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Abstract
State-of-the-art multimodal web agents, powered by Multimodal Large Language
Models (MLLMs), can autonomously execute many web tasks by processing user
instructions and interacting with graphical user interfaces (GUIs). Current strate-
gies for building web agents rely on (i) the generalizability of underlying MLLMs
and their steerability via prompting, and (ii) large-scale fine-tuning of MLLMs on
web-related tasks. However, the ability of web agents to automate tasks on unseen
websites and domains remains lacking, limiting their applicability to enterprise-
specific and proprietary websites/domains. Beyond generalization from large-scale
pre-training and fine-tuning, we propose building agents for few-shot adaptability
using human demonstrations. We introduce the AdaptAgent framework that en-
ables both proprietary and open-weights multimodal web agents to adapt to new
websites and domains using few human demonstrations (up to 2). Our experi-
ments on two popular benchmarks — Mind2Web & VisualWebArena — show
that using in-context demonstration (for proprietary models) or meta-adaptation
demonstrations (for meta-learned open-weights models) boosts task success rate
by 3.36% to 7.21% over non-adapted state-of-the-art models, corresponding to
a relative increase of 21.03% to 65.75%. Our results unlock a complementary
axis for developing widely applicable multimodal web agents beyond large-scale
pre-training and fine-tuning, emphasizing few-shot adaptability.

1 Introduction
Agents automating web-based tasks with minimal human intervention can significantly boost personal
and workplace productivity [34, 35]. A prevalent interaction involves a human providing a natural
language instruction (e.g., “use delta.com to book a flight from JFK to Haneda on . . . ”), and
the agent autonomously executing the necessary webpage actions to complete the user-assigned
task [59, 13, 21]. Large language models (LLMs) can understand instructions, plan, and predict
structured outputs, serving as backbones for such agents [52]. Remarkable progress has been
made in automating web-based tasks using LLM-based agents [29, 11, 19], employing careful
prompting [59, 27] and extensive pre-training and fine-tuning [13] to predict actions using language
instructions and HTML/DOM. With multimodal capabilities, these agents now process the graphical
user interface’s (GUI’s) visual state to complement the HTML/DOM information [21]. In parallel
with the methodological advancements, evaluating the generalizability of these multimodal web
agents to new tasks, websites, and domains is a critical component to ensure their broad applicability.

Prior works have noted challenges in generalizing multimodal web agents to new tasks, websites, and
domains, often relying on large-scale pre-training (e.g., agents like SeeAct [59]) or fine-tuning (e.g.,
models like CogAgent [21]). We posit that regardless of pre-training scale, some tasks and domains
will remain unseen, such as proprietary workflows and enterprise websites. Since the generalizability
of current state-of-the-art (SoTA) agents is limited and their fine-tuning is costly, we propose building
web-agents for data-efficient adaptability instead of relying solely on large-scale pre-training and

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



ReACT Prompting + few-shot ICL:
(1) choose the element, &
(2) operation (click, select, type)

Execute the action on the 
webpage with tools like 
Playwright/Pynput

4. Repeat

1. Input

2. Model

3. Output

θ

θ1

θ2

θ3

θ* : better prior

θnew

Snapshot of the page + task
[link] Investor relations -> CLICK 

[span] Annual report -> CLICK
…

Human demonstration

Extract the action sequence
from the live demonstration

Including few-shot human demonstration with ICL for agents
based on proprietary LLMs (SeeAct + 1-ICMD w/ GPT-4o)

Meta-learning for few-shot adaptation of agents 
based on open-weights LLMs (CogAgent-FOMAML)

website3

website2

website1

1. Meta-learning is used to learn a better prior (θ → θ*)
2. Human demonstrations (n = 2) are used to adapt 

θ* to θnew

Figure 1: AdaptAgent for few-shot adaptation of web agents that are based on proprietary and open-weights
multimodal LLMs. Left: For proprietary MLLM-based web agents, we include the multimodal human demon-
stration as in-context examples. Right: For web agents based on open-weights MLLMs, we first learn a better
prior using meta-learning and then use few-shot human demonstrations for faster adaptation.

fine-tuning. Specifically, we address whether multimodal web agents can adapt to unseen websites
and domains with only a handful of human demonstrations (e.g., n = 1 or n = 2). We discuss the
prior related work in Appendix A.1, where we elaborate on how robot learning from demonstration
inspired the AdaptAgent framework.

We consider current SoTA multimodal web agents — both proprietary and open-weights — and
demonstrate that incorporating just 1 or 2 multimodal human demonstrations (visual snapshot +
HTML information) can result in an absolute increase in task success rate of 3.36% to 7.21%
on unseen websites and domains, corresponding to a relative increase of 21.03% to 65.75% over
current performance. We propose the AdaptAgent framework to effectively use these few-shot
demonstrations through careful in-context learning (ICL) [7] with proprietary multimodal LLMs
(MLLMs) and meta-learning [16] with open-weights multimodal LLMs. To establish the role of
learning from few-shot demonstrations, we conduct extensive experiments on two widely adopted
benchmarks — Mind2Web [13] & VisualWebArena [27] — showing improvements across tasks of
varying difficulty levels. Our key contributions are below:
• We propose the AdaptAgent framework for enabling SoTA multimodal web agents to learn from
few-shot human demonstrations. AdaptAgent uses ICL for data-efficient adaptation of proprietary
MLLMs like GPT-4o [2] and meta-learning for adapting open-weights MLLMs like CogAgent [21].
• Our extensive experiments on Mind2Web and VisualWebArena demonstrate the effectiveness of
our methods, resulting in notable increases in task success rates on unseen websites and domains
with only 1 or 2 multimodal demonstrations.1

We believe that the effectiveness of using few-shot human demonstrations and our empirical insights
open a complementary direction for improving the generalizability of multimodal web agents beyond
the current SoTA strategies that rely on large-scale pre-training and fine-tuning.

2 Few-Shot Adaptation with Human Demonstrations
Methodological motivation. Learning from human demonstrations [44] has played a key role in many
applications, notably helping robots generalize to new tasks or existing tasks under new environments
and constraints [3]. Prior work has highlighted the limited generalizability of web agents to unseen
tasks, websites, and domains [59, 21]. Agents that automate web tasks and robots that automate real-
world tasks share strong analogies in desired capabilities (i.e., perception, reasoning, execution [52]),
allowing for transfer of modeling strategies between these domains. This inspires us to adopt learning
from human demonstrations for web agents to improve their adaptability to unseen settings. While
it’s possible to fine-tune web agents with a large number of human demonstrations covering new
websites and domains, such approaches require tedious annotations and are expensive. Therefore,
building highly adaptable web agents requires the ability to adapt them in a data-efficient manner.

Despite the success of learning from demonstration in adapting robots and the strong analogies
between physical robots and web agents, unique challenges remain for web agents. Traditionally,
robot learning from human demonstrations exhibits limited generalizability; i.e., when a human
demonstrates task A a few times, the robot learns to do the same task A or closely related tasks, akin
to imitation learning [23, 41]. It remains to be seen how well web agents can generalize with few-shot
human demonstrations, which is the primary focus of this work. In other words, can a handful of
human demonstrations of specific tasks on certain websites (e.g., "book a flight...” on delta.com)

1
For a more granular investigation of the observations, we conduct ablations to break down the main results, stratifying improvements based on action sequence

complexity and visual difficulty. We also quantify the effects of more in-context demonstrations and different data mixes during meta-learning. See Appendix A.5.
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lead the web agent to learn related tasks on similar websites (e.g., "check visa requirements...” on
united.com), or even generalize to unrelated domains (e.g., “book a driving test appointment...” on
dol.wa.gov)? Our work proposes AdaptAgent, a framework to enable web agents to adapt with
few-shot human demonstrations and evaluates their generalizability to unseen settings.

Methods for learning with human demonstrations. Our proposed framework for adapting mul-
timodal web agents with few-shot human demonstrations builds on advances in proprietary and
open-weights multimodal LLMs. We use SeeAct [59], which employs a carefully crafted prompting
strategy with GPT-4o, as a representative proprietary model baseline and adapt it using multimodal
in-context examples. As the representative baseline for SoTA open-weights models, we use CogA-
gent [21] — an 18B multimodal LLM with a dedicated visual backbone to process GUI images. Given
the success of meta-learning in efficient adaptation, we propose fine-tuning models like CogAgent
with meta-learning instead of regular fine-tuning. See Figure 1 for an overview of our proposed
AdaptAgent framework. Next, we elaborate on the methodological details for in-context learning
and meta-learning with human demonstrations for proprietary and open-weights models, respectively.

1. In-context learning with SeeAct + GPT-4o: SeeAct uses a carefully constructed prompt (using
ReAct prompting [56]) to guide multimodal LLMs like GPT-4o in iteratively determining the next
action based on the current GUI state to complete the user-assigned task. In-context learning (ICL) has
proven to be an effective approach for adapting proprietary LLMs [4]. Consequently, we deconstruct
the human demonstration of a task on the target website/domain into a sequence of (visual snapshot,
HTML elements (filtered following [59]) , human selection) and include them as an ICL example
with the original SeeAct prompt; see Appendix A.6 and Figure 1 (left).

2. Meta-learning with CogAgent: To overcome the limited abilities of general-purpose multimodal
LLMs to process GUI snapshots — which involve complex layout understanding, OCR, and functional
understanding of HTML elements, Hong et al. (2023) [21] pre-trained general-purpose MLLMs like
CogVLM [53] on tasks involving GUI processing. Beyond extensive pre-training, fine-tuning on
task-specific datasets showed notable performance boosts for CogAgent over several baselines. In this
work, we consider the pre-trained CogAgent and further adapt it using model-agnostic meta-learning
(MAML) [15] with few-shot human demonstrations; refer to Figure 1 (right) for a visual depiction.

Meta-learning [46], often dubbed “learning to learn”, is a training strategy in which a model learns
to adapt efficiently to unseen tasks by leveraging knowledge gained from updates across many
related tasks. Model-agnostic meta-learning [15] is one such approach applicable to any model.
Mathematically, the meta-learned model θ∗ is obtained via meta-updates θ ← θ−β ·∇θ

∑N
i LTi(θi)

(outer loop update), where β is the meta-learning step size, and the gradient is derived from the
sum of losses LTi

(θi) across all tasks. Each θi is initialized from θ and fine-tuned on task Ti, via
θi ← θ − α · ∇θLTi

(θ) (inner loop update), with α being the step size. Thus, each meta-update
involves meta-gradients (gradients through gradients). However, since our experiments involve LLMs
with billions of parameters, computing meta-gradients is computationally challenging. Therefore, we
consider the first-order approximation of model-agnostic meta-learning (FOMAML). FOMAML has
demonstrated performance on par with MAML [15, 33], potentially due to the predominantly locally
linear nature of neural networks [17, 40], making the second-order gradients negligible. Therefore,
our meta-learning updates are represented as (derivation in App. A.2): θ ← θ− β ·

∑N
i=1∇θLTi

(θi).
In other words, when adapting multimodal web agents with meta-learning, the inner loop involves
fine-tuning the agent (θ → θi) on web tasks Ti from a given website, with the training subset used for
this inner loop denoted as Dtrain

i . Then, for the outer loop update, we update the parameters of the
MLLM agent θ by backpropagating the gradients of the loss at θi, where the loss is computed on
held-out web tasks from the same website/domain — denoted as Dtest

i . Importantly, the gradients
being backpropagated are computed at θi (rather than θ), ensuring the MLLM agent is not trained on
both Dtrain

i & Dtest
i . Essentially, we train the MLLM agent θ on Dtrain

i to obtain θi and then update
its original parameters θ using penalties based on how well θi performs on held-out Dtest

i . A better
θ∗ serves as a better starting point to arrive at better θi through fine-tuning, leading to less penalties
on held-out Dtest

i . This ensures quick and data-efficient adaptation of the agent to unseen websites.

3 Experimental Protocol and Details
Datasets: To evaluate the quick adaptation capabilities of our agents, we design experiments that
require adaptation to unseen websites and domains. We consider two widely used benchmarks:
Mind2Web [13] and VisualWebArena [27]. Mind2Web provides standardized train and test sets
across various websites and domains. The train set includes 1,009 tasks from 73 websites and 3
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domains, while the test set is categorized into cross-task (174 tasks from 64 seen websites), cross-
website (142 tasks from 10 unseen websites), and cross-domain (694 tasks from 2 unseen domains)
subsets to evaluate different aspects of generalization. Since the cross-task evaluation set overlaps
with the train set, we propose minor amendments to ensure proper evaluation of adaptability (details
in Appendix A.3). VisualWebArena simulates a live environment with three different websites
(Reddit, Classifieds, and Shopping) to evaluate task success rates of web agents. We use the entire
VisualWebArena benchmark (910 tasks) to test the adaptability of our web agent to unseen websites.
While some tasks have step-level ground truth, others provide only an overall task success signal
based on the environment’s state. More details about the datasets are presented in App. A.3.

Experimental Protocol: Our experimental protocol for developing and evaluating the adaptability of
web agents varies based on whether the underlying multimodal LLM is proprietary or open-weights.
For the proprietary model (i.e., GPT-4o), we use the prompting method proposed in SeeAct and
add one ICL example from the website or domain to which the agent should adapt. This ICL
example acts as the one-shot (n = 1) human demonstration (denoted as 1-ICMD for 1 in-context
multimodal demonstration). We adopted a one-shot setting for ICL given the trade-off between
time and incremental accuracy improvements; see App. A.5.4. The selection of the ICL example
ensures relevance to the cross-task, cross-website, and cross-domain evaluation setups. Specifically,
for Mind2Web’s cross-task and cross-website evaluation, we randomly sample one task from the
same website (for cross-task) or from each unique website (for cross-website) in the test set and
evaluate on the remaining examples from that website, maintaining website-level correspondence. For
cross-domain evaluation, we randomly sample one task from each unique domain in the cross-domain
test set and evaluate on the remaining examples from that domain. For VisualWebArena evaluation,
we randomly choose one task as the in-context demonstration from the website being evaluated. For
the open-weights model (i.e., CogAgent), during meta-learning, we sample 4 tasks per website from
the 73 websites in the Mind2Web training set: 2 tasks for adaptation (Dtrain

i ) and 2 tasks (Dtest
i ) (1

from the same website and 1 from a different website within the same domain) for computing the
adaptation loss and updating the agent’s parameters as discussed in Section 2. After meta-learning,
the meta-trained model adapts to new websites in the cross-website test set by fine-tuning on 2 tasks
from each website and then evaluating on the remaining tasks. For cross-domain evaluation, we
adapt on 2 tasks from each new domain and evaluate on the rest within that domain; see Figure 2.
We do not perform website adaptation for the cross-task test set, as all websites are seen during
meta-learning. For VisualWebArena, we adapt the meta-trained model on the Mind2Web training set,
using 2 tasks from each of the 3 websites and evaluate on the remaining tasks. To control for the effect
of adaptation tasks, we report average results across 5 independent runs with different task selections.
Overall, our approach involves meta-training the model with 292 tasks from Mind2Web (73 websites
× 4 tasks) and adapting with 2 demonstrations to new websites/domains. Implementation details are
available in App A.4. We denote our meta-learned and adapted agent as CogAgent-FOMAML.

We compare the performance of adapted agents with existing SoTA agents as baselines. For the
proprietary model, zero-shot SeeAct + GPT-4o serves as a baseline. We also include Set-of-Mark
prompting (SoM) [55, 27] in the image input, giving us a slightly augmented baseline that we
denote as SeeAct*. For the open-weights model, we consider the pre-trained CogAgent and another
variant—CogAgent-FT—that uses conventional fine-tuning on the entire train set of Mind2Web as
baselines. Additionally, we consider CogAgent-FT (DE) as another baseline that maintains data
equivalence (DE) with the proposed CogAgent-FOMAML method by using the same training subset
for conventional fine-tuning. CogAgent-FOMAML and CogAgent-FT (DE) use 292 examples during
meta-learning and fine-tuning, respectively, while CogAgent-FT uses ∼3.4× as many examples.

Evaluation metrics: For evaluation on the Mind2Web test sets, since the ground-truth human
trajectories are available for each task, we compute granular metrics: the accuracy of predicting the
correct HTML element (Ele. Acc.) to act on; the F1 score of predicting the correct operation (Op.
F1) such as click, select, type; the percentage of successful steps (Step SR) — requiring correct
prediction of the element, the operation, and the optional type/selection text; and the percentage of
successful tasks (Overall SR), where task-level success is achieved only if the entire sequence of steps
predicted by the agent aligns with the ground-truth human trajectories. For VisualWebArena, since the
ground-truth human trajectories are available only for a subset of the data (233 tasks corresponding
to the unique templates) and the rest of the tasks have only a task-level success signal within the live
environment, we use the overall success rate as the primary metric while also quantifying the granular
metrics specifically for the subset of tasks with human trajectories.
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4 Results
Few-shot human demonstrations unlock complementary gains: Table 1 compares the baseline and
few-shot adapted versions of proprietary (SeeAct, SeeAct*) and open-weights (CogAgent) models
on (a) the Mind2Web dataset across cross-task, cross-website, and cross-domain evaluation settings,
and (b) the VisualWebArena dataset across human trajectories and live environment settings. The
proprietary models adapt through multimodal in-context demonstration, while CogAgent adapts via
meta-learning. Recall that for CogAgent, we tested two baseline versions: one fine-tuned on the
entire Mind2Web train set and another to ensure date-equivalence with CogAgent-FOMAML.

Type Model
Cross-Task Cross-Website Cross-Domain

Ele. Acc. Op. F1 Step SR Overall SR Ele. Acc. Op. F1 Step SR Overall SR Ele. Acc. Op. F1 Step SR Overall SR

Proprietary Models

Baseline SeeAct (GPT-4o) 62.21 66.56 56.31 14.37 55.25 58.89 49.90 15.83 57.33 60.74 53.72 19.49

Adapted SeeAct + 1-ICMD 66.29 71.61 60.37 19.69 60.32 64.15 53.91 22.46 60.54 62.97 57.40 23.97

Baseline SeeAct* (GPT-4o) 63.75 67.68 58.60 15.38 57.02 60.01 50.05 15.89 59.30 62.80 54.82 19.88

Adapted SeeAct* + 1-ICMD 67.77 72.52 61.88 22.46 61.67 64.76 53.98 23.10 62.44 65.41 58.33 24.06
Open-weights Models

Baseline CogAgent-FT 59.46 63.15 54.43 13.36 53.17 57.03 47.14 12.42 61.36 62.79 55.71 15.20
CogAgent-FT (DE) 55.17 59.87 50.25 10.43 49.46 53.17 44.27 10.10 59.51 59.06 52.20 13.28

Adapted CogAgent-FOMAML 59.34 62.82 53.32 11.89 59.49 62.11 55.38 16.96 62.01 63.13 57.29 19.66

(a) Mind2Web dataset

Type Model
Human Trajectories Live Environment

Ele. Acc. Op. F1 Step SR Overall SR Overall SR

Proprietary Models

Baseline SeeAct (GPT-4o) 56.03 57.17 52.17 18.75 17.56

Adapted SeeAct + 1-ICMD 59.15 63.18 55.27 22.42 21.36

Baseline SeeAct* (GPT-4o) 57.52 59.16 53.16 18.78 18.04

Adapted SeeAct* + 1-ICMD 61.46 64.12 56.72 23.86 23.15
Open-weights Models

Baseline CogAgent-FT 52.31 55.64 48.70 08.78 06.43
CogAgent-FT (DE) 48.62 51.71 44.81 06.81 05.11

Adapted CogAgent-FOMAML 57.20 59.14 51.29 11.01 08.47

(b) VisualWebArena dataset
Table 1: Effect of few-shot adaptation of web agents; all values are percentages. ICMD denotes the multimodal
in-context demonstration. FT refers to fine-tuning, DE denotes fine-tuning with data equivalence with respect to
our meta-learned models. Adapted models are our proposed methods. Bold indicates best performance, and
orange highlight represents the best overall performance. Model size of GPT-4o: 175B; CogAgent: 18B.

We observe that few-shot adaptation improved the performance of both proprietary and open-weights
models across the two datasets and all settings involving adaptation to unseen websites or domains.
Specifically, for Mind2Web’s cross-website and cross-domain sets, few-shot adaptation using the
AdaptAgent framework resulted in an absolute increase in overall success rate ranging from 4.18%
to 7.21% over the corresponding unadapted counterparts, which corresponds to a relative increase
of 21.03% to 45.40% over the current state-of-the-art. The trends are consistent across all the
models, demonstrating the effectiveness of using only 1 or 2 human demonstrations via AdaptAgent.
Similarly, on VisualWebArena, AdaptAgent led to an absolute increase in overall success rate
ranging from 3.36% to 5.11%, which corresponds to 28.32% to 65.75% relative increase over the
SoTA approaches.2 In Appendix A.5, we provide further investigations on the effect of few-shot
adaptation on tasks of varying difficult levels, the role of number of in-context demonstrations used,
the advantage of multimodal in-context demonstrations compared to text-only ones, and the role of
different data selection strategies during meta-learning.

In conclusion, we propose the AdaptAgent framework ,which uses few-shot human demonstrations
for efficient adaptation of web agents to unseen websites and domains, and demonstrated its efficacy
for both proprietary and open-weights MLLM-based agents. More broadly, our results indicate that
AdaptAgent provides a notable boost in the success rate of current SoTA web agents on unseen
websites and domains in a cost-effective way, complementing the gains obtained by building larger
pre-trained models or fine-tuning on larger datasets. Despite the SoTA performance established by
AdaptAgent, even the best-performing agent achieved less than 25% overall task success rate on
both Mind2Web and VisualWebArena. There remains significant room for improvement, especially
for tasks that require long action sequences and websites with complicated visual layout (see A.5.3
for more details), highlighting the potential for future advancements in this area.

2
CogAgent-FOMAML outperformed CogAgent-FT (trained on ∼3.4× examples than CogAgent-FOMAML) across all tests except for Mind2Web cross-task,

where it outperformed CogAgent-FT (DE) trained with data equivalence. This highlights that with equal amount of training data, our meta-learned CogAgent-FOMAML
outperforms the conventionally fine-tuned model as well as demonstrates greater few-shot adaptability to unseen settings.
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A Appendix

A.1 Detailed Related Work

A.1.1 UI/Web Agents

AI-enabled digital device control [50, 22] — i.e., controlling digital devices using AI with natural
language as input — has been a long-standing ambition for large-scale automation of inherently
useful tasks. The underlying problem involves mapping a language instruction from the user to a
sequence of digital actions that AI agents can execute to successfully complete the task. Before
LLMs, approaches to the problem involved using reinforcement learning on top of (often pre-trained)
language models like LSTM and BERT for processing language input and HTML/DOM along
with ResNet-like models for processing GUI states [22, 30, 24]. More recently, as multimodal
LLMs have demonstrated success in modeling vision-and-language, they have lent themselves as
strong backbones for building web agents that can process tasks specified by the user and engage in
reasoning to output the best possible actions to be executed on a user interface such as a web browser.
A majority of SoTA work [59, 19] use a pretrained, off-the-shelf LLM such as GPT-4(V/o) to build
such multimodal web agents. The input information being provided as context to the LLM can include
an image of the GUI, a series of prior actions, additional overlaid image annotations, as well as the
HTML/DOM information assuming that the task is web interaction and access to HTML/DOM is
possible. Work such as Pix2Act [49] and WebAgent [18] train LLMs to attend to parts of HTML code
or generate the next action step through self-supervision, or combine the effectiveness of MLLMs
with the promise of reinforcement learning train agents via Behavioral cloning or REINFORCE.
However, these works were usually trained on simpler sandboxed environments and would require
significant training resources as well as tedious curation of data samples [29]. A disadvantage of
such an approach is that it cannot scale to tasks that are complex or that use proprietary enterprise
software. Additionally, agents that require exploration as part of the training process would need
constant human supervision to avoid risky outcomes. While there has been considerable progress in
the success rate of agents on tasks that are encountered as part of their training, their performance in
unseen settings has been lacking. To the best of our knowledge, prior work has not explicitly focused
on methods that could make Web/GUI agents more adaptable to unseen settings.

Our work proposes a framework where GUI/web agents are trained to efficiently adapt to unseen
settings using few-shot human demonstrations. Data-efficient adaptation of web agents via human
demonstrations will (a) avoid costly retraining processes/updates for unseen settings, (b) boost the
generalizability of web agents to complex workflows and proprietary settngs, and (c) enable web
agents to learn from custom information provided by human experts as a part of the demonstrations.

A.1.2 Few-shot learning with LLMs

Data-efficient alignment of LLMs to preferences and new tasks is an active area of research [25,
31]. In contrast to relatively data-hungry approaches like RLHF [36] and DPO [38] that often
require hundreds of thousands paired comparisons, few-shot alignment and adaptation aims to use
a limited number of examples. While in-context learning [7] is one of the approaches to enable
few-shot adaptation of LLMs, it is known to be tedious [26] and is sensitive to variations [47].
Fine-tuning alternatives, like GPO [58] and DITTO [48] have shown promises in few-shot tuning an
LLM to align to subjective preferences demonstrated in tasks like email writing and opinion-based
question-answering. Most notably, [58] proposes Group Preference Optimization (GPO), which is a
meta-learning framework to update LLM parameters based on few-shot in-context demonstrations.
However, it is unclear if few-shot alignment approaches like GPO and DITTO, designed for subjective
preference tuning, translate to more concrete predictive tasks like ours. Nonetheless, the broader
motivation behind methods like GPO – i.e., meta-learning, is a promising opportunity to improve
the performance of multimodal web agents, especially cross-website and cross-domains scenarios.
Inspired by the promise of meta learning and learning from demonstrations, we adopt model-agnostic
meta-learning [15] to train web agents to adapt quickly.

A.1.3 Learning from demonstrations

Learning from Demonstration (LfD) [44, 5, 3, 39] involves teaching agents tasks by observing
human or agent demonstrations, enabling them to acquire skills by either directly imitating actions
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in supervised learning settings [42] or using demonstrations as guidance in reinforcement learning
settings [1]. This approach helps agents master complex tasks that are difficult to explicitly program.

The two main approaches to LfD are Imitation Learning (IL) and Inverse Reinforcement Learning
(IRL). Imitation Learning (IL) centers on the direct imitation of demonstrated expert behaviors, where
agents replicate observed actions using methods like Behavioral Cloning [37], and DAgger (Dataset
Aggregation) [42]. IL typically involves mapping human demonstrations to agent actions through
supervised learning. Early techniques such as Dynamic Movement Primitives (DMPs) [45] encoded
movement trajectories, while probabilistic models like Gaussian Mixture Models (GMMs) [9] and
Hidden Markov Models (HMMs) [8] captured variability and intent in demonstrations. However,
IL has limitations when learning from suboptimal demonstrations, as it focuses on mimicking
behavior rather than understanding the underlying objectives. Inverse Reinforcement Learning (IRL),
in contrast, seeks to uncover the underlying objective of the task by learning a reward function
from demonstrations [14, 6, 10, 12]. Instead of merely imitating behavior, IRL infers the goal the
demonstrator is optimizing. Once the reward function is learned, Reinforcement Learning (RL) can be
used to autonomously derive a policy that achieves the task’s goal, allowing the agent to explore and
optimize its actions beyond the initial demonstrations [32]. Some notable extensions of IRL include
apprenticeship learning [1], maximum entropy IRL [60], and generative adversarial imitation learning
(GAIL) [20]. Applications of LfD span robotics, enabling adaptation to various environments and
objects [5, 43, 3]; autonomous driving, where vehicles learn navigation and decision-making from
human driving data [28, 57]; and game playing, including chess and Go, where agents replicate
human gameplay [51].

Agents that automate web tasks share significant similarities with robots that perform real-world
tasks, as both rely on core capabilities like perception, reasoning, and execution [52]. This overlap
enables the transfer of modeling techniques between the two areas. Drawing on this analogy, our work
explores applying learning from human demonstrations to web agents to enhance their adaptability
on unseen websites and domains.

A.2 First-order approximation of MAML for Multimodal Web Agents

We present a derivation of the first-order approximation of MAML proposed by [15], while contex-
tualizing it to our setting of updating multimodal LLMs. We begin with the original expression for
updates using the MAML algorithm in Equation 1:

θ ← θ − β · ∇θ

N∑
i=1

LTi(θi). (1)

Using the chain rule, the derivative term can be expressed as
∑N

i=1(∇θθi ×∇θiLTi
(θi)). The first

component within the summation could be broken down further as,

∇θθi = ∇θ(θ − α · ∇θLtrain(θ)),

where Ltrain denotes the loss on the examples used for training θi from task Ti and α denotes the
step-size in the inner loop of meta-training. The above equation further simplifies to

∇θθi = I− α · ∇2
θLtrain(θ).

Now, assuming the second-order derivatives in the expression to zero, provides∇θθi = I. Plugging
that in the original MAML expression gives,

θ ← θ − β ·
N∑
i=1

∇θiLTi(θi).

In our context, this essentially means that the inner loop of meta-learning involves fine-tuning the
MLLM agent (i.e., θ → θi) on web tasks Ti from a given website. Let’s denote this subset of tasks
used for the inner loop of training as Dtrain

i . Following this, we update the parameters of the MLLM
agent θ by back-propagating the gradients of the loss at θi, where the loss is computed on held-out
web tasks from the same website — denoted as Dtest

i . It is worth emphasizing that the gradients
being back-propagated are computed at θi (as opposed to θ, which would have resulted in training
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the MLLM agent on Dtrain
i and Dtest

i ). In other words, we train the MLLM agent θ on Dtrain
i to

obtain θi and then update its original parameters θ using penalties computed by evaluating how far θi
is from the “ideal answers” on held-out Dtest

i . If exposed to enough updates over varying-but-related
websites i ∈ {1, . . . , N}, the updates to the MLLM agent θ would position it such that it would learn
to adapt to unseen websites quickly in a data-efficient manner.

A.3 Benchmark Details

A.3.1 Mind2Web

Training Set: The training set of the Mind2Web benchmark comprises 1,009 task instances spanning
73 websites from three domains: travel, entertainment, and shopping. These tasks involve various
user goals such as booking flights, purchasing tickets, and shopping for products. Each task is
accompanied by detailed annotations, including the user instruction, the sequence of actions required
to complete the task, and the corresponding HTML and visual states of the web pages.

Test Set: The test set is divided into three subsets to facilitate the evaluation of models in different
generalization scenarios:
Cross-Task Subset: This subset contains 174 tasks from the 64 websites that are present in the training
set. The tasks are different from those in the training set but occur on familiar websites and within
the same domains.
Cross-Website Subset: This subset includes 142 tasks from 10 websites that are entirely unseen during
training. The websites belong to the same domains as those in the training set.
Cross-Domain Subset: This subset consists of 694 tasks spanning 53 websites from two new domains:
information and service. These domains are not present in the training set, and the websites are
entirely new to the agent.

Fixing overlaps between the train and cross-task evaluation sets of Mind2Web: It is important to
note that the standardized cross-task evaluation set of Mind2Web exhibits substantial overlap with the
tasks in the training set, which could potentially inflate the evaluation results by testing on tasks that
are not truly unseen. For instance, when we computed Jaccard similarity (i.e., intersection-over-union
of unique unigrams) between all the tasks in the standardized Mind2Web train set and the cross-task
test set, we found pairs of highly similar tasks spread across the two sets. E.g., “add Prometheus
movie to watchlist.” (train set) and “add The Wire to the watchlist.” (cross-task set); “find a cheapest
flight from London to New York on 9th May.” (train set) and “find cheapest flight from New York
to Toronto, Canada on 29 April.” (cross-task set). To address this issue, we first combined all the
tasks within the existing train and cross-task subsets of the Mind2Web benchmark and computed
pair-wise Jaccard similarity between all tasks belonging to the same website. For each website, we
then moved K tasks that exhibited least maximum similarity with any other task from the website to
construct the amended cross-task evaluation set, while keeping the rest of the tasks from the website
in the amended train set. The value of K was determined so as to ensure that the amended train and
cross-task sets had the same number of data points as the original train and cross-task sets. We also
qualitatively inspected the overlap between the amended train cross-task sets and found that even the
most similar tasks (based on unigram Jaccard similarity) across the two sets were now considerable
different. For e.g., “show me all the events at any six flags park in Texas” (amended train) and
“show me all the artists with smith in their name” (amended cross-task); “add to my cart a women’s
T-shirt priced under 10 dollars” (amended train) and “list Batman collectible figures priced under
10 dollars and a customer rating above 4 with a same-day delivery option” (amended cross-task).
This simple-but-important amendment to the Mind2Web’s train and cross-task set ensures minimal
overlap between tasks seen during training of the web agents and tasks that they are evaluated on in
the cross-task setting.

A.3.2 VisualWebArena

The VisualWebArena benchmark comprises 910 tasks representing 233 unique task templates spread
across the three websites. Out of the 910 tasks, 233 tasks (one for each task template) have step-level
ground truth available in the form of human trajectories. These trajectories provide detailed action
sequences that a human would take to accomplish the task, serving as a reference for evaluating the
agent’s performance at each step. The remaining tasks do not have step-level ground truth but provide
an overall task success signal based on the live environment’s state after the agent’s interaction.
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Figure 2: Visual depiction of the protocol used for meta-learning using the Mind2Web train set (left),
and the meta-adaptation done on cross-domain and cross-website evaluation sets (top-right). For
completeness, we also show the conventional fine-tuning strategy (bottom-right).

A.4 Implementation Details

The specific prompts used for experimenting with SeeAct variants, including the modifications to
include (text-only/multimodal) in-context demonstrations are presented in Appendix A.6. We filtered
the top-50 HTML elements to be included in the prompt using the methods adopted by Deng et al. [13]
and Zeng et al. [59]. For experiments with CogAgent, we use the THUDM/cogagent-chat-hf model
on HuggingFace [54] as the pre-trained version. For updating the model parameters during fine-
tuning, meta-learning, and adaptation, we adopted Low-Rank Adaptation (LoRA) with following
hyper-parameters: rank α of 20 and learning rate of 1e-5. For fine-tuning, we trained the model
for 2 epochs, with other hyper-parameters set to default/the values used by Hong et al. [21]. For
meta-learning, we used a meta-batch size of 1, meaning that we trained the agent to adapt to 1 website
during the inner-loop, and used one gradient optimization step for each step of the 2 tasks used for
loss computation within the inner-loop. For adaptation to new websites and domains, we use the
same strategy to adopt one gradient step optimization per step of the 2 sampled tasks to maintain
consistency with the training regime. All the experiments were performed on a virtual server with 8
NVIDIA L4 GPUs (24GiB each).

A.5 Additional Analysis

A.5.1 Multimodal vs. text-only demonstrations

In our ablation study, we examined the impact of in-context demonstration modalities—specifically
text-only versus multimodal—on our top-performing models, SeeAct and SeeAct*. See Figure 3
(left) and Table 2.

We observed significant performance enhancements with multimodal in-context demonstrations
compared to text-only versions.

• For Mind2Web, SeeAct’s overall SR (%) improved to 19.69 (cross-task), 22.46 (cross-website), and
23.97 (cross-domain), up from 15.91, 19.56, and 22.16, respectively. SeeAct* also showed increases
to 22.46, 23.10, and 24.06, up from 19.27, 22.15, and 22.87.
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Figure 3: Additional Analysis. Left: Ablation study on demonstration modality in SeeAct*. Middle:
Comparison of overall SR across meta-learning adaptation strategies in CogAgent. Right: Variation
in performance with different numbers of in-context demonstrations; numbers are inset in the bars.

Type Model
Cross-Task Cross-Website Cross-Domain

Ele. Acc. Op. F1 Step SR Overall SR Ele. Acc. Op. F1 Step SR Overall SR Ele. Acc. Op. F1 Step SR Overall SR

Baseline SeeAct (GPT-4o) 62.21 66.56 56.31 14.37 55.25 58.89 49.90 15.83 57.33 60.74 53.72 19.49

Adapted SeeAct + 1-ICTD 65.71 70.82 58.19 15.91 58.94 62.87 51.11 19.56 59.31 61.69 55.23 22.16
SeeAct + 1-ICMD 66.29 71.61 60.37 19.69 60.32 64.15 53.91 22.46 60.54 62.97 57.40 23.97

Baseline SeeAct* (GPT-4o) 63.75 67.68 58.60 15.38 57.02 60.01 50.05 15.89 59.30 62.80 54.82 19.88

Adapted SeeAct* + 1-ICTD 66.31 70.29 60.24 19.27 59.41 62.48 52.64 22.15 61.01 64.00 56.50 22.87
SeeAct* + 1-ICMD 67.77 72.52 61.88 22.46 61.67 64.76 53.98 23.10 62.44 65.41 58.33 24.06

(a) Mind2Web dataset

Type Model
Human Trajectories Live Environment

Ele. Acc. Op. F1 Step SR Overall SR Overall SR

Baseline SeeAct (GPT-4o) 56.03 57.17 52.17 18.75 17.56

Adapted SeeAct + 1-ICTD 57.16 60.74 53.92 20.56 19.12
SeeAct + 1-ICMD 59.15 63.18 55.27 22.42 21.36

Baseline SeeAct* (GPT-4o) 57.52 59.16 53.16 18.78 18.04

Adapted SeeAct* + 1-ICTD 58.98 62.93 54.54 21.82 20.87
SeeAct* + 1-ICMD 61.46 64.12 56.72 23.86 23.15

(b) VisualWebArena dataset

Table 2: Ablation study on multimodal vs. text-only demonstrations. IC[-]D denotes the type of
in-context demonstration, where T and M refer to textual and multimodal demonstrations, respectively.
Bold text indicates the best performance for each model.

• A similar trend was observed in VisualWebArena, where SeeAct’s performance rose to 22.42 (human
trajectories) and 21.36 (live environment), up from 20.56 and 19.12, respectively. Similarly, SeeAct*
improved from 21.82 to 23.86 (human trajectories) and from 20.87 to 23.15 (live environment).

Overall, the relative gains from text to multimodal ranged from 4.28% to 23.76% (absolute gains of
0.95% to 3.78%) on Mind2Web and from 9.05% to 11.71% (absolute gains of 1.86% to 2.24%) for
VisualWebArena. For VisualWebArena, the relative gains were similar between SeeAct and SeeAct*,
but Mind2Web saw greater gains with SeeAct compared to SeeAct* across all three evaluation
settings, particularly in the cross-website setting. Among all scenarios, the gains were largest in
the Mind2Web cross-task setting for both SeeAct (23.76%) and SeeAct* (16.55%), while the gains
were smallest with SeeAct* in the cross-website (4.28%) and cross-domain (5.20%) settings. These
findings demonstrate the advantage of incorporating richer multimodal in-context demonstrations,
including visual snapshots, compared to relying solely on text.

A.5.2 Meta-learning strategies: intra-website, inter-website, and hybrid adaptations

The performance distinctions among the three meta-learning adaptation strategies used with the
CogAgent model arise from their specific training and adaptation frameworks (see Figure 3 (middle)
and Table 3):

◦ Intra-Website: Trains on few tasks within a website and adapts to more tasks on the same site

◦ Inter-Website: Trains on tasks from one website and adapts to tasks from others in the same domain

◦ Hybrid: Combines both, adapting to tasks within and across websites in the domain
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Type Model
Cross-Task Cross-Website Cross-Domain

Ele. Acc. Op. F1 Step SR Overall SR Ele. Acc. Op. F1 Step SR Overall SR Ele. Acc. Op. F1 Step SR Overall SR

Baseline
CogAgent 30.63 47.67 25.11 02.80 31.50 51.52 21.29 02.11 32.17 49.94 23.32 02.59
CogAgent-FT 59.46 63.15 54.43 13.36 53.17 57.03 47.14 12.42 61.36 62.79 55.71 15.20
CogAgent-FT (DE with FOMAML) 55.17 59.87 50.25 10.43 49.46 53.17 44.27 10.10 59.51 59.06 52.20 13.28

Adapted
CogAgent-FOMAML (intra-website) 60.74 62.44 53.14 13.24 60.16 63.47 55.88 17.28 61.36 62.79 55.71 18.20
CogAgent-FOMAML (inter-website) 58.77 62.16 53.01 11.46 59.02 62.84 54.13 16.50 63.88 65.01 58.42 20.22
CogAgent-FOMAML (hybrid) 59.34 62.82 53.32 11.89 59.49 62.11 55.38 16.96 62.01 63.13 57.29 19.66

(a) Mind2Web dataset

Type Model
Human Trajectories Live Environment

Ele. Acc. Op. F1 Step SR Overall SR Overall SR

Baseline
CogAgent 25.27 38.64 19.61 01.31 0.46
CogAgent-FT 52.31 55.64 48.70 08.78 6.43
CogAgent-FT (DE with FOMAML) 48.62 51.71 44.81 06.81 5.11

Adapted
CogAgent-FOMAML (intra-website) 57.36 60.07 52.61 11.36 9.17
CogAgent-FOMAML (inter-website) 56.11 58.44 53.81 10.24 8.29
CogAgent-FOMAML (hybrid) 57.20 59.14 51.29 11.01 8.47

(b) VisualWebArena dataset

Table 3: Analysis of the three meta-learning adaptation strategies used with the CogAgent model. FT
refers to fine-tuning, while DE denotes fine-tuning with data equivalence to the meta-learned models,
i.e., using less than one-third of the training data. Bold text indicates the best performance in each
evaluation setting.

For Mind2Web, the intra-website adaptation strategy showed the best performance in the cross-
website setting across all CogAgent versions, achieving an overall SR of 17.28, up from 10.10 in
the baseline. For the cross-website evaluation, the model was adapted to two specific tasks per
website and then tested on the remaining tasks from that same website. This aligns perfectly with the
intra-website meta-training style, explaining its top performance in this setting. The inter-website
adaptation strategy performed best in the cross-domain setting, achieving an overall SR of 20.22,
up from 13.28. In the cross-domain evaluation, the model was adapted to two tasks from one
website and then tested on all tasks from other websites in the same domain. This aligns with the
inter-website meta-learning process, resulting in top performance in cross-domain tasks. The hybrid
strategy provided the best trade-off across all settings (cross-task, cross-website, and cross-domain),
consistently performing between the intra- and inter-website strategies and proving versatile across
all evaluation scenarios.

For VisualWebArena, the intra-website adaptation strategy was the top performer in both human
trajectories and live environment settings, with overall SRs of 11.36 and 9.17, up from 6.81 and 5.11.
For the three websites in the VisualWebArena evaluation set, the model was adapted to two tasks
per website and then tested on the remaining tasks. This aligns with the intra-website meta-training
approach, resulting in the best performance.

For main results in Table 1, we report the results with the hybrid strategy, where the agent is trained
to adapt to tasks within the website as well as tasks on other websites within the same domain.

A.5.3 Results stratified by sequence and visual difficulty levels

Next, we study the variation of overall SR across difficulty levels, stratified based on (1) sequence
complexity; and (2) visual difficulty. The three levels of difficulty in both cases and datasets are easy,
medium, and hard, following the protocol established in VisualWebArena.

• Sequence difficulty is determined by the length of the ground-truth action sequence (i.e., ≤ 3: easy;
4− 9: medium; ≥ 10: hard).

• To assign visual difficulty labels in Mind2Web based on the required visual processing, we used
in-context learning with GPT-4o, utilizing labeled VisualWebArena samples as in-context examples.
Snapshots of webpages were evaluated as action sequences and categorized as easy, medium, or hard.
Three rounds of annotation were conducted to estimate the self-consistency of GPT annotations,
employing chain-of-thought (CoT) reasoning in each round. Finally, human validation was performed
to assess the consistency and reasoning of the annotations, with less than 5% of the total examples
having their labels changed based on human review.
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Table 4 compares the baseline and adapted overall SR of SeeAct* and CogAgent, stratified by
difficulty (easy, medium, hard) across sequence complexity and visual difficulty in Mind2Web and
VisualWebArena settings. We observe that the improvements in adaptation persist when stratified

Type Model

Mind2Web VisualWebArena
Cross-Task Cross-Website Cross-Domain Human Trajectories Live Environment
Overall SR Overall SR Overall SR Overall SR Overall SR

Easy | Medium | Hard Easy | Medium | Hard Easy | Medium | Hard Easy | Medium | Hard Easy | Medium | Hard

Baseline
SeeAct* (GPT-4o) 15.38 15.89 19.88 18.78 18.04
↪→ Sequence complexity 56.7% | 13.7% | 0.0% 57.5% | 14.1% | 0.6% 58.2% | 16.5% | 2.9% 57.5% | 15.2% | 1.7% 56.3% | 14.6% | 0.9%
↪→ Visual difficulty 26.8% | 11.2% | 0.0% 27.1% | 11.7% | 0.9% 31.6% | 13.6% | 2.6% 30.5% | 12.7% | 1.6% 29.4% | 11.7% | 0.8%

Adapted
SeeAct* + 1-ICMD 22.46 23.10 24.06 23.86 23.15
↪→ Sequence complexity 61.3% | 18.8% | 1.7% 62.6% | 19.2% | 2.5% 63.6% | 21.7% | 5.8% 62.6% | 20.4% | 5.2% 61.6% | 19.3% | 5.9%
↪→ Visual difficulty 33.1% | 16.2% | 0.3% 33.8% | 16.6% | 1.4% 36.2% | 18.4% | 4.2% 35.3% | 16.9% | 4.8% 34.8% | 14.9% | 4.1%

Baseline
CogAgent-FT (DE) 10.43 10.10 13.28 06.81 5.11
↪→ Sequence complexity 38.5% | 9.3% | 0.0% 36.5% | 9.0% | 0.4% 39.7% | 11.2% | 2.0% 20.9% | 5.5% | 0.6% 15.9% | 4.1% | 0.3%
↪→ Visual difficulty 18.2% | 7.6% | 0.0% 17.2% | 7.4% | 0.6% 21.5% | 09.3% | 1.8% 11.1% | 4.6% | 0.6% 08.3% | 3.3% | 0.2%

Adapted
CogAgent-FOMAML 11.89 16.96 19.66 11.01 8.47
↪→ Sequence complexity 43.9% | 10.6% | 0.6% 43.8% | 10.8% | 0.7% 50.4% | 14.2% | 2.5% 26.0% | 6.8% | 0.8% 19.3% | 5.0% | 0.4%
↪→ Visual difficulty 20.7% | 08.7% | 0.3% 20.6% | 08.9% | 0.7% 27.3% | 11.8% | 2.3% 13.8% | 5.7% | 0.7% 11.5% | 3.9% | 0.3%

Table 4: Adaptation results stratified by sequence complexity and visual difficulty levels.

by different difficulty levels, with adaptation enhancing performance across all sequence and visual
difficulty levels. SeeAct*, with 1-shot multimodal demonstration, performs best across all difficulty
levels. Overall SR decreases as difficulty increases across all model variations, aligning with
expectations. The adapted SeeAct* performed better overall, particularly on hard tasks (in terms of
both visual and sequence difficulty) in the Mind2Web cross-website and cross-domain evaluation
settings, as well as in both VisualWebArena evaluation settings. It showed even greater improvement
on tasks with high sequence difficulty compared to those with high visual difficulty. For example,
in VisualWebArena, for tasks with hard sequence complexity, overall SR increased from 1.7% to
5.2% in human trajectory evaluation and from 0.9% to 5.9% in live environment evaluation. In
contrast, the gains with the adapted version of CogAgent were minimal on hard tasks, especially in
the VisualWebArena evaluation settings.

A.5.4 Effect of using more human demonstrations
Figure 3 (right) examines the impact of increasing the number of in-context multimodal demonstra-
tions—from 1 to 3, 5, and 10—on 30 sample tasks for SeeAct* across cross-task, cross-website,
and cross-domain settings in Mind2Web. Although performance does improve slightly with more
demonstrations, the gains are minimal. Given the trade-off between time and incremental accuracy
improvements, it is preferable to utilize a single in-context multimodal demonstration.

A.6 1-ICMD Prompt for SeeAct and SeeAct*
In our approach, we extend the prompt design from [59] by adding an in-context multimodal
demonstration (ICMD). The prompt provided to the GPT-4o model is as follows:

In-Context Multimodal Demonstration

(... preceded by the SeeAct prompt...)
To begin with, here is a quick example of one of the many tasks you could be performing on the website
<website_name>.
Example task’s description: <task_description>
To do this task, you could take the steps shown below.

<Image depicting the GUI snapshot at this stage>
ELEMENT: <element_name_1>
ACTION: <action_type_1>
VALUE: <value_if_applicable_1>

<Image depicting the GUI snapshot at this stage>
ELEMENT: <element_name_2>
ACTION: <action_type_2>
VALUE: <value_if_applicable_2>

· · ·

This marks the end of an example task and its steps. Now, let’s move on to the task at hand.
(... followed by the SeeAct prompt...)

16


	Introduction
	Few-Shot Adaptation with Human Demonstrations
	Experimental Protocol and Details
	Results
	Appendix
	Detailed Related Work
	UI/Web Agents
	Few-shot learning with LLMs
	Learning from demonstrations

	First-order approximation of MAML for Multimodal Web Agents
	Benchmark Details
	Mind2Web
	VisualWebArena

	Implementation Details
	Additional Analysis
	Multimodal vs. text-only demonstrations
	Meta-learning strategies: intra-website, inter-website, and hybrid adaptations
	Results stratified by sequence and visual difficulty levels
	Effect of using more human demonstrations

	1-ICMD Prompt for SeeAct and SeeAct*


