IMPUTEINR: ENHANCING TIME SERIES IMPUTATION WITH ADAPTIVE GROUP-BASED IMPLICIT NEURAL REPRESENTATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Time series data frequently exhibit the presence of missing values, rendering imputation a crucial process for downstream time series tasks and applications. However, existing imputation methods focus on discrete data points and are unable to effectively model sparse data, resulting in particularly poor performance for imputing substantial missing values. In this paper, we propose a novel approach, ImputeINR, for time series imputation by employing implicit neural representations (INR) to learn continuous functions for time series. ImputeINR leverages the merits of INR that the continuous functions are not coupled to sampling frequency and have infinite sampling frequency, allowing ImputeINR to generate fine-grained imputations even on extremely absent observed values. In addition, we introduce a multi-scale feature extraction module in ImputeINR architecture to capture patterns from different time scales, thereby effectively enhancing the fine-grained and global consistency of the imputation. To address the unique challenges of complex temporal patterns and multiple variables in time series, we design a specific form of INR continuous function that contains three additional components to learn trend, seasonal, and residual information separately. Furthermore, we innovatively propose an adaptive group-based framework to model complex residual information, where variables with similar distributions are modeled by the same group of multilayer perception layers to extract necessary correlation features. Since the number of groups and their output variables are determined by variable clustering, ImputeINR has the capacity of adapting to diverse datasets. Extensive experiments conducted on seven datasets with five ratios of missing values demonstrate the superior performance of ImputeINR, especially for high absent ratios in time series.

034 035

037

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

032

033

1 INTRODUCTION

Time series tasks, mainly including classification, anomaly detection, and forecasting, are vital across numerous domains, such as healthcare (Schaffer et al., 2021; Morid et al., 2023), industrial monitoring (Liu et al., 2020; Li et al., 2023), traffic flow (Cai et al., 2020; Ma et al., 2021), and human motion (Pérez-D'Arpino & Shah, 2015; Wang et al., 2017). However, real-world time series datasets suffer from missing values due to reasons like sensor malfunctions, data collection errors, or irregular reporting intervals. The missing information negatively impacts the inference of time series models, making imputation extremely necessary for downstream tasks.

Time series data imputation mainly meets three challenges: capturing temporal patterns, modeling cross-channel correlations, and dealing with absent observed information. Researchers have already attempted to address the first two challenges. Some early works (Cleveland et al., 1990; West, 1997) decompose time series to capture and model temporal patterns. Subsequent studies (Oreshkin et al., 2020; Wu et al., 2023; Liu et al., 2023c) have built upon the idea of decomposition, extracting trend and seasonal information separately. On the other hand, some deep learning based methods (Du et al., 2023; Wang et al., 2024) achieve significant imputation performance by mapping inputs from the data space to the feature space to learn cross-channel correlations. However, the existing imputation methods do not involve the cases of extremely absent observed values. Most works assume that the proportion of missing values requiring imputation does not exceed 50%, which means that these methods still require a certain amount of known information. However, in real world scenarios, the proportion of missing values is likely to be even higher. How to perform
 imputation based on extremely absent observed information remains a challenging task.

Recently, implicit neural representation (INR) has emerged as an effective method for continuously encoding diverse signals (Liu et al.) 2023b; Molaei et al.) 2023). It learns continuous functions from discrete data points, mapping coordinates to signal values. By representing complex structures in a compact form, INR is not coupled to sampling frequency anymore, which allows for multi-sampling frequency inputs enabling effective feature extraction even with absent observed samples. Additionally, as a continuous function, INR has infinite sampling frequency, which means it can be queried at any coordinate. This capacity for infinite sampling frequency interpolation sets it apart from other imputation methods, making it a promising approach for fine-grained imputation. However, directly applying INR to time series imputation is ineffective due to the unique complexities of time series.

066 In this paper, we propose a novel time series imputation approach, named ImputeINR, which can 067 simultaneously address the three challenges mentioned above. First, we learn the INR continuous 068 function, enabling modeling based on absent observed values and infinite sampling frequency for 069 fine-grained interpolation. A multi-scale feature extraction module is incorporated to capture patterns and dependencies at various temporal scales, further achieving fine-grained imputation. Sec-071 ond, a novel form of INR continuous function is proposed for capturing complex temporal patterns and cross-channel correlation features. More specifically, the function is mainly decomposed into 072 three components to learn trend, seasonal, and residual information separately. To further model the 073 intricate residual components, we innovatively propose an adaptive group-based architecture. It is 074 a multilayer perceptron (MLP) network composed of global layers and group layers. The former 075 focuses on correlation information across all channels, while the latter emphasizes correlation in-076 formation among variables with similar distributions. To enable our architecture to adapt to diverse 077 datasets, we apply variable clustering to determine the number of groups and their outputs. Experimentally, ImputeINR achieves the state-of-the-art imputation performance on seven benchmarks 079 under five ratios of missing values and the improvement becomes greater as the mask rate increases. 080 The major contributions of this paper are summarized as follows:

081 082 • 1

084 085

090

092 093

095

096

- We propose ImputeINR, which learns INR continuous function to represent the continuous time series data. It leverages the sampling frequency-independent and infinite-sampling frequency capabilities of INR to achieve fine-grained imputation with absent observed data.
- We design an adaptive group-based architecture which is a part of the INR continuous function. It consists of global layers and group layers to learn correlation information across all variables and among variables with similar distributions, respectively. The number of groups and the output of each group are determined by variable clustering, allowing our architecture to adapt to diverse datasets. We use a transformer-based feed-forward network to predict INR parameters.
 - To the best of our knowledge, ImputeINR is the first imputation approach to focus on the condition of the extremely absent observed data (i.e., mask rate is set to 70%/90%).
 - Extensive experiments show that ImputeINR outperforms other baselines on seven datasets under five ratios of masked values. It achieves a 62.7% relative improvement compared to the second-best results. The improvement becomes greater as the mask rate increases. We also provide detailed ablation studies, robustness analysis, and visual analysis.
- 098 2 RELATED WORK
- 2.1 TIME SERIES IMPUTATION

The earliest time series imputation methods are based on the statistical properties of the data, using mean/median values or statistical models to fill in missing values, such as Simple-Mean/SimpleMedian (Fung, 2006) and ARIMA (Afrifa-Yamoah et al., 2020). In addition, machine learning methods learn patterns in the data, demonstrating greater adaptability and accuracy. Prominent implementations of these approaches include KNNI (Altman, 1992) and MICE (Van Buuren & Groothuis-Oudshoorn, 2011). Although these methods are simple and easy to interpret, their limitations lie in capturing the complex temporal and variable information inherent in time series

108 data. Recently, there has been widespread interest in using deep models to capture complex tem-109 poral patterns for imputation of missing values, due to their powerful representation capabilities. 110 Common architectures include RNN-based methods (M-RNN (Yoon et al., 2018) and BRITS (Cao 111 et al., 2018), CNN-based methods (TimesNet (Wu et al., 2023)), MLP-based methods (DLinear 112 (Zeng et al., 2023), TimeMixer (Wang et al., 2024)) and transformer-based methods (SAITS (Du et al., 2023), FPT (Zhou et al., 2023), iTransformer (Liu et al., 2024), ImputeFormer (Nie et al., 113 (2024)). However, the existing methods ignore the condition of extremely absent observed data and 114 fail to impute missing values with absent known information. 115

116

117 2.2 IMPLICIT NEURAL REPRESENTATIONS

118 INR uses neural networks to model signals as continuous functions rather than explicitly represent-119 ing them as discrete points. It captures complex high-dimensional patterns in data by learning a 120 continuous mapping from input coordinates to output values. Various scenarios have seen success-121 ful applications, such as 2D image generation (Saragadam et al., 2022; Liu et al., 2023a; Zhang 122 et al., 2024), 3D scene reconstruction (Yin et al., 2022; Liu et al., 2023b; Yang et al., 2024), and 123 video representations (Mai & Liu, 2022; Zhao et al., 2023; Kwan et al., 2024). Since INR learns a 124 continuous function, it is not coupled to the resolution, which implies that the memory needed to 125 parameterize the signal does not depend on spatial resolution but rather increases with the complexity of the underlying signal. Also, INR has infinite resolution, which means it can be sampled at 126 an arbitrary sampling frequency. Therefore, we leverage this characteristic of INR to perform time 127 series imputation tasks. Sampling from the continuous function of INR enables fine-grained impu-128 tation even with extremely absent observed data. To learn the INR for target signal, there are mainly 129 two typical strategies: gradient-based meta-learning methods (Lee et al., 2021; Liu et al., 2023a) 130 and feed-forward hyper-network prediction methods (Chen & Wang, 2022; Zhang et al., 2024). In 131 this work, we use a transformer-based feed-forward method to predict the INR for time series data 132 since it can be easily adopted to an end-to-end imputation framework.

133 134

135

3 Methodology

136 137 3.1 PROBLEM FORMULATION

Denote time series data with N variables and T timestamps as $\mathbf{X} = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N} \in \mathbb{R}^{N \times T}$. The time series data \mathbf{X} is incomplete and the mask rate is $r \in [0, 1]$. The corresponding binary mask matrix can be defined as $\mathbf{M} = {m_{n,t}} \in {\{0, 1\}}^{N \times T}$, where $m_{n,t} = 1$ if $x_{n,t}$ is observed, and $m_{n,t} = 0$ if $x_{n,t}$ is missing. The imputation task is to predict the missing values \mathbf{X}_{miss} such that the predicted values $\hat{\mathbf{X}}$ satisfy $\hat{\mathbf{X}} = F_{\theta}(\mathbf{X}, \mathbf{M})$, where F_{θ} mentions the model with parameters θ . The goal is to minimize the reconstruction error between the masked data and the imputed data:

$$\mathcal{L}(\hat{\mathbf{X}}, \mathbf{X}_{\text{gt}}) = \frac{1}{|\mathbf{M}_{\text{miss}}|} \sum_{t=1}^{N} \sum_{n=1}^{T} (1 - m_{n,t}) \cdot (\hat{x}_{n,t} - x_{n,t})^2, \qquad (1)$$

149

where $|\mathbf{M}_{miss}|$ is the total number of missing values in X and \mathbf{X}_{gt} is the ground truth.

150 3.2 METHOD OVERVIEW

151 The core idea of ImputeINR is to leverage the ability of INR to learn continuous functions and en-152 able to query at any timestamp to achieve fine-grained interpolation. However, since time series 153 data has inherently intricate temporal patterns and multi-variable properties, using a simple MLP 154 as the INR continuous function to fit it is challenging. To address these issues, we design a novel 155 form of INR continuous function specifically for time series data. This new form includes three 156 components to capture the trend, seasonal, and residual information to deal with the unique tem-157 poral patterns. Furthermore, to enhance the ability of ImputeINR to model multi-variable data, we 158 propose an adaptive group-based architecture to learn complicated residual information. Each group 159 focuses on variables with similar distributions. And we use a clustering algorithm to determine the number of groups and the variables each group outputs. To further enhance the imputation capabil-160 ity of ImputeINR, we incorporate a multi-scale feature extraction module to capture information at 161 different scales, thereby improving fine-grained imputation performance.

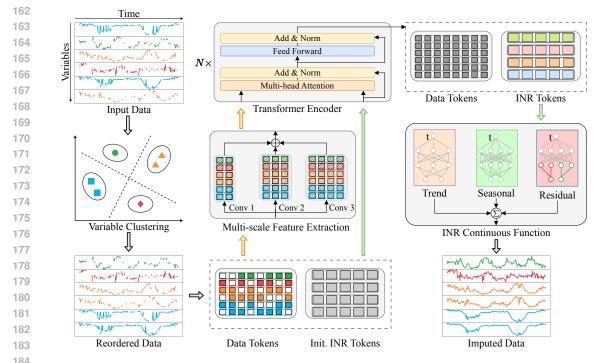


Figure 1: The overall workflow of the proposed ImputeINR method. The INR tokens are predicted using a transformer encoder. These tokens serve as the parameters for the INR continuous function, which takes the timestamp t as input.

Figure demonstrates the overall workflow of the proposed ImputeINR method. The masked data is 189 first reordered based on the variable clustering results so that variables with similar distributions are 190 placed adjacent to each other. This is to enable the subsequent representation of variables within the 191 same cluster using the same group-based MLP in the INR continuous function. Then the reordered 192 masked data is standardized and segmented into patches to prepare the data tokens. Simultaneously, 193 we initialize the INR tokens, which are learnable vector parameters. The processed data tokens 194 are input into convolutional layers of different scales to extract multi-scale features. Subsequently, 195 these extracted features and the initialized INR tokens are fed together into the transformer encoder 196 to predict the INR tokens. These INR tokens are essentially the parameters of the INR continuous 197 function. Based on these parameters, INR continuous function takes the timestamp t as input and predict the missing values.

3.3 VARIABLE CLUSTERING

185

186

187 188

199 200

201

204 205 206

207

208 209

210 211

215

We adopt a clustering algorithm C to cluster the variables of the time series data $\mathbf{X} \in \mathbb{R}^{N \times T}$ based on the similarity matrix $S \in \mathbb{R}^{N \times N}$, which partitions the variables into K clusters:

$$\mathcal{C}: \mathbb{R}^{N \times N} \to \{C_1, C_2, \dots, C_K\},$$
(2)

where C_k is a subset of the total variable set $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$ and its cardinality $|C_k|$ denotes the number of variables in this cluster. The objective of the clustering function C is defined as follows:

$$\operatorname{argmax}_{\{C_1, C_2, \dots, C_K\}} \sum_{k=1}^{K} \sum_{\mathbf{x}_i, \mathbf{x}_j \in C_k} S\left(\mathbf{x}_i, \mathbf{x}_j\right),$$
(3)

(4)

1.

where $S(\mathbf{x}_i, \mathbf{x}_j)$ represents the similarity between variables \mathbf{x}_i and \mathbf{x}_j . Then we obtain the permutation matrix $P \in \mathbb{R}^{N \times N}$:

$$P_{ij} = \begin{cases} 1, & \text{if } j = \pi(i), \\ 0, & \text{otherwise,} \end{cases}$$

where π is the permutation vector which orders the variables according to the clusters. Finally, the reordered matrix X' with columns permuted according to π is given by:

$$\mathbf{X}' = \mathbf{X} \cdot P. \tag{5}$$

In this reordered matrix \mathbf{X}' , rows (i.e., variables) are grouped according to the clusters.

3.4 MULTI-SCALE FEATURE EXTRACTION

219

220 221

222 223

224

225

226

239

240

244

253 254

255

256

257

258

259

265

266

267 268 To further capture features from different scales for fine-grained imputation, the reordered data $\mathbf{X}' \in \mathbb{R}^{N \times T}$ is fed to multiple convolutional layers with varying scales. Each convolutional layer l refers to kernel size k_l , stride s_l , padding p_l , and the number of output channels c_l . For each output channel i in the l^{th} convolutional layer, the convolution operation can be formulated as:

$$\Phi_{l} \left(\mathbf{X}' \right)_{i,t} = \sum_{j=1}^{k_{l}} W_{l,i,j} \cdot \mathbf{X}'_{t+j-p_{l}} + b_{l,i},$$
(6)

231 where W and b denotes the weight matrix and bias matrix respectively. Then these features of 232 different scales $\Phi_l(\mathbf{X}') \in \mathbb{R}^{c_l \times (T-k_l+2p_l+1)}$ 233 are concatenated to obtained the multi-scale 234 features $\dot{\mathbf{X}} \in \mathbb{R}^{\sum_{l=1}^{L} c_l \times (T'-k_l+2p_l+1)}$. Finally, 235 these features are fed to the transformer en-236 coder together with the initialized INR tokens 237 to predict the INR tokens. 238

3.5 INR CONTINUOUS FUNCTION

241 INR continuous function f maps the timestamp 422 t to time series data:

$$f: t \in \mathbb{R} \mapsto \mathbf{X}(t) \in \mathbb{R}^N, \tag{7}$$

where $\mathbf{X}(t)$ represents the output values of Nvariables at timestamp t. To effectively capture the complicated temporal patterns and successfully model the multiple variables, we design a novel form of INR continuous function. Based on the idea of time series decomposition (Wen et al.) [2019; Oreshkin et al.] [2020), our INR continuous function includes three components

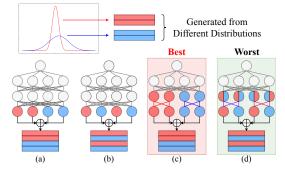


Figure 2: We manually synthesize a time series dataset with four variables, which are generated from two different distributions. Four different experimental settings are applied, including a single MLP with variables from the (a) same or (b) different distributions placed adjacent to each other, and a group-based MLP with variables from the (a) same or (b) different distribution in the same group. We observe that the setup in (c) performs the best, while (d) performs the worst.

to model trend, seasonal, and residual patterns separately. It can be defined as follows:

$$\mathbf{X}(t) = f(t) = f_{tre}(t) + f_{sea}(t) + f_{res}(t),$$
(8)

where t is the input timestamp and f(t) denotes the output (i.e., imputed data). The parameters in INR continuous function are predicted by the transformer encoder (i.e., INR tokens).

Trend Component The trend represents the long-term movement or direction of the time series data, capturing the underlying pattern that shows whether the data is increasing or decreasing over time. It is typically smooth and reflects gradual shifts in the level of the time series, free from noise or short-term fluctuations. Mathematically, it can be modeled as a polynomial function:

$$f_{tre}(t) = \sum_{i=0}^{m} \alpha_i t^i, \tag{9}$$

where α_i denotes the coefficients and m refers to the degree of the polynomial.

Seasonal Component The seasonal component focuses on the repeating patterns or cycles in the time series data, representing predictable fluctuations due to seasonality or recurring events. These regular, cyclical, and short-term fluctuations are modeled with a periodic function:

$$f_{sea}(t) = \sum_{i=1}^{\lfloor T/2 - 1 \rfloor} \left(\beta_i \sin\left(2\pi i t\right) + \gamma_{i+\lfloor T/2 \rfloor} \cos\left(2\pi i t\right) \right), \tag{10}$$

271						
272	Dataset	Source	Dimension	Window	#Training	#Test
273	ETT	Electricity Transformer Temperature	7	96	34465	11521
274	Weather	Weather Station	21	96	36696	10444
275	Phy2012	PhysioNet Challenge 2012	37	48	7671	2399
276	Phy2019	PhysioNet Challenge 2019	34	48	6104	1908
277	BAQ	Beijing Multi-Site Air-Quality	132	96	213	76
	IAQ	Italy Air Quality	13	96	58	19
278	Solar	Solar Alabama	137	96	271	138
279						

Table 1: Details of benchmark datasets.

280 281

270

where β_i and γ_i are Fourier coefficients.

Residual Component: Adaptive Group-based Architecture The residual component represents the unexplained variation after removing the trend and seasonal effects, often modeled as a stochas-284 tic process. It is challenging to capture this complex information. As shown in Figure 2, we find that regardless of the order of the variables, using a single MLP is not effective in modeling multiple variables from different distributions. However, if variables from the same distribution are represented using the same set of MLP layers, the performance will significantly improve. We define 287 such a set as a group. In addition, the layers in the MLP that extract information across all variables 288 are called global layers, while the layers within groups are referred to as group layers. The number 289 of groups and their outputs are determined by the results of variable clustering, which allows our 290 architecture to adapt to datasets with various characteristics. It is worth noting that when variables 291 with different distributions are in the same group, the representation capability is significantly re-292 duced. This proves the importance of the correlation information between the variables. Detailed 293 analysis can be found in Appendix A.3

Theoretically, for any given timestamp t, we design L_1 global layers, L_2 group layers, and K groups. *K* is determined by the results of variable clustering. The global layers is given as follows:

$$h^{(0)} = t,$$
 (11)

(12)

301

307

308

313

315

299 300

where $l_1 \in [1, L_1]$, $h^{(l_1)}$ is the output of the l_1^{th} global layer, W and b are weight matrix and bias matrix. Then, for group g_k , the input is the output of the last global layer:

 $h^{(l_1)} = \sigma \left(W^{(l_1)} h^{(l_1 - 1)} + b^{(l_1)} \right),$

$$y_{g_k}^{(0)} = h^{(L_1)},\tag{13}$$

$$y_{g_k}^{(l_2)} = \sigma \left(W_{g_k}^{(l_2)} y_{g_k}^{(l_2-1)} + b_{g_k}^{(l_2)} \right), \tag{14}$$

where $l_2 \in [1, L_2]$, $y_{g_k}^{l_2}$ refers to the output of the l_2^{th} group layer in group g_k , W and b are weight matrix and bias matrix. $y_{g_k}^{L_2} \in \mathbb{R}^{|C_k|}$ and $|C_k|$ is the number of variables in the k^{th} cluster. The final output is the concatenation of the outputs from the last group layer of each group:

$$f_{res}(t) = y_{g_1}^{(L_2)} \oplus y_{g_2}^{(L_2)} \oplus \ldots \oplus y_{g_K}^{(L_2)}.$$
(15)

4 EXPERIMENTS

314 4.1 EXPERIMENTAL SETUP

Datasets We use seven time series imputation benchmark datasets to validate the performance of ImputeINR, including ETT (Zhou et al., 2021), Weather (Wetterstation), Phy2012 (Silva et al., 2012), Phy2019 (Reyna et al., 2019)), BAQ (Zhang et al., 2017), IAQ (Vito, 2016) and Solar (NREL, 2006). Table 1 shows details of the above benchmark datasets. These datasets are collected from different fields and have varying characteristics. Based on these datasets, we can evaluate the ability of models to handle varying numbers of variables and different sizes of datasets.

Baseline Methods We compare our proposed ImputeINR method to nine popular baselines, including statistical methods (Mean/Median), RNN-based methods (BRITS (Cao et al., 2018)), CNN-based methods (TimesNet (Wu et al., 2023)), MLP-based methods (TimeMixer (Wang et al., 2024)),

	ethods sk Rate			Impute MSE	Former MAE				former MAE		PT MAE		esNet MAE	SA MSE			ITS MAE			Mean/ MSE	Media MAI
ETT	10% 30% 50% 70% 90%	0.027 0.028 0.039	0.098 <u>0.109</u> 0.111 0.134 0.214	0.034 0.050	0.091 0.098 <u>0.116</u> <u>0.142</u> <u>0.218</u>	0.041 0.054 0.077	$\begin{array}{c} 0.125 \\ 0.143 \\ 0.170 \end{array}$	0.066 0.109 0.124	0.234 0.246	0.030 0.041 0.085	0.110 0.130 0.181	0.031 0.035 0.057	0.123 0.155	$\begin{array}{r} 0.030 \\ \underline{0.031} \\ \underline{0.043} \end{array}$	$\begin{array}{r} 0.114 \\ \underline{0.116} \\ \underline{0.135} \end{array}$	0.028 0.040 0.068	0.110 0.130 0.181	0.032 0.044 0.064	0.124 0.147 0.176	1.104 1.104	0.79 0.79 0.79 0.79 0.79
Weather	10% 30% 50% 70% 90%	0.030 0.031 0.036	0.063 0.072 0.073 0.082 0.123	0.033 0.037 0.074	0.076 0.080 0.084 0.097 0.116	0.032 0.037 0.045	$\frac{0.080}{0.076}\\ \frac{0.076}{0.086}$	0.051 0.069 0.078		0.035 0.043 0.053		$\frac{0.031}{0.036}$ 0.043	$\frac{\overline{0.073}}{0.076}\\ \overline{0.084}$	0.035 0.041 0.047	0.077 0.091 0.096	$ \begin{array}{r} 0.031 \\ 0.035 \\ 0.042 \end{array} $	0.073 0.077 0.085	0.036 0.042 0.053	0.088 0.097 0.107	0.634 0.634	0.6 0.6 0.6 0.6
Phy2012	10% 30% 50% 70% 90%	0.079 0.092 0.071	0.096 0.101 0.107 0.112 0.124	0.205 0.210 0.229	0.155 0.158 0.169	0.117 0.142 0.148	0.120 0.124 0.129	0.099 0.109 0.124	$\begin{array}{c} 0.108 \\ 0.111 \\ 0.115 \\ \underline{0.120} \\ \underline{0.135} \end{array}$	$\begin{array}{c} 0.099 \\ \underline{0.105} \\ 0.132 \end{array}$	0.111 0.118 0.131	0.103 0.145 0.149	0.108 0.118 0.128	0.203 0.208 0.237	0.168 0.173 0.195	0.108 0.117 0.125	$\frac{\overline{0.105}}{0.116}\\ \overline{0.123}$	$ \begin{array}{r} \hline 0.094 \\ \hline 0.108 \\ \hline 0.122 \end{array} $	0.107 0.118 0.125	0.224 0.224 0.224	0.1 0.1 0.1 0.1 0.1
Phy2019	10% 30% 50% 70% 90%	0.079 0.087 0.098	0.102 0.109 0.115 0.120 0.131	0.206 0.209	0.159 0.160 0.164 0.172 0.174	0.104 0.109 0.119	$\begin{array}{c} 0.120 \\ 0.125 \\ 0.132 \end{array}$	0.098 0.100 0.112	0.123 0.129	0.091 0.102 0.116	0.116 0.124 0.133	$\frac{0.084}{0.094}$ $\frac{0.094}{0.109}$	$\begin{array}{c} 0.111 \\ \underline{0.118} \\ 0.128 \end{array}$	0.203 0.204 0.205	0.169 0.175 0.178	0.099 0.109 0.122	0.110 0.118 0.124	0.090 0.099 0.113	0.111 0.119 0.126	0.203 0.203	0.1 0.1 0.1 0.1 0.1
BAQ	10% 30% 50% 70% 90%	0.096 0.101 0.117	0.169 0.171 0.172 0.181 0.185	1.106 1.119	0.747 0.749 0.750 0.751 0.752	$\frac{\overline{0.205}}{0.274}\\ 0.359$	0.193 0.237 0.289	$\begin{array}{c} 0.308 \\ 0.404 \\ 0.556 \end{array}$	$\begin{array}{c} 0.321 \\ 0.399 \\ 0.488 \end{array}$	0.231 0.285 0.325	0.224 0.229 0.242 0.262 <u>0.301</u>	0.292 0.318 0.341	0.267 0.269	1.088 1.112 1.124	0.749 0.750 0.751	$\begin{array}{c} 0.210 \\ \underline{0.211} \\ \underline{0.230} \end{array}$	<u>0.186</u>	0.387 0.422 0.448	0.324 0.337 0.359	1.135 1.135 1.135 1.135 1.135 1.135	0.7 0.7
IAQ	10% 30% 50% 70% 90%	0.008 0.009 0.010	0.061 0.062 0.063 0.068 0.116	1.377 1.424 1.466	0.725 0.738 0.753 0.757 0.761	0.244 0.375 0.527	$\frac{\overline{0.242}}{0.306}\\ 0.377$	0.639 0.783 0.907	0.466 0.503 0.556 0.618 0.767	0.237 0.291 0.426	0.271 0.305 0.357	0.262 0.274 <u>0.304</u>	0.290 0.297 <u>0.314</u>	1.442 1.461 1.472	0.755 0.757 0.761	$\frac{\underline{0.224}}{\underline{0.241}}_{0.504}$	$\begin{array}{c} 0.210 \\ 0.243 \\ \underline{0.273} \\ 0.355 \\ 0.505 \end{array}$	0.627 0.710 0.857	0.521 0.553 0.609	1.493 1.493 1.493	0.7 0.7 0.7 0.7
Solar	10% 30% 50% 70% 90%	0.023 0.024 0.025	0.074 0.075 0.078 0.079 0.081	0.770 0.772	0.771 0.772 0.773 0.774 0.775	0.034 0.052 0.075	$\begin{array}{c} 0.107 \\ 0.143 \\ 0.173 \end{array}$	0.071 0.079 0.088	0.189	0.084 0.101 0.139	0.185 0.202 0.243	0.049 0.052 0.061	0.133 0.139 0.151	0.771 0.772 0.773	0.773 0.774 0.775	$ \begin{array}{r} \underline{0.024} \\ \underline{0.026} \\ \underline{0.030} \\ \end{array} $	0.080 0.085	0.063 0.065 0.067	0.129 0.135 0.140	0.773 0.773 0.773	0.7 0.7 0.7 0.7
Average	0.1 0.3 0.5 0.7 0.9	0.049 0.053 0.057	0.111		0.389 0.393 0.400 0.409 0.424	0.111 0.149 0.193	$\begin{array}{c} 0.141 \\ 0.165 \\ 0.194 \end{array}$	0.190 0.236 0.284		0.115 0.138 0.182	0.157 0.171 0.199	0.122 0.136 0.152	0.156 0.163 0.177	0.539 0.547 0.557	$\begin{array}{c} 0.401 \\ 0.405 \\ 0.413 \end{array}$	$\frac{\underline{0.103}}{\underline{0.111}}_{0.160}$		0.190 0.213 0.246	0.201 0.215 0.235	0.795 0.795 0.795	0. 0. 0. 0.

Table 2: Imputation results. The best results are in **Bold**. And the second ones are <u>underlined</u>.

and transformer-based methods (Transformer (Vaswani, 2017), SAITS (Du et al.) (2023), FPT (Zhou et al., 2023), iTransformer (Liu et al., 2024), ImputeFormer (Nie et al.) (2024)). More details of these baselines are provided in Appendix (A.4).

Evaluation Metrics We utilize Mean Square Error (MSE) and Mean Absolute Error (MAE) to report the imputation accuracy of all mentioned methods. These metrics are defined as follows:

$$MSE = \frac{1}{|\Omega|} \sum_{i,j\in\Omega} \left(\hat{\mathbf{X}}_{i,j} - \mathbf{X}_{gt_{i,j}} \right)^2, MAE = \frac{1}{|\Omega|} \sum_{i,j\in\Omega} \left| \hat{\mathbf{X}}_{i,j} - \mathbf{X}_{gt_{i,j}} \right|,$$
(16)

where \mathbf{X}_{et} is the ground truth, $\mathbf{\ddot{X}}$ is the imputed data, Ω is the index set of masked entries.

Experimental Settings We apply the same data processing techniques and parameter settings. A sliding window approach is used, with a fixed window size of 48 for the Phy2012 and Phy2019 datasets, and 96 for all other datasets. These settings follow those used in previous work (Wu et al., 2023; Du, 2023). To evaluate the imputation performance, we randomly mask values in \mathbf{X}_{et} based on the mask rate r. For the main results, the multi-scale feature extraction module uses three parallel convolutional layers with kernel sizes of 3,5,7 respectively. The adaptive group-based architecture in the INR continuous function involves one global layer and one group layer within the residual component, with hidden dimensions set to 16. The transformer encoder consists of 6 blocks. Ablation Studies are reported in Section 4.3 to demonstrate the effectiveness of each module. Experiments are performed using the ADAM optimizer (Kingma, 2014) with an initial learning rate of 10^{-3} . We use the agglomerative clustering method to achieve variable clustering since it adopts diverse inputs without the need to pre-specify the number of clusters. The visualization of the variable clustering results are provided in Section [4.5] All experiments are conducted on a single 24GB GeForce RTX 3090 GPU.

Multi-scale	Variable	Adaptive	E	ГΤ	Wea	ather	Phy	2012	Phy	2019	BA	4Q	IA	Q	So	lar
Features	Clustering	Group	MSE	MAE	MSE	N										
×	X	x	0.039	0.135	0.038	0.083	0.099	0.114	0.098	0.119	0.227	0.262	0.018	0.092	0.036	0
X	X	1	0.036	0.130	0.035	0.081	0.099	0.113	0.096	0.117	0.222	0.258	0.015	0.084	0.034	0
×	1	X	0.036	0.129	0.036	0.080	0.098	0.113	0.097	0.118	0.218	0.259	0.015	0.083	0.033	0
1	×	×	0.035	0.127	0.035	0.082	0.097	0.114	0.095	0.117	0.209	0.252	0.017	0.088	0.033	0
X	1	1	0.029	0.115	0.032	0.074	0.093	0.108	0.088	0.111	0.192	0.243	0.010	0.066	0.031	0
1	x	1	0.034	0.124	0.034	0.079	0.095	0.113	0.093	0.116	0.203	0.248	0.012	0.077	0.031	0
1	1	×	0.033	0.123	0.033	0.078	0.096	0.113	0.094	0.117	0.199	0.244	0.014	0.081	0.032	0
1	1	1	0.028	0.111	0.031	0.073	0.092	0.107	0.087	0.115	0.101	0.172	0.009	0.063	0.024	0

Table 3: The ablation studies on multi-scale feature extraction, variable clustering, and adaptive group-based architecture. Mask rate r is 50% and the best results are in **Bold**.

4.2 MAIN RESULTS

394 We compare our ImputeINR method to nine popular baselines with five different mask rates r. As 395 shown in Table 2 our ImputeINR achieves the best performance in most conditions in terms of both MSE and MAE metrics. Overall, across all datasets and mask rates, our method achieves an 396 average MSE reduction of 62.7% compared to the second-best results. The superiority of ImputeINR 397 is much more significant in IAQ, the dataset with fewest training samples. We observe similar 398 improvements, occurring in other small datasets, BAQ and Solar. More specifically, the average 399 MSE of our method is reduced by 16.6%, 54.9% and 96.1% on the Solar, BAQ and IAQ datasets 400 respectively; while ImputeFormer and SAITS perform poorly on these datasets, yielding results 401 similar to Mean/Median. These results demonstrate that our proposed ImputeINR can effectively 402 deal with datasets of various sizes. 403

In addition, we observe that the performance of most methods declines as the mask rate r increases. This aligns with our expectations, as fewer samples are captured leading to incomplete information, which increases the difficulty of imputation. However, ImputeINR is still effective even with an extreme mask rate. When 90% of the data is masked, the average MSE of our method is reduced by 69.2% compared to the second-best ones. This indicates that ImputeINR can learn continuous function from very few data points, achieving fine-grained imputation.

410

378

379

380 381 382

393

4.3 ABLATION STUDIES

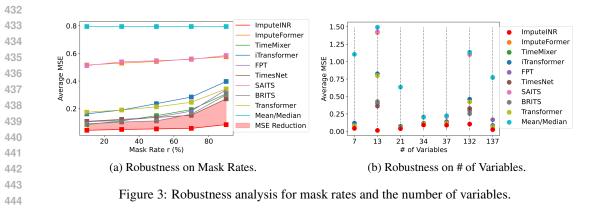
412 In this section, we conduct ablation studies to evaluate the effectiveness of multi-scale feature ex-413 traction block, variable clustering and adaptive group-based architecture. Table 3 presents the im-414 putation results for all conditions. First, the model without any of the three modules exhibits the 415 lowest performance. Building on this, adding any one of the modules will enhance the imputation 416 capability of the model. This individually validates the effectiveness of each of the three modules. 417 Furthermore, the permutation of any two modules will lead to higher performance. Among them, 418 the combination of variable clustering and adaptive group-based architecture yields the best results. 419 This is as expected, since the outcomes of variable clustering correspond directly to the number 420 of groups. Therefore, these two modules can support each other, facilitating better representation learning. Finally, the model using all three modules displays the highest imputation performance. 421

422 423

424

4.4 ROBUSTNESS ANALYSIS

We further evaluate the robustness of our ImputeINR method on mask rate r and the number of variables. As shown in Figure 3a ImputeINR outperforms other comparison methods under all mask rate settings, proving its robustness on diverse missing ratio. Particularly, as the mask rate rincreases, the improvement of our method over others also becomes more pronounced. For example, when r = 10%, the average MSE of our method is reduced by 49.5%, while at r = 0.9, the reduction reaches 69.2%. In addition, we also validate the robustness on the number of variables. As shown in Figure 3b, our method consistently performs the best on diverse numbers of variables. This demonstrates that our approach effectively addresses the challenges of multi-variable scenarios.



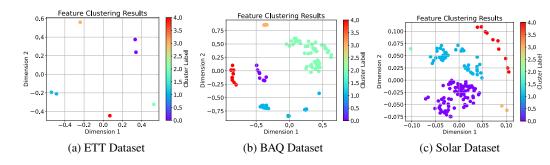


Figure 4: The visualization of variable clustering of (a) ETT dataset, (b) BAQ dataset, (c) IAQ dataset, and (c) Solar dataset. Variables with similar distributions are clustered and to be learned within the same group.

VISUAL ANALYSIS 4.5

In order to show the importance of variable clustering, we visualize the clustering results of ETT, BAQ, and Solar datasets. As shown in Figure 4, variables with similar distributions are clustered and will be assigned to the same group. We observe that even with a small number of variables, their distributions can vary significantly. Moreover, as the number of variables increases, the situation becomes more complex. In this case, using a single MLP to model all variables may weaken the unique local information within the same cluster, leading more focus on global information. Therefore, variable clustering is necessary, and previous ablation studies also prove this.

5

469 470

445

446

447

448

449

450

451

452

453

454 455

456

457

458 459

460 461

462

463

464

465

466

467

468

CONCLUSION

471 In this paper, we propose ImputeINR, an adaptive group-based time series imputation method. It 472 learns the INR continuous function to map timestamps to the corresponding variable values. In contrast to existing imputation approaches, ImputeINR leverages the sampling frequency-independent 473 and infinite-sampling frequency capabilities of INR to achieve fine-grained imputation with absent 474 observed data. In addition, a multi-scale feature extraction module is added to further enhance 475 fine-grained interpolation by capturing temporal patterns from different time scales. To model 476 the complex information of time series data, we design a novel form of INR continuous function, 477 which mainly includes three components to learn trend, seasonal, and residual information sepa-478 rately. Moreover, we propose an adaptive group-based architecture for the residual component. It 479 focuses on correlation information across all variables and among variables with similar distribu-480 tions through global layers and group layers respectively. We apply a variable clustering algorithm 481 to determine the number of groups and the output dimension of each group, allowing the architec-482 ture to adapt to diverse datasets. Comprehensive experiments are conducted on seven imputation 483 benchmark datasets under five ratios of masked values. The experimental results demonstrate that ImputeINR outperforms other state-of-the-art imputation methods. And the improvement becomes 484 greater as less data is observed. In future work, we plan to explore the ability of INR for time series 485 forecasting, which is the most challenging task.

486 REFERENCES 487

497

498

499

501 502

504

521

522

523

527

528

529

530

Eben Afrifa-Yamoah, Ute A Mueller, Stephen M Taylor, and Aiden J Fisher. Missing data imputation 488 of high-resolution temporal climate time series data. *Meteorological Applications*, 27(1):e1873, 489 2020. 490

- 491 Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The 492 American Statistician, 46(3):175-185, 1992. 493
- 494 Ling Cai, Krzysztof Janowicz, Gengchen Mai, Bo Yan, and Rui Zhu. Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting. Transactions in GIS, 24(3): 495 736–755, 2020. 496
 - Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent imputation for time series. Advances in neural information processing systems, 31, 2018.
- 500 Yinbo Chen and Xiaolong Wang. Transformers as meta-learners for implicit neural representations. In European Conference on Computer Vision, pp. 170–187. Springer, 2022.
 - Robert B Cleveland, William S Cleveland, Jean E McRae, Irma Terpenning, et al. Stl: A seasonaltrend decomposition. J. off. Stat, 6(1):3-73, 1990.
- 505 Wenjie Du. PyPOTS: a Python toolbox for data mining on Partially-Observed Time Series. arXiv 506 preprint arXiv:2305.18811, 2023.
- 507 Wenjie Du, David Côté, and Yan Liu. Saits: Self-attention-based imputation for time series. Expert 508 Systems with Applications, 219:119619, 2023. 509
- 510 David S Fung. Methods for the estimation of missing values in time series. 2006. 511
- Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 512 2014. 513
- 514 Ho Man Kwan, Ge Gao, Fan Zhang, Andrew Gower, and David Bull. Hinerv: Video compres-515 sion with hierarchical encoding-based neural representation. Advances in Neural Information 516 Processing Systems, 36, 2024. 517
- Jaeho Lee, Jihoon Tack, Namhoon Lee, and Jinwoo Shin. Meta-learning sparse implicit neural 518 representations. Advances in Neural Information Processing Systems, 34:11769–11780, 2021. 519
- 520 Mengxuan Li, Peng Peng, Jingxin Zhang, Hongwei Wang, and Weiming Shen. Sccam: Supervised contrastive convolutional attention mechanism for ante-hoc interpretable fault diagnosis with limited fault samples. IEEE Transactions on Neural Networks and Learning Systems, 2023.
- Ke Liu, Feng Liu, Haishuai Wang, Ning Ma, Jiajun Bu, and Bo Han. Partition speeds up learning 524 implicit neural representations based on exponential-increase hypothesis. In Proceedings of the 525 IEEE/CVF International Conference on Computer Vision, pp. 5474–5483, 2023a. 526
 - Ke Liu, Ning Ma, Zhihua Wang, Jingjun Gu, Jiajun Bu, and Haishuai Wang. Implicit neural distance optimization for mesh neural subdivision. In 2023 IEEE International Conference on Multimedia and Expo (ICME), pp. 2039–2044. IEEE, 2023b.
- Shuai Liu, Xiucheng Li, Gao Cong, Yile Chen, and Yue Jiang. Multivariate time-series imputation 531 with disentangled temporal representations. In The Eleventh international conference on learning 532 representations, 2023c. 533
- 534 Yi Liu, Sahil Garg, Jiangtian Nie, Yang Zhang, Zehui Xiong, Jiawen Kang, and M Shamim Hossain. 535 Deep anomaly detection for time-series data in industrial iot: A communication-efficient on-536 device federated learning approach. IEEE Internet of Things Journal, 8(8):6348–6358, 2020. 537
- Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. 538 itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth International Conference on Learning Representations, 2024.

- Changxi Ma, Guowen Dai, and Jibiao Zhou. Short-term traffic flow prediction for urban road sections based on time series analysis and lstm_bilstm method. *IEEE Transactions on Intelligent Transportation Systems*, 23(6):5615–5624, 2021.
- Long Mai and Feng Liu. Motion-adjustable neural implicit video representation. In *Proceedings of* the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10738–10747, 2022.
- Amirali Molaei, Amirhossein Aminimehr, Armin Tavakoli, Amirhossein Kazerouni, Bobby Azad,
 Reza Azad, and Dorit Merhof. Implicit neural representation in medical imaging: A comparative
 survey. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 2381–2391, 2023.
- Mohammad Amin Morid, Olivia R Liu Sheng, and Joseph Dunbar. Time series prediction using deep learning methods in healthcare. *ACM Transactions on Management Information Systems*, 14(1):1–29, 2023.
 - Tong Nie, Guoyang Qin, Wei Ma, Yuewen Mei, and Jian Sun. Imputeformer: Low ranknessinduced transformers for generalizable spatiotemporal imputation. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 2260–2271, 2024.
 - 57 NREL. https://www.nrel.gov/grid/solar-power-data.html. 2006.

554

555

556

558

579

580

583

584

- Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis expansion analysis for interpretable time series forecasting. In *International Conference on Learning Representations*, 2020.
- Claudia Pérez-D'Arpino and Julie A Shah. Fast target prediction of human reaching motion for
 cooperative human-robot manipulation tasks using time series classification. In 2015 IEEE inter *national conference on robotics and automation (ICRA)*, pp. 6175–6182. IEEE, 2015.
- MA Reyna, C Josef, R Jeter, SP Shashikumar, MB Westover, S Nemati, GD Clifford, and A Sharma.
 Early prediction of sepsis from clinical data: the physionetcomputing in cardiology challenge
 2019. *Critical Care Medicine*, 48(2):210–217, 2019.
- Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan, Richard G Baraniuk, and Ashok Veeraraghavan. Miner: Multiscale implicit neural representation. In *European Conference on Computer Vision*, pp. 318–333. Springer, 2022.
- Andrea L Schaffer, Timothy A Dobbins, and Sallie-Anne Pearson. Interrupted time series analysis
 using autoregressive integrated moving average (arima) models: a guide for evaluating large-scale
 health interventions. *BMC medical research methodology*, 21:1–12, 2021.
- 575
 576
 576
 576
 577
 578
 578
 578
 578
 574
 575
 575
 576
 577
 578
 577
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 - Stef Van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations in r. *Journal of statistical software*, 45:1–67, 2011.
- A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.
 - Saverio Vito. Air Quality. UCI Machine Learning Repository, 2016. DOI: https://doi.org/10.24432/C59K5F.
- Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and
 JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In *The Twelfth International Conference on Learning Representations*, 2024.
- Yiwei Wang, Yixuan Sheng, Ji Wang, and Wenlong Zhang. Optimal collision-free robot trajectory generation based on time series prediction of human motion. *IEEE Robotics and Automation Letters*, 3(1):226–233, 2017.
- Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Huan Xu, and Shenghuo Zhu. Robuststl:
 A robust seasonal-trend decomposition algorithm for long time series. In *Proceedings of the AAAI* conference on artificial intelligence, volume 33, pp. 5409–5416, 2019.

594 595	Mike West. Time series decomposition. Biometrika, 84(2):489-494, 1997.
596	Wetterstation. Weather. https://www.bgc-jena.mpg.de/wetter/.
597	
598	Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
599	Temporal 2d-variation modeling for general time series analysis. In <i>The Eleventh International</i>
600	Conference on Learning Representations, 2023.
601	Yiying Yang, Fukun Yin, Wen Liu, Jiayuan Fan, Xin Chen, Gang Yu, and Tao Chen. Pm-inr: Prior-
602	rich multi-modal implicit large-scale scene neural representation. In Proceedings of the AAAI
603	Conference on Artificial Intelligence, volume 38, pp. 6594–6602, 2024.
604	
605	Fukun Yin, Wen Liu, Zilong Huang, Pei Cheng, Tao Chen, and Gang Yu. Coordinates are not
606	lonely-codebook prior helps implicit neural 3d representations. Advances in Neural Information Processing Systems, 35:12705–12717, 2022.
607	<i>Frocessing Systems</i> , 55.12/03–12/17, 2022.
608	Jinsung Yoon, William R Zame, and Mihaela van der Schaar. Estimating missing data in temporal
609	data streams using multi-directional recurrent neural networks. IEEE Transactions on Biomedical
610	Engineering, 66(5):1477–1490, 2018.
611	Ailing Zong Muni Char Lei Zhang and Olong Ya. And transformers offerting for time enviro
612	Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In <i>Proceedings of the AAAI conference on artificial intelligence</i> , volume 37, pp.
613	11121–11128, 2023.
614	11121 11120, 2025.
615	Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and Song Xi Chen. Cautionary tales on
616	air-quality improvement in beijing. Proceedings of the Royal Society A: Mathematical, Physi-
617	cal and Engineering Sciences, 473, 2017. URL https://api.semanticscholar.org/
618	CorpusID:37683936.
619	Shuyi Zhang, Ke Liu, Jingjun Gu, Xiaoxu Cai, Zhihua Wang, Jiajun Bu, and Haishuai Wang.
620	Attention beats linear for fast implicit neural representation generation. <i>arXiv preprint</i>
621	arXiv:2407.15355, 2024.
622	
623	Qi Zhao, M Salman Asif, and Zhan Ma. Dnerv: Modeling inherent dynamics via difference neural
624	representation for videos. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and</i>
625	Pattern Recognition, pp. 2031–2040, 2023.
626	Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
627	Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
628	of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.
629	Tion Zhou Daisang Niu Liong Sun Dang lin at al One fite all Deven general time and it
630	Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
631	by pretrained lm. Advances in neural information processing systems, 36:43322–43355, 2023.
632	
633	
634	
635	
636	
637	
638	
639	
640	
641	
642	
643	
644 645	
645	
646	
647	