0.99 6 0.25 0.81 0.98 5
o4-mini-high Zero-Shot 1.00 1.00 1.00 20 - - - - 0.10 0.45 0.76 2
2025-04-16 (OpenAI, 2025b) Zero-Shot-CoT 0.95 1.00 1.00 19 0.05 0.25 0.50 1 0.05 0.25 0.50 1
Closed-Source One-Shot 1.00 1.00 1.00 20 0.05 0.25 0.50 1 - - - -
Reasoning One-Shot-CoT 0.90 1.00 1.00 18 0.05 0.25 0.50 1 0.20 0.72 0.96 4
Grok-3 Zero-Shot 1.00 1.00 1.00 20 0.20 0.72 0.96 4 0.40 0.95 1.00 8
beta (xAI, 2025) Zero-Shot-CoT 1.00 1.00 1.00 20 0.40 0.95 1.00 8 0.25 0.81 0.98 5
Closed-Source One-Shot 0.05 0.25 0.50 1 - - - - - - - -
Reasoning One-Shot-CoT 0.95 1.00 1.00 19 0.50 0.98 1.00 10 0.15 0.60 0.89 3
Gemini-2.5-Pro Zero-Shot 0.85 1.00 1.00 17 0.10 0.45 0.76 2 0.05 0.25 0.50 1
05-06 (DeepMind, 2025b) Zero-Shot-CoT 1.00 1.00 1.00 20 - - - - 0.15 0.60 0.89 3
Closed-Source One-Shot 0.85 1.00 1.00 17 - - - - 0.20 0.72 0.96 4
Reasoning One-Shot-CoT 0.95 1.00 1.00 19 0.05 0.25 0.50 1 0.15 0.60 0.89 3
Sonnet-3.7 Zero-Shot 1.00 1.00 1.00 20 0.10 0.45 0.76 2 - - - -
20250219 (Anthropic, 2025) Zero-Shot-CoT 1.00 1.00 1.00 20 0.35 0.92 1.00 7 0.10 0.45 0.76 2
Closed-Source One-Shot 0.15 0.60 0.89 3 - - - - - - - -
Reasoning One-Shot-CoT 1.00 1.00 1.00 20 0.10 0.45 0.76 2 - - - -
Qwen2.5-Coder-32B-Instruct Zero-Shot 0.95 1.00 1.00 19 - - - - - - - -
2024-11-12 (Yang et al., 2024) Zero-Shot-CoT 0.50 0.98 1.00 10 - - - - - - - -
Open-Source One-Shot 0.40 0.95 1.00 8 - - - - - - - -
Reasoning One-Shot-CoT 0.45 0.97 1.00 9 - - - - - - - -
DeepSeek-R1-Distill-Qwen-32B Zero-Shot 0.70 1.00 1.00 14 0.05 0.25 0.50 1 - - - -
0121 (DeepSeek-AI, 2025) Zero-Shot-CoT 0.30 0.87 0.99 6 - - - - - - - -
Open-Source One-Shot 0.45 0.97 1.00 9 - - - - - - - -
Reasoning One-Shot-CoT 0.55 0.99 1.00 11 - - - - - - - -
DeepSeek-V3 Zero-Shot 0.95 1.00 1.00 19 - - - - - - - -
0324 (DeepSeek-AI et al., 2024) Zero-Shot-CoT 1.00 1.00 1.00 20 - - - - - - - -
Open-Source One-Shot - - - - - - - - - - - -
Non-Reasoning One-Shot-CoT 0.90 1.00 1.00 18 - - - - - - - -
DeepSeek-R1-671B Zero-Shot 0.40 0.95 1.00 8 0.20 0.72 0.96 4 - - - -
0120 (DeepSeek-AI, 2025) Zero-Shot-CoT 0.70 1.00 1.00 14 - - - - - - - -
Open-Source One-Shot 0.15 0.60 0.89 3 0.10 0.45 0.76 2 - - - -
Reasoning One-Shot-CoT 0.45 0.97 1.00 9 0.10 0.45 0.76 2 - - - -
DeepSeek-R1-Distill-Llama-70B Zero-Shot 0.10 0.45 0.76 2 0.05 0.25 0.50 1 - - - -
0123 (DeepSeek-AI, 2025) Zero-Shot-CoT 0.40 0.95 1.00 8 - - - - - - - -
Open-Source One-Shot 0.70 1.00 1.00 14 - - - - - - - -
Reasoning One-Shot-CoT 0.35 0.92 1.00 7 - - - - - - - -
Total Summation 540 59 46

Table 2: Evaluation of 10 LLMs and prompt techniques when generating formally verified code.
When investigating BRAK and SFLD, we observe in the results that the LLMs generate sub-

stantially fewer formally verified implementations than for SGMM. BRAK is solved 59 times in the
800 generated implementations. We suspect that the decrease in performance is attributed to the
higher complexity of BRAK, as it contains nested conditional logic and input-validation require-
ments. Similarly, SFLD is not solved frequently. This module is solved 46 of 800 times, making
SFLD the least solved module. The module contains timing constraints and indirect state-tracking
requirements that complicate straightforward translation from specification to implementation. This
suggests that, given our results, LLMs can reliably handle simpler modules but might struggle with
more complex modules.

In our experiments, closed-source LLMs consistently generated more formally verified implemen-
tations than open-source LLMs across all modules. Interestingly, for BRAK, 59 of the 800 generated
implementations verify: 49 by closed-source LLMs and only 10 by open-source LLMs (highlighted
in column “vs/20” for BRAK in Table 2). SFLD was solved exclusively by closed-source LLMs (46
total), with no open-source LLM generating a verified implementation. This pattern indicates that,
within our study, closed-source LLMs hold a clear advantage in generating formally verified code.
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Additionally, GPT-4.1, despite not being a reasoning LLM, performed well on all three modules in
our experiments, showing that generating formally verified implementations does not depend solely
on an explicitly reasoning-optimized architecture.

In summary, our results show that it is feasible to generate functionally correct implementations
for all investigated safety-critical modules using LLMs. From conducted experiments, we observe
that feasibility varies with module complexity: simpler modules, such as SGMM, are solved consis-
tently, while success rates decline for more complex modules, including BRAK and SFLD. In our
results, closed-source LLMs outperform open-source ones, but no single model solves all tasks. In-
terestingly, high performance is observed even for general-purpose LLMs without explicit reasoning
optimization, suggesting that model capability combined with clear specifications is more critical
than architectural specialization.
RQ2 (prompting techniques influence): In Table 2, we observe that within the obtained
results, the effectiveness of prompting techniques on generating formally verified implementa-
tions from specifications is highly LLM-dependent, with no universal “best” prompting tech-
nique. For example, GPT-4.1 attains its highest SGMM success under One-Shot-CoT. Mean-
while, Sonnet-3.7 performs best with Zero-Shot-CoT, and both Qwen2.5-Coder-32B-Instruct and
DeepSeek-R1-Distill-Qwen-32B achieved the highest number of verified implementations in the
experiments using Zero-Shot. For DeepSeek-R1-Distill-Llama-70B, the best-performing prompt-
ing technique for SGMM was One-Shot. The mentioned best-performing prompting techniques are
highlighted in column “Prompting Technique” in Table 2 to illustrate the per-LLM differences. The
mixed results suggest that the effectiveness of prompting strategies for generating formally verified
code from specifications depends on the individual LLM.

0 20 40 60 80 100 120 140 160 180 200

Zero-Shot

Zero-Shot-CoT

One-Shot

One-Shot-CoT

12

14

5

15

16

17

4

22

154

154

84

148

P
ro

m
pt

T
ec

hn
iq

ue

SGMM BRAK SFLD

Figure 3: Count of formally verified implementations based on prompting techniques and modules.

Figure 3 presents a stacked bar plot illustrating the number of formally verified implemen-
tations generated across different prompting techniques and modules. The y-axis represents the
four prompting techniques used. The x-axis indicates the total number of formally verified im-
plementations. Each bar is divided into three segments, corresponding to the number of verified
implementations for SGMM (blue), BRAK (orange), and SFLD (green). The values correspond to
the aggregate counts provided in Table 2, with the total number of verified implementations per
prompting technique being the sum of formally verified implementations across all LLMs.

Zero-Shot and Zero-Shot-CoT, and One-Shot-CoT all achieve very similar verification counts for
the SGMM module, generating 154, 154, and 148 formally verified implementations, respectively. In
contrast, One-Shot prompting produces substantially fewer SGMM verifications (84). For BRAK
and SFLD modules, we see the same pattern where One-Shot performs significantly worse than
other prompting techniques. For these two modules, One-Shot-CoT outperforms all other tech-
niques in the experiments, generating 22 formally verified BRAK implementations and 15 SFLD
implementations. The observations indicate that no single prompting technique uniformly excels
across all LLMs. However, One-Shot prompting underperforms. We hypothesize that the lengthy
example in a One-Shot prompt may overwhelm the input of the LLM, leading to poor performance.
Additionally, we observe in Table 2 that for specific models, there is no significant difference be-
tween zero-shot and one-shot performance (o4-mini-high, both 20). In contrast, the performance of
other models decreases significantly when using one-shot instead of zero-shot (Grok-3, from 20 to
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1). But, when including the intermediate reasoning steps (CoT variants), this seems to clarify how
to leverage the provided example in a more effective manner.

To conclude, the effectiveness of prompting varies markedly across LLMs and modules, and no
single strategy consistently outperforms the others. Different LLMs may prefer a specific prompting
technique for generating a formally verified implementation based on natural language and formal
specifications. One-Shot alone performed substantially worse than other prompting techniques for
all modules. However, the CoT variant resolves this decrease in performance for One-Shot.

LLM SGMM BRAK SFLD

GPT-4.1 10 7 42 2 8 10

o4-mini-high 17 4 56 12 3 4

Grok-3 13 4 43 4 18 9 7

Gemini-2.5-Pro 16 7 50 12 3 8

Sonnet-3.7 28 35 1 10 2

Qwen-2.5-Coder-32b 3 13 30

R1-Qwen-32b 5 6 29 1

DeepSeek-v3 12 6 39

R1-671b 13 1 20 2 6

R1-Llama-70b 9 2 20 1

Meets NFRs
Fails NFRs
Not analyzed

Table 3: Number of implementations adhering to all defined NFRs for each analyzed LLM. A total
of 281 of 645 function implementations are analyzed. For brevity, the model names are shortened.

Non-Functional Requirement SGMM (of 176) BRAK (of 59) SFLD (of 46)

NFR4 (scope) 1 41 22
NFR7 (RTDB) 63 26 10
NFR9 (interface) 20 1 16

Table 4: Number of violations of each NFR grouped by module. Non-violated NFRs are left out.

RQ3 (non-functional compliance feasibility):
For each LLM and module, we generate 80 implementations (4 prompting techniques × 20

implementations); only those that pass functional verification are checked for NFR compliance.
The assessment of NFRs using the industrial static analysis tool revealed no violations, so those
NFRs are omitted from further detailed analysis. Table 3 shows, per LLM and module, how many
verified implementations also meet all NFRs. For the underrepresented modules (BRAK and SFLD),
we analyze all implementations, whereas for SGMM, we evaluate only a random subset.

The results show that it is feasible to generate implementations that are functionally correct and
adhere to NFRs for each of the evaluated modules. Within the analyzed samples, all LLMs, except
for Sonnet-3.7, generate at least one implementation for SGMM that adheres to the NFRs. Inter-
estingly, Sonnet-3.7 violates the NFR7 (RTDB) for all 28 formally verified implementations. For
BRAK, six LLMs generate at least one implementation that adheres to both the requirement types.
However, in the generated implementations, only o4-mini-high, Grok-3, and Gemini-2.5-Pro
generate an implementation that is compliant with the NFRs for SFLDs. Additionally, these three
LLMs generated at least one implementation that formally verifies and adheres to the defined NFRs,
demonstrating feasibility.

NFR2 (loops) is never violated because the implementations for these modules do not involve
loops. The other manually inspected NFRs are summarized in Table 4, which show the absolute
number of violations for each of the manually inspected NFRs across the three modules. Column
“Non-Functional Requirement” refers to the analyzed NFR as defined in Figure 2. Next, for each
module, we present one column, presenting the number of observed NFR violations. The results
show that NFR7 (RTDB) is violated most frequently, particularly for SGMM (63 of 176 times).
Additionally, NFR4 (scope) is commonly violated in BRAK (41 of 59 times) and SFLD (22 of 46

9
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times). When analyzing these implementations, we observe that the LLMs tend to group similar
statements by defining constants at a broader scope. Adherence to NFR9 (interface) is less fre-
quently violated, but still present, particularly in SGMM (20 of 176 times) and SFLD (16 of 46
times). Our results show that, in the conducted experiments, the LLM-generated implementations
occasionally deviated from the defined NFRs. Overall, we observe that it is feasible that LLMs
generate implementations that meet NFRs.

6. Discussion
As shown in Section 5, LLMs are capable of generating C module implementations that not only
pass formal verification but also meet defined NFRs. Notably, the total cost of all conducted exper-
iments across LLMs, prompting techniques, and modules amounted to $ 321.87 (see Appendix E).
This cost is substantially lower than the effort typically required from a human developer, who
would likely spend many hours per module implementing, testing, and debugging the code. How-
ever, this promising performance comes with an important limitation: the engineering effort shifts
from writing code to rigorously defining behavior through formal specifications and requirements,
a process that is also costly and time-consuming.

In our experiments, we observed that when provided with specifications that clearly define the
expected behavior for all input variables, LLMs are able to generate implementations that satisfy
both functional and non-functional requirements. However, in typical development practice, en-
gineers frequently work from incomplete or informal specifications and rely on their expertise to
interpret and implement the intended behavior. Since LLMs lack this contextual understanding,
the effectiveness of code generation depends heavily on the precision and completeness of the given
specifications. Therefore, the long-term success of LLM-generated implementations from require-
ments relies not only on improving LLM capabilities but also on advancing methods and tools for
writing rigorous and unambiguous specifications.

7. Conclusion
In this work, we evaluated ten state-of-the-art LLMs for generating formally verified, safety-critical
automotive C programs across three industrial modules. Results demonstrate that it is feasible to
generate programs that adhere to both functional and non-functional requirements. We observe that
the performance of LLMs in generating functionally correct programs was not consistent throughout
each analyzed module. Specifically, for the SGMM module, LLMs achieved a high success rate in
generating a formally verified program (540 of 800). In contrast, verification rates were notably
lower for modules containing either timing and state-tracking requirements, BRAK (59 of 800), and
SFLD (46 of 800). While adherence to NFRs is feasible, our analysis revealed frequent violations,
particularly in RTDB interaction (99 violations in 281 programs) and variable scope management (64
violations in 281 programs), highlighting areas for improvement in LLMs to generate programs that
adhere to these requirements consistently. Future research should focus on developing automated
methods for checking a broader range of NFRs. This would enable the construction of automatic
feedback loops that can address violations and guide the LLM in iteratively generating improved
programs. Furthermore, as the process of generating programs from specifications relies heavily on
the quality of the requirements themselves, advancing tools and methodologies for authoring precise,
complete, and unambiguous specifications remains a critical challenge. Finally, exploring fine-
tuned LLMs on domain-specific software that adheres to functional and non-functional requirements
could offer a promising direction for the automated generation of correct and standards-compliant
automotive embedded code.
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Appendix A. Example of the inputs

This appendix gives an example of the inputs to and outputs from an LLM for a given module. To
illustrate this, we present an implementation of a steering module, taken from Scania’s development
repository. This example module, named STEE, is a simplified version of a safety-critical automotive
module that controls the steering system. It evaluates primary circuit sensors and determines
whether the vehicle is in motion, and activates the secondary circuit under specific conditions.
The input to the LLM is divided into five parts: (1) an ACSL specification, (2) natural language
specifications, (3) a function signature, (4) type definitions, and (5) an interface definition. The
desired output of the LLM is a single function implementation that adheres to the defined inputs.

A.1. ACSL Specification

ACSL Specification

/*@
assigns rtdb_PARKING_BRAKE_APPLIED;
assigns rtdb_PRIMARY_CIRCUIT_HIGH_VOLTAGE;
assigns rtdb_WHEEL_BASED_SPEED;
assigns rtdb_SECONDARY_CIRCUIT_HANDLES_STEERING;
assigns rtdb_ELECTRIC_MOTOR_ACTIVATED;

assigns state_PARKING_BRAKE_APPLIED;
assigns state_PRIMARY_CIRCUIT_LOW_FLOW;
assigns state_PRIMARY_CIRCUIT_HIGH_VOLTAGE;
assigns state_WHEEL_BASED_SPEED;
assigns state_SECONDARY_CIRCUIT_HANDLES_STEERING;
assigns state_ELECTRIC_MOTOR_ACTIVATED;

// Req. 1 (combined conditions ):
// If old(rtdb_PRIMARY_CIRCUIT_HIGH_VOLTAGE) == 1

OR old(rtdb_PRIMARY_CIRCUIT_LOW_FLOW) == 1,
// AND old(rtdb_WHEEL_BASED_SPEED) > 3,
// THEN rtdb_SECONDARY_CIRCUIT_HANDLES_STEERING == 1.
ensures ((\ old(rtdb_PRIMARY_CIRCUIT_HIGH_VOLTAGE) == 1)

|| (\old(rtdb_PRIMARY_CIRCUIT_LOW_FLOW) == 1))
&& (\old(rtdb_WHEEL_BASED_SPEED) > 3)
==> rtdb_SECONDARY_CIRCUIT_HANDLES_STEERING == 1;

// Req. 2:
// If rtdb_SECONDARY_CIRCUIT_HANDLES_STEERING == 1 (new state),
// AND old(rtdb_PARKING_BRAKE_APPLIED) == 0,
// THEN rtdb_ELECTRIC_MOTOR_ACTIVATED == 1.
ensures rtdb_SECONDARY_CIRCUIT_HANDLES_STEERING == 1

&& \old(rtdb_PARKING_BRAKE_APPLIED) == 0
==> rtdb_ELECTRIC_MOTOR_ACTIVATED == 1;

*/

Figure 4: Formal ACSL Specification detailing the intended functionality of the STEE module.

Figure 4 presents the ACSL specification for the STEE module, which defines the expected
behavior of the implementation using a precise format. It contains a function contract for the
function for which we wish to generate an implementation. These formal specifications enable
formal verification using Frama-C, ensuring that a given implementation complies with the intended
requirements. The ACSL specification consists of three key components: requires, assigns, and
ensures clauses.
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The requires clause (not present in the example but commonly included in ACSL) defines precon-
ditions that must hold before the function executes. The assigns clause explicitly lists the variables
the function is allowed to modify. By restricting write operations, this clause ensures that the
function does not write to variables other than the defined ones. The ensures clause defines post-
conditions that must be satisfied after function execution. These ensure clauses formally specify the
conditions under which certain system states should change. In the formal specification of STEE,
the ensures clauses correspond to the natural language requirements.

By providing a formal representation of system behavior, the ACSL specification enables auto-
mated verification using tools such as Frama-C. Additionally, this is given as input to the LLM to
provide a formal means of defining the problem. The Frama-C plugins verify that the generated
implementations meet the formal specification. The formal specification for STEE utilizes a total
of 13 clauses to capture the behavior (11 assigns, 2 ensures).

A.2. Natural Language Requirements

Natural Language specification

Req. 1: If the value of rtdb_PRIMARY_CIRCUIT_HIGH_VOLTAGE is 1 or the value of
rtdb_PRIMARY_CIRCUIT_LOW_FLOW is 1), and the value of rtdb_WHEEL_BASED_SPEED is greater than 3,
then rtdb_SECONDARY_CIRCUIT_HANDLES_STEERING must be set to 1 in the new state.
Req. 2: If rtdb_SECONDARY_CIRCUIT_HANDLES_STEERING is 1 in the new state, and the value of
rtdb_PARKING_BRAKE_APPLIED is 0, then rtdb_ELECTRIC_MOTOR_ACTIVATED must be set to 1 in the new state.

Figure 5: Natural language specifications detailing the intended functionality of the STEE module.

Figure 5 presents the natural language requirements of the STEE module. These requirements
specify conditions for activating the secondary steering circuit and the electric motor. The first
requirement ensures that the secondary circuit takes over steering when the primary circuit fails
while the vehicle moves. The second requirement ensures the electric motor is engaged when the
secondary circuit is active, and the parking brake is not applied.

A.3. Function Signature

Function Signature

vo id stee_10ms ( vo id )

Figure 6: The function signature of the STEE module.

Figure 6 presents the function signature for the STEE module. The function signature,
stee_10ms, has a void return type and takes no parameters. This is due to the module using
variables defined in the interface. Adherence to the function signature is essential for the for-
mal verification process. The LLM must generate an implementation that precisely matches this
signature. During the verification process, the formal specification is prepended to the function
implementation. The verification automatically fails if a LLM generates an implementation that
does not adhere to the function signature. The function signature is used to prepend the formal
specification, and if not found, then the formal specification is not prepended. Therefore, we decide
to fail any implementation that does not adhere to the function signature.
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A.4. Header file

Type Definitions

enum SENSOR_STATE
{

WORKING,
NO_FLOW,
SHORT_CIRCUIT

} ;

s t r u c t VEHICLE_INFO
{

i n t wheelSpeed ;
i n t pa rk i ngBrake ;
i n t primLowFlow ;
i n t pr imHighVo l tage ;
i n t s e condC i r cHand l e sS t e e ;
i n t e l e c t r i cMo t o rA c t ;

} ;

enum SIGNAL
{

PARKING_BRAKE_APPLIED,
PRIMARY_CIRCUIT_LOW_FLOW,
PRIMARY_CIRCUIT_HIGH_VOLTAGE,
WHEEL_BASED_SPEED,
SECONDARY_CIRCUIT_HANDLES_STEERING,
ELECTRIC_MOTOR_ACTIVATED,
NUM_SIGNALS

} ;

Figure 7: Type definitions for the STEE module.

Figure 7 presents the type definitions provided in the header file for the STEE module. This
header file is supplied to the LLM to ensure that the implementation uses the same data types and
defined constants. In the figure, we have three data structures to be used in the implementation.
These type definitions provide the required types to be used in the LLM-generated implementation.

A.5. Interface Definition

Figure 8 presents the interface that a generated implementation must adhere to. This includes
means of interacting with the RTDB. The interaction with the RTDB is abstracted away using
global variables. The implementation reads from and writes to these variables. An implementation
must only read from read-only variables and only write to write-only variables. The interface in the
STEE module defines two sets of variables: rtdb_ prefixed variables represent RTDB signals, while
state_ prefixed variables act as local states used during execution.

A.6. Steering Module Code

Figure 9 presents an example implementation of the STEE module that adheres to the pro-
vided inputs, including the function signature, interface, ACSL specification, and natural language
requirements. More importantly, this implementation meets the formal specification, meaning it sat-
isfies all constraints defined in the ACSL specification when checked using Frama-C. The solution
uses 52 lines of code to implement the behavior listed in the requirements.
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Interface

/∗ G loba l v a r i a b l e s r e p r e s e n t i n g RTDB s i g n a l s ( f o r i l l u s t r a t i o n ) ∗/
i n t rtdb_PARKING_BRAKE_APPLIED ;
i n t rtdb_PRIMARY_CIRCUIT_LOW_FLOW;
i n t rtdb_PRIMARY_CIRCUIT_HIGH_VOLTAGE ;
i n t rtdb_WHEEL_BASED_SPEED;
i n t rtdb_SECONDARY_CIRCUIT_HANDLES_STEERING ;
i n t rtdb_ELECTRIC_MOTOR_ACTIVATED;

/∗ Shadow s t a t e s f o r r e a d i n g / w r i t i n g the s i g n a l s ∗/
i n t state_PARKING_BRAKE_APPLIED ;
i n t state_PRIMARY_CIRCUIT_LOW_FLOW;
i n t state_PRIMARY_CIRCUIT_HIGH_VOLTAGE ;
i n t state_WHEEL_BASED_SPEED ;
i n t state_SECONDARY_CIRCUIT_HANDLES_STEERING ;
i n t state_ELECTRIC_MOTOR_ACTIVATED ;

Figure 8: Interface for reading and writing the vehicle state, simulating an RTDB mechanism.

Appendix B. Prompt Structure

B.1. Zero-shot and One-shot prompts

Structured Prompt 1

{
"persona ": "AI assistant for code generation & formal verification",
"instructions ": [

"Make use of module -specific type definitions , imports , or header information",
"Define the purpose and functionality of the module before implementing the code",
"Adhere to formal language specifications",
"Ensure the code interface is intuitive and well -documented",
"Implement function signature correctly",
"Follow predefined code generation rules"

],
"rules": [

{"id": 1, "rule": "Use structured control flow"},
{"id": 2, "rule": "Avoid loops , prefer explicit sequences "},
{"id": 3, "rule": "Limit memory allocation to init phase"},
{"id": 4, "rule": "Minimize variable scope"},
{"id": 5, "rule": "Validate inputs & check return values"},
{"id": 6, "rule": "Limit pointer usage"},
{"id": 7, "rule": "Follow single -read , single -write pattern"},
{"id": 8, "rule": "Use only standard C constructs "},
{"id": 9, "rule": "Adhere to provided interface"},
{"id": 10, "rule": "Avoid external imports"},
{"id": 11, "rule": "No ghost variables or predicates "}

],
"example_module ": {

"name": "Vehicle Steering Control System",
"example_input_module ": "/* Safety -critical power steering logic */",
"example_output_module ": "void stee_10ms () {

...
}"

},
"prompt ": "Generate a formally verified C module implementation .",
"inputs ": {

"formal_specification ": "{{ input_formal_specification }}",
"natural_language_specification ": "{{ input_natural_language_specification}}",
"interface ": "{{ input_interface }}",
"type_definitions ": "{{ input_type_definitions }}",
"function_signature ": "{{ input_signature }}"

}
}

Figure 10: Simplified structured prompt for generating implementations. Blue highlights the
one-shot example, only present in the one-shot version. Red highlights the problem-specific input.
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Function Implementation

vo id stee_10ms ( vo id )
{

enum SENSOR_STATE pr im_sensor ;

/∗ Read c u r r e n t RTDB s i g n a l s i n t o l o c a l s t a t e . ∗/
state_WHEEL_BASED_SPEED = rtdb_WHEEL_BASED_SPEED;
state_PARKING_BRAKE_APPLIED = rtdb_PARKING_BRAKE_APPLIED ;
state_PRIMARY_CIRCUIT_LOW_FLOW = rtdb_PRIMARY_CIRCUIT_LOW_FLOW;
state_PRIMARY_CIRCUIT_HIGH_VOLTAGE = rtdb_PRIMARY_CIRCUIT_HIGH_VOLTAGE ;
state_SECONDARY_CIRCUIT_HANDLES_STEERING = rtdb_SECONDARY_CIRCUIT_HANDLES_STEERING ;
state_ELECTRIC_MOTOR_ACTIVATED = rtdb_ELECTRIC_MOTOR_ACTIVATED;

/∗ Determine i f the p r imary c i r c u i t i s working , has no f low , or i s s h o r t e d . ∗/
i f (state_PRIMARY_CIRCUIT_HIGH_VOLTAGE == 1)
{

pr im_sensor = SHORT_CIRCUIT ;
}
e l s e i f (state_PRIMARY_CIRCUIT_LOW_FLOW == 1)
{

pr im_sensor = NO_FLOW;
}
e l s e
{

pr im_sensor = WORKING;
}

/∗ Check whether the v e h i c l e i s moving . ∗/
char v e h i c l e I sMo v i n g = (state_WHEEL_BASED_SPEED > 3) ? 1 : 0 ;

/∗ Check i f v e h i c l e i s moving w i thout p r imary power s t e e r i n g . ∗/
char v eh i c l e I sMov i ngWi thou tP r ima r yPowe rS t e e r i n g =

( v e h i c l e I sMo v i n g == 1 && ( pr im_sensor == NO_FLOW
| | pr im_sensor == SHORT_CIRCUIT) ) ? 1 : 0 ;

/∗ I f the v e h i c l e i s moving w i thout p r imary power s t e e r i n g ,
l e t s e conda ry c i r c u i t hand l e s t e e r i n g . ∗/
i f ( v eh i c l e I sMov i ngWi thou tP r ima r yPowe rS t e e r i n g == 1)
{

state_SECONDARY_CIRCUIT_HANDLES_STEERING = 1 ;
}

/∗ I f the s econda ry c i r c u i t i s h and l i n g s t e e r i n g and pa r k i n g brake i s not se t ,
a c t i v a t e the e l e c t r i c motor . ∗/
i f (state_SECONDARY_CIRCUIT_HANDLES_STEERING == 1 &&

state_PARKING_BRAKE_APPLIED == 0)
{

state_ELECTRIC_MOTOR_ACTIVATED = 1 ;
}

/∗ Wri te updated s t a t e s back to RTDB s i g n a l s . ∗/
rtdb_SECONDARY_CIRCUIT_HANDLES_STEERING = state_SECONDARY_CIRCUIT_HANDLES_STEERING ;
rtdb_ELECTRIC_MOTOR_ACTIVATED = state_ELECTRIC_MOTOR_ACTIVATED ;

}

Figure 9: Example implementation of STEE.

Figure 10 outlines a simplified version of the structured prompt used for both zero-shot and one-
shot program implementation generation. This prompt guides the LLM using five key components:
(1) a predefined persona, (2) instructions for the LLM, (3) a set of NFRs (detailed in Appendix D),
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(4) a hand-crafted example module for one-shot prompting, and (5) structured input fields for
module specifications.

The persona in the prompt defines the role of the LLM, specifying that it acts as an assistant
for generating formally verified C. This persona helps frame the task for the LLM, emphasizing that
the generated implementation should follow the input specifications.

The instructions guide the LLM to follow a structured program implementation generation
process. They direct the LLM to utilize the provided module definitions, explicitly define the purpose
and functionality of the code before implementation, and ensure that the generated implementation
aligns with the given input definitions. Additionally, the instructions emphasize the importance
of producing well-documented code. These instructions help the LLM generate more consistent,
interpretable, and verifiable implementations.

The NFRs specified in the prompt are taken from Appendix D. They establish constraints that
guide the LLM in generating safety-critical code. This is done by giving guidelines and recommen-
dations for high-quality, safety-critical code, such as avoiding loops and limiting memory allocation.
Additionally, these NFRs help generate implementations that compile and verify. For compilation
and verification purposes, the LLM must utilize the function signature.

Next, the prompt outline includes an example. This example (highlighted in blue) is present
in the one-shot example but is left out of the zero-shot prompt. The example is another high-
quality, manually created module. This example module refers to the STEE module, as detailed in
Appendix A. This example provides a reference for the LLM, illustrating how the given specifications
should be translated into code. By presenting a correctly structured and verifiable function, the
one-shot prompt aims to guide the LLM toward generating formally verified implementations.

The next part of the prompt defines the core task by instructing the LLM to generate the
implementation based on these instructions. Lastly, the prompt includes the structured inputs,
highlighted in red in Figure 10. These inputs specify the input information that varies per module
when prompting the LLM. For each modul,e there is a different set of inputs, while the remaining
part of the prompt remains the same when invoking an LLM.

B.2. Chain of Thought prompts

Figure 11 presents the CoT prompt, which follows the same structured input format as the non-
CoT zero-shot and one-shot prompts but introduces reasoning steps before code generation. This
CoT variant is used in both zero-shot and one-shot configurations, where the difference remains
in whether the example STEE module is provided. The objective of adding a reasoning to the
prompt is to encourage the LLM to systematically analyze the module requirements, apply coding
constraints, and verify the correctness of the generated implementation.

Before generating an implementation, the LLM is guided through module analysis, where it
considers the purpose, formal specifications, interface structure, and function signature. This is
followed by a rule application step, in which the predefined NFRs are mentioned. The next step, code
implementation, instructs the LLM to apply structured control flow, ensure input validation, and
create an implementation that follows the expected format. Finally, the verification step prompts
the LLM to review its implementation, checking for adherence to all formal requirements. Please
note that this is a validation step, and formal verification is handled after the LLM generates an
implementation. The formal verification step is automatically performed based on the response of
the LLM. The structured input fields remain unchanged from the standard prompt, with the key
difference being the addition of this systematic reasoning process.
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Structued CoT Prompt 1

{
"persona ": "AI assistant specializing in code generation and formal verification",
"reasoning_framework ": {

"step1_module_analysis ": {
"description ": "Analyze the module requirements",
"considerations ": [

"What is the core purpose and functionality of this module?",
"What formal specifications must be followed?",
"How should the code interface be structured ?",
"What is the required function signature ?"

]
},
"step2_rules_application ": {

"description ": "Apply predefined coding rules",
"rules": [

{"id": 1, "rule": "Use structured control flow"},
{"id": 2, "rule": "Avoid loops , prefer explicit sequences "},
{"id": 3, "rule": "Limit memory allocation to init phase"},
{"id": 4, "rule": "Minimize variable scope"},
{"id": 5, "rule": "Validate inputs & check return values"},
{"id": 6, "rule": "Limit pointer usage"},
{"id": 7, "rule": "Follow single -read , single -write pattern"},
{"id": 8, "rule": "Use only standard C constructs "},
{"id": 9, "rule": "Adhere to provided interface"},
{"id": 10, "rule": "Avoid external imports"},
{"id": 11, "rule": "No ghost variables or predicates "}

]
},
"step3_code_generation ": {

"description ": "Generate the function",
"steps": [

"Implement the function signature correctly",
"Apply structured control flow and rule constraints",
"Validate all inputs and outputs",
"Document key decisions"

]
},
"step4_verification ": {

"description ": "Verify the implementation",
"checkpoints ": [

"Does it meet all formal specifications ?",
"Does it align with functional and interface requirements ?",
"Have all constraints been followed ?"

]
}

},
"one_shot_example ": {

"name": "Steering Control Module",
"example_input_module ": "/* Example module logic */",
"example_output_module ": "void stee_10ms () { ... }"

},
"instructions ": "Proceed step by step , documenting reasoning at each stage.",
"inputs ": {

"formal_specification ": "{{ input_formal_specification }}",
"natural_language_specification ": "{{ input_natural_language_specification }}",
"interface ": "{{ input_interface }}",
"type_definitions ": "{{ input_type_definitions }}",
"function_signature ": "{{ input_signature }}"

}
}

Figure 11: Chain-of-thought prompt structure for generating formally verified C code. Blue
highlights the one-shot example, which is left out in the zero-shot version of this prompt. Red

highlights the parts that change depending on the modules in the analysis.
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Appendix C. Full LLM Experiments Table

Model Prompt Type SGMM BRAK SFLD
v@1 v@5 v@10 vs/20v@1 v@5 v@10 vs/20v@1 v@5 v@10 vs/20

GPT-4o Zero-Shot 1.00 1.00 1.00 20 0.05 0.25 0.50 1 - - - -
2024-08-06 (Hurst et al., 2024) Zero-Shot-CoT 0.70 1.00 1.00 14 - - - - - - - -
Closed-Source One-Shot 0.70 1.00 1.00 14 - - - - - - - -
Non-Reasoning One-Shot-CoT 0.90 1.00 1.00 18 - - - - - - - -
GPT-4.1 Zero-Shot 0.75 1.00 1.00 15 0.10 0.45 0.76 2 0.05 0.25 0.50 1
2025-04-14 (OpenAI, 2025a) Zero-Shot-CoT 0.85 1.00 1.00 17 0.05 0.25 0.50 1 0.15 0.60 0.89 3
Closed-Source One-Shot 0.45 0.97 1.00 9 0.05 0.25 0.50 1 0.05 0.25 0.50 1
Non-Reasoning One-Shot-CoT 0.90 1.00 1.00 18 0.30 0.87 0.99 6 0.25 0.81 0.98 5
o1 Zero-Shot 0.65 1.00 1.00 13 - - - - 0.05 0.25 0.50 1
2024-12-17 (Jaech et al., 2024) Zero-Shot-CoT 0.55 0.99 1.00 11 0.05 0.25 0.50 1 - - - -
Closed-Source One-Shot 0.15 0.60 0.89 3 - - - - - - - -
Reasoning One-Shot-CoT 0.80 1.00 1.00 16 0.05 0.25 0.50 1 - - - -
o3 Zero-Shot 0.75 1.00 1.00 15 - - - - - - - -
2025-04-16 (OpenAI, 2025b) Zero-Shot-CoT 0.95 1.00 1.00 19 0.15 0.60 0.89 3 0.05 0.25 0.50 1
Closed-Source One-Shot 0.60 1.00 1.00 12 - - - - - - - -
Reasoning One-Shot-CoT 1.00 1.00 1.00 20 0.20 0.72 0.96 4 0.05 0.25 0.50 1
o3-mini Zero-Shot 0.65 1.00 1.00 13 0.50 0.98 1.00 10 - - - -
2025-01-31 (OpenAI, 2025) Zero-Shot-CoT 0.70 1.00 1.00 14 0.55 0.99 1.00 11 - - - -
Closed-Source One-Shot 0.85 1.00 1.00 17 0.05 0.25 0.50 1 0.10 0.45 0.76 2
Reasoning One-Shot-CoT 0.85 1.00 1.00 17 0.75 1.00 1.00 15 - - - -
o4-mini Zero-Shot 0.95 1.00 1.00 19 - - - - 0.05 0.25 0.50 1
2025-04-16 (OpenAI, 2025b) Zero-Shot-CoT 0.90 1.00 1.00 18 - - - - 0.10 0.45 0.76 2
Closed-Source One-Shot 0.90 1.00 1.00 18 0.05 0.25 0.50 1 - - - -
Reasoning One-Shot-CoT 0.95 1.00 1.00 19 - - - - 0.10 0.45 0.76 2
o4-mini-high Zero-Shot 1.00 1.00 1.00 20 - - - - 0.10 0.45 0.76 2
2025-04-16 (OpenAI, 2025b) Zero-Shot-CoT 0.95 1.00 1.00 19 0.05 0.25 0.50 1 0.05 0.25 0.50 1
Closed-Source One-Shot 1.00 1.00 1.00 20 0.05 0.25 0.50 1 - - - -
Reasoning One-Shot-CoT 0.90 1.00 1.00 18 0.05 0.25 0.50 1 0.20 0.72 0.96 4
Grok Zero-Shot 0.40 0.95 1.00 8 - - - - - - - -
beta (xAI, 2024) Zero-Shot-CoT 0.30 0.87 0.99 6 - - - - - - - -
Closed-Source One-Shot 0.20 0.72 0.96 4 - - - - - - - -
Non-Reasoning One-Shot-CoT 0.30 0.87 0.99 6 - - - - - - - -
Grok-3 Zero-Shot 1.00 1.00 1.00 20 0.20 0.72 0.96 4 0.40 0.95 1.00 8
beta (xAI, 2025) Zero-Shot-CoT 1.00 1.00 1.00 20 0.40 0.95 1.00 8 0.25 0.81 0.98 5
Closed-Source One-Shot 0.05 0.25 0.50 1 - - - - - - - -
Reasoning One-Shot-CoT 0.95 1.00 1.00 19 0.50 0.98 1.00 10 0.15 0.60 0.89 3
Gemini-2.0-Flash Zero-Shot 0.90 1.00 1.00 18 0.05 0.25 0.50 1 - - - -
001 (Google, 2025a) Zero-Shot-CoT 0.65 1.00 1.00 13 - - - - - - - -
Closed-Source One-Shot 0.60 1.00 1.00 12 0.10 0.45 0.76 2 - - - -
Non-Reasoning One-Shot-CoT 0.65 1.00 1.00 13 - - - - - - - -
Gemini-2.0-Flash-Thinking Zero-Shot 0.10 0.45 0.76 2 0.15 0.60 0.89 3 - - - -
1219 (Google, 2025b) Zero-Shot-CoT 0.25 0.81 0.98 5 - - - - - - - -
Closed-Source One-Shot 0.35 0.92 1.00 7 - - - - - - - -
Reasoning One-Shot-CoT 0.30 0.87 0.99 6 0.05 0.25 0.50 1 - - - -
Gemini-2.0-Pro Zero-Shot 0.70 1.00 1.00 14 0.05 0.25 0.50 1 - - - -
02-05 (DeepMind, 2025c) Zero-Shot-CoT 0.70 1.00 1.00 14 - - - - - - - -
Closed-Source One-Shot 0.65 1.00 1.00 13 - - - - - - - -
Reasoning One-Shot-CoT 0.90 1.00 1.00 18 - - - - - - - -
Gemini-2.5-Flash Zero-Shot 0.70 1.00 1.00 14 0.20 0.72 0.96 4 0.05 0.25 0.50 1
04-17 (DeepMind, 2025a) Zero-Shot-CoT 0.65 1.00 1.00 13 0.10 0.45 0.76 2 0.05 0.25 0.50 1
Closed-Source One-Shot 0.55 0.99 1.00 11 0.05 0.25 0.50 1 - - - -
Non-Reasoning One-Shot-CoT 0.65 1.00 1.00 13 - - - - 0.15 0.60 0.89 3
Gemini-2.5-Pro Zero-Shot 0.85 1.00 1.00 17 0.10 0.45 0.76 2 0.05 0.25 0.50 1
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05-06 (DeepMind, 2025b) Zero-Shot-CoT 1.00 1.00 1.00 20 - - - - 0.15 0.60 0.89 3
Closed-Source One-Shot 0.85 1.00 1.00 17 - - - - 0.20 0.72 0.96 4
Reasoning One-Shot-CoT 0.95 1.00 1.00 19 0.05 0.25 0.50 1 0.15 0.60 0.89 3
Sonnet-3.5 Zero-Shot 1.00 1.00 1.00 20 - - - - - - - -
20241022 (Anthropic, 2024) Zero-Shot-CoT 1.00 1.00 1.00 20 - - - - - - - -
Closed-Source One-Shot 1.00 1.00 1.00 20 - - - - - - - -
Reasoning One-Shot-CoT 1.00 1.00 1.00 20 - - - - - - - -
Sonnet-3.7 Zero-Shot 1.00 1.00 1.00 20 0.10 0.45 0.76 2 - - - -
20250219 (Anthropic, 2025) Zero-Shot-CoT 1.00 1.00 1.00 20 0.35 0.92 1.00 7 0.10 0.45 0.76 2
Closed-Source One-Shot 0.15 0.60 0.89 3 - - - - - - - -
Reasoning One-Shot-CoT 1.00 1.00 1.00 20 0.10 0.45 0.76 2 - - - -
Meta-Llama-3.3-70B-Instruct Zero-Shot 0.55 0.99 1.00 11 - - - - - - - -
1206 (Dubey et al., 2024) Zero-Shot-CoT 0.65 1.00 1.00 13 - - - - - - - -
Open-Source One-Shot 0.15 0.60 0.89 3 - - - - - - - -
Reasoning One-Shot-CoT 0.25 0.81 0.98 5 - - - - - - - -
Qwen2.5-Coder-32B-Instruct Zero-Shot 0.95 1.00 1.00 19 - - - - - - - -
2024-11-12 (Yang et al., 2024) Zero-Shot-CoT 0.50 0.98 1.00 10 - - - - - - - -
Open-Source One-Shot 0.40 0.95 1.00 8 - - - - - - - -
Reasoning One-Shot-CoT 0.45 0.97 1.00 9 - - - - - - - -
DeepSeek-R1-Distill-Qwen-32B Zero-Shot 0.70 1.00 1.00 14 0.05 0.25 0.50 1 - - - -
0121 (DeepSeek-AI, 2025) Zero-Shot-CoT 0.30 0.87 0.99 6 - - - - - - - -
Open-Source One-Shot 0.45 0.97 1.00 9 - - - - - - - -
Reasoning One-Shot-CoT 0.55 0.99 1.00 11 - - - - - - - -
DeepSeek-V3 Zero-Shot 0.95 1.00 1.00 19 - - - - - - - -
0324 (DeepSeek-AI et al., 2024) Zero-Shot-CoT 1.00 1.00 1.00 20 - - - - - - - -
Open-Source One-Shot - - - - - - - - - - - -
Non-Reasoning One-Shot-CoT 0.90 1.00 1.00 18 - - - - - - - -
DeepSeek-R1-671B Zero-Shot 0.40 0.95 1.00 8 0.20 0.72 0.96 4 - - - -
0120 (DeepSeek-AI, 2025) Zero-Shot-CoT 0.70 1.00 1.00 14 - - - - - - - -
Open-Source One-Shot 0.15 0.60 0.89 3 0.10 0.45 0.76 2 - - - -
Reasoning One-Shot-CoT 0.45 0.97 1.00 9 0.10 0.45 0.76 2 - - - -
DeepSeek-R1-Distill-Llama-70B Zero-Shot 0.10 0.45 0.76 2 0.05 0.25 0.50 1 - - - -
0123 (DeepSeek-AI, 2025) Zero-Shot-CoT 0.40 0.95 1.00 8 - - - - - - - -
Open-Source One-Shot 0.70 1.00 1.00 14 - - - - - - - -
Reasoning One-Shot-CoT 0.35 0.92 1.00 7 - - - - - - - -
Total Summation 1172 122 61

Table 5: Evaluation of 22 LLMs and prompt techniques when generating formally verified
implementations.

Appendix D. Defined Rules

The NFRs used in this paper are derived from the Rules of Ten Holzmann (2018) and further
refined based on observations of LLM-generated code. The Rules of Ten provide guidelines for
writing safety-critical software, ensuring structured control flow, memory safety, and robustness.
However, not all of the Rules of Ten apply to our setting. For example, we ask the LLM to generate
entire function implementations for modules rather than employing subfunctions. Therefore, a
subset of the Rules of Ten was selected for our selection of NFRs.

For each of the rules of the Rules of Ten, we selected whether this NFR is relevant to the
function implementation task at hand. Four NFRs were removed from the Rules of Ten. Firstly,
the NFR restricting implementation length was removed, as the focus is on generating complete
modules rather than ensuring brevity in individual functions. Secondly, the requirement for a
minimum assertion density was omitted, as our approach relies on formal verification rather than
runtime assertions for correctness checking. Thirdly, constraints on preprocessor usage were deemed
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unnecessary, as LLMs are not responsible for compiling code and do not need to manage complex
macro definitions. Lastly, the NFR related to mandatory compiler warnings and static analysis
checks was removed, as this is not useful for the LLM since we automatically do the compilation
and verification. The remaining six NFRs from the Rules of Ten remain unchanged (NFRs 1–6).

Beyond adapting existing guidelines, additional NFRs are introduced based on observed failure
patterns in LLM-generated code. Specific recurring issues, such as improper RTDB interactions,
inconsistent adherence to the provided interface, and reliance on non-standard C constructs, were
identified during experimentation. We aim to generate as many formally verifying implementations
as possible; therefore, we introduce these NFRs to help the LLM generate implementations in the
correct format.

The first added NFR, NFR7 (RTDB), is formulated to enforce structured RTDB access. We have
abstracted the usage of RTDB to global variables. In practice, at the beginning of a function, one
reads from the RTDB, then does the computation, and then writes to the RTDB. LLM-generated
implementations often read from the RTDB anywhere in the code; we added this NFR to let the
LLM use the RTDB correctly.

NFR8 (constructs) ensures that the LLM only uses standard C types or explicitly defined con-
structs. This NFR also closely corresponds with NFR10 (import). When generating implementa-
tions, the LLM frequently uses undefined types, such as bool, which is imported from an external
source. The types defined in the input already contain a boolean definition, and we would like the
LLM to use this type instead. Therefore, we tell the LLM to use the defined types (NFR8) and not
use external imports (NFR10).

NFR9 (interface) mentions that the LLM uses the interface definitions. This NFR is added to
ensure the LLM reads and writes to the correct variables. During manually performed experiments,
the LLM did not consistently utilize these variables. NFR11 (formal specification logic) is added
to improve the verification of the LLM-generated implementations. Ghost variables and predicates
can only be used in the formal specification, not in the implementation code. As the LLM attempts
to utilize these predicates and ghost variables, we explicitly mention that they cannot be used in
the implementation of the LLM. These 11 NFRs guide the LLM in generating safety-critical code
that we can formally verify.

Appendix E. Cost Breakdown of LLM Usage

Table 6 reports the cost of generating implementations using each evaluated LLM. For every LLM,
240 implementations were generated (four prompting techniques × three modules × 20 implemen-
tations generated). The first column “Large Language Model” lists the names of the analyzed LLMs
along with the specific version identifiers used in our experiments, typically denoting release dates
or snapshot numbers to ensure reproducibility. Column “Reference” shows a reference, while the
column ”Cost“ presents the total cost in United States dollar (USD) ($), calculated from actual in-
put and output token usage as billed by the respective Application Programming Interfaces (APIs).
Lastly, column “API Used” specifies the platform through which each LLM was accessed, which
influences availability and pricing. Notably, some LLMs incurred no cost due to access via free-
tier offerings. The overall cost of $321.87 USD for all experiments illustrates the affordability of
large-scale LLM-based code generation relative to traditional software development.
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Large Language Model Reference Cost ($USD) API Used
GPT-4o (2024-08-06) (Hurst et al., 2024) 8.60 OpenAI
GPT-4.1 (2025-04-14) (OpenAI, 2025a) 7.03 OpenAI
o1 (2024-12-17) (Jaech et al., 2024) 124.29 OpenAI
o3 (2025-04-16) (OpenAI, 2025b) 48.59 OpenAI
o3-mini (2025-01-31) (OpenAI, 2025) 6.92 OpenAI
o4-mini (2025-04-16) (OpenAI, 2025b) 6.27 OpenAI
o4-mini-high (2025-04-16) (OpenAI, 2025b) 10.20 OpenRouter
Grok (beta) (xAI, 2024) 22.25 xAI
Grok-3 (beta) (xAI, 2025) 12.23 xAI
Gemini-2.0-Flash (001) (Google, 2025a) 0.62 Google DeepMind
Gemini-2.0-Flash-Thinking (1219) (Google, 2025b) 0 Google DeepMind
Gemini-2.0-Pro (02-05) (DeepMind, 2025c) 0 Google DeepMind
Gemini-2.5-Flash (04-17) (DeepMind, 2025a) 0.95 Google DeepMind
Gemini-2.5-Pro (05-06) (DeepMind, 2025b) 14.85 Google DeepMind
Sonnet-3.5 (20241022) (Anthropic, 2024) 17.15 Anthropic
Sonnet-3.7 (20250219) (Anthropic, 2025) 28.96 Anthropic
Meta-Llama-3.3-70b-Instruct (1206) (Dubey et al., 2024) 0.45 OpenRouter
Qwen-2.5-Coder-32b-Instruct (2024-11-12) (Yang et al., 2024) 0.23 OpenRouter
Deepseek-R1-Distill-Qwen-32B (0121) (DeepSeek-AI, 2025) 0.67 OpenRouter
Deepseek-V3 (0324) (DeepSeek-AI et al., 2024) 0.37 DeepSeek
Deepseek-R1-671b (0120) (DeepSeek-AI, 2025) 8.64 OpenRouter
Deepseek-R1-Distill-Llama-70B (0123) (DeepSeek-AI, 2025) 2.60 OpenRouter
Total 321.87

Table 6: Cost breakdown of generating 240 function implementations per LLM, including version
identifiers, total expenditure in USD, and APIs used.
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