ChinaTravel: A Real-World Benchmark for Language Agents
in Chinese Travel Planning

Anonymous ACL submission

Abstract

Recent advances in LLMs, particularly in lan-
guage reasoning and tool integration, have
rapidly sparked the real-world development of
Language Agents. Among these, travel planning
represents a prominent domain, combing com-
plex multi-objective planning challenges with
practical deployment demands. Existing bench-
marks, however, often oversimplify real-world
requirements by focusing on synthetic queries
and limited constraints. To address this gap, we
introduce ChinaTravel, the first benchmark de-
signed for authentic Chinese travel planning sce-
narios. We collect the travel requirements from
questionnaires and propose a compositionally
generalizable domain-specific language that en-
ables a scalable evaluation process, covering fea-
sibility, constraint satisfaction, and preference
comparison. Empirical studies reveal the poten-
tial of neuro-symbolic agents in travel planning,
achieving 27.9% constraint satisfaction rate
on human queries, a 10.7X improvement over
purely-neural models (2.6%). Moreover, we
identify key challenges in real-world deploy-
ments, including open language reasoning and
unseen concept composition. These findings
highlight the significance of ChinaTravel as a
pivotal milestone for advancing language agents
in complex, real-world planning scenarios.

1 Introduction

A long-standing goal in Al is to build planning
agents that are reliable and general, able to assist
humans in real-world tasks. Recently, Large Lan-
guage Models (LLMs) (Brown et al., 2020; Ouyang
etal., 2022; Achiam et al., 2023) have demonstrated
remarkable potential in achieving human-level un-
derstanding and reasoning capabilities. This has
sparked the rapid development of a field called
Language Agents, employing LLMs to perceive the
surroundings, reason the solutions, and take appro-
priate actions, ultimately building an autonomous
planning agent (Shinn et al., 2024; Yao et al., 2023;
Xi et al., 2023; Jimenez et al., 2024).

Among numerous real-world planning tasks,
travel planning stands out as a significant domain,
presenting both academic challenges and practical
value due to its inherent complexity and real-world
relevance. Specifically, given a query, travel plan-
ning agents require information integration from
various tools (e.g., searching for flights, restaurants,
and hotels) to generate a feasible itinerary. This
involves making interdependent decisions across
multiple aspects such as spatial, temporal, and fi-
nancial dimensions, all while meeting the user’s
requirements and preferences (e.g., budget, dining
habits, etc). This travel planning task presents both
significant practical value and important research
challenges. As a pervasive yet complex activity,
it demands considerable time investment, creating
compelling need for Al assistance. Academically,
it constitutes a long-horizon planning objective that
involves various hard and soft constraints, posing
unique challenges for planning agents.

To evaluate the existing language agents on travel
planning tasks, TravelPlanner (Xie et al., 2024) first
provides a benchmark. However, the TravelPlanner
benchmark focuses solely on U.S. domestic travel,
consisting only of intercity itineraries, which are
less common in real-world travel planning scenarios
(as it is more typical to travel within a single city
for several days). Additionally, it only includes syn-
thesized queries, lacking real human travel queries.
Furthermore, just a few months after the bench-
mark’s release, Hao et al. (2024) proposed a neural-
symbolic solution that integrates formal verification
tools into language agents, achieving a 97% success
rate. This underscores the oversimplification of the
TravelPlanner benchmark. Therefore, it is highly
desirable to develop a novel benchmark that better
reflects real human travel habits and requirements,
while also capturing the complexity of the task.

In this paper, we provide ChinaTravel, a novel
travel planning benchmark, tailored to authentic
Chinese travel requirements, concentrating on multi-

/"I am in Shanghai now and IAETHTE

would like to go to Beijing for
2 days, visit some museums,
and taste some Beijing cuisine.
My budget is 5,000 yuan and

| hope to visit as many

@ \ attractions as possible. Please

User | give me a travel plan.
N

[1] visit some museums...

- The Palace Museum
- National Museum of China
- Beijing Capital Museum

[2] taste some Beijing cuisine...
There are some restaurants:
- Dadong Duck
- Siji Minfu
- Xiaodiao Litang

S

Agent

GPT DeepSeek GLM

Tool Use & S Information

FlightSearch() I Trainsearcn()
AttractionSearch() m RestaurantSearch()

[3] budget is 5000 yuan...
The cross-city transportation costs

costs about 500, leaving me with a

budget of about 3,000.

- The budget is sufficient to try
different foods

- select adjacent attractions

2
= - choose convenient transportation

wore) AccommodationSearch() 5 RouteSearch()

There are some museums in Beijing:

about 1,500, and the accommaodation

[4] visit as many attractions as possible

Itinerary Plan

[Day 2, Activity 1]

Cheniji century-old Luzhu, 08:10 —
08:40, cost: 32

Transports: Walking, Beijing XX hotel
- Chenji century-old Luzhu, 0.4km &
08:00 — 08:06 N

[Day 2, Activity 2] =

National Museum of China, 09:15 =

11:45, cost: 0 @
Transports: Metro, Chenji century-old

Luzhu — National Museum of China,
cost 3, 08:40 — 09:15, walking: 1.2km

[Day 1, Activity 1] g

Train, G104, 06:27 — 13:12, cost: 693
Shanghai Honggiao Railway Station
— Beijingnan Railway Station

[Day 1, Activity 2] &

The Palace Museum, 14:00 - 17:30
Transports: Metro, Beijingnan Railway
Station— The Palace Museum, cost 3,
13:15 - 13:50, walking: 1.5km
[Day 1, Activity 3] §T

Siji Minfu, 17:45 — 18:45, cost 180,
Transports: Walking, The Palace
Museum - Siji Minfu, cost 0,

17:30 - 17:45, walking: 0.8km §&
[Day 1, Activity 4] é

Wangfujing Street, 17:45 — 18:45,
Transports: Taxi, The Palace Museum
— Wangfujing Street, cost 16, &
17:30 — 17:45,

[Day 2, Activity 4] =
Beijing Capital Museum

[Day 2, Activity 5] &

Train, G153, 16:30 — 22:27, cost: 576
Beijingnan Railway Station—Shanghai
Honggiao Railway Station

Transports: Metro, Beijing Capital
Museum — Beijingnan Railway Station,
cost: 4, 15:30 - 16:02, walking: 0.8km

[Day 1, Activity 6] =

Beijing XX hotel, room: 1, cost: 580
Transports: ...

Figure 1: Overview of ChinaTravel. Given a query, language agents employ various tools to gather information
and plan a multi-day multi-POI itinerary. The agents are expected to provide a feasible and reasonable plan
while satisfying the hard logical constraints and soft preference requirements. To provide convenience for global
researchers, we provide an English translation of the original Chinese information here.

point-of-interest (multi-POI) itineraries (as illus-
trated in Fig. 1). Compared to TravelPlanner, Chi-
naTravel is more realistic and challenging. The
main contributions are summarized as follows.

* Comprehensive Evaluation Framework: Chi-
naTravel provides a rich sandbox with authentic
travel data, a domain-specific language for scal-
able requirements definition and automated eval-
uation, and diverse metrics covering feasibility,
constraint satisfaction, and preference ranking.

* Integration of Synthetic and Human Queries:
ChinaTravel includes both LL.M-generated and
human-derived queries, offering a realistic and
open testbed for evaluating agents in addressing
authentic and multifaceted travel requirements.

* Empirical Neuro-Symbolic Insights: Exten-
sive experiments are conducted and the results
reveal that neuro-symbolic agents significantly
outperform pure LLM-based solutions, achieving
a constraint satisfaction rate of 27.9% compared
to 2.60% by purely neural methods, thus high-
lighting their promise for travel planning tasks.

¢ Identified Challenges for Future Research: We
pinpoint key challenges of open-world require-
ments: open language reasoning, and unseen
concept composition, providing a foundation for
advancing agents toward real-world applicability.

Overall, ChinaTravel provides a challenging yet
meaningful testbed for evaluating language agents
in travel planning, serving as a critical bridge be-
tween academic research and practical applications.

2 ChinaTravel Benchmark

Motivated by China’s substantial travel demand,
ChinaTravel provides a sandbox environment for
generating multi-day itineraries with multiple POIs
across specified cities. This benchmark is metic-
ulously designed to provide a comprehensive and
scalable evaluation framework for language agents
in travel planning, encompassing three critical di-
mensions: environmental feasibility, constraint sat-
isfaction, and preference comparison.

2.1 Environment Information

ChinaTravel provides a sandbox with real-world
travel information. We collect information from
10 of the most popular cities in China. It includes
720 airplanes and 5,770 trains connecting these
cities, with records detailing departure and arrival
times, origins, destinations, and ticket prices. Ad-
ditionally, the dataset contains 3,413 attractions,
4,655 restaurants, and 4,124 hotels, each annotated
with name, location, opening hours, and per-person
prices. Type annotations for these POIs are included
to meet user needs. Fig. 2 has provided an illustra-
tion of the collected information from Beijing and
Nanjing, two of the most popular cities in China.
For a more realistic interaction, we simulate the
API interface of real market applications to query
real-time information. The detailed designs of the
sandbox are available in App. B.1. Environmental
constraints act as a feasibility metric, ensuring that
the generated plans are both valid and effective. For
example, POIs in the plan must exist in the desig-
nated city, transportation options must be viable,

@ Flights
@D Trains
@ Citics

(&= Beijing)
%% Chengdu
“ Chongging

L Guangzhou

4 Hangzhou !
1""“Nanjing‘* S L N S e
i1/ ‘Shanghai (('lﬁ? dq"%&'\"‘”vv ;

J_L Shenzhen I\

% Suzhou

,§_: Wuhan

Metro

e
s
s
=
2
=
.
Ed

»
= BN

T

Attraction
Accommodation
Restaurant

Attraction
Accommodation
Restaurant
]
LY

° -

.J
)

P——
III ol
[/

4

e

b O

L

Figure 2: Illustration of ChinaTravel Sandbox Environment. Our sandbox incorporates travel information from
10 of the most popular cities in China, offering comprehensive information on attractions, accommodations, and
restaurants essential for travel planning. Here is the visualization of information from Beijing and Nanjing.

Evaluation Metrics

Environment Constraints

Cross-city Transportation

Available Trains or Airplanes across cities.

Correct information of cost and schedule.

Inner-city Transportation

Available Metro, Taxi or Walking between different positions.

Correct information of cost, distance and duration

Available Attractions in the target city, visiting in their open time.

Attraction choices should not be repeated throughout the trip.

Available Restruants in the target city, visiting in their open time.

Restaurant choices should not be repeated throughout the trip.
Breakfast, lunch, and dinner are served at their designated meal times.

The given activity events occur in chronological order.

Attractions
Correct information of cost.
Restaurants
Correct information of cost.
Accommodation Available Accommodation in the target city.
Room information to meet headcounts.
Time
Space

Events at different positions should provide transport information.

Table 1: Descriptions of Environment Constraints for two benchmarks. Constraints in black are common in both
TravelPlanner and ChinaTravel. Metrics in brown are the metrics only in our benchmark.

and time information must remain accurate. Tab. 1
summarizes the environmental constraints.

2.2 Logical Constraint

A crucial ability for travel planning is to effectively
satisfy personalized user needs. We extend the form
of logical constraints from TravelPlanner (Xie et al.,
2024) and present a Domain-Specific Language
(DSL) to support general compositional reason-
ing in logical constraints. ChinaTravel’s DSL is a
general set of pre-defined concept functions with
built-in implementations and is listed in Tab. 2.
TravelPlanner relies on 5 pre-defined concepts {to-
tal budget, room rules, room types, cuisines, and
transportation types}, to evaluate the logical con-
straints, where each concept is equivalent to a
specific logical requirement. We find this design
limits the ability to validate diverse logical needs in

an open-world context. For example, such an evalu-
ation cannot express that the dining expenses should
be within 1000 CNY or that arriving in Shanghai
should be before 6 PM on the second day, despite
the generated plan already including the expenses
and time information of each activity. Each new log-
ical requirement necessitates human intervention
for incremental definition. To address this issue,
our approach is grounded in a DSL-based solution
that leverages basic concept functions and syntax
to express and fulfill various logical requirements.

Dining expenses <= 1000 CNY.
dining_cost = 0
for act_i in allactivities(plan):
typ = activity_type(act_i)
if typ=="breakfast” or typ=="1lunch”
typ=="dinner"”: dining_cost =
dining_cost + activity_cost(act_i)
return dining_cost <= 1000

or

Name Syntax Description

variables X, VY, 2, Variables that refer to activities in the travel planning domain.

not not expr The negation of an Boolean-valued expression.

and,or expry and expr; The conjunction/disjunction of an Boolean-valued expression.

<, >, == expry < expry Return an expression with built-in number comparison functions.

+,—, %,/ expry + expry Return an expression with built-in number calculation functions.

attributes cost(var) A function that takes activities as inputs and returns the attributes,
such as cost, type or time.

relation dist(expry, expr;) A function that takes locations as inputs and returns the distance.

effect var = expr An assignment affects a variable var with the expression expr.

union, inter, uni({var}, {var}s) Return a set with the built-in union/intersection/difference oper-

diff ations of given two sets.

enumerate for var in {var} Enumerate all variables in the collection {var}.

when if expr : effect The conditional effect takes a Boolean-valued condition of the

expression expr, and the effect effect.

Table 2: ChinaTravel’s Domain-Specific Language (DSL) for logical constraints.

Arriving in Shanghai should be before
6 PM on the second day.
return_time = 0@
for act_i in day_activities(plan, 2):
typ = activity_type(act_i)
dest = transport_destination(act_i)
if (typ=="train” or typ=="airplane”)
and des=="Shanghai”: return_time
== activity_endtime(act_i)
return return_time < "18:00"

The number of attractions visited
count = @
for act_i in all_activities(plan):

if activity_type(act_i)=="attraction”:
count = count + 1
return count

The DSL can represent varying requirements
through concept composition in a Python format,
and perform automated validation of plans using
a Python compiler. This strategy maximizes the
evaluation capability of the ChinaTravel benchmark.
The App. B.2 provides a detailed tutorial on DSL
expression with more practical examples.

2.3 Preference Requirement

Travel requirements encompass not only hard log-
ical constraints but also soft preferences. The
term "soft" implies that these preferences cannot be
addressed as boolean constraint satisfaction prob-
lems, instead, they involve quantitative compar-
isons based on continuous values. This distinction
highlights the unique nature of preference-based
requirements compared to logical constraints. Com-
mon preferences identified through surveys include
maximizing the number of attractions visited, mini-
mizing transport time between POlIs, and visiting
positions near the specific POI, among others. In
ChinaTravel, we formalize such preferences as min-
imization or maximization objectives via our DSL,
thereby providing an automated evaluation.

2.4 Benchmark Construction

ChinaTravel provides user queries reflecting diverse
requirements through a four-stage process that inte-
grates LLM-based generation with questionnaires.

Stage I: Manual design of database and APIs.
We collect travel information for multi-day, multi-
POl itineraries across attractions, accommodations,
and transportation. We define essential POI fea-
tures, such as cuisine types and hotel characteristics,
to construct the database from public information.
APIs are designed to support agent queries via regu-
lar expressions and modeled after commercial APIs
to ensure realism. See App. B.1 for details.

Stage II: Automatic data generation with LLMs.
We define common travel information (e.g., origin,
destination, days, number of people) and logical
constraints to model travel tasks. To enable scalable
queries, query skeletons are randomly constructed
from this information and transformed into nat-
ural language queries using an advanced LLM,
DeepSeek-V2.5, which is selected for its strong
Chinese language proficiency, robust instruction-
following capabilities, and cost efficiency. The
generated queries are categorized into two difficulty
levels: Easy, with 1 logical requirement beyond ba-

sic constraints like people number and trip duration,
and Medium, with 3-5 additional logical require-
ments. We encourage the LLM to generate diverse,
human-like expressions, such as turning "Taste Bei-
jing cuisine" into "Try local food in Beijing." See
App. B.3 for more details about the synthesis.

Stage III: Quality control and auto-validation.
To ensure data quality, we manually check whether
the generated queries conform to symbolic skele-
tons, and re-calibrate natural language descriptions
that contain ambiguities. Based on the symbolic
skeletons of queries, we could verify whether the
plan can pass the required logical constraints by
executing the DSL code via Python compiler. Build-
ing on this, we ensure that each query has at least
one solution that satisfies the logical constraints by
implementing a heuristic search algorithm.

Stage IV: Open requirements from humans.
After the first round of closed-loop development
with LLMs, including data generation and anno-
tation, baseline development, and evaluation, we
further collected travel requirements from more
than 250 humans through questionnaires. Based
on a new round of quality control on these data,
a more challenging set with 154 queries is con-
structed. These queries even include unseen logical
constraints in the deployment process, such as ‘de-
parture time’ and ‘dining cost’, reflecting the real
challenges of the travel planning system. We care-
fully annotate the required logical constraints for
each query based on the DSL, enabling the auto-
mated evaluation of these challenging samples and
forming the Human level dataset.

To support global research on travel planning,
we provide an English version of all queries in
ChinaTravel. However, we recommend that re-
searchers primarily use the Chinese version, as it
better captures the expression from native speakers.

3 Empirical Study

LLMs. We test both state-of-the-art proprietary
and open LLMs: OpenAl GPT-40, DeepSeek-V2.5,
as well as Qwen-2.5-7B (Bai et al., 2023). The first
two models are chosen for their strong performance,
while the latter is selected for their Chinese language
capabilities and ability to perform inference with
limited local computational resources.

Metrics. We examine the Delivery Rate (DR),
Environmental Pass Rate (CPR), Logical Pass Rate
(LPR), and Final Pass Rate (FPR) from TravelPlan-

[1'am in Shanghai now and Current Plan

would like to go to Beijing for
2 days, visit some museums,
and taste some Beijing cuisine.
My budget is 5,000 yuan and
1 hope to visit as many

@ attractions as possible.

User | Pplease give me a travel plan.

LLM .
Extractionl TVaIldated Plan.

Personal Requirements

[Day 1, Activity 1] g

Train, G104, 06:27 — 13:12, cost: 693
Shanghai Honggiao Railway Station
— Beijingnan Railway Station

[Day 1, Activity 2] 3

The Palace Museum, 14:00 - 17:30

tlsay 1, Activity 3]

Planning step by step:
Current time: 17:30
Current position: The Palace Museum
x.type = museums, 1. What type of place should we visit next,
3 x € Attraction_visited
x.cuisine = Beijing Cuisine,
3 x € Restraunts_visited
total_budget < 5000
maximize |Attraction_visited|

Plan Verification Completed
Failed Plan

attractions, restaurants or hotels?

LLM-based It |sf1_71:130 now. We
choice gy, can find a restaurant
Y7 to have dinner.
l m RestaurantSearch()
2. Which POI should we visit next?
(1) Siji Minfu, Beijing Cuisine

(2) Beijing Pie, Beijing Cuisine

(x) Xinrongji, Jiangzhe Cuisine

DFS LI._.I\-ll-based Siji Minfu is a well-
@ OO0 » known restaurant with
l ® O Y delicious Peking duck

Figure 3: NeSy Planning with depth-first-search solver.

ner (Xie et al., 2024). Furthermore, we design a
novel metric, Conditional Logical Pass Rate (C-
LPR), evaluating the success rate of plans that first
fulfill environmental constraints prior to logical
constraints. It ensures that logical requirements are
met within a realistic travel context, eliminating
cases where unrealistic or incorrect information
might lead to shortcutting logical constraints, such
as misreporting costs to fit budget requirements. By
introducing C-LPR, we aim to enhance the feasibil-
ity and meaningfulness of constraint satisfaction.

ZpeP 1]1/)assed(Env,p) 'ZCGCP 1]pmsed(c,p)
ZpEP |Cp|

P is the plan set, C), is the set of constraints for plan
p, and passed(c, p) indicates whether p satisfies c.
Methods. We evaluate the performance of both
pure-LLM-based and neuro-symbolic solutions on
the ChinaTravel benchmark. For the former, we
primarily test the well-known method, ReAct (Yao
et al., 2023), and its Act-only ablation. We exclude
Reflexion (Shinn et al., 2024) due to its performance
being similar to ReAct on the TravelPlanner (Xie
et al., 2024) and the high economic overhead asso-
ciated with the larger input token size. For the latter,
we adapt existing neuro-symbolic pipelines (Hao
et al., 2024; Pan et al., 2023; Deng et al., 2024)
using our proposed DSL to handle the complexities
of multi-day, multi-POI itineraries.

C-LPR=

3.1 Neuro-Symbolic Planning

This subsection presents a neuro-symbolic solution
as a preliminary baseline for ChinaTravel. This

https://openai.com/api/
https://www.deepseek.com/

LLMs DR EPR LPR C-LPR FPR

Micro Macro Micro Macro

Easy (#300)

et & 704 499 0 646 308 0 0
©® 975 70.8 0 86.8 68.8 0 0
ReAct & 433 408 0 419 196 0 0
® 954 482 0 713 329 0 0
® 775 683 625 741 525 577 542
ReAct(one-sho) gy 945 681 0 894 708 0 0
NeSv Planmin ® 786 759 506 797 646 486 480
y £ ® 750 736 640 735 633 617 60.6
% 723 670 340 704 496 326 283
NeSy Planming® ~ 8.6 817 750 822 753 750 740
(Oraycle Translga on) ® 666 667 660 646 636 646 626
% 693 693 593 702 596 593 579
Medium (#150)
et & 727 523 0 635 153 0 0
G 974 70.5 0 893 553 0 0
ReAct © 413 352 0 376 40 0 0
® 920 548 0 786 227 0 0
ReAct (one-shot) © 827 771 333 826 487 295 133
® 947 692 067 918 640 053 0
& 713 719 693 694 500 693 467
NeSy Planning ® 680 680 680 641 466 641 467
% 533 459 160 492 333 148 850
NeSy Planming © 686 654 540 662 613 525 540
(Oraile Translga ion) @ 608 594 549 603 582 60.3 56.9
% 533 513 366 519 433 348 346
Human (#154)
ReAct ® 364 295 065 352 162 038 0
©® 961 50.5 0 724 325 0 0
© 552 573 260 646 442 171 260
ReAct(one-shot) g (o5 463 0 636 468 0 0
& 454 466 409 409 331 353 279
NeSy Planning ® 454 501 454 409 298 385 279
428 474 422 362 272 344 253
NeSy Plaming® & 506 489 363 459 402 320 350
(OraB(]:le Transli ion) ® 526 469 429 476 409 439 409
% 415 411 311 365 337 250 285

Table 3: Main results of different LLMs and planning strategies on the ChinaTravel benchmark.
LLMs: @: DeepSeek-V2.5, @: GPT-40-2024-08-06, {\v';:Qwen2.5-7B.

DSL Syntax Compliance

Open Language Reasoning

Unseen Concept Composition

Query: Four of us would like to visit Shanghai

for 2 days, try local fast food, and stroll along the

Bund. Please provide us with a travel plan.

DSL Translation (Qwen2.5-7B):
result=(activity_position(activity)=="4')
specified

name 'activity' is not defined
invalid syntax (<string>)

Query: [am currently in Nanjing and would like to go on a 5-
day trip to Beijing with a friend. We plan to travel by high-speed
train both ways and hope to try some local specialty foods.
DSL Translation (GPT-40):

restaurant_type_set = set()

for activity in allactivities(plan):

if activity_type(activity) in ['breakfast’, Tunch', 'dinner']:
restaurant_type_set.add(restaurant_type(activity,
target_city(plan)))
result=({'4< ¥ 3'} <=restaurant_type_set)

Query: I am traveling alone from Nanjing to
Shanghai in the morning for a day trip. I plan to visit
a university campus and return in the evening,
making sure to catch the train back before 7 PM.

DSL Translation (GPT-40):

result = True
for activity in allactivities(plan):
if activity_end_time(activity) >="'19:00":
result = False

Query: Current location: Guangzhou. I want to
go to Shenzhen alone for a day, with a budget of
1000 RMB. Please provide me with a travel plan.

DSL Translation (Qwen2.5-7B):
result=True
for activity in allactivities(plan):

if activity_type(activity) in ['train', ‘airplane']:
intercity_transport_set.add(activity_type(activity))
result=(intercity _transport_set=={'train'})"

Error:
name 'intercity_transport_set' is not defined

Query: My parents and I plan a five-day travel from Nanjing to
Beijing to watch the flag-raising ceremony, and we want to stay
at a hotel near Tiananmen Square.

DSL Translation (GPT-40):
hotel_names_set = set()
for activity in allactivities(plan):
if activity_type(activity)=="accommodation":
hotel_names_set.add(activity position(activity))
result=({"FK S 191872 f 2 i (LRt R4 1)) <=

hotel names_set)

Query: My brother and I are planning to travel from
Shanghai to Chongging for 4 days. Apart from the
round-trip high-speed train/flight, we aim to
spend no more than 3400 yuan in Chongqing.
DSL Translation (GPT-40):
total_cost=0
for activity in allactivities(plan):
total_cost+=activity_cost(activity)+innercity
transport_cost(activity_transports(activity))
result=(total_cost<=3400)

Figure 4: Challenges in the Neuro-Symbolic Planning.

solution consists of two stages. Stage 1: NL2DSL
translation translates natural language queries into
logical, preference-based DSL requirements. We
use Reflexion (Shinn et al., 2024) and a DSL syntax
checker to iteratively assist the LLMs (5 rounds
in experiments). Stage 2: Interactive search uses
a neuro-symbolic solver to sequentially arrange
activities, guided by a symbolic sketch and LLM-
driven POI recommendations, generating a multi-
day itinerary with DSL validation. If constraints
are violated, the process backtracks until a feasible
solution is found. To ensure fairness, the symbolic
sketch search is limited to 5 minutes per query,
excluding LLM inference time. To observe the
performance across the two stages, we also evalu-
ated the planning results based on the Oracle DSL.
App. D includes pseudo-code and LLM prompts.

3.2 Main Results

Based on the results presented in Table 3, we have
the following observations and analyses:

Pure LLMs struggle in ChinaTravel. The DR
evaluates an agent’s ability to generate valid JSON
plans (see Fig. 1). While high DRs indicate that
advanced LLMs can produce structured outputs for
travel planning, the near-zero EPR (Environmen-
tal Constraints Pass Rate) reveals their inability to
gather and strictly adhere to required information.
The sole exception is the DeepSeek model, which
achieves the 6% EPR and 5% FPR at easy level,
likely due to its strong capability to follow Chinese
requirements. ReAct (one-shot, GPT-40) excels in
Macro LPR but achieves no FPR, suggesting it cir-
cumvents constraints via shortcuts. Our proposed
C-LPR metric offers a more reliable measure of
logical constraints, serving as a supplement to FPR.

200 T=0 =3
=1 =4
150 =2 =5
100
50
0 —

GPT-40 DeepSeek-V2.5 Qwen2.5-7B

Figure 5: Syntax errors across reflexion rounds 7.

Nesy Planning provides a promising solution.
Our NeSy Planning framework integrates sym-
bolic programs to orchestrate travel planning and
tool management while utilizing LL.Ms to extract
language-based requirements and prioritize POIs.
By separating planning (flexible natural language
handling) from grounding (precise execution), the
framework enhances adaptability and ensures com-
pliance with constraints. Across all data subsets,
NeSy methods outperform pure-LLM approaches.
With GPT-4o0 as the backend, it achieves FPRs of
60.6%, 46.7%, and 27.9% on three subsets, high-
lighting the effectiveness of NeSy solutions for
travel planning with complex constraints.

Challenges Persist for Nesy Planning. The per-
formance gap between standard and oracle modes
underscores the importance of DSL translation in
NeSy planning. Inadequate translations may result
in plan searches failing to meet user requirements,
while incorrect translations can misguide the search,
making feasible solutions unattainable. Among the
three LLMs, GPT-40 performs the best, with mini-
mal gaps between modes, indicating its relatively
accurate DSL generation effectively supports the
search process. We conclude with three challenges
and provide the corresponding cases in the Fig. 4.

(1) DSL Syntax Compliance: As shown in Fig. 5,
while the reflexion process with syntax checker
significantly reduces syntax errors, the Qwen-7B
model demonstrates weaker compliance than GPT-
40 and DeepSeek, directly resulting in its lower
performance in the Tab. 3. (2) Open Language
Reasoning: Although GPT-40 exhibits relatively
fewer syntax errors in translation, it still struggles
with context-dependent meanings. For instance,
when a user requests A<H13% (local cuisine), GPT-
40 maps it to A<#E 2, ignoring the logical connec-
tion that in Beijing, it should align with ¢ {32
(Beijing cuisine). (3) Unseen Concept Composi-
tion: Real-world requirements derived from human
data are inherently diverse and complex, making
expecting models to encounter all possible needs
during development impractical. A more feasible
way is to emulate human reasoning by generaliz-
ing existing knowledge to novel problems. Based
on our DSL design, LLMs can express new logi-
cal requirements through combinations of concept
functions. However, compositional generalization
remains a challenge. GPT-40 misinterpreted a time
constraint ‘B 7 5 FIEE F[EFRH) K E as apply-
ing to all activities instead of correctly limiting only
the return train’s departure time to before 19:00.
In summary, ChinaTravel poses significant chal-
lenges for current agents. Neuro-symbolic agents
outperform pure-LLM approaches in constraint sat-
isfaction, showing strong potential for real-world
travel planning. With realistic queries and a versa-
tile DSL for constraint validation, we highlight the
critical challenges while providing a foundation for
advancing neuro-symbolic systems in practice.

3.3 Ablation Study with Preference

The comparison of preferences should be conducted
under the premise that both environmental and logi-
cal constraints are satisfied. Given the limited FPR
achieved by existing methods on the challenging
ChinaTravel, we perform a separate analysis of pref-
erence optimization in this section. Specifically,
we sampled 50 queries from the easy subset that
NeSy-DeepSeek-Oracle successfully passed as seed
samples. Based on these, six subsets were created
by introducing common preferences identified from
user surveys. Three comparative scenarios were
designed to explore the roles of LLMs and symbolic
search in optimizing preferences during NeSy Plan-
ning: (1) Baseline Query (BQ): Results obtained by
directly querying the seed samples without prefer-
ence requirements. (2) Preference-Enhanced Query

— Pl NeSy Planning BQ PDS

/ Xl Daily attractions T 0.75 0.79 1.63
\ Transport time L 270 269 248
Pj \‘PO Transport time torest. | 22.2 26.8 22.8
| Food cost ratio T 0.19 029 032
/" Hotel cost | 1350 559 519

x\ /PS/ Distance to POI | 309 30.6 26.1

Figure 6: Ablation on preference ranking.

(PEQ): Results based on seed samples augmented
with natural language preference expressions (e.g.,
“visit more attractions"), evaluating whether em-
bedding preferences into POI recommendations
via LLMs improves outcomes. (3) Preference-
Driven Search (PDS): Results using both natural
language and DSL-based expressions, where the
agent, within the 5-minute search time limit, com-
putes the preference concept for solutions that pass
environmental and logical constraints and retains
plans that maximize or minimize the preference
objective. The results are provided in Fig. 6 (where
T /| indicate maximization/minimization).

We found that PEQ outperforms BQ in pref-
erence optimization. This ablation demonstrates
that LLMs can effectively capture natural language
needs during the POI ranking stage, contributing to
preference improvements. However, on P2, PEQ
underperforms BQ, indicating that LLMs can some-
times have a negative impact. This may be due to the
complexity of the preference in P2, which involves
minimizing transport time to restaurants, leading to
misinterpretation. PDS achieves more significant
improvements in preference optimization, relying
on DSL-based preference calculations that filter
plans more effectively over extended search times.
This supports the scalability of DSL in preference
optimization but also highlights the pressing need
for more efficient algorithms.

4 Conclusion

We present ChinaTravel, a benchmark for multi-
day multi-POI travel planning focused on authentic
Chinese needs. We address the limitations of pre-
vious benchmarks by incorporating open-ended
and diverse human queries, capturing real-world
user needs. Additionally, we propose a scalable
evaluation framework based on DSL, enabling com-
prehensive assessments of feasibility, constraint
satisfaction, and preference comparison. These
advancements provide a foundation for developing
language agents capable of meeting diverse user re-
quirements and delivering reliable travel solutions.

5 Limitations

Our research represents a significant step forward
in evaluating the travel planning capabilities of
language agents, but it is not without challenges.
One limitation lies in its focus on Chinese travel
planning. Due to the inherent differences in natural
language, the translated versions of queries may
fail to fully capture the challenges of understanding
requirements in Chinese queries, potentially limit-
ing its applicability in a global context. However,
given the substantial demand within China’s travel
market, we believe a benchmark tailored to Chinese
travel planning is both necessary and socially valu-
able. Although our benchmark is comprehensive, it
may not encompass the full range of requirements
encountered in real-world scenarios. The high cost
of collecting authentic data has limited the number
of human queries in our study. To address this,
future work will focus on combining LLMs with
real user queries to automate the generation of a
wider variety of human-like queries. Continuous
refinement and expansion of our benchmark are
crucial for more accurately reflecting the realistic
travel planning needs.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,

Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In

Advances in Neural Information Processing Systems,
pages 1877-1901.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung
Hsu. 2002. Deep blue. Artificial intelligence, 134(1-
2):57-83.

Aili Chen, Xuyang Ge, Ziquan Fu, Yanghua Xiao, and
Jiangjie Chen. 2024. TravelAgent: An Al assis-
tant for personalized travel planning. arXiv preprint
arXiv:2409.08069.

Wang-Zhou Dai, Qiu-Ling Xu, Yang Yu, and Zhi-Hua
Zhou. 2019. Bridging machine learning and logical
reasoning by abductive learning. In Advances in

Neural Information Processing Systems, pages 2811-
2822.

Shujie Deng, Honghua Dong, and Xujie Si. 2024. En-
hancing and evaluating logical reasoning abilities of
large language models. In Proceedings of the ICLR
2024 Workshop on Secure and Trustworthy Large
Language Models.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 14953-14962.

Sajal Halder, Kwan Hui Lim, Jeffrey Chan, and Xiuzhen
Zhang. 2024. A survey on personalized itinerary
recommendation: From optimisation to deep learning.
Applied Soft Computing, 152:111200.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu
Fan. 2024. Large language models can plan your trav-
els rigorously with formal verification tools. CoRR,
abs/2404.11891.

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues? In Proceedings
of the 12th International Conference on Learning
Representations.

Weiyu Liu, Geng Chen, Joy Hsu, Jiayuan Mao, and
Jiajun Wu. 2024. Learning planning abstractions from
language. In Proceedings of the 12th International
Conference on Learning Representations.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2018.
Deepproblog: Neural probabilistic logic program-
ming. In Advances in Neural Information Processing
Systems, pages 3753-3763.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, loannis Antonoglou, Daan Wierstra,
and Martin A. Riedmiller. 2013. Playing Atari with
deep reinforcement learning. CoRR, abs/1312.5602.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter
Welinder, Paul F. Christiano, Jan Leike, and Ryan
Lowe. 2022. Training language models to follow
instructions with human feedback. In Advances in
Neural Information Processing Systems, pages 27730-
27744.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023. Logic-LM: Empower-
ing large language models with symbolic solvers for
faithful logical reasoning. In Findings of the Associa-
tion for Computational Linguistics: EMNLP, pages
3806-3824.

Vibhor Sharma, Monika Goyal, and Drishti Malik. 2017.
An intelligent behaviour shown by chatbot system. In-
ternational Journal of New Technology and Research,
3(4):263312.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Process-
ing Systems.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui,
Laurent Sifre, George van den Driessche, Thore
Graepel, and Demis Hassabis. 2017. Mastering the
game of Go without human knowledge. Nature,
550(7676):354-359.

Yihong Tang, Zhaokai Wang, Ao Qu, Yihao Yan, Ke-
bing Hou, Dingyi Zhuang, Xiaotong Guo, Jinhua
Zhao, Zhan Zhao, and Wei Ma. 2024. Synergiz-
ing spatial optimization with large language models
for open-domain urban itinerary planning. CoRR,
abs/2402.07204.

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico
Kolter. 2019. SATNet: Bridging deep learning and
logical reasoning using a differentiable satisfiability
solver. In Proceedings of the 36th International
Conference on Machine Learning, pages 6545-6554.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng,
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan
Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui.
2023. The rise and potential of large language model
based agents: A survey. CoRR, abs/2309.07864.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze
Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. 2024.
Travelplanner: A benchmark for real-world planning

10

with language agents. In Proceedings of the 41st
International Conference on Machine Learning.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In Proceedings of the 11th International
Conference on Learning Representations.

Hongbo Zhang, Junying Chen, Feng Jiang, Fei Yu, Zhi-
hong Chen, Guiming Chen, Jianquan Li, Xiangbo Wu,
Zhiyi Zhang, Qingying Xiao, Xiang Wan, Benyou
Wang, and Haizhou Li. 2023. Huatuogpt, towards
taming language model to be a doctor. In Findings
of the Association for Computational Linguistics:
EMNLP, pages 10859-10885.

A Discussion with Related Work

LLM-based Agents have demonstrated significant
capability in understanding complex instructions
and employing domain-specific tools to complete
tasks, showcasing their potential in fields such as vi-
sual reasoning (Gupta and Kembhavi, 2023), health-
care (Zhang et al., 2023) and robotics (Liu et al.,
2024). This reduces the reliance of previous agents
on domain-specific efforts, that is, either mainly
following domain-specific rules to plan (rule-based
agents, such as DeepBlue (Campbell et al., 2002)
and Eliza (Sharma et al., 2017)) or mainly learning
from domain-specific data to plan (reinforcement-
learning-based agents, such as AlphaGo (Silver
et al., 2017) and Atari DQN (Mnih et al., 2013)).
While the language agents have shown promising
results in some domains, most of their planning
scenarios are limited to simple tasks with single
objective function and fail in the travel planning
benchmark with complex logical constraints.
Neuro-Symbolic Learning explores to combine
traditional symbolic reasoning with learning to en-
hance the reliability (Manhaeve et al., 2018; Wang
et al., 2019; Dai et al., 2019). In the era of large
language models, Pan et al. (2023) presents the
LogicLLM integrates LL.Ms with separate symbolic
solvers for various logical reasoning tasks. They
first utilize LLMs to translate a natural language
problem into a symbolic formulation. Afterward, a
deterministic symbolic solver performs inference
on the formulated problem to ensure the correct-
ness of the results. Deng et al. (2024) supplement
LogicLM with a Self-Refinement Module to en-
hance the reliability of LLM translation. In the
travel planning domain, Hao et al. (2024) presents
a framework with a similar pipeline. It first ex-
tracts the logical constraints from natural language
queries and then formalizes them into SMT code.

Thanks to SMT solvers being sound and complete,
this neuro-symbolic solution guarantees the gener-
ated plans are correct and has basically solved the
TravelPlanner benchmark with a 97% pass rate.

Travel Planning is a time-consuming task even
for humans, encompassing travel-related informa-
tion gathering, POI selection, route mapping, and
customization to meet diverse user needs (Halder
et al., 2024). Natural languages are one of the most
common ways for users to express their travel re-
quirements. However, the ambiguity and complex-
ity of travel requirements make it still challenging
for LLMs to generate accurate and reliable travel
plans. Xie et al. (2024) presents the TravelPlanner
benchmark for cross-city travel planning and re-
veals the inadequacies of pure-LLM-driven agents.
TravelPlanner generates user queries through LLMs
and provides a rigorous evaluation mechanism to
verify whether the provided plans can meet the
logical constraints in the queries. It has become
a pivotal benchmark for language agents in real-
world travel planning. Tang et al. (2024) study
the open-domain urban itinerary planning where
a single-day multi-POI plan is required. They in-
tegrates spatial optimization with large language
models and present a system ITTNERA, to provide
customized urban itineraries based on user needs.
A concurrent work, TravelAgent (Chen et al., 2024),
also considers a multi-day multi-POI travel plan-
ning problem for the specified city. It constructs
an LLM-powered system to provide personalized
plans. However, due to the high cost of collecting
and annotating real travel needs, they evaluate the
proposed TravelAgent in only 20 queries. This also
demonstrates the necessity of introducing a new
benchmark for travel planning.

B Detailed Design of ChinaTravel

B.1 Sandbox Information

We started collecting travel information with the mo-
tivation of planning a multi-day, multi-POl itinerary
in four aspects: attractions, accommodation, activi-
ties, and transportation. Developers first determine
the POI description information that needs to be ob-
tained from the user’s perspective, such as cuisine
and hotel features. Based on this feature set, we
collect public information to construct the database.
For the design of APIs, we directly support queries
based on the regular expressions from agents. At
the same time, we expect the design of APIs to have
similar features and characteristics to existing com-

11

mercial APIs, enabling our dataset to be applicable
to more realistic scenarios. The information our
database contains is shown in Table 4 and the APIs
we offer is in Table 5

B.2

Here is a tutorial, that provides a step-by-step guide
to utilizing ChinaTravel’s Domain-Specific Lan-
guage (DSL) with predefined concept functions for
expressing logical constraints and preferences.

Tutorial of DSL Expression

DSL Overview In the main body of this paper, we
have detailed the basics of our DSL in the Table 2.
The DSL is a Python-like language designed to for-
malize travel planning requirements into executable
code. It enables automated validation of itineraries
against user constraints and preferences. Key com-
ponents include: 1) Concept Functions: Predefined
functions (e.g., activity_cost, poi_distance) that
extract attributes from travel plans. 2) Operators:
Logical (and, or, not), arithmetic (+, -, *, /), and com-
parison operators (<, >, ==). 3) Control Structures:
Loops (for), conditionals (if), and set operations
(union, intersection).

Core Concept Functions We have defined 35
concept functions. Their definition and implemen-
tation is in Table 8, 9, 10 and 11. Below are
common use cases:

Example: Budget Constraint User Query: "Total
expenses must not exceed 5000 CNY."

total_cost 0
for act in all_activities(plan):
total_cost += activity_cost(act)
total_cost +=
innercity_transport_cost(
activity_transports(act))
return total_cost <= 5000

The function all_activities(plan) iterates through
all activities in the itinerary. The function activ-
ity_cost retrieves the cost of each activity. The
function innercity_transport_cost sums transporta-
tion expenses. Based on Python syntax, combining
these concept functions can calculate the cost of
the entire plan, thereby determining whether the
budget constraints are met.

Debugging Tips (1) Syntax Validation: Use the
python compiler to check for syntax errors (e.g.,
missing colons, undefined variables). (2) Unit
Testing: Test individual concept functions (e.g.,
poi_distance) with mock itineraries. (3) Iterative
Refinement: For ambiguous requirements (e.g., "lo-
cal cuisine"), map natural language to precise DSL

Tool

Information

Attractions Name, Type, Latitude, Longitude, Opentime, Endtime, Price,
Recommendmintime, Recommendmaxtime
Accommodations Name, Name_en, Featurehoteltype, Latitude, Longitude, Price, Numbed
Restaurants Name, Latitude, Longitude, Price, Cuisinetype, Opentime, Endtime,
Recommendedfood
Transportation Transportation in specific city including walk, metro and taxi
IntercityTransport Flight: FlightID, From, To, BeginTime, EndTime, Duration, Cost
Train: TrainlID, TrainType, From, To, BeginTime, EndTime, Duration, Cost
Poi Names of POIs(including intercity transportation hub) and their coordinates

Table 4: Sandbox Information

concepts from sandbox information (e.g., restau-
rant_type(act, city) == "Beijing Cuisine").

Integration with Neuro-Symbolic Agents. (1)
NL2DSL Translation: Convert user queries into
DSL using LLMs (e.g., "Try local food" — restau-
rant_type(POI, city) == "Beijing Cuisine" when
the destination city is Beijing). (2) Symbolic
Validation: Execute DSL code to verify plans
against logical constraints. (3) Search Optimiza-
tion: Use DSL-defined preferences (e.g., mini-
mize(transport_time)) to rank candidate itineraries.

B.3 Query Synthesis

We designed common travel information (origin,
destination, days, number of people) and logical
constraints based on the nature of travel tasks. To
facilitate scalable queries for ChinaTravel, we ran-
domly constructed query skeletons from the afore-
mentioned information and used advanced LLMs
to generate natural language queries from these
skeletons. In practice, we provide the LLMs with
more intuitive hard logic constraints to ensure the
LLMs do not make mistakes and use a Python
script to convert it after generating the query. The
automatically generated data is categorized into
two difficulty levels: In the Easy level, user inputs
encompass a single logical requirement, sourced
from categories such as transportation, restaurants,
attractions, and accommodations. In the Medium
level, user inputs involve 2 to 5 logical requirements,
introducing more complex constraints. During the
generation, we encourage the LLMs to provide
varied and human-like expressions, necessitating a
deeper understanding and processing to accurately
interpret and fulfill the user’s needs. For instance,

12

the logical requirement "taste Beijing cuisine" could
correspond to the natural language query: "Try lo-
cal food in Beijing." We utilize prompt engineering
to guide LLMs in refining natural language expres-
sions to facilitate automated generation. One of the
prompts is shown in Figure 8. Several examples of
generated data is in Figure 9.

As aresult, we obtain the synthetic queries across
diverse travel requirements, including 28 restaurant
types, 23 attraction types, 29 hotel features, and
more than 130 specific POIs.

B.4 Data Diversity and Bias Mitigation

This subsection provides a detailed analysis of
ChinaTravel’s hybrid query design, addressing con-
cerns about synthetic data limitations and real-world
representativeness.

ChinaTravel integrates both synthetic and human-
authored queries to balance scalability and realism.
When synthesizing data, we randomly constructed
constraints based on the types and specific visit
requirements of POIs such as restaurants, accom-
modations, transports, and attractions, thereby en-
suring the diversity of the dataset. The human query
subset comprises 154 samples collected through
structured questionnaires, which introduce com-
plex real-world constraints such as time-bound re-
turns (e.g., explicit requirements like "return before
7 PM") and activity-specific budget allocations.
These queries also incorporate colloquial expres-
sions that reflect native Chinese travel preferences,
exemplified by phrases like local specialty foods
frequented by residents. The synthetic queries are
generated through LLM-based paraphrasing tech-
niques and systematically categorized into two tiers:

Tool

API

Docs

Attractions attractions_keys(city) Return a list of (key, type) pairs of the
attractions data.
attractions_select(city, key, func) Return a DataFrame with data filtered
by the specified key with the specified
function.
attractions_id_is_open(city, id, time) Return whether the attraction with the
specified ID is open at the specified time.
attractions_nearby(city, point, topk, Return the top K attractions within the
dist) specified distance of the location.
attractions_types Return a list of unique attraction types.
Accommodations accommodations_keys(city) Return a list of (key, type) pairs of the
accommodations data.
accommodations_select(city, key, func) Return a DataFrame with data filtered
by the specified key with the specified
function.
accommodations_nearby(city, point, Return the top K accommodations
topk, dist) within the specified distance of the loca-
tion.
Restaurants restaurants_keys(city) Return a list of (key, type) pairs of the
restaurants data.
restaurants_select(city, key, func) Return a DataFrame with data filtered
by the specified key with the specified
function.
restaurants_id_is_open(city, id, time) Return whether the restaurant with the
specified ID is open at the specified time.
restaurants_nearby(city, point, topk, Return the top K restaurants within the
dist) specified distance of the location.
restaurants_with_recommended_food(Return all restaurants with the specified
city, food) food in their recommended dishes.
restaurants_cuisine(city) Return a list of unique restaurant
cuisines.
Transportation goto(city, start, end, start_time, trans- Return a list of transportation options
port_type) between two locations with the specified
departure time and transportation mode.
IntercityTransport intercity_transport_select(start_city, Return the intercity transportation infor-
end_city, intercity_type, earli- mation between two cities.
est_leave_time)
Others notedown(description, content) Write the specified content to the note-

plan(query)

next_page()

book

Generates a plan based on the notebook
content and query and report the plan is
done.

Get the next page of the latest Result
history if it exists. Because of the length
limited, all returned DataFrame infor-
mation is split into 10 rows per page.

Table 5: APIs

13

Query in Chinese (from easy subset): 24 /i i B R #. AN AN AN ZB wB 2 K, F—RRUKRE, HEE
ATUMTE, 54— ANRAT AR

Current location: Chengdu. My friend and I want to go to Nanjing for 2 days. We need a twin room in a hotel where
we can play cards. Please provide a travel plan for us.

accommodation_type set=set()
for activity in allactivities(plan):
if activity type(activity) == 'accommodation’: accommodation_type set.add(accommodation_type(activity,

target_city(plan)))
result=({"BL}# ="} <=accommodation_type set)
Query in Chinese (from medium subset): a7 & l#f. LM ANBEERKIL2 K, HH 3000 AR, -
. KR, ARV .
Current location: Chengdu. I want to travel alone to Chonggqing for 2 days with a budget of 3000 RMB. I plan to take
the train, want to eat hotpot, and visit Hongya Cave.
total cost=0
for activity in allactivities(plan):

total costt+=activity cost(activity)

total _cost += innercity_transport cost(activity _transports(activity))
result=(total cost<=3000)

restaurant_type_set=set()
for activity in allactivities(plan):
if activity type(activity) in ['breakfast', 'lunch’, 'dinner']: restaurant_type set.add(restaurant type(activity,
target_city(plan)))
result=({'/k #4'} <=restaurant_type set)

Query in Chinese (from human subset): [24 i & 75 5, B ARAn B B0 AT A 2,47 K% 3] #0647 2 A48 %30
B3 K, EEEAKRRIG LA K, T A S e /£ 4 MRIAT
1
Eo
English translation: [Current location: Nanjing, Destination: Wuhan, Number of travelers: 2, Travel days: 3] The two
of us want to visit Wuhan for 3 days. We mainly want to experience some of the historical areas in Wuhan and also try
the local specialty foods that residents often eat. How should we plan our itinerary?
attraction_type set=set()
for activity in allactivities(plan):

if activity type(activity)=="attraction': attraction_type set.add(attraction type(activity, target city(plan)))

result=({'}j 52 51"} <=attraction_type_set)"

>n

Query in Chinese (from human subset): [245117 & F5 5%, H ArhL BB, iRAIT AL 2,017 K5 3] FA T H LhUNE
Pait, 2000, 253k — kit
[Current location: Nanjing, Destination: Hangzhou, Number of travelers: 2, Number of travel days: 3] We plan to visit
West Lake in Hangzhou with a budget of 2000. Please provide me with a travel itinerary.
attraction_name_set=set()
for activity in allactivities(plan):
if activity type(activity)=="attraction': attraction name_set.add(activity position(activity))
result=({' 751 X\ 5 44 it [X '} <=attraction_name_set)

Figure 7: Examples of travel requirements and their DSL expressions.

14

An Example of Prompts for Data Generation

RRE—DHP, R aifE — MR, FRE LT BB R — L 5 R E R
[A], RS RIFZ AR EIS o 1 BticketsFpeople_number—H¥ ¢

¥

JSON:

{

"start_city": "bLI",
"target_city": "FEIR",
"hard_logic": [
"days==2",
"people_number==1",
"tickets==1",
"CRI R AHERS) <= restaurant_names",
I,
"nature_language": "SI EILE . W— DM ANBEEREEIR2K, B2 RHHY, F
BR—DIRITHL -

}
fEFALA T AR -
JE4:

Eﬂ%ﬂ?restaurant namesa,;:.l_ AJE

FE, BRA—EZeBBERMAMFIEN LTk, nJDUEHAT SR, anan Rt
vkt TH@E%?"E?@TL@WKLﬁE/}E,mln = 18]

FE, RIERH A S), BRI A} - AE), RE)

HLAETELE — 1 jsonifl[A],

JSON:

You are a user who wants to ask an AI agent to help you plan a
trip. Please construct some natural language inquiries based
on the following example and provide the corresponding

logical constraint expressions. Note that "tickets"” and
people_number” are the same.

Example:

JSON:

{1}

Use the following restaurants.

Restaurant name: {}

This means that "restaurant_names"” should include this

restaurant.

The dining options may not always be exactly as described by
the provided features; synonyms can be used. For example, if
the hotel's feature is a pool, you could ask naturally in
language like "I want to swim in the hotel pool.”

Now, your departure location is {}, and your destination is
{}. The number of people is {}, and the number of days is {}.

Now please provide a JSON inquiry.

JSON:

n

H OHF HF H HF H

Figure 8: An example of prompts for data generation. This example is about restaurant_name. By replacing this
with other constraints or combining multiple constraints, we can generate data with different levels of difficulty
based on different constraints.

15

Examples of Generated Data

Example 1
{
"start_city": "FLIH",
"target_city": " ",
"hard_logic": [
"days==2",
"people_number==1",
"tickets==1",
"CARHEZE) <= food_type"
I,
"nature_language": "ZHHIMLEHM o Fo— P ANREE FigEIRK, BEHG G
X, WAB—IRITAE -
}

Example 2
{

"start_city": "R,

"target_city": "JLIL",

"hard_logic": [

"days==2",

"people_number==3",
"intercity_transport=={’airplane’ }",
"tickets==3",

"rooms==3",

"room_type==1"

I,
"nature_language": "B AL B . FA =D ATHRIEIIRITH R, 25 CHLHAT,
TF=1ARIRE o IEEH— P IRiT A -

}

Example 3
{

"start_city": "ELJK",

"target_city": "FRH",

"hard_logic": [

"days==3",
"people_number==3",
"cost<=7300",

"> H AR} <= food_type",
"intercity_transport=={"train’ }",
"tickets==3",

"rooms==2",

"room_type==2"

I,
"nature_language": "SI EEK . A= D NITRETMNEL=R, SEEFEKEHIT,
T8z HARIE, iE73007T, FFREIXURS - iEEF— IR -

}

Figure 9: Examples of Generated Data

16

Logical Constraint

Transportation The required type of transportation.
Attraction The required type or specified attractions.
Restruants The required type or specified restruants.
Accommodation The number of rooms and the room type must meet the requirements.
The required features or specified hotels.
Budget The total cost is within required budget.
Unseen Logical Constraints in Human data
POIs The negation/conjunction/disjunction of given POls
Time The duration of specific activities is within the limitation
Budget The cost of specific activities is within the required budget

Table 6: Descriptions of Logical Constraints for two benchmarks. Constraints in black are common in both
TravelPlanner and ChinaTravel. Metrics in brown are the metrics only in our benchmark.

Preference Requirements

Daily attractions T

Transport time |

Transport time to the restaurants |
Food cost ratio |

Hotel cost |

Distance to POI |

Visit as many attractions as possible
Minimize the travel time between POIs
Minimize the travel time to restaurants
Maximize the proportion of dining expenses
Minimize accommodation costs

Visit places as close to {POI} as possible

Table 7: Descriptions of Preference Requirements in ChinaTravel benchmark.

Easy-tier queries contain single logical constraints
(e.g., specific cuisine requirements), while Medium-
tier queries combine 3-5 interdependent constraints
(e.g., compound conditions like "budget < 3000
CNY + train transport + hotpot dining").

To mitigate synthetic data bias and enhance di-
versity, three primary strategies were implemented.
First, constraint combinations were deliberately
diversified across temporal, spatial, and cost dimen-
sions, as detailed in Table 6. Second, a human vali-
dation layer filters out unrealistic LLM-generated
queries, such as physically implausible itineraries
like "visiting 10 attractions within one day." Third,
the DSL framework enables compositional gener-
alization of requirements, supporting open-ended
constraint combinations through its formal syntax
shown in Table 2.

The current human query subset remains limited
by annotation costs, as discussed in the limitation
section. In future work, we will advance data collec-
tion by integrating LL.Ms with real user queries to
automate and diversify the generation of human-like
queries. Additionally, all human queries and auto-
mated synthesis tools will be publicly released to

support community-driven benchmark extensions.

B.5 Data with Preference

We introduce six common preferences from user
surveys to construct the preference sub-datasets.
Table 12 provides a summary of these preferences.

The corresponding DSL could be formulated as
follows.

The number of attractions visited
count (]
for act_i in all_activities(plan):
if activity_type(act_i)=="attraction”:
count count + 1
return count

The average travel time between POIs
time_cost [
transport_count 0
for activity in allactivities(plan):
transports
activity_transports(activity)
transport_count += 1
time_cost +=
innercity_transport_time(
transports)
average_time_cost time_cost /
transport_count if transport_count >
0 else -1
return average_time_cost

17

Function Meaning Implementation
Name
n 1 in the plan def day_count(plan):
day_cou t tota days the pla return len(plan["itinerary”1)
: : def people_count(plan):
people_count number of people in the trip Feturn plani’people number”]
start_city start city of the plan def start_city(plan):
return plan["start_city"]
target_cit target city of the plan def target_city(plan):
get_city g y P return plan["target_city"]
def allactivities(plan):
activity_list = []
allactivities all the activities in the plan for day_activity in plan["itinerary”]:
for act in day_activity["activities"]:
activity_list.append(act)
return activity_list
def allactivities_count(plan):
count = @
allactivities_- the number of activities in the for gzz;icifvity in plan["itinerary”]:
count plan len(day_activity["activities”])
return count
def dayactivities(plan, day):
activity_list = []
dayactivities all the activities in the specific for act in planf”itinerary”]\
[day - 1]["activities"]:
day [1, 2,3, ..] activity_list.append(act)
return activity_list
activity_cost the cost of specific activity 9€f activity_cost(activity):
without transport cost return activity.get("cost”, 0)
activity_posi- the position name of specific d4¢f activity_position(activity): —
tion acﬁvﬂy return activity.get("position",)
activity_price the price of specific activity =~ d¢f activity_price(activity):
return activity.get("price”, 0)
ivi h f ifi ivi def activity_type(activity):
activity_type the type of specific activity Feturn activity.get(’type”, "")
activity_tickets the number of tickets needed ~def activity_tickets(activity):
; f ivit return activity.get("tickets”, @)
Oor Specilic acuvity
activity_trans- the transport information of ~d¢f activity_transports(activity):
s specﬁk:acﬁvﬁy return activity.get("transports”, [1)
por
activity_- the start time of specific actiy- d¢f activity_start_time(activity):
tart 6 it return activity.get("start_time")
start_time ity
activity_- the end time of specific activ- d¢f activity_end_time(activity):
d i i return activity.get("end_time")
ena_ume 1y

Table 8: Concept Function

18

Function
Name

Meaning

Implementation

def

activity_time(activity):
start_time = activity.get("start_time"”)

end_time = activity.get("end_time")
if start_time and end_time:
st_h, st_m =\
activity_time the duration of specific activ- map (int, start_time.split(”:"))
ﬂy ed_h, ed_m = \
map(int, end_time.split(":"))
return \
(ed_m - st_m) + (ed_h - st_h) * 60
return -1
def poi_recommend_time(city, poi):
select = Attractions().select
attrction_info = \
select(city, key="name”,
poi_recom- the recommend time of spe- func=lambda x: x == poi).iloc[0]
mend_time cific poi(attraction) in the city recommend_time = \ o
(attrction_info["recommendmintime”]) \
* 60

return recommend_time

the distance between two POIs
in the city

poi_distance

def

poi_distance(city,

start_time="00:00"

transport_type="walk"”

goto = Transportation().goto

return goto(city, poil, poi2, start_time,
transport_type)[@]["distance”]

poil, poi2):

innercity_- the total cost of specific in-
transport_cost nercity transport

def

innercity_transport_cost(transports, mode):
cost = 0
for transport in transports:
if node is None or \
transport.get(”"type”) == node:

cost +=
return cost

transport.get(”cost”, 0)

innercity_-
transport_price

the price of innercity transport

def

innercity_transport_price(transports):
price = 0
for transport in transports:
price += transport["price"]
return price

def

innercity_transport_distance\
(transports, mode=None):
distance = 0

for transport in transports:

innercity_- the distance of innercity trans- if mode is None or \
transport_- port transport.get(”"type”) == mode
di - distance += \
1stance transport.get(”"distance”, 0)
return distance
def innercity_transport_time(transports):
def calc_time_delta(end_time, start_time):
hour1, minul = \
int(end_time.split(":")[0]), \
innercity_- the duration of innercity trans- int(end_time.split(":")[1])
hour2, minu2 = \
transport_- port int(start_time.split(":")[01), \
time int(start_time.split(":")[1]1)

return (hourl -
+ (minul

hour2) * 60\
- minu2)

Table 9: Concept Function

19

Function
Name

Meaning

Implementation

metro_tickets

the number of metro tickets if
the type of transport is metro

def metro_tickets(transports):
return transports[1]["tickets"]

taxi_cars

the number of taxi cars if the
type of transport is taxi

def taxi_cars(transports):

return transports[@]J["cars"]

room_count

the number of rooms of ac-
commodation

def room_count(activity):

return activity.get("rooms”, @)

room_count

the number of rooms of ac-
commodation

def room_count(activity):

return activity.get("rooms"”, 0)

room_type

the type of room of accommo-
dation

def room_type(activity):

return activity.get("room_type"”, @)

restaurant_-
type

the type of restaurant’s cuisine
in the target city

def restaurant_type(activity, target_city):
restaurants = Restaurants()
select_food_type = \

restaurants.select(

target_city, key="name",

func=lambda x: x == activity["position"]
Y["cuisine"]
if not select_food_type.empty:

return select_food_type.iloc[0]
return ""

attraction_-
type

the type of attraction in the
target city

def attraction_type(activity, target_city):
attractions = Attractions()
select_attr_type = \

attractions.select(

target_city, key="name",

func=lambda x: x == activity["position"]
Y["type”]
if not select_attr_type.empty:

return select_attr_type.iloc[@]
return ""

accommo-
dation_type

the feature of accommodation
in the target city

def accommodation_type(activity, target_city):
accommodations = Accommodations ()
select_hotel_type =\

accommodations.select(

target_city, key="name",

func=lambda x: x == activity["position"]
Y["featurehoteltype"]
if not select_hotel_type.empty:

return select_hotel_type.iloc[0]
return ""

innercity_-
transport_-
type

the type of innercity transport

def innercity_transport_type(transports):
if len(transports) == 3:

return transports[1]["mode"]
elif len(transports) == 1:

return transports[@]["mode"]
return ""

intercity_-
transport_-
type

the type of intercity transport

def intercity_transport_type(activity):

return activity.get("type”, "")

Table 10: Concept Function

20

Function Meaning Implementation
Name
innercﬂy_— the start time of innercﬂy def 1nnerc1ty_transport_sEart_tlmg(t:ansports):
return transports[@]["start_time"]
transport_- transport
start_time
innercﬂy_— theendthneofinneanIUans- def 1nterc1ty_transport_eng_t1me(trfnsports):
return transports[-1]["end_time"]
transport_- port
end_time
def intercity_transport_origin(activity):
if "start” in activity:
intercity_- the origin city of intercity for city in city_list:)
if city in activity["start"]:
transport_- transport return city
origin return ""
def intercity_transport_destination(activity):
if "end” in activity:
intercity_- tthe destination city of inter- for city in city list: =
K if city in activity["end”]:
transport_- city transport return city
destination return "”

Table 11: Concept Function

The average travel time to restaurants
restaurant_count = 0
time_cost = @
for activity in allactivities(plan):
if activity_type(activity) in ['
breakfast', 'lunch', 'dinner']:
restaurant_count += 1
time_cost +=
innercity_transport_time(
activity_transports(activity

))
if restaurant_count == 0:
average_time_cost = -1
else:
average_time_cost = time_cost /

restaurant_count
return average_time_cost

The ratio of food cost
food_cost = @
total_cost = 0
for activity in allactivities(plan):
total_cost += activity_cost(activity
)
total_cost +=
innercity_transport_cost(
activity_transports(activity))
if activity_type(activity) in ['

breakfast', 'lunch', 'dinner']:
food_cost += activity_cost(
activity)
food_cost_ratio = food_cost / total_cost

if total_cost > @ else -1
return food_cost_ratio

The cost of accommodations

21

accommodation_cost = 0
for activity in allactivities(plan):
if activity_type(activity) == "
accommodation':
accommodation_cost +=
activity_cost(activity)”
return accommodation_cost

The average distance to poi (e.g. xxx)
target_poi = "xxx'
poi_list = list()
total_distance = 0
poi_count=0
city = target_city(plan)
for activity in allactivities(plan):
if activity_type(activity) in ['
breakfast', 'lunch', 'dinner',
accommodation', 'attraction']:
poi_list.append(
activity_position(activity))
for poi in poi_list:
total_distance += poi_distance(city,
target_poi, poi)
poi_count += 1
average_dist_cost = total_distance /
poi_count if poi_count > 0 else -1
return average_dist_cost

B.6 Benchmark Difficulty and Applicability

While the Human subset presents significant chal-
lenges, the baseline NeSy solution has achieved
60.6% and 46.7% FPR on Easy and Medium sub-
sets, respectively, providing developers with ac-
tionable validation points for initial testing and

refinement. Additionally, the Human subset’s ex-
treme difficulty arises from open language reason-
ing and unseen concept composition, key challenges
absent in prior benchmarks but unavoidable in prac-
tice. By explicitly formalizing these challenges,
ChinaTravel has provided a roadmap for advanc-
ing agents toward real-world robustness. Despite
current LLMs’ limitations in handling unseen com-
binations, their success in code generation suggests
that post-training with DSL may enhance their un-
derstanding of diverse travel needs, moving toward
real-world applications.

C Discussion with TravelPlanner

TravelPlanner’s logical constraints contain the to-
tal cost, 15 cuisines, 5 house rules, 3 room types,
and 3 intercity transports. ChinaTravel’s logical
constraints contain the total cost, 42 cuisines, 15
attraction types, 78 hotel features, 2 room types,
2 intercity-transports types, 3 inner-city-transports
types, and specific POI names (attractions, restau-
rants, hotels). Crucially, our benchmark intro-
duces compositional constraints derived from hu-
man queries (e.g., “return before 7 PM", “cost of
intercity transports"), reflecting real-world com-
plexity. The key advancement lies in addressing
open-language reasoning and unseen concept com-
position, which represent significant challenges be-
yond TravelPlanner’s scope. Our Domain-Specific
Language (DSL) enables automated validation of
these combinatorial requirements, bridging the gap
between synthetic and real-world needs.

We also provide some example queries and corre-
sponding examples from the TravelPlanner at each
level in Figure 15, 16, and 17.

As shown in Figure 15, in the “easy level", Trav-
elPlanner only includes constraints on cost. In
contrast, ChinaTravel demonstrates significant ad-
vantages over TravelPlanner, particularly in terms
of personalized support for specific Points of In-
terest (POIs) and more realistic transportation and
time management. These advantages are crucial
for developing and evaluating language agents that
can handle real-world travel planning scenarios
effectively. ChinaTravel allows users to directly
specify POI names, such as "Nanjing DaPaXiang"
or "HuQiu Mountain Scenic Area," requiring the
agent to precisely match the entity information from
the travel sandbox.

As shown in Figure 16, in the medium set, Trav-
elPlanner includes queries with two types of con-

22

straints: cost and cuisine, or cost and accommoda-
tion. In contrast, ChinaTravel includes queries with
2 to 5 types of constraints, reflecting more complex
and diverse multi-constraint requirements. This
difference highlights the ability of ChinaTravel to
handle more realistic and varied travel planning
scenarios.

As shown in Figure 17, TravelPlanner includes
queries with multiple constraints, such as cost, ac-
commodation type, and cuisine preferences. How-
ever, ChinaTravel goes a step further by including
queries with unseen logical constraints and more
colloquial expressions. These unseen logical con-
straints and colloquial expressions are essential for
travel planning agents to handle real-world users
effectively. They reflect the complexity and diver-
sity of real-world travel planning scenarios, where
users may have diverse requirements that need to be
understood and addressed. By incorporating these
elements, ChinaTravel bridges the gap between cur-
rent academic research benchmarks and real-world
application demands, making it a more compre-
hensive and realistic benchmark for evaluating the
capabilities of travel planning agents.

D NeSy Planning

Since the Z3 solver from (Hao et al., 2024) would
restructure the tool API to return travel information
expressed in specific Z3 variables, which may not
be feasible given that APIs in the real world are
typically black boxes that agents can only call.
Following their two-stage solution, we first extract
logical constraints from natural language. Based
on these constraints, we implement a step-by-step
plan generation process using depth-first search,
mimicking how humans plan to travel by arranging
activities one by one. As shown in Fig. 3, we first
translate the natural languages to logical constraints
through prompting. generate the next activity type
based on the current plan, and then recursively
generate the next activity until the goal is reached.
The generated plan is then used to solve the problem.
In the second step, we define the rule-based activity
selection and score function. For example, if the
current time is in the [10:30, 12:30] and there is
no scheduled lunch in the current plan, then the
agent should find a restaurant to have lunch at this
time. If the current time is after 22:00 and there are
no open-time attractions nearby, the agent should
choose to return to the hotel. For the score function,
we select the restaurants that satisfy the required

cuisine and sort the candidates by the price if there
a budget constraints in the constraints C. These
ranking functions will help us to find a feasible
solution as soon as possible. In ChinaTravel, the
duration arrangement of activities is continuous and
difficult to enumerate and search. We pre-define a
meal or a visit to an attraction as 90 minutes, and
when there are less than 90 minutes until closing
time, the event continues until the closing time.
Given these designs, we adapt the neural-symbolic
solution into a multi-POI planning problem and
evaluate it in the ChinaTravel benchmark.

Given that some queries are particularly challeng-
ing due to the limited number of feasible plans, we
set the maximum runtime for the symbolic sketch
from interactive search to 5 minutes per query,
excluding the LLM inference time, to ensure a
fair comparison across different models. If a plan
satisfying the generated DSL validation is found
within the time limit, it is returned directly. Oth-
erwise, the program halts when the time limit is
reached, and the plan that satisfies environmental
constraints while achieving the highest number of
validation code successes among all intermediate
results is returned. In cases where no environment-
compliant plan is identified, the partially completed
plan generated up to that point is returned.

In the Figure 18, 19 and 20, we provide the
prompts of the LLM POI-ranking phases.

E Evaluation Metric in Competition

The Delivery Rate (DR), Environmental Pass Rate
(EPR), Logical Pass Rate (LPR), and Final Pass
Rate (FPR) have been detailed in TravelPlanner (Xie
etal., 2024). To make the paper more self-contained,
we also provide the corresponding definition here.

Delivery Rate: This metric assesses whether
agents can successfully deliver a formatted plan.
For the Nesy planning, if a solution that satis-
fies the logical constraints has not been found by
the time out, the search is terminated, and the
current solution that satisfies the environmental
constraints is returned. If no solution that satis-
fies the environmental constraints is obtained, an
empty plan is returned. Therefore, unlike the pure
LLM method, which primarily assesses the Deliv-
ery Rate based on whether the output meets the
formatting requirements, the nesy planning method,
which uses depth-first-search to arrange POIs one
by one, shows differences in the Delivery Rate.
These differences mainly reflect the proportion of

23

effective solutions obtained within a limited time
based on the LLM’s POI recommendation. This
proportion demonstrates the degree to which the
LLM prioritizes POI arrangements from a natural
language perspective and meets formalized logical
requirements. The more accurately the LLM can
arrange POIs that are beneficial for long-horizon
planning, the more likely it is to obtain effective
solutions and improve the Delivery Rate.

Environmental Pass Rate Comprising the envi-
ronmental dimensions (as detailed in Tab. 1), this
metric evaluates whether a language agent can ac-
curately incorporate sandbox information into their
generated plans.

ZpeP ZceEnv 1]passed(c,p)

EPR — mi =
micro P+ |Env]

ZpEP [TeeEny Tpassed(c,p)
|P|

EPR — macro =

Logical Pass Rate Comprising the logical dimen-
sions (as detailed in Tab. 6), this metric evaluates
whether a language agent can accurately meet the
personalized requirements of the queries.

ZpEP ZceCp “passed(C,,,p)

LPR — micro =
ZpeP |CP|

ZpeP HCECP]]passed(Cp,p)

LPR — macro =
|P|

Final Pass Rate This metric represents the pro-
portion of feasible plans that meet all aforemen-
tioned constraints among all tested plans. It serves
as an indicator of agents’ proficiency in producing
plans that meet a practical standard.

ZpeP 1]passed(Env,p) : 1]passed(C,,,p)

FPR =
P

Preference Ranking To systematically evaluate
the satisfaction of soft user preferences in travel
planning, we introduce a Preference Ranking metric
that quantifies the alignment of generated itineraries
with diverse user requirements. Each preference
(e.g., "maximize attraction visits" or "minimize
transportation time") is formalized into a Domain-
Specific Language (DSL)-based concept, enabling
automated numerical extraction from plans. For

Algorithm 1 Depth-First Greedy Search

Require: Constraints C, current plan p,

if the least activity is an intercity-transport from destination to origin then
> The plan p is finished, return the validation result.

return ConstraintValidation(p, C), p
end if
type = GetNextActivityType(p)
candidates = ToolUse(type)
scores = LLMScore(candidates, p, C)
for activity in candidates do
p.push(activity)
flag, p = Depth-FirstGreedySearch(C, p)
if flag then
return True, p
end if
p-pop(activity)
end for
return False, p

> Select the next type of activities, e.g. lunch, attraction.
> Collect the corresponding information for the activity type

> Score candidates through constraints C.

> Perform a greedy search with priority ranking.

> Return the solution p if the validation is passed.

> Fail to find a solution with the given conditions.

instance, the preference for "visiting more attrac-
tions" is translated into a DSL function that counts
the total attraction-type activities in a plan, while
"minimizing dining costs" is operationalized via
cumulative expense calculations for meal-related
activities.

The Preference Ranking metric operates in two
steps: 1) Quantification: Execute DSL code to
compute concept-specific scores (e.g., attraction
count, transport time) for each generated plan. 2)
Ranking: Compare methods (e.g., BQ vs. PEQ vs.
PDS) by ranking their concept values, prioritizing
higher values for maximization goals (T) and lower
values for minimization goals (|). 3) Aggregation:
Calculate the average ranking on the given samples.

F Additional Experimental Results

F.1 Multi-Preference Comparison

For multi-preference scenarios (e.g., balancing "at-
traction visits T" and "transport time |"), we adopt
an averaged aggregation approach, where rankings
reflect the combined performance across all pref-
erences. This framework ensures scalability and
objectivity.

To rigorously evaluate the ability of language
agents to balance multiple soft constraints, we con-
structed 15 test subsets by pairing six user prefer-
ences (PO-P5) into all possible combinations (e.g.,
"PO + P1"). Each subset contains queries with two
preference requirements. We compared two meth-
ods, Baseline Query (BQ) and Preference-Enhanced
Query (PEQ), by quantifying their performance

24

through our DSL-based Preference Ranking metric.
For each subset, we extracted numerical scores for
both preferences (Value-1 and Value-2), computed
individual rankings (Rank-1, Rank-2), and derived
an aggregated ranking (Agg. Rank.) to reflect
overall performance. The results are provided in
the Table 12.

From these results, we could find that: (1) PEQ
Outperforms BQ in Most Scenarios: In 10/15
combinations, PEQ achieves superior aggregated
rankings (Aggregated Ranking = 1.43 vs. BQ’s
1.56). Notably, PEQ demonstrates stable improve-
ments on preferences P3 (e.g., maximizing dining
quality?T) and P4 (e.g., minimizing accommoda-
tion costs]). For instance: In "POT + P4]", PEQ
reduces accommodation costs by 64% (Value-2:
441 vs. BQ’s 1221) while maintaining high attrac-
tion counts (Value-1: 0.97 vs. 0.79). For "P37 +
P4]", PEQ simultaneously improves dining quality
(Value-1: 0.26 vs. BQ’s 0.18) and lowers costs
(Value-2: 531 vs. 1229). This stability likely
stems from the direct impact of POI selection on
these preferences. LLMs in PEQ effectively pri-
oritize low-cost hotels or high-quality restaurants
through natural language hints (e.g., "reduce the
cost on accommodations"), enabling explicit align-
ment with P3 and P4 requirements. (2) Challenges
in Balancing Multiple Preferences: The results
also reveal inherent difficulties in harmonizing con-
flicting preferences, particularly when optimizing
one requirement necessitates sacrificing another.
Notably, in the POT + P1] scenario, PEQ under-
performs BQ on both preferences, highlighting the

Preference Combination Vaule-1 Vaule-2 Rank-1 Rank-2 Agg. Rank.
BQ PEQ BQ PEQ| BQ PEQ BQ PEQ| BQ PEQ

POT,P1] | 079 083 280 297 | 144 155 144 155|144 155
POT,P2] | 082 1.26 29.0 319|156 143 143 156 | 15 L5
POT,P37 | 081 094 0.18 0.20 | 142 157 159 140 | 1.51 148
POT, P4 | 079 097 1221 441 | 146 153 173 1.26 | 1.59 1.40
POT,P5] | 078 091 33.6 340|137 162 170 129 | 1.54 145
P1],P2] | 282 278 266 30.1 | 1.62 137 148 151|155 144
P1], P37 | 282 362 020 027|131 168 16 14 |145 154
P1],P4] | 30.3 448 1440 585 | 114 185 177 122|145 154
P1],P5] | 301 383 307 302|127 172 1.69 130 | 148 151
P2, P37 | 247 233 027 027|143 156 160 139|152 147
P2, P4 | 241 211 1687 719 | 151 148 189 110 | 1.70 1.29
P2, P5] | 28,0 308 294 260 | 151 148 189 110 | 1.70 1.29
P31,P4] | 018 026 1229 531 | 1.64 135 1.69 130 | 1.66 1.33
P37,P5] | 022 022 333 29.0 | 151 148 184 115|168 131
P4|.P5] | 1366 767 33.1 316 | 1.67 132 145 154 | 156 143
Aggregated Ranking ‘ ‘ ‘ 1.56 1.43

Table 12: Multi-Preference Comparison of BQ and PEQ.

inherent difficulty in resolving conflicting objec-
tives. While PEQ marginally improves attraction
counts (Value-1: 0.83 vs. BQ’s 0.79), it incurs
a 5.7% increase in transport time (Value-2: 29.7
vs. BQ’s 28.0). This trade-off results in a worse
aggregated ranking for PEQ (1.55 vs. BQ’s 1.44),
indicating that the combined effect of conflicting
preferences negates the benefits of natural language
guidance. In 9/15 combinations, PEQ improves
one preference at the expense of the other. For
example: P1| + P4|: PEQ reduces accommodation
costs by 59% (Value-2: 585 vs. BQ’s 1440) but
increases transport time by 48% (Value-1: 44.8 vs.
30.3). The inability to concurrently satisfy both
preferences underscores the limitations of current
LLM-driven prioritization in handling trade-offs.

Our experiments demonstrate that the neuro-
symbolic agent (PEQ), enhanced by LLM-driven
POI recommendation, outperforms baseline meth-
ods in multi-preference travel planning. By integrat-
ing natural language hints to guide POI selection,
PEQ effectively translates user requirements into
actionable itineraries, demonstrating its capability

to handle synergistic preferences. However, bal-
ancing inherently conflicting objectives remains
challenging. This highlights the need for future
advancements, such as domain-specific fine-tuned
LLMs to better resolve preference conflicts or multi-
objective optimization techniques to systematically
navigate trade-offs.

F.2 Open Reasoning with Chinese Context

In this section, we quantitatively compare the rea-
soning capabilities of LLMs in the context of Chi-
nese travel requirements. Given that many leading
LLMs, such as GPT-4, are primarily trained in
English corpora, it is essential to evaluate their
performance in a Chinese travel planning context
to better understand their reasoning abilities. We
focus on three LLMs: GPT-40, DeepSeek-V2.5,
and Qwen2.5-7B, which are employed in the main
experiments.

Specifically, we analyze the POI matching in the
NL2DSL process with varying travel requirements
from the synthesized quires and further provide the
distribution of the results in Figure 10. The com-

25

A I I

N

A
/
|
o
g
|

iz zzzz:777%
V2722072022275

1NN

N

&
&
7

= GPT-4o Correct
=0 GPT-4o Missing
B GPT-4o Mismatch

BNl GPT-4o Syntax
DeepSeek Correct
DeepSeck Missing

B DecpSeck Mismatch
B DecpSeck Syntax
Qwen Correct

Qwen Missing
B Quwen Mismatch
BN Qwen Syntax

Figure 10: Results Distribution on Synthesized Quires

parative analysis reveals significant disparities in
reasoning capabilities across the three LLMs when
handling Chinese travel-related queries. DeepSeek-
V2.5 demonstrates robust performance in most cat-
egories, achieving high accuracy (Correct > 93%)
for attraction-names, attraction-types, restaurant-
names, and hotel-features. However, its perfor-
mance sharply declines in hotel-names (Correct:
67%, Missing: 33%), suggesting limited familiar-
ity with Chinese hotel nomenclature or insufficient
contextual grounding in this domain. This contrasts
with GPT-40, which excels in hotel-names (Cor-
rect: 93%) and achieves perfect accuracy (Correct:
100%) for attraction-types, highlighting its superior
cross-lingual transfer capabilities despite being pri-
marily English-trained. Notably, GPT-40 maintains
consistent performance across all categories (Cor-
rect > 93%), underscoring its balanced reasoning
proficiency in Chinese contexts. In stark contrast,
Qwen2.5-7B exhibits critical weaknesses, partic-
ularly in attraction-names (Correct: 13%, Error:
43%), indicating severe limitations in entity recog-
nition and syntactic coherence for Chinese proper
nouns. The pronounced missing rates observed in
Qwen2.5-7B (e.g., 43% for attraction-names and
23% for hotel-names) align with its constrained pa-
rameter size (7B), which likely impedes its ability
to internalize diverse travel requirements or align
them with sandbox’s POI information.

We further conduct the analysis and provide
the results on human queries in Figure 11. The
evaluation of human queries reveals critical limi-
tations in LLMSs’ practical reasoning capabilities
that synthetic data fails to expose. DeepSeek-
V2.5’s accuracy plummets in hotel-feature (Cor-
rect: 40% vs. 93% in synthetic data), indicating
severe degradation when handling ambiguous or
culturally nuanced requirements (e.g., interpreting
subjective descriptors like “luxury" or "traditional

26

Jr N

;

Rate

\
\
A
A

= GPT-o Correct
=0 GPT-o Missing
[GPT-40 Mismatch

S GPT-4o Syntax
DeepSeck Correct
DeepSeck Missing

BB DecpSeck Mismatch
BB DecpSeck Syntax
Qwen Correct

Qwen Missing
BN Qwen Mismatch
BN Qwen Syntax

Figure 11: Results Distribution on Human Quires

courtyard-style" in Chinese contexts). GPT-40 sim-
ilarly exhibits instability, with significant declines
in restaurant-types (Correct: 37% vs. 97% in syn-
thetic data) and attractions-type (Correct: 69%
vs. 100%), suggesting that its cross-lingual transfer
mechanisms falter when confronted with real-world
linguistic variability (e.g., colloquial phrasing or
dialect influences). This analysis underscores the
necessity of introducing human queries into bench-
marks when evaluating travel planning, as they
reveal critical gaps in open language reasoning for
deploying LLMs in real-world travel assistants.

F.3 Analysis of Pure-LLM Methods

Pure LLLM-based methods have demonstrated sig-
nificant shortcomings in constraint satisfaction, as
evidenced by their near-zero success rates in bench-
marks like TravelPlanner. We also attempt the multi-
round refinement methods like Reflexion. While
theoretically promising, it is still impractical in our
context. In preliminary evaluations, Reflexion not
only failed to achieve improvements in constraint
satisfaction (consistent 0% FPR) but also incurred
prohibitive computational costs due to its reliance
on iterative token-heavy interactions. This rendered
large-scale evaluation infeasible given our resource
constraints. In light of their current limitations in
constraint satisfaction, NeSy frameworks remain
the effective pathway for real-world travel planning.
Therefore, in the main body of this work, we mainly
analyze the Nesy method.

In this section, we further summarize the key fail-
ure modes of pure-LLM-based methods observed
in our experiments:

(1) Incorrect API Calls: LLMs frequently
generate invalid or hallucinated API calls, lead-
ing to cascading errors in downstream planning.
For instance, models may query non-existent
APIs (e.g., city_transport_select instead of in-

ter_city_transport_select) or misuse parameters
(e.g., filtering attractions by an unsupported feature
like "bus"). Such errors exhaust API call limits and
prevent agents from retrieving essential informa-
tion.

(2) Repetitive Output Loops In iterative plan-
ning frameworks like ReAct, LLMs often enter
infinite loops when resolving constraints. For ex-
ample, an agent might repeatedly query transporta-
tion details for all candidate attractions, even after
selecting one, due to a failure to update its inter-
nal state. This behavior mimics the “hallucination
loops" reported in TravelPlanner paper.

(3) Reasoning-Action Inconsistency. In ReAct
framework, the model first reasons and then takes
an action. However, the reasoning and the action
are not always consistent. For example, the model
may reason that the user wants to book a flight,
but then take an action to check the information
of trains. Another example is that the model may
detect that the expenses exceed the budget but does
not respond to this and ultimately generates a plan
that exceeds the budget.

(4) Critical Information Missing. Even when
intermediate steps (e.g., API responses) are logged
in a "notebook," LLMs frequently omit essential
details when synthesizing final plans. A recur-
ring failure is neglecting return transportation (e.g.,
omitting the train from Shanghai back to Beijing),
which violates feasibility constraints.

Figure 12 provides the fail examples of ReAct
(one-shot) with DeepSeek, which outperforms other
pure-LLM-based methods in the main experiments.

These limitations underscore the inadequacy of
pure-LLM-based approaches for deployment in
long-horizon and constraint-rich domains like travel
planning.

F.4 Holistic Score on Overall Dataset

In Table 13, we provide the holistic scores combin-
ing the results on easy, medium, and human subsets
to show the overall performance.

G Statements about Scientific Artifacts

The ChinaTravel benchmark is designed to facilitate
research in natural language processing and arti-
ficial intelligence, specifically for travel planning
tasks. ChinaTravel includes a travel sandbox, user
queries, and an evaluation framework intended for
non-commercial, academic research purposes.

27

Availability. We will publicly release the Chi-
naTravel benchmark upon publication to facilitate
community research. We look forward to broader
adoption and extension of this benchmark.

Licenses. The ChinaTravel benchmark and its
associated datasets are licensed under the Creative
Commons Attribution-NonCommercial 4.0 Interna-
tional (CC-BY-NC 4.0) license. This license allows
for the free use, distribution, and reproduction of
the benchmark in any medium, provided that ap-
propriate credit is given to the original authors and
the source of the data is acknowledged, and that the
use is for non-commercial purposes only.

Data anonymization and offensive content. We
anonymized the human queries during collection
and instructed participants to avoid including sensi-
tive information. We removed queries containing
offensive content during the data cleaning process.

H Statements about Human Participants

We recruited over 250 volunteers through a struc-
tured questionnaire to collect authentic Chinese
travel requirements. Participants were informed
about the public use of their data and instructed
to avoid including sensitive personal information.
During data cleaning, offensive content and iden-
tifiable details were removed. While no explicit
ethics board approval is mentioned, we ensured
compliance with anonymization practices and ob-
tained participant consent for data inclusion. The
final dataset contains 154 human-derived queries
reflecting diverse real-world travel needs.

H.1 Instructions Given To Participants

To gather the authentic travel requirements, we
collected data through a carefully designed ques-
tionnaire. We provided the following instruction
information to the participants:

1. The specific constraints the agent can handle
and the corresponding details, including the
types and specific names of attractions, restau-
rants, and hotels; requirements for intercity
transportation (airplane or train) and urban
transportation (walk, taxi or subway); as well
as budget limitations for overall expenses or
specific activities (such as accommodation and
intercity transportation).

. The necessary information should be provided
in the query, including the departure and des-

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Incorrect API Calls

Repetitive Output Loops

Action[20]: goto(city="IRYII", start="VRYII L3k, end=“KMFTHL",
start_time=*19:00", method="“bus”)

Observation[20]: Invalid method. Only support ['metro’, 'walk’, ‘taxi’]
Action[25]: goto(city="VRIII", start="FRYIIAL3E>, end=" KM,
start_time=19:00", method="bus”)

Observation[25]: Invalid method. Only support ['metro', 'walk', 'taxi’]
Action[30]: goto(city="7&III", start=7FH-IL3", end=KMEFr ",
start_time=19:00", method="bus”)

Observation[30]: Invalid method. Only support ['metro', 'walk', 'taxi’]

Action[3]: city_transport_select(start_city="/", end_city="#X",
intercity_type="train", earliest_leave_time="19:00")

Observation[3]: I &M, #5i7#{5 5: name ‘city_transport_select’
is not defined 7 /2% #5% JiE F DA R T 5 4.

Thought[4]": B4 451%, % Eintercity_transport_select. 7
R FH TR 1 R 4

Reasoning-Action Inconsistency

Thought[12]: FRATT AT LA ieF¢ B AR AN AR 180 185 1L 55 XA R B 5%
Flo FEFORIATH EERIXPIAN TR MRS E o

Action[12]: attractions_select(city="", key="name",
func=lambda x: " #5HE" in x or "ZR 1S L 5L X" in X)

Thought[13]: FRATTAT LAE£R 3SR AN A1 B Ll st XA B EE SR
B TR E AR S AP B

Action[13]: attractions_select(city="¥", key="name",
func=lambda x: "F#GHE" in x or "ZR i1 1L 5L X " in x)

Thought[14]: FRAT AT LA F¢ B AR AN AR 80 15 1L 5% X AR R 2E R A
FE T ORI T EEHIXHIA TS RS B o

Action[14]: attractions_select(city="ilyX", key="name",
func=lambda x: "B EGHE" in x or "ZR I EE L FE X" in x)

Thought[15]: FRATTAT LAE8 2SR AN AR 01 B Ll st XA RS
PRI T E BRI P FOT R TR S o

Action[15]: attractions_select(city="#¥", key="name",
func=lambda x: "#EEGHE" in x or "ZRIAEE L FE X" in x)

Critical Information Missing

Thought[2]: "#RIERATIZIE T, mBkrTRELL LR A&, W]
AR — FeEkifidt.

Action[2]": "intercity_transport_select(start_city="7£3Il", end_city="
R4 50", intercity_type="airplane")

Observation[2]: [*FlightID’ ‘From’ “To’ ‘BeginTime’ ‘EndTime’
‘Duration’ ‘Cost’\n[‘FL240> “RYI T 2 EBrbLy < ma it 1 E B
...

Action[15]: planner(query="4 1 {7 &) . F—AAE LRI
—K, THI000ANRM, WHHER AT ")
Observation[15]: Task finished. The answer is: {"people_number": 1,
“start_city": "/ JH", "target_city": "BL", "itinerary": [{"day": 1,
"activities ... {"start_time": "18:00", "end_time": "22:39", “start": "
FRLE", tend”: "IN G UE", "cost": 543.6, "TrainlD": "G877",
“type": “train”, "tickets": 1, “transports": [I}1}1}"

Thought[14]: TS S, FATTEEFHARI . FATATLLE &>
TR, bR S R A A B kD — R e N
[i]o

Action[14]: planner(query="41i {7 &) M. AL E Bl
Bi—K, WHIW00ARM, EHER— ik,)
Observation[14]: Task finished. The answer is: {"people_number": 2,
"start_city": ") ", "target_city": " ", Vitinerary": [{"day": 1,
“activities": [{"start_time": "08:00", "end_time": "14:48", “start": "/~
JHEE ", end™: " LT ARG, "cost": 787.73, "FlightID": "G818",
"type™: "train", "tickets": 2, "transports": []}, {"position": "#FHf",
"type": "attraction", "transports": [{"start": " UL BT, "end": T
e K A3tk 3G, "mode”: "walk® ...

Action[23]: planner(query=" 47z BRIl F—A N L TR BT
—R, WHI1600 AT, HHBR—AMRITME]. ")«
Observation[23]: Task finished. The answer is: {“people_number”: 1,
“start_city”: “R3I”, “target_city”: “75J1”, “itinerary”: [{“day”: 1,
“activities™: [{“type”™: “train”, “start_time™: “06:33”, “end_time”:
“15:46”, “cost”™: 759.35, “tickets™: 1, “start”: “VEYIG, “end”: “F I
¥, “TrainlD”: “G2787”, “transports™: [1}, ...,, "start": "2 Fr 111 X
HeAREX", "end: "F5 M k5", "transports": [1}, {"type": "train",
"start_time": "22:33", "end_time": "07:00", "cost": 759.35, "tickets":
1, "start™: "JRMN ", "end™: "IAYIEE", "TrainlD": "G2788",
“transports": [1}1}1}"

Figure 12: Fail case studies of React-one-shot DeepSeek Method.

tination cities of the trip, the number of travel
days and constraint information.

3. A detailed example with the query and travel
planning response.

Fig. 13 and Fig. 14 respectively show the ques-
tionnaire and its translated version.

H.2 Recruitment And Payment

We recruited a total of 250 student volunteers to
provide authentic Chinese travel requirements. The
participants included 121 undergraduate students,
86 master’s students, and 43 doctoral students. The
task of understanding the query background and
providing travel requirements was estimated to take

28

1-2 minutes per participant. Given the simplicity
of the task and the fact that it did not require
extensive professional background or expertise, we
compensated each participant with 1 yuan. This
compensation was deemed adequate considering
the nature of the task and the time required to
complete it. The payment was determined based on
the estimated time and the straightforward nature
of the natural language requirements, ensuring a
fair and reasonable reward for the participants.

H.3 Data Consent

When collecting the data, we clearly informed the
participants about the usage of the data and the
potential irreversible risks of it becoming part of a

LLMs DR EPR LPR C-LPR FPR
Micro Macro Micro Macro
Overall Dataset (# 604)

¥ 68.2 67.6 53.6 68.9 543 539 445

NeSy Planning G 65.3 672 604 638 50.8 58.2 49.0

W% 60.0 58.1 31.6 56.1 399 26.6 226

NeSv Plannine™ @ 71.0 693 599 694 629 58.3 59.1

Y " ® 607 597 534 600 533 510 508
(Oracle Translation) ..

W 58.2 57.6 46.5 57.0 49.0 432 447

Table 13: Experimental results of different LLMs and planning strategies on the overall dataset.
LLMs: @: DeepSeek-V2.5, @: GPT-40-2024-08-06, \’3:Qwen2.5-7B.

public dataset. We did not track the ID information
of the questionnaire respondents. Additionally, we
reminded participants not to include any sensitive
personal information in the questionnaire responses.
During the data cleaning process, we directly re-
moved queries containing offensive content and
filtered out sensitive identity information.

H.4 Characteristics Of Annotators

Our data collection process solely involved travel
requirements and did not include any protected
information, such as sexual orientation or political
views as defined under the General Data Protection
Regulation (GDPR). All data were collected from
native Chinese speakers to ensure that the travel
requirements fully align with the context and nu-
ances of the Chinese language. This approach was
taken to accurately capture the needs and prefer-
ences of the target population, which is primarily
composed of Chinese-speaking individuals. The
annotators were recruited from a diverse range of
academic backgrounds, including undergraduate,
master’s, and doctoral students, to provide a broad
and representative set of travel requirements.

H.5 DSL Annotation for Human Data

The annotation process for the human data involved
four stages to ensure the accuracy and validity of
the Domain-Specific Language (DSL) annotations:
(1) Initial DSL Version Generation: GPT-40 was
utilized to provide the initial version of the DSL
annotations for the human data. This step aimed
to leverage the language model’s capabilities to
generate a baseline for further refinement. (2) Data
Annotation Team Revision: A team of five data
annotators was responsible for reviewing and revis-

29

ing the DSL annotations for a total of 250 samples.
The team members divided the workload and made
necessary corrections to the DSL annotations to
ensure their accuracy and relevance to the travel
requirements. (3) Primary Developer Verification
and Correction: Three of the main developers of
the benchmark conducted a thorough review of all
the DSL annotations. They verified the correctness
of the annotations and made revisions as needed.
This stage also involved the exclusion of any invalid
queries that could not be verified within the sand-
box environment. (4) Final Verification by Primary
Developers: The same three main developers per-
formed a final check on all the DSL annotations.
This step ensured that the annotations were accurate,
consistent, and met the required standards for the
benchmark.

Throughout the annotation process, the focus was
on ensuring that the DSL annotations accurately
captured the travel requirements and were valid
within the context of the ChinaTravel benchmark’s
sandbox environment. The annotation process for
human data required a deep understanding of the
ChinaTravel DSL and involved joint debugging and
verification with the sandbox information. This
significantly limited the size of the annotation team,
as only a limited number of annotators had the nec-
essary expertise and familiarity with both the DSL
and the sandbox environment. Additionally, the pro-
cess was time-consuming and required meticulous
attention to detail, further constraining the rate at
which the human dataset could grow. Despite these
challenges, the rigorous annotation process ensured
the quality and reliability of the human data, which
is crucial for the evaluation and development of
language agents in real-world travel planning.

TFRBURAT LR Ml A 4
AR B NP S T AT IR B 4, DME TSR AT . e TS 1 I LRV A TP R R i — 048, A7
TETCEREE RS B2 S AR ESEMEENIAGR, BEARNZ5!

LR OMest. Bt B bo. YL 3G T BB ERL TR g

2. BARERiERTT: _ (MAERG R B BN BRI RS T RER. ERL PRI AR
3. AT AER: _ (1-5)

4. AT RE: _ (-5)

TEAE P T DA A QR R R AT SR . A AT DU IE R S B, (ETE . BEIRSE (ke KL LA R A A
(k. BT, AT WEAAZDR. RN, & RIS Al . WA AR EE LT =AME R B . ABRIR
B, HHIRIX LS BAH EVTE . 2 B BRI ARYE R B0 SR —ANMRAT MR R, AR LR E ., (i, HERR
SRR

FH P 1) R A5 7 -

LRI B M. R AN ANMEER B2 K, W 3000 AR, EiRABBES, HAR—IRTHE.

B HARH B T

L TR

H s - 5 5

2 TN AL > R R

BI%:G4, 07:24->08:15

A :122.9 7C

28] gk

T XI5 X

22 Mk (R Rt R DR R « B, AT 3 7l +ihek 23 /3 Eh+2DAT 8 414

H 4 96

I Y A) : 08:50->10:00

[122:0 J6

AR TR S E BRI © W E TR T

2188 ¢

A :12:10 —>13:10

{18 TR A X i

S KIR G, 1 1]

370 ¢

R[] FE R > TRk

F| 467220, 20:09->21:23

W 122.9 7€

Tk

BATEE 10 R4y AN R B G R T 4028, BAR AN R fliid

RS R — PRI R, AEE LT R

g LS — E R AN TR, RS K B B e RSB A T T

W LR RN R, W TR, R BB 2.

AR AN R 3 BE 5 T 1 P i) R 3 <

S FAHATE & W0 2 REATREIRI, WA R

P FRAES E — N RTAE R A 250, T RIAE I LA 3 RA A BT S SO AR B, A5 B AR BB Ui 0 — ey 3,
A= NE R FEAAAL D2 Ko B KM B+ SarF =ML E R, MR —REWE, BoRERER, 45—
AN HRAT K

5. gy R

Figure 13: Questionnaire

30

Open Travel Planning Data Collection Questionnaire
This questionnaire aims to construct a dataset for travel planning in an open environment to facilitate relevant research. Since the
responses will be part of a public dataset and cannot be revoked, please do not include any sensitive personal information in your
responses. Thank you for your participation!

1. Departure City: (Choose from Beijing, Nanjing, Shanghai, Hangzhou, Shenzhen, Wuhan, Guangzhou, Chengdu, Chongqing,
Suzhou)

2. Destination City: (Choose from Beijing, Nanjing, Shanghai, Hangzhou, Shenzhen, Wuhan, Guangzhou, Chengdu,
Chonggqing, Suzhou)

3. Number of Travelers: (1-5)

4. Number of Travel Days: (1-5)

As a user, you can submit queries to the intelligent agent. Your query may include specific requirements for attractions, dining,
accommodation, intercity transportation (e.g., train, plane), and intra-city transportation (e.g., subway, walking, taxi). You may also
provide personal preferences. Please ensure that your query includes the following three pieces of information: the destination city, the
number of travelers, and the number of travel days, and make sure they are consistent. The intelligent agent will generate a travel plan
based on your request, covering transportation arrangements, accommodation, recommended attractions, and dining suggestions.

Example User Query:
"My current location is Suzhou. I want to travel alone to Nanjing for 2 days with a budget of 3,000 RMB, taking the high-speed train for
both departure and return. Please provide a travel plan."

Example Response from the Intelligent Agent:

Departure: Suzhou

Destination: Nanjing

Transportation: Suzhou North Station — Nanjing South Station
Train: G4, 07:24 — 08:15

Cost: 122.9 RMB

Tickets: 1

Attraction: Xuanwu Lake Scenic Area

Transportation: Subway (Nanjing South Station — Nanjing Forestry University-Xinzhuang)
Route: Walk 3 minutes — Subway 23 minutes — Walk 8 minutes
Cost: 4 RMB

Visit Time: 08:50 — 10:00

Admission: 0 RMB

Lunch: Nanjing Jinling Hotel - Man Yuan Chun Chinese Restaurant
Cost: 188 RMB

Time: 12:10 — 13:10

Accommodation: Crystal Orange Hotel Nanjing Xuanwu Lake
Room Type: Queen Room, 1 room

Cost: 370 RMB

Return: Nanjing South Station — Suzhou Station

Train: G7220, 20:09 — 21:23

Cost: 122.9 RMB

Tickets: 1

Classification of User Queries by Difficulty Level

We categorize user queries into different difficulty levels as follows:

Easy Level: General inquiries without personalized requirements.

Medium Level: Includes some degree of personalization, usually involving food, lodging, or transportation.

Hard Level: Involves more complex and specific needs, such as time constraints, particular locations, or planned activities.

Examples of User Queries at Different Difficulty Levels:

Basic Level: "I want to know the itinerary for a 2-day trip to Shanghai from Hangzhou."

Intermediate Level: "I plan to travel alone to Nanjing on a budget and stay for about three days. I'm interested in history and culture and
would like to explore historical sites in depth."

Advanced Level: "Three of us need to travel to Beijing the day after tomorrow for a 2-day trip. We need to return from Beijing Railway
Station before 10 PM on the second day. We want to visit the Forbidden City on the first day and the Temple of Heaven on the second
day. Please provide a travel plan."

5. Please provide a user query:

Figure 14: The translated version of the questionnaire

31

ChinaTravel

TravelPlanner

AETA B AN ABEIMIT—KR,
51400 AR, WEHIE—IRAT R

Current location: Wuhan. I want to visit Suzhou for
a day by myself with a budget of 1,400 RMB.
Please provide me with a travel plan.

Please help me plan a trip from St. Petersburg to
Rockford spanning 3 days from March 16th to
March 18th, 2022. The travel should be planned for
a single person with a budget of $1,700.

AR ER R MM ABERER3 R, B
Mz B A, AR — AT IR .
Current location: Nanjing. [want to travel to
Chonggqing alone for 3 days. I like sweet foods and
bread. Please provide me with a travel plan.

Please design a travel plan departing from Las
Vegas and heading to Stockton for 3 days, from
March 3rd to March 5th, 2022, for one person, with
a budget of $1,400.

T B E K. AP N LD 3
K, MERHHEE, HEIANT—DIRIT L.
Current location: Chongqing. My friend and I want
to visit Wuhan for 3 days and try the local cuisine.
Could you please provide us with a travel plan?

Craft a travel plan for me to depart from New
Orleans and head to Louisville for 3 days, from
March 12th to March 14th, 2022. I will be
travelling alone with a budget of $1,900.

YT B BAT=A A BRI 2 K,
L R HBE R R A, S EAT—MIRAT
kil

Current location: Chengdu. The three of us want to
visit Shenzhen for 2 days and are interested in
historical sites. Could you please provide us with a
travel itinerary?

Could you aid in curating a 5-day travel plan for
one person beginning in Denver and planning to
visit 2 cities in Washington from March 23rd to
March 27th, 20227 The budget for this trip is now
set at $4,200.

2T BRI BAIAPIAN NEE Lt 3
K, REEMBFARRE, BHERAT—IRITH
Xl

Current location: Shenzhen. My friend and I want
to visit Shanghai for 3 days and we would like to go
to the Ocean Aquarium. Could you please provide
us with a travel plan?

Could you assist in crafting a travel itinerary for a
5-day, single-person trip departing from Orlando
and touring 2 cities in Texas? The travel dates
should range from March 10th to March 14th, 2022,
and the entire travel budget is $3,100.

AFTALE RER . A AP NAE % B 3
Ky ARG, WA REEIF 2,)5 i
LFREAR AN TF BT, TSR —AIRIT R
Xl

Current location: Chengdu. My friend and I want to
visit Shanghai for 3 days. We need a twin room,
and we might need a meeting space during our stay.
Please provide me with a travel plan.

Could you help me arrange a 7-day solo travel
itinerary from Kona to California with a budget of
$5,800, intending to visit 3 distinct cities in
California from March 7th to March 13th, 2022?

WHAERMR, TRIAMHENSHAE L LR
PIR, WEHFEIRE « KT FERI A, 1K
AT — A RAT 7 %6

I am currently in Nanjing and plan to travel to
Shanghai with two friends for two days. We have
chosen the YuanShe - Zai Shui Yi Fang Resort
Hotel. Please help us plan a travel itinerary.

Please help me craft a 7-day travel plan. I'm
planning on leaving from Punta Gorda and
exploring 3 different cities in Wisconsin from
March 16th to March 22nd, 2022. The budget for
this trip is set at $5,700.

AFTALE AL R A=A AR 2 B BT
Ko WFERELAT, TTASZETT O, 1
SR —AIRAT IR -

Current location: Beijing. My three friends and I
are planning to visit Chengdu for two days. We
have chosen to travel by train and use subway for
city transportation. Please provide me with a travel
itinerary.

Could you help me create a 7-day travel plan
starting on March 18th, 2022, and ending on March
24th, 2022? The trip will start in Washington and I
would like to visit 3 cities in Minnesota. This trip is
for one person with a budget of $7,200.

Figure 15: Examples of easy-level queries from ChinaTravel and TravelPlanner.

32

ChinaTravel

TravelPlanner

ETALE . A AN ZTNET 2 K, TS
4000 AR, AAKZEL, (E—RIRKE, HER
Tl RS A DGR R B RO, R R —AMIR
AT

Current location: Wuhan. Two of us want to visit
Suzhou for 2 days with a budget of 4000 RMB. We
plan to take the train and stay in a room with a king-
size bed. We would like to visit natural attractions
like Tiger Hill Scenic Area. Please provide a travel
itinerary.

Could you please arrange a 3-day trip for two,
starting in Sacramento and heading to Atlanta,
from March 14th to March 16th, 2022. The
budget for this trip is $4,700, and we require
accommodations where parties are allowed.

LETALE M. P NAR B 3 K, TS
9000 N, AKEAEIR, F—HKKE, BRI
HR—AIRAT L

Current location: Guangzhou. Two of us want to visit
Chengdu for 3 days with a budget of 9,000 RMB. We
plan to travel round-trip by train and stay in a room
with a double bed. Could you please provide a travel
itinerary for us?

Could you please design a 3-day travel plan for a
group of 5, departing from Manchester and
heading to Charlotte, from March 29th to March
31st, 2022? Our budget is set at $4,800 and we
would prefer to have entire rooms for our
accommodations.

IO E M. FAFR AP I AR LRI BCH
K, B 2100 N, (EPIEIUR DT, AR
I, AEnzEE, LRI EDIT. Current
location: Guangzhou. My two friends and I want to
go to Shenzhen for two days. Our budget is 2,100
RMB. We plan to stay in two twin-bed rooms, travel
around by metro, eat seafood, and visit Shenzhen
Happy Valley.

Could you tailor a 5-day travel plan for two people,
departing from Knoxville and visiting 2 cities in
Florida from March 20 to March 24, 2022? Our budget
is set at $3,900. We'd love to explore local Chinese and
Mediterranean cuisines during our stay.

LETALE . PN NARZBUNET 3 K, TS
7000 NS, ARTKHUER, E—EKKS, B
SR —AIRAT I

Current location: Wuhan. Two of us want to visit
Hangzhou for 3 days with a budget of 7,000 RMB.
We plan to travel by plane round-trip and stay in a
room with a large bed. Could you please provide a
travel plan for us?

Could you help create a 7-day travel plan for a
group of 3, departing from Greensboro and
touring 3 different cities in Georgia from March
10th to March 16th, 2022? We have a new budget
of $4,000 for this trip. We'd also appreciate if our
accommodations have smoking areas.

AT BTN A AR LTI 2 K, TSR
3500 N, KRGS, BEFEEMEEZ
FER AR S, 1528 - —MIRAT LRI

Current location: Hangzhou. Two of us want to visit
Suzhou for 2 days with a budget of 3,500 RMB. We
would like to stay in a room with a large bed and
visit garden attractions like the Humble
Administrator's Garden. Please provide a travel plan.

Could you help create a 5-day travel itinerary for
a group of 4, starting from New York and visiting
2 cities in Louisiana from March 15th to March
19th, 2022? We have a budget of $12,300. Please
note that we require accommodations where
smoking is permissible.

AFTALE AL R I NBREINBT 3 K, TS
7000 AR, fE—RRKES, A EHL%,)5
LAk, ABERYNORBE—T, HaR—1
JRAT K o

Current location: Beijing. Two of us want to visit
Shenzhen for 3 days with a budget of 7,000 RMB.
We would like to stay in a hotel with a king-size bed
and preferably a swimming pool. We plan to fly there
and would like to visit Shenzhen Happy Valley.
Please provide a travel itinerary.

Can you provide me with a 5-day travel plan for 2
people, starting from Asheville and exploring 2
cities in New York from March 13th to March
17th, 2022? Our budget is set at $4,700 and we
would love to try local Mexican and Chinese
cuisines during our trip.

Figure 16: Examples of medium-level queries from ChinaTravel and TravelPlanner.

33

ChinaTravel

TravelPlanner

(TR B B B be A B R 5 IRAT A S 2,117 R %
4] FAFEF 2 NITEEERIt4 K, HHE 1500 (4
BAEETFETE), REMgE, ERHE L.
[Current location: Wuhan, Destination: Nanjing,
Number of travelers: 2, Duration of travel: 4 days] My
classmate and I are planning to visit Nanjing for 4 days.
Our budget is 1500 (excluding transportation and
accommodation), just for activities and meals. Please
help us plan.

Can you create a 5-day itinerary for a group of
7 people traveling from Richmond to two cities
in Florida between March 9th and 13th, 2022?
Our budget is $8,500. We require
accommodations that allow visitors and should
ideally be entire rooms. In regards to dining
options, we prefer French, American,
Mediterranean, and Italian cuisines.

[T AL B R, H b B R, kAT A B 3R AT R 3
5] BAT—R =D LRI, AR L
EEH NI R R, B 8000 76, ARG hhsE—1Lk
LMK R .

[Current location: Nanjing, Destination: Chengdu,
Number of travelers: 3, Travel days: 5] Our family of
three wants to travel to Chengdu for a week. We mainly
want to visit attractions suitable for children, with a
budget of 8,000 yuan, and also taste some local
delicacies.

Could you help design a travel plan for two
people leaving from Houston to Pensacola for
3 days, from March 6th to March 8th, 2022?
Our budget is set at $1,400 for this trip and we
require our accommodations to be visitor-
friendly. We would like to have options to dine
at Indian, American, Chinese, and Italian
restaurants. We also prefer not to self-drive
during the trip.

[HTALE M, B AR AL BRI IRAT AN B 3, RAT R EL
2] ATATENENT M EZRYNBOHIR, HEE
R IXERE, AT e BRI S, SRR
ATRED

[Current location: Guangzhou, Destination: Shenzhen,
Number of travelers: 3, Number of travel days: 2] Our
group of three plans to travel from Guangzhou to
Shenzhen for two days. We want to explore bustling
neighborhoods, minimize inconvenient transportation,
and keep the total expenses as low as possible.

Could you help create a 3-day travel plan for
two people? We're traveling from West Palm
Beach to White Plains, visiting only one city
from March 5th to March 7th, 2022. We have a
budget of $2,600. For our accommodations,
we'd like rooms that are not shared. We are not
planning on self-driving and will be reliant on
public transportation. Cuisines we are
interested in trying include Mexican, Chinese,
Mediterranean, and American.

[HT AL B TR, H AR AL BT IRAT AN B 4,547 R AL
2] LA 4 D NEBUN 2 RBkAT P s SCHast ik 25 %2
JigieHs B —F

[Current location: Suzhou, Destination: Hangzhou,
Number of travelers: 4, Duration of travel: 2 days] I
would like 4 people to go to Hangzhou for 2 days to
explore historical and cultural sites and have some fun
along the way.

Could you generate a 3-day travel plan for a
group of 3 people, departing from Bangor and
visiting Washington from March 21st to March
23rd, 2022? Our budget is set at $3,100. We
require accommodations that are pet-friendly
and we would prefer to have entire rooms to
ourselves. We do not plan on self-driving for
this trip

[H TR E L, B b A B AL IRIT AL 1LIRIT RE
3] REN LA, BHACII=K, HEE LY
3, Wz e MR, TS RS

[Current location: Shanghai, Destination: Beijing,
Number of travelers: 1, Number of travel days: 3] [want
to depart from Shanghai and spend three days in
Beijing. I hope to see some famous landmarks and try
some local specialties, with a sufficient budget.

Could you help with creating a 5-day travel
plan for 2 people, originating from Evansville
and covering 2 cities in Texas from March 17th
to March 21st, 2022? Our preferred
accommodations are private rooms, and they
must permit children under 10 since we will
have them with us. Transportation should not
involve any flights. The budget for this trip is
set at $2,800.

(AL B AL, B AL B iRAT AN B 2,17 R AL
3] A AR = R) AAE 5 3 i B, i
RIALCHLR], 2L CR I 2R %

[Current location: Beijing, Destination: Shanghai,
Number of travelers: 2, Number of travel days: 3] My
friend and I are planning to spend three days traveling
from Beijing to Shanghai. We plan to fly round trip and
prefer a red-themed travel route.

Can you assist in creating a travel itinerary for
a group of 4, starting in Seattle and visiting 3
unique cities across Texas? This trip will span
over 7 days from March 10th through March
16th, 2022. We have a budget of $11,000.
Regarding our accommodations, we would like
to rent entire rooms, and it's important that our
lodgings allow parties. As for transportation,
we do not plan to drive ourselves around.

Figure 17: Examples of human/hard level queries from ChinaTravel and TravelPlanner.

34

Prompts for POI recommendation

NEXT_POI_TYPE_INSTRUCTION = """

You are a travel planning assistant.

The user's requirements are: {}.

Current travel plans are: {}.

Today is {}, current time is {3}, current location is {}, and
POI_type_list is {}.

Select the next POI type based on the user's needs and the
current itinerary.

Please answer in the following format.

Thought: [Your reasonl]

Type: [type in POI_type_list]

nnn

Figure 18: Prompts for next-POI-type recommendation

35

Prompts for restaurants recommendation

RESTAURANT_RANKING_INSTRUCTION = """
You are a travel planning assistant.
The user's requirements are: {user_requirements}.
The restaurant info is:
{restaurant_info}
The past cost for intercity transportation and hotel
accommodations is: {past_cost}.

Your task is to select and rank restaurants based on the
user's needs and the provided restaurant information.
Consider the following factors:

Restaurant name

Cuisine type

Price range

Recommended food

How N =

Additionally, keep in mind that the user's budget is
allocated across multiple expenses, including intercity
transportation and hotel accommodations. Ensure that the
restaurant recommendations fit within the remaining
budget constraints after accounting for the past cost.

Note that the price range provided for each restaurant is
the average cost per person per meal, the remaining
budget must cover the cost of three meals per day for {
days} days.

For each day, recommend at least 6 restaurants, combining
restaurants for all days together.

Your response should follow this format:

Thought: [Your reasoning for ranking the restaurants]
RestaurantNamelList: [List of restaurant names ranked by
preference, formatted as a Python list]

nnn

Figure 19: Prompts for restaurant recommendation

36

Prompts for attractions recommendation

ATTRACTION_RANKING_INSTRUCTION = """
You are a travel planning assistant.
The user's requirements are: {user_requirements}.
The attraction info is:
{attraction_info}
The past cost for intercity transportation and hotel
accommodations is: {past_cost}.

Your task is to select and rank attractions based on the
user's needs and the provided attraction information.
Consider the following factors:

Attraction name

Attraction type

Location

Recommended duration

A ow N =

Additionally, keep in mind that the user's budget is
allocated across multiple expenses, including intercity
transportation and hotel accommodations. Ensure that the
attraction recommendations fit within the remaining
budget constraints after accounting for the past cost.

For each day, recommend at least 8 attractions, combining
attractions for all days together. To ensure a
comprehensive list, consider a larger pool of candidates
and prioritize diversity in attraction type and location.

Your response should follow this format:

Thought: [Your reasoning for ranking the attractions]
AttractionNamelList: [List of attraction names ranked by
preference, formatted as a Python list]

Example:

Thought: Based on the user's preference for historical sites
and natural attractions, the attractions are ranked as
follows:

AttractionNamelist: ["Attractionl1”, "Attraction2", ...]

nnn

Figure 20: Prompts for attraction recommendation

37

	Introduction
	ChinaTravel Benchmark
	Environment Information
	Logical Constraint
	Preference Requirement
	Benchmark Construction

	Empirical Study
	Neuro-Symbolic Planning
	Main Results
	Ablation Study with Preference

	Conclusion
	Limitations
	Discussion with Related Work
	Detailed Design of ChinaTravel
	Sandbox Information
	Tutorial of DSL Expression
	Query Synthesis
	Data Diversity and Bias Mitigation
	Data with Preference
	Benchmark Difficulty and Applicability

	Discussion with TravelPlanner
	NeSy Planning
	Evaluation Metric in Competition
	Additional Experimental Results
	Multi-Preference Comparison
	Open Reasoning with Chinese Context
	Analysis of Pure-LLM Methods
	Holistic Score on Overall Dataset

	Statements about Scientific Artifacts
	Statements about Human Participants
	Instructions Given To Participants
	Recruitment And Payment
	Data Consent
	Characteristics Of Annotators
	DSL Annotation for Human Data

