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Abstract
Deep network-based image Compressive Sensing (CS) has attracted
much attention in recent years. However, there still exist the fol-
lowing two issues: 1) Existing methods typically use fixed-scale
sampling, which leads to limited insights into the image content.
2) Most pre-trained models can only handle fixed sampling rates
and fixed block scales, which restricts the scalability of the model.
In this paper, we propose a novel scale-aware scalable CS network
(dubbed S2-CSNet), which achieves scale-aware adaptive sampling,
fine granular scalability and high-quality reconstruction with one
single model. Specifically, to enhance the scalability of the model, a
structural sampling matrix with a predefined order is first designed,
which is a universal sampling matrix that can sample multi-scale
image blocks with arbitrary sampling rates. Then, based on the
universal sampling matrix, a distortion-guided scale-aware scheme
is presented to achieve scale-variable adaptive sampling, which
predicts the reconstruction distortion at different sampling scales
from the measurements and select the optimal division scale for
sampling. Furthermore, a multi-scale hierarchical sub-network un-
der a well-defined compact framework is put forward to reconstruct
the image. In the multi-scale feature domain of the sub-network, a
dual spatial attention is developed to explore the local and global
affinities between dense feature representations for deep fusion.
Extensive experiments manifest that the proposed S2-CSNet out-
performs existing state-of-the-art CS methods.
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1 Introduction
Compressive sensing (CS) is an effective signal processing tech-
nique, which has generated significant research interest in the
signal and image processing communities [3, 77]. Mathematically,
supposing that 𝑥 ∈ R𝑛×1 is an input signal, CS can achieve fast
imaging by sampling far fewer measurements than that required by
Nyquist sampling [10, 14, 31], i.e., 𝑦 = Φ𝑥 , where 𝑦 ∈ R𝑚×1 are the
observedmeasurements,Φ ∈ R𝑚×𝑛 with𝑚 ≪ 𝑛 is the samplingma-
trix and 𝑚

𝑛 is defined as the sampling rate (or CS ratio). Due to the
simple and fast sampling, CS has been widely deployed including
snapshot compressive imaging [40, 71], medical imaging [54, 56],
image encryption [35], and compressive learning [50, 66, 87].

In the development of image CS, block-based CS (BCS) [6, 19, 30]
has emerged as a classical method and has been widely adopted by
most research efforts [5, 29, 58, 80, 88]. In BCS, images are divided
into non-overlapping blocks of fixed scale and sampled block by
block. Following BCS, some representative sampling matrices have
been proposed, including the structural matrix [8, 20], the random
matrix [63, 68] and the binary matrix [2, 44]. Corresponding to
these sampling methods, some model-based reconstruction meth-
ods [13, 21, 86] have been presented, which usually utilize various
iterative solvers to reconstruct images. However, due to extensive
fine-tuning, these methods incur high computational costs.

Driven by the powerful learning ability of deep neural networks,
deep network-based CS has demonstrated superior performance
compared to traditional sampling and reconstruction methods. In
these works, they explore the use of fully connected layers [1, 42]
and the convolutional layers [12, 39, 58] to model the sampling
matrix, and propose network-based deep reconstruction methods.
Some earlier studies adopt block-by-block reconstruction [34, 51,
72, 78], which ignores the correlation between different blocks in
the image, leading to serious blocking artifacts. To address this
issue, some recent works [15, 58, 60, 84] feed all measurements of
all blocks jointly into the reconstruction network and effectively
eliminate the blocking artifacts. However, one of the weaknesses
of these deep CS networks is that the sampling process ignores the
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image content and applies a spatially uniform sampling rate to the
entire image. Considering that the meaningful information in an
image is usually not uniformly distributed, some researchers have
proposed adaptive CS [5, 53, 80, 88], which can adaptively allocate
the sampling rate according to the content features of the image.

By treating each block independently and dynamically allocating
the sampling rate, adaptive CS achieves content-aware sampling
and provides further intrinsic insight into the image content. How-
ever, the existing adaptive CS methods suffer from the following
issues: 1) Model scalability: Following [5, 57], we define fine granu-
lar scalability as a model that can handle arbitrary CS ratios and
allocate the CS ratio adaptively according to the image content. By
mapping image content features to sampling rates, some adaptive
CS [53, 88] employ a multi-channel solution with each channel
handling a single sampling rate, which limits the scalability of the
model. 2) Image prior computation: Some ideal solutions [80, 88]
directly use the original image to calculate prior features for guid-
ing the adaptive sampling, which is not always possible to access
the complete image before CS sampling [5, 29]. 3) Block-based sam-
pling: Existing adaptive CS schemes mechanically divide the image
by a fixed scale, such coarse blocking leads to the mixing of infor-
mation with different content features (e.g., texture regions and
smooth regions), which will cause uneven sampling rate allocation
and potentially degrade the performance of adaptive CS.

To overcome above issues, we propose a novel scale-aware scal-
able CS network (S2-CSNet). Specifically, to enhance the scalability
of the model, a structured learnable matrix with a predefined or-
der is first designed, which can sample multi-scale image blocks
with arbitrary sampling rates. Then, to address the issue of im-
age prior computation, a distortion estimation method based on
the universal sampling matrix is introduced, which estimates the
real reconstruction distortion in the measurement domain. Then, a
scale-aware sampling scheme is presented to achieve multi-scale
sampling, which calculates the reconstruction distortion under
different scale partitions of the same region and selects the parti-
tion mode with the minimum distortion for sampling. Finally, a
multi-scale hierarchical sub-network under a well-defined compact
framework is put forward to efficiently reconstruct the image. In
the multi-scale feature domain, a dual spatial attention mechanism
is suggested to explore the local and global affinities between dense
feature representations for deep feature fusion.

The main contributions are summarized as follows:
(1) We propose a novel scale-aware scalable CS network S2-

CSNet, which adopts a different approach from the traditional BCS
and achieves scale-aware adaptive sampling and fine granular scal-
ability without direct access to the original image.

(2) In S2-CSNet, to achieve scale-aware sampling, a universal
sampling matrix is designed, which can sample multi-scale image
blocks with arbitrary sampling rates. Based on this sampling matrix,
a distortion-guided scale-aware scheme is presented, which can
evaluate the reconstruction distortion under multi-scale partition-
ing and select the optimal sampling scale.

(3) A multi-scale hierarchical sub-network under a well-defined
compact framework is put forward to reconstruct the image, in
which a dual spatial attention mechanism is developed to explore
the local and global affinities between dense feature representations
to further enhance the reconstruction ability.

2 Related Work
2.1 Block-based Image CS Sampling
As a lightweight sampling method, BCS effectively reduces com-
putational complexity and is widely used in image CS [37, 80, 88].
In image BCS, the sampling process can be described as 𝑦𝑖=Φ𝑠,𝐵𝑥𝐵𝑖 ,
where 𝑥𝐵

𝑖
denotes the 𝑖-th image block with spatial size 𝐵 and

channel number 𝑙 , Φ𝑠,𝐵 ∈R𝑚×𝑙𝐵2 with𝑚=⌊𝑠×𝑙𝐵2⌋ is a predefined sam-
pling matrix for sampling rate 𝑠 . Based on the above idea, some
researchers propose deep network-based CS methods [1, 5, 12, 29,
42, 58], which use convolutional layers to represent the sampling
matrix and achieve remarkable results. However, these methods are
content-independent and cannot adaptively allocate the sampling
rate according to the image content features.

In adaptive CS, the sampling rate 𝑠𝑖 ∈{𝑚/Q}Q
𝑚=1 with Q = 𝑙𝐵2 of

an image block can be an arbitrary value between 0 and 1 [5, 29]. If
non-adaptive CS is applied to solve this problem, e.g., [58, 76, 84, 88],
they need to train Q models to satisfy arbitrary sampling rates. To
sample images at different sampling rates in a single model, some
works propose to train multiple samplingmatrices [62, 73, 76]. How-
ever, such an operation will impose a large storage burden, with
a total memory cost of ∑Q

𝑚=1 (𝑚Q)=[Q2 (Q+1)/2] ∈O(Q3) [5, 29] if Q
sampling matrices need to be trained. To address this problem, some
researchers divide the sampling matrix into different hierarchies to
handle different sampling rates [43, 57, 83]. Based on these works,
some recent CS methods [5, 29, 53, 80, 88] implement adaptive sam-
pling rate allocation. In particular, [5] and [29] employ an auxiliary
lightweight branch to compute prior features from measurements
and train a universal sampling matrix to handle arbitrary sampling
rates. Although these methods achieve adaptive sampling rate allo-
cation, they all mechanically use fixed-scale blocking, which affects
the performance of adaptive sampling.

2.2 Image CS Reconstruction
Recovering the original signal 𝑥 from a extremely small number of
measurements 𝑦 is a classical ill-posed problem. The traditional CS
method solves this problem in an optimized manner:

𝑥 = arg min
𝑥

1
2 | |Φ𝑥 − 𝑦 | |22 + 𝛿𝜆(𝑥) (1)

where 𝛿𝜆(𝑥) is a prior term with regularization parameter 𝛿 . Based
on Eq. (1), many effective methods have been proposed, such as gra-
dient descent methods [16], greedymethods [45, 67], and convex op-
timization methods [70]. For image CS, more complex structures are
designed, including prior-basedmethods [85], projected Landweber-
based methods [18], and denoiser-based methods [55, 82]. However,
these traditional methods require constant iteration, leading to a
high computational complexity.

Different from traditional CS methods, deep network-based CS
exhibits greater potential. Specifically, early works [34, 74] often
rely on block-based CS, where the target image is reconstructed
block by block, and then all reconstructed image blocks are con-
catenated together to form the final image. However, connecting
all the blocks in such a coarse manner will lead to serious blocking
artifacts, especially at low sampling rates [27, 58]. To solve this
problem, some post-processing methods [34, 42, 74] have been pro-
posed, which generally use additional denoising tools to reduce
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Figure 1: Diagram of our proposed S2-CSNet, which consists of a scale-aware partitioning sub-module, an block sampling sub-module, an initial reconstruction
sub-module, and a deep reconstruction sub-module. (a)-(d) presents some implementation details, including (a) the process of block-by-block sampling, (b) the
generation of the submatrices, and (c) (d) the operations of upsample, reshape, and concat in the initial reconstruction sub-module.

the blocking artifacts. In addition, some literatures [7, 57, 58, 63]
attempt to explore global deep prior, which concatenates all mea-
surements into a complete image and feeds it into a well-designed
network for optimization. Recently, some deep unfolded networks
(DUNs) have been applied to image CS to provide better theoretical
basis and inferential interpretability [5, 60, 61, 78–80, 84]. Specifi-
cally, DUN usually unfolds certain optimization solvers into deep
network forms [4, 59, 69, 75], such as multi-scale block CS (MS-BCS)
algorithm [18], proximal gradient descent (PGD) algorithm [52]
and approximate message passing (AMP) algorithm [11]. In general,
none of the aforementioned deep network-based image CS methods
consider improving performance at the scale-aware sampling level,
which leads to limited insights into the image content.

3 Proposed Method
3.1 Overview of S2-CSNet
Fig. 1 shows the algorithmic workflow and the main structure of
S2-CSNet. Considering the diversity of image contents, a scale-
aware adaptive partitioning (SAP) sub-module divides the image
into sub-blocks of multiple scales. Specifically, in SAP, to handle
the input image block with arbitrary possible sampling rates and
different scales, a universal sampling matrix is first designed, which
is a structural sampling matrix with a predefined order. Based on
this sampling matrix, a distortion-guided scale-aware scheme is
presented, which can evaluate the reconstruction distortion (RD) of
the image under different scales of sampling and select the optimal
partitioning manner. In the sampling sub-module, image blocks
of different scales are sampled with arbitrary assigned sampling
rates to obtain the compressed measurements (see Eq. (2)). In the
reconstruction sub-module, an initial reconstruction sub-network
and a multi-scale hierarchical deep reconstruction sub-network
with a dual spatial attention mechanism (see Fig. 3) are proposed
to reconstruct the original image from the sampled measurements.

3.2 Scale-Aware Scalable Sampling
This section describes the implementation details of the scale-aware
scalable sampling. Specifically, given the input image 𝑋 and the
overall sampling rate 𝑅, it will be divided into blocks of multiple
scales, i.e., {(𝑥𝐵1

1 ,𝑠1), · · ·,(𝑥𝐵𝑖𝑖 ,𝑠𝑖 ), · · ·,(𝑥
𝐵𝐾
𝐾
,𝑠𝐾 ) }, where 𝑠𝑖 is the sampling

rate assigned to each block based on the reconstruction distortion
prior and 𝐾 is the total number of blocks.

1) Design of the universal sampling matrix. In scale-aware sam-
pling, a specific-size sampling matrix Φ𝑠𝑖 ,𝐵𝑖 ∈R

𝑚𝑖×𝑙𝐵𝑖 2 is designed to
perform the sampling operation for image blocks 𝑥𝐵𝑖

𝑖
with scale 𝐵𝑖

and sampling rate 𝑠𝑖 . In order to handle arbitrary sampling rates,
the non-adaptive BCS methods need to train 𝑙𝐵2 sampling matrices
[5, 29]. If there are 𝑞 variable scales, then 𝑞𝑙𝐵2 sampling matrices
are required to realize S2-CSNet. To reduce the number of sam-
pling matrices, like [5, 29, 80], we propose to design a universal
sampling matrix Φ1.0,B={Φ1.0,𝐵1 ,Φ1.0,𝐵2 ,...,Φ1.0,𝐵max } to handle multiple
scales B={𝐵1,𝐵2, · · · ,𝐵max } and arbitrary sampling rates. For a block
𝑥
𝐵𝑖
𝑖
, the sampling process can be formulated as follows:{

𝑦𝑖 = Φ𝑠𝑖 ,𝐵𝑖𝑥
𝐵𝑖
𝑖

= (Φ1.0,𝐵𝑖𝑥
𝐵𝑖
𝑖
) ⊙ 𝑀𝑠𝑖 ,𝐵𝑖

𝑠 .𝑡 . 𝑠𝑖 = G(𝑦,Φ1.0,𝐵𝑖 , 𝑅)
(2)

where 𝑀𝑠𝑖 ,𝐵𝑖 ∈R𝐾×𝑙𝐵𝑖 2 is a measurement mask used to extract the
measurements at sampling rate 𝑠𝑖 (details are shown in Fig. 1), ⊙
is the element-wise product, and G is a sampling rate allocation
function. It should be noted that G is not required for the original
image to guide the sampling rate allocation, which is related to
Eq. (4) in Section 3.2.2, i.e., G allocates the sampling rate based on
the distortion calculated by Eq. (4). Furthermore, to fully train the
sampling matrix to handle arbitrary sampling rates, we define a
decreasing trend of measurement base (i.e., each row of the ma-
trix) importance from the first row to the last row [5]. In terms of
handling sampling at multiple scales, the different sub-sampling
matrices in Φ1.0,B are restricted to satisfy different scales of sampling
by solving the following optimization problem:

arg min
Φ1.0,B

∑︁𝑁𝑠

𝑗=1

∑︁𝐵max
𝐵𝑖=𝐵1

| |𝐷 [𝐼 (Φ1.0,𝐵𝑖𝑋 𝑗 ) ] −𝑋 𝑗 | |
2
2, 𝐵𝑖 ∈ B (3)

where 𝐼 and 𝐷 are the initial and deep reconstruction, respectively,
𝑁𝑠 is the number of samples and 𝑋 𝑗 is a validation sample.

2) Scale-aware adaptive sampling. The difficulty of CS reconstruc-
tion varies depending on the image content [29], while existing
BCS mechanically divides the image by a fixed scale, which leads
to the mixing of information with different content characteristics
and affects the performance of CS sampling. To solve this problem,
we propose a scale-aware sampling strategy, which can efficiently
distinguish the image content according to the RD prior of the
image. In this subsection, we will describe both the calculation of
the RD prior and RD-based scale-aware sampling.
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Figure 2: The correlation between | |Δ𝑥 | | and | |Δ𝑦 | | at different sampling
rates (left) and the statistical diagram of | |Δ𝑥 | | and | |Δ𝑦 | | at 𝑅 = 0.25 (right).

Calculation of the RD prior: During the actual sampling pro-
cess of CS, we cannot fully acquire the input image in some cases
[5, 29]. In order to obtain the content properties of the original im-
age, some ideal calculation methods, such as [80, 88], which employ
multiple detectors to compute the salience directly on the original
image. Different from these methods, inspired by [29, 53], we pro-
pose a distortion estimation method in the measurement domain
that only uses the sampling matrix to perfom linear operations on
the measurements, which can be defined as:{

| |Δ𝑦𝑖𝐵𝑖 | |= | |Φ𝑅𝑏𝑠 ,𝐵𝑖Δ𝑥
𝐵𝑖
𝑖

| | = | |Φ𝑅𝑏𝑠 ,𝐵𝑖𝑥
𝐵𝑖
𝑖

− Φ𝑅𝑏𝑠 ,𝐵𝑖 �̃�
𝐵𝑖
𝑖

| |
= | |𝑦𝑖 − (𝑀′

𝑅𝑏𝑠 ,𝐵𝑖
⊙ Φ1.0,𝐵𝑖 )�̃�

𝐵𝑖
𝑖

| |
(4)

where �̃�𝐵𝑖
𝑖

is the initial reconstruction recovered from the measure-
ments 𝑦𝑖 of the image block 𝑥𝐵𝑖

𝑖
(see Section 3.3 for details), Φ𝑅𝑏𝑠 ,𝐵𝑖

is a submatrix truncated from Φ1.0,𝐵𝑖 with a matrix mask 𝑀′
𝑅𝑏𝑠 ,𝐵𝑖

, 𝑅𝑏𝑠
is the base sampling rate, which is usually a portion of 𝑅. Δ𝑦𝑖 𝐵𝑖 is
the estimation of the real reconstruction distortion of the image
block 𝑥𝐵𝑖

𝑖
, and | | · | | is the absolute operator. It is worth noting that

the sampling of S2-CSNet consists of two parts, the base sampling
for Eq. (4) and the scale-aware sampling for Eq. (2). In Eq. (2), if
a mask 𝑀 ′ is used to generate the sub-matrix Φ𝑠𝑖 ,𝐵𝑖 for sampling,
S2-CSNet will require two times of sampling operations. Instead, Eq.
(2) only requires one sampling operation, and the measurements
are used for both the base sampling and scale-aware sampling. To
verify the accuracy of predicting | |Δ𝑥 | | from | |Δ𝑦 | |, Fig. 2 shows
the correlation [26, 28] and the statistical diagram of these two
variables. It can be observed that they are approximately linearly
correlated, i.e., the bigger the | |Δ𝑥 | |, the bigger the corresponding
| |Δ𝑦 | |. Therefore, it is plausible to deduce | |Δ𝑥 | | from | |Δ𝑦 | |.

Scale-aware sampling: As shown in Fig. 1, scale-aware scal-
able sampling consists of two steps: scale-aware partitioning and
adaptive block sampling. Given an image 𝑋 ∈RH×W, and a group
of sampling scales B={𝐵1,𝐵2, · · · ,𝐵max } with 𝐵1<𝐵2< · · ·<𝐵max, we first
compute the RD for each sampling scale 𝐵𝑖 based on Eq. (4):

R𝐵𝑖 = Ψ( | |𝑦 − (𝑀 ′
𝑅𝑏𝑠 ,𝐵𝑖

⊙ Φ1.0,𝐵𝑖 )�̃� | |) (5)

where Ψ is a repeat operation that expands the computed distortion
value for each block into a two-dimensional matrix R𝐵𝑖 ∈R

(H×W) by
filling in the distortion values at the corresponding locations of
𝑋 . Then, the image 𝑋 is uniformly divided into multiple blocks
{𝑥𝐵max

1 ,𝑥
𝐵max
2 , · · · ,𝑥𝐵max

𝐾
} based on the largest scale 𝐵max. In the aggre-

gation process, a recursive comparison function Γ will compare
the distortion values of different scales in each sub-block 𝑥𝐵max

𝑖
and

return the scale 𝐵𝑠 with the minimum distortion:

𝐵𝑠 = Γ(𝑥𝐵max
𝑖

,R𝐵1 ,R𝐵2 , · · · ,R𝐵max ) (6)
Specifically, Γ compares all division schemes under sub-block 𝑥𝐵max

𝑖
,

i.e., 𝑥𝐵max
𝑖

is partitioned into multiple sub-scales from 𝐵1 to 𝐵max−1.
Next, Γ chooses the scale 𝐵𝑠 in B with the minimum distortion, i.e.,

| |Δ𝑦𝐵𝑠
𝑖

| |< | |Δ𝑦𝐵𝑗
𝑖

| |, where 𝐵 𝑗 is an arbitrary scale and 𝐵 𝑗 ≠ 𝐵𝑠 . Taking
the scale B={𝐵1=16,𝐵max=32} as an example, the image is uniformly
divided into 32×32 sub-blocks according to the maximum scale 32.
For each sub-block 𝑥𝐵max

𝑖
, we compare whether to further divide it

into 4 sub-blocks in a 16×16 manner or to keep the size of 32×32 to
minimize the RD. The RD has been calculated using Eq. (4), and is
recorded in the RD maps R𝐵1 and R𝐵max . Therefore, it is sufficient
to extract the distortion values at the position of 𝑥𝐵max

𝑖
from the R𝐵𝑖

of the corresponding scale. Then, Γ will compare the distortions
under all division modes (i.e., 𝐵1 and 𝐵max) of 𝑥𝐵max

𝑖
and choose

a scale with the smallest distortion as the optimal division scale.
Finally, we mark the corresponding distortion value to the position
of 𝑥𝐵max

𝑖
in RD map R, and perform the CS sampling 𝑦𝑖=Φ𝑠𝑖 ,𝐵𝑠 𝑥𝐵max

𝑖
.

3.3 Reconstruction with Dual Spatial Attention
1) Initial reconstruction. For the sampled measurements 𝑦𝑖 ∈R𝑚𝑖×1

of an image block 𝑥𝐵𝑖
𝑖
, there are usually two stages of reconstruc-

tion, including an initial reconstruction and a deep reconstruction
[5, 58, 88]. Specifically, 𝑦𝑖 will first be upsampled (i.e., Φ⊤

𝑠𝑖 ,𝐵𝑖
𝑦𝑖 ) to

produce a 𝐵𝑖 2×1 vector. Next, a reshape operation (Υ) is used to
transform all vectors into 𝐵𝑖×𝐵𝑖 tensor blocks (i.e., �̃�𝐵𝑖𝑖 ). Fig. 1 illus-
trates the flow of the detailed initial reconstruction for �̃�𝐵𝑖

𝑖
, which

can be summarized as �̃�𝐵𝑖
𝑖

=Υ (Φ⊤
𝑠𝑖 ,𝐵𝑖

𝑦𝑖 ). At last, all tensor blocks are
concatenated to output the complete reconstructed image �̃� .

2) Dual spatial attention-based deep reconstruction. Since �̃� is
a coarse reconstruction, a dual spatial attention-based hierarchi-
cal network is proposed to finely optimize �̃� . The reconstruction
process for �̃� consists of two parts of inputs, one is the basis mea-
surements 𝑦𝑏𝑠 used to compute the RD (see Section 3.2.2), and the
other is the remaining measurements 𝑦𝑒𝑠 from the adaptive sam-
pling. The overall measurements 𝑦 are composed of 𝑦𝑏𝑠 and 𝑦𝑒𝑠 ,
and with the exploitation of RD information [5], the reconstruction
process ℏ(𝑦) can be represented as:

ℏ(𝑦) = 𝐷 [𝐼 (𝑦𝑒𝑠 ∪ 𝑦𝑏𝑠 ) | 𝜀 (R)] (7)

where 𝜀 is a feature extractor consisting of several convolutions and
residual blocks [5], | is the operation that concatenates 𝐼 (·) and 𝜀 (·),
and ∪ denotes the union of sets. Fig. 3 illustrates the overall frame-
work of the deep reconstruction network, which involves a series
of horizontal and vertical branches to construct a hierarchical grid
architecture [7, 17, 29]. Specifically, the horizontal branch consists
of multiple deep reconstruction blocks (DRBs), which are responsi-
ble for feature extraction and local and global affinity mining in a
certain scale space. The vertical branch is composed of upsampling
and downsampling submodules, which are used to integrate the
intermediate feature maps of different horizontal branches. For a
DRB positioned in the 𝑖-th row and 𝑗-th column, its output feature
map ⌣

𝑥 𝑖, 𝑗 can be summarized as the following two equations:
⌣
𝑥 𝑖,𝑗 = Θ𝐷𝑅𝐵𝑖,𝑗 [⌣𝑥 𝑖,𝑗−1 ⊕ Θ𝐷𝑆𝑖−1, 𝑗−1 (

⌣
𝑥 𝑖−1, 𝑗−1, 𝜃

𝐷𝑆
𝑖−1, 𝑗−1), 𝜃𝐷𝑅𝐵𝑖,𝑗 ] (8)

⌣
𝑥 𝑖,𝑗 = Θ𝐷𝑅𝐵𝑖,𝑗 [⌣𝑥 𝑖,𝑗−1 ⊕ Θ𝑈𝑆𝑖+1, 𝑗−1 (

⌣
𝑥 𝑖+1, 𝑗−1, 𝜃

𝑈𝑆
𝑖+1, 𝑗−1), 𝜃𝐷𝑅𝐵𝑖,𝑗 ] (9)

where Θ𝐷𝑅𝐵 , Θ𝐷𝑆 and Θ𝑈𝑆 denote the mapping operations of DRB,
downsampling submodule and upsampling submodule, respectively,
and 𝜃 is the trainable parameter. It should be noted that Eq. (8)
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Figure 3: Details of the deep reconstruction network structure, which is a grid architecture consisting of multiple horizontal and vertical branches. Specifically,
the horizontal branch contains several cascaded DRBs, and each DRB consists of FEM (including a few residual blocks (RB)) and DSAM (including LSAM and
GSAM), which are responsible for feature extraction and local global attention modeling, respectively. The DSAM uses the spatial attention mechanism to fuse the
local features extracted by LFEB and the global features extracted by GFEB to enhance the reconstruction ability. For vertical branches, a number of downsampling
and upsampling sub-branches are employed to boost the interaction of the horizontal branches. The configuration of each sub-module is shown as (a)-(g).

mainly integrates downsampled features and Eq. (9) mainly inte-
grates upsampled features, e.g. they can calculate the outputs ⌣

𝑥 1,1
and ⌣

𝑥 1,3 of the DRBs, respectively.
In each DRB, we design two main parts, one is the feature extrac-

tion module (FEM), which is composed of several residual blocks.
The other is the dual spatial attention module (DSAM), which is em-
ployed to model the local features 𝐹 𝑙 𝑓

𝑖,𝑗
extracted by the local feature

extraction block (LFEB) and the global prior features 𝐹𝑔𝑓
𝑖,𝑗

extracted
by the global feature extraction block (GFEB). DSAM contains lo-
cal spatial attention module (LSAM) and global spatial attention
module (GSAM), and they use spatial attention (SA) mechanism
to compute the weights of 𝐹 𝑙 𝑓

𝑖,𝑗
and 𝐹𝑔𝑓

𝑖,𝑗
respectively to deeply fuse

local and global features. Specifically, for the inputs Q and K of SA,
a 3×3 convolution is first used to extract the feature to generate
Q’∈RH×W×(C/2) and K’∈RH×W×(C/2) . To get the input tokens {Q̃,K̃,Ṽ}, a
global pooling is applied to reduce the dimensionality of Q’ to get
Q̃. For K’, it is flattened into the dimension of HW×(C/2) to obtain K̃.
In addition, the input V∈RH×W×C is left unchanged to generate Ṽ.

Next, we use the softmax function to reweight Q̃⊤ and conduct
matrix multiplication with K̃ to generate the transposed attention
map𝑊𝑖,𝑗 ∈RHW×1, i.e.,𝑊𝑖,𝑗=K̃⊗Softmax1 (Q̃⊤). Here,𝑊𝑖,𝑗 actually repre-
sents the weight of the feature Ṽ, which is calculated from the query
feature map Q and the key feature map K. To match the dimen-
sion of Ṽ, we reshape𝑊𝑖,𝑗 to size H×W×1 and use Softmax2D (i.e.,
Softmax2 in Fig. 3) to generate the normalized weights �̃�𝑖,𝑗 . The
weighted aggregation of �̃�𝑖,𝑗 and Ṽ can be computed as:

ASA (Q,K,V) = Softmax2 (Υ(𝑊𝑖, 𝑗 )) ⊙ Ṽ (10)

In LSAM (i.e., (g.1) in Fig. 3) and GSAM (i.e., (g.2) in Fig. 3), the
inputs Q, K and V of SA can be respectively defined as:

V𝐿𝐹𝑖,𝑗 ,Q
𝐿𝐹
𝑖,𝑗 ,K

𝐿𝐹
𝑖,𝑗 = 𝐹

𝑙 𝑓

𝑖,𝑗
, 𝐹
𝑙 𝑓

𝑖,𝑗
, (𝐹 𝑙 𝑓

𝑖,𝑗
+ 𝐹𝑔𝑓

𝑖,𝑗
) (11)

V𝐺𝐹𝑖,𝑗 ,Q
𝐺𝐹
𝑖,𝑗 ,K

𝐺𝐹
𝑖,𝑗 = 𝐹

𝑔𝑓

𝑖,𝑗
, 𝐹
𝑔𝑓

𝑖,𝑗
, (𝐹 𝑙 𝑓

𝑖,𝑗
+ 𝐹𝑔𝑓

𝑖,𝑗
) (12)

where the feature map K is a rough fusion of 𝐹 𝑙 𝑓
𝑖,𝑗

and 𝐹𝑔𝑓
𝑖,𝑗
. At last,

the output feature 𝐹𝑜𝑢𝑡
𝑖,𝑗

of DSAM can be represented as:{
𝐹𝑜𝑢𝑡
𝑖,𝑗

= �̃�
𝑙 𝑓

𝑖,𝑗
⊙ 𝐹 𝑙 𝑓

𝑖,𝑗
+�̃� 𝑔𝑓

𝑖,𝑗
⊙ 𝐹𝑔𝑓

𝑖,𝑗

= ASA (𝑄𝐿𝐹
𝑖,𝑗
, 𝐾𝐿𝐹
𝑖,𝑗
,𝑉 𝐿𝐹
𝑖,𝑗

) + ASA (𝑄𝐺𝐹
𝑖,𝑗
, 𝐾𝐺𝐹
𝑖,𝑗

,𝑉𝐺𝐹
𝑖,𝑗

)
(13)

where 𝐹 𝑙 𝑓
𝑖,𝑗

=�̃�
𝑙 𝑓

𝑖,𝑗
⊙𝐹 𝑙 𝑓

𝑖,𝑗
and 𝐹𝑔𝑓

𝑖,𝑗
=�̃�

𝑔𝑓

𝑖,𝑗
⊙𝐹𝑔𝑓

𝑖,𝑗
are the outputs of LSAM and

GSAM, respectively.

3.4 Loss Function
In the training of S2-CSNet, the learnable parameters include the
sampling matrix Φ1.0,B and the reconstruction network. Given the
training set {𝑋 𝑗 }

𝑁𝑝

𝑗=1, we employ the following ℓ2-loss like [58] to
train S2-CSNet, which can be defined as:

L(Φ1.0,B, 𝜃𝑑 ) =
1
𝑁𝑝

∑︁𝑁𝑝

𝑗=1

∑︁𝐵max
𝐵𝑖=𝐵1

| |F (Φ𝑠𝑖 ,𝐵𝑖𝑋 𝑗 , 𝑛 𝑗 , 𝜃𝑑 ) −𝑋 𝑗 | |
2
2 (14)

where 𝜃𝑑 is the parameter of the reconstruction network, 𝑁𝑝 is
the number of training images, 𝑛 𝑗 is a non-negative integer, and
the output of F( ·) is the reconstructed image �̂� 𝑗 . In the input of
F, 𝑛 𝑗 is a randomly generated integer from {1,2, · · · ,Q′ }, which is
utilized to define the number of measurements, i.e., 𝑠 𝑗=𝑛 𝑗 /Q′, where
Q′=𝑙𝐵max2. In each training epoch, a random 𝑛 𝑗 is selected to train
the ability of the sampling matrix to cope with arbitrary sampling
rates [5]. Furthermore, during the optimization process, Eq. (14)
ensures the training of sampling matrices for different scales in
Φ1.0,B by partitioning the image into different scales.

4 Experiments and Analysis
4.1 Implementation and Training Details
In block-based CS methods [5, 58, 61, 80], the block size is usually
set to 16 or 32. Following these works, in the scale-aware sampling
of the proposed S2-CSNet, we set the number of sampled scales
to 2, i.e., B = {16, 32}. We implement S2-CSNet with PyTorch on
two NVIDIA RTX 3060 GPUs, employ Adam [32] optimizer with a
batch size of 20. S2-CSNet is trained with a learning rate of 1e-4 for
300 epochs, and as the number of epoch increases, the learning rate

Figure 4: The relationship between hyperparameters (𝑁𝐵 , 𝑁𝐷 ) and the
reconstruction quality at different sampling rates. Left: 𝑅 = 0.1;Right: 𝑅 = 0.25.
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Figure 5: Visual comparisons of our S2-CSNet and other representative image CS networks on recovering an image from Set11 [34] in the case of CS ratio 𝑅 = 0.10.

is multiplied by a factor of 0.5 every 50 epochs. The training set is
the same as [5], which contains 25600 randomly cropped 128×128
image patches from T91 [9] and Train400 [81]. For testing, we
utilize two widely used datasets: Set11 [34] and CBSD68 [46]. The
sampling rate allocation is similar to [88], supposing that 𝜐 denotes
the amount of distortion information embodied in image 𝑋 . One
has 𝜐 = 1

𝑛

∑
𝑗 ∈R 𝑙 𝑗 , where 𝑛 is the total number of pixels on image

𝑋 and 𝑙 𝑗 is the distortion value of location 𝑗 on RDmap R. For block
𝑥𝑖 of image 𝑋 , its sampling rate can be calculated as 𝑠𝑖 = 𝜐𝑖

𝜐 × 𝑅,
where 𝜐𝑖 represents the distortion information of 𝑥𝑖 , and 𝑅 is the
given sampling rate. In addition, two Swin Transformer Blocks
[41] are used in the GFEB of the deep reconstruction network, and
the number of multi-head self-attention block is set to 4, the shift
distance is set to 4 and the window size is set to 8.

4.2 Exploration of Model Hyperparameters
1) Exploring the architecture of deep reconstruction network in

Fig. 3: We first explore the setting of the number of horizontal
branches (𝑁𝐵 ) and the number of DRBs (𝑁𝐷 ) on each horizontal
branch. Fig. 4 reveals the relationship between these two hyper-
parameters and the image reconstruction quality, from which it
can be seen that as these two hyperparameters increase, the recon-
struction quality becomes less and less sensitive to them. Therefore,
we set 𝑁𝐵 = 4 and 𝑁𝐷 = 4. Correspondingly, the number of sets
of vertical branches is set to 5, including 3 sets of downsampling
branches and 2 sets of upsampling branches as displayed in Fig. 3.
To simplify the model and reduce complexity, we apply DSAM only
in the first horizontal branch. On this branch, each DRB contains
a set of FEM and DSAM, with the number of RBs in FEM set to 6.
The DRBs of the remaining horizontal branches consist of RBs, and
the number of RBs contained in the DRBs of the different branches
is set to 2, 3 and 4, respectively. In addition, we set the number of
input and output channels of DRB to 64.

2) Setting of the base sampling rate to acquire the RD: Scale-aware
partitioning relies on the RD prior, in Eq. (4), we set a small base
sampling rate 𝑅𝑏𝑠 to compute the reconstruction distortion of the
image. 𝑅𝑏𝑠 is part of the overall sampling rate 𝑅, i.e., 𝑅𝑏𝑠 = 𝛾 × 𝑅.
To test the image reconstruction quality under different proportion

Figure 6: Average PSNR curve on Set11 and CBSD68 with CS sampling rates
𝑅 ∈ {0.01, 0.04, 0.10, 0.25, 0.30, 0.40, 0.50}, which performs best at 𝛾 =0.15.

coefficients 𝛾 , Fig. 6 shows the average PSNR curve on Set11 and
CBSD68 at seven sampling rates. It can be observed that when
𝛾 approaches 0 or 1, S2-CSNet degrades into a uniform sampling
version due to the lack of prior computation or sufficient space
for adaptive sampling rate allocation. Therefore, we set 𝛾 = 0.15,
where it reaches the peak of reconstruction quality.

3) Analysis of the learned universal sampling matrix Φ1.0,B: Like
[5, 29], we analyze the properties of the learned sampling matrix
from three aspects, including: orthogonality, coefficient distribu-
tion, and frequency view. For orthogonality: It can be seen from
Fig. 8 that the property ΦΦ⊤ = 𝜇I is approximately satisfied for
both 𝐵=16 and 𝐵=32 sampling matrices without additional con-
straints, where I is the identity matrix. For coefficient distribution:
We show the histograms of the learned matrices and Gaussian ran-
dom matrices in Fig. 8. It can be observed that the learned matrices
exhibit a wider and sparser distribution. For the frequency view:
we reshape one row of the sampling matrix to 16 × 16 and 32 × 32,
respectively, and present their spatial and frequency domain views.
Fig. 9 shows the views of the first ten rows of the learned sampling
matrices, indicating that they exhibit structured and anisotropic
spatial patterns different from traditional manually defined filters.
In addition, the rows at the front of the sampling matrix have nar-
rower frequencies, which implies that they pay more attention to
low-frequency information at low sampling rates.

4.3 Comparisons with Other Methods
1) Overall Comparisons: In Table 3, we compare S2-CSNet with

thirteen representative state-of-the-art CS algorithms. Here, we
categorize these methods into two groups: CS with adaptive CS
ratio allocation (ACRA) and CS with fixed CS ratio allocation. For
CS based on ACRA, such as BCSNet [88], AMSNet [80], and CASNet
[5], they adaptively allocate sampling rates based on the content
of the image. However, methods like [88] and [80] require the
original image to compute prior features to guide the allocation
of sampling rates. Furthermore, BCSNet [88] only implements a
limited number of sampling rate allocations, lacking scalability.

(a) (b)
Figure 7: Visualization of two sets of scale-aware sampling (right) and
scale-variable adaptive sampling rate allocation (shown as the heatmap in the
middle) with the corresponding original image (left).
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Table 1: Average PSNR(dB) and SSIM comparisons of recent deep network-based CS algorithms on the Set11 dataset. The best performances
are highlighted in bold and the second best performances are indicated by underlining.

Dataset Algorithms
Rate=0.01 Rate=0.04 Rate=0.10 Rate=0.25 Rate=0.30 Rate=0.40 Rate=0.50 Avg.

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set11 [34]

ISTA-Net+ (CVPR2018) [78] 17.48 0.4479 21.32 0.6037 26.64 0.8087 32.59 0.9254 33.68 0.9352 35.97 0.9544 38.11 0.9707 29.40 0.8066
SCSNet(CVPR2019) [57] 21.04 0.5562 24.29 0.7589 28.52 0.8616 33.43 0.9373 34.64 0.9511 36.92 0.9666 39.01 0.9769 31.12 0.8584
DPA-Net(TIP2020) [63] 18.05 0.5011 23.50 0.7205 26.99 0.8354 31.74 0.9238 33.35 0.9425 35.21 0.9580 36.80 0.9685 29.38 0.8357
CSNet+ (TIP2020) [58] 20.67 0.5411 24.83 0.7480 28.34 0.8580 33.34 0.9387 34.27 0.9492 36.44 0.9690 38.47 0.9796 30.91 0.8548

OPINE-Net+ (JSTSP2020) [79] 20.15 0.5340 25.69 0.7920 29.81 0.8904 34.86 0.9509 35.79 0.9541 37.96 0.9633 40.19 0.9800 32.06 0.8664
BCSNet(TMM2020) [88] 20.86 0.5510 24.90 0.7531 29.42 0.8673 34.20 0.9408 35.63 0.9495 36.68 0.9667 39.58 0.9734 31.61 0.8574
AMP-Net(TIP2021) [84] 20.55 0.5638 25.14 0.7701 29.42 0.8782 34.60 0.9469 35.91 0.9576 38.25 0.9714 40.26 0.9786 32.02 0.8667
COAST(TIP2021) [76] - - - - - - - - 30.03 0.8946 - - - - 36.35 0.9618 - - - - 40.32 0.9804 - - - -

AMSNet(TMM2022) [80] 21.51 0.5772 26.32 0.7951 30.45 0.8823 35.76 0.9426 37.15 0.9583 39.26 0.9602 40.95 0.9734 33.06 0.8699
CASNet(TIP2022) [5] 21.97 0.6140 26.41 0.8153 30.36 0.9014 35.67 0.9591 36.92 0.9662 39.04 0.9760 40.93 0.9826 33.04 0.8878

DPC-DUN(TIP2023) [60] 18.12 0.4785 24.39 0.7501 29.40 0.8798 34.69 0.9482 35.88 0.9570 37.98 0.9694 39.84 0.9778 31.47 0.8515
CAT-Net(TMM2023) [33] 21.29 0.5782 26.38 0.8060 30.69 0.9022 35.85 0.9588 37.12 0.9668 39.32 0.9766 41.28 0.9834 33.13 0.8817
OCTUF(CVPR2023) [61] - - - - - - - - 30.70 0.9030 36.10 0.9604 37.21 0.9673 39.41 0.9773 41.34 0.9838 - - - -

S2-CSNet (Ours) 22.57 0.6183 26.95 0.8186 30.86 0.9045 36.21 0.9614 37.33 0.9681 39.47 0.9785 41.31 0.9846 33.53 0.8906

CASNet [5] employs a universal sampling matrix to organically
achieve both model scalability and ACRA. Overall, there is currently
no algorithm that considers scale-aware adaptive sampling.

2) Comparisons of Reconstruction Quality: Visual quality is an
important measure of the algorithm [22–25, 38, 47–49]. In Table
1 and Table 2, we present the comparison of different image CS
methods on the Set11 and CBSD68 datasets in terms of PSNR and
SSIM metrics. Compared with representative non-ACRA methods
(CSNet+ [58], AMP-Net [84] and CAT-Net [33]), a) on the dataset
Set11, the proposed S2-CSNet achieves on average 2.62dB, 1.51dB,
0.40dB and 0.0358, 0.0239, 0.0089 gains in PSNR and SSIM compared
against these three methods at the given sampling rates. b) On
the dataset CBSD68, our proposed algorithm achieves on average
0.76dB, 0.69dB, 0.51dB and 0.0265, 0.0303, 0.0123 gains in PSNR and
SSIM under different sampling rates. Compared with representative
ACRA methods (AMSNet [80] and CASNet [5]), a) On the dataset
Set11, the proposed S2-CSNet achieves on average 0.47dB, 0.49dB
and 0.0207, 0.0028 gains in PSNR and SSIM compared with these
ACRA methods under the given sampling rates. b) On the dataset
CBSD68, our proposed method achieves on average 0.16dB, 0.10dB
and 0.0099, 0.0011 gains in PSNR and SSIM in terms of different
sampling rates. The visual comparisons in Fig. 5 shows that our
S2-CSNet is able to recover high-quality results with more details.

3) Comparisons of Complexity: The computation cost and model
parameters are important in many practical applications [36, 64, 65].
To verify the efficiency of the proposed S2-CSNet, in Table 3, we

Figure 8: Comparison of the learned sampling matrices at two scales in
terms of spatial view (left), coefficient distribution (right), and orthogonality
(middle). The first row represents the sampling matrix with scale 𝐵 = 16, while
the second row represents the sampling matrix with scale 𝐵 = 32.

compare the number of parameters of different CS methods and the
speed of sampling and reconstructing a 256×256 image at sampling
rates 𝑅 ∈ {0.01, 0.04, 0.10, 0.25, 0.30, 0.40, 0.50} on a 1080Ti GPU.
Due to the additional prior computation and adaptive sampling rate
allocation required by ACRA-based CS (e.g., AMSNet [80], CASNet
[5]), their speed is generally slower than non-ACRA-based CS (e.g.,
CSNet+ [58], AMP-Net [84]). Compared with recent ACRA-based
methods (AMSNet [80] and CASNet [5]), the proposed S2-CSNet
basically maintains a similar complexity with them. Specifically,
S2-CSNet has fewer parameters than CASNet [5] but higher than
AMSNet [80]. In terms of running speed, S2-CSNet is faster than
AMSNet [80] and CASNet [5].

4.4 Ablation Studies
1) Effect of Scale-Aware Adaptive Partitioning (SAP): Fig. 7 dis-

plays some examples of scale-aware sampling, and it can be seen
that the proposed S2-CSNet can effectively distinguish image con-
tents and achieve finer sampling rate allocation. Specifically, we
observe that S2-CSNet tends to use large-scale blocks for sampling
in content-consistent regions such as the background, which will
allow the convolution kernel to obtain a broader field of view in
convolution-based sampling. In regions with complex content such
as boundaries, small sampling scales can separate different content
features more efficiently. Furthermore, in Fig. 9, we note that the
frequency domain distribution of the sampling matrix with scale
16× 16 is wider than that of the sampling matrix with scale 32× 32,
which suggests that the sampling matrix with scale 16 × 16 is more
adept at processing high-frequency information. This is consistent

1 2 3 4 5 6 7 8 9 10

Figure 9: Visualization of first ten rows (1-10) selected from the learned
sampling matrix, where the top two rows denote the matrix with scale 𝐵 = 16
and the bottom two rows represent the matrix with scale 𝐵 = 32. 1st and 3rd
rows: Spatial view; 2nd and 4th rows: Frequency view.
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Table 2: Average PSNR(dB) and SSIM comparisons of recent deep network-based CS algorithms on the CBSD68 dataset. The best performances
are highlighted in bold and the second best performances are indicated by underlining.

Dataset Algorithms
Rate=0.01 Rate=0.04 Rate=0.10 Rate=0.25 Rate=0.30 Rate=0.40 Rate=0.50 Avg.

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CBSD68 [46]

ISTA-Net+ (CVPR2018) [78] 19.14 0.4158 22.17 0.5486 25.32 0.7022 29.36 0.8525 30.25 0.8781 32.30 0.9195 34.04 0.9424 27.51 0.7513
SCSNet(CVPR2019) [57] 22.03 0.5126 25.37 0.6623 28.02 0.8042 31.15 0.9058 32.64 0.9237 35.03 0.9214 36.27 0.9593 30.07 0.8128
DPA-Net(TIP2020) [63] 20.25 0.4267 23.50 0.6205 25.47 0.7372 29.01 0.8595 29.73 0.8827 31.17 0.9156 32.55 0.9386 27.38 0.7830
CSNet+ (TIP2020) [58] 22.21 0.5100 25.43 0.6706 27.91 0.7938 31.12 0.9060 32.20 0.9220 35.01 0.9258 36.76 0.9638 30.09 0.8131

OPINE-Net+ (JSTSP2020) [79] 22.11 0.5140 25.20 0.6825 27.82 0.8045 31.51 0.9061 32.35 0.9215 34.95 0.9261 36.35 0.9660 30.04 0.8172
BCSNet(TMM2020) [88] 21.95 0.5119 25.44 0.6597 27.98 0.8015 31.29 0.8846 32.70 0.9301 35.14 0.9397 36.85 0.9682 30.19 0.8137
AMP-Net(TIP2021) [84] 22.18 0.5207 25.47 0.6534 27.79 0.7853 31.37 0.8749 32.68 0.9291 35.06 0.9395 36.59 0.9620 30.16 0.8093
COAST(TIP2021) [76] - - - - - - - - 27.92 0.8061 - - - - 32.66 0.9256 - - - - 36.43 0.9663 - - - -

AMSNet(TMM2022) [80] 22.43 0.5473 25.68 0.6921 28.36 0.8054 32.23 0.9124 33.37 0.9302 35.38 0.9536 37.40 0.9668 30.69 0.8297
CASNet(TIP2022) [5] 22.49 0.5520 25.73 0.7079 28.41 0.8231 32.31 0.9196 33.40 0.9359 35.43 0.9581 37.48 0.9728 30.75 0.8385

DPC-DUN(TIP2023) [60] 20.08 0.4682 23.79 0.6220 26.72 0.7558 30.59 0.8797 31.63 0.9018 33.55 0.9340 35.44 0.9557 28.83 0.7882
CAT-Net(TMM2023) [33] 22.28 0.5289 25.29 0.6888 27.95 0.8077 31.88 0.9115 32.98 0.9300 35.01 0.9542 37.02 0.9701 30.34 0.8273
OCTUF(CVPR2023) [61] - - - - - - - - 28.28 0.8177 32.24 0.9185 33.32 0.9348 35.35 0.9578 37.41 0.9729 - - - -

S2-CSNet (Ours) 22.84 0.5568 26.18 0.7118 28.65 0.8265 32.56 0.9224 33.54 0.9397 35.59 0.9595 37.59 0.9739 30.85 0.8396

with the example in Fig. 7, i.e., in high-frequency regions with
complex content such as texture, S2-CSNet will use small-scale
sampling to achieve better reconstruction results. In contrast, in
regions with simple and consistent content, S2-CSNet prefers to use
large-scale sampling to reconstruct low-frequency information. In
Table 4, we present the reconstruction results of S2-CSNet without
the SAP module, including fixed-scale sampling with 𝐵 = 16 (1st
row) and 𝐵=32 (2nd row). It can be seen that SAP can bring average
PSNR gains of 0.33dB and 0.39dB for S2-CSNet compared with the
above two fixed-scale sampling.

2) Effect of Adaptive CS Ratio Allocation (ACRA): As one of the
main ideas of S2-CSNet, the allocation scheme based on reconstruc-
tion distortion can perform adaptive CS ratio allocation for blocks
of different scales. Compared with the fixed CS ratio allocation
scheme, ACRA can more effectively integrate the allocation of the
sampling ratio into the content characteristics of the image and
bring better reconstruction quality. The effectiveness of ACRA is
also verified in Table 4, from which it can be seen that the aver-
age PSNR under fixed CS ratio sampling is 0.44dB lower than the
sampling under the ACRA strategy.

3) Effect of DSAM in Deep Reconstruction Network: Compared
with the native multi-scale reconstruction network [7, 29], the
introduction of DSAM aims to enhance the mining of local and

Table 3: Comparisons of different deep network-based CS methods
in terms of model properties, overall parameters of seven CS ratios,
and average running speed for reconstructing a 256 × 256 image.

Algorithm ACRA1 SAP2 FGS3 WAGTI4 #Param. (M)
/Time (ms)

ISTA-Net+ (CVPR2018) [78] ✘ ✘ ✘ ✔ 2.38/35.79
SCSNet(CVPR2019) [57] ✘ ✘ ✔ ✔ 0.80/62.54
DPA-Net(TIP2020) [63] ✘ ✘ ✘ ✔ 65.17/70.31
BCSNet(TMM2020) [88] ✔ ✘ ✘ ✘ 1.64/117.25
CSNet+ (TIP2020) [58] ✘ ✘ ✘ ✔ 4.35/41.23

OPINE-Net+ (JSTSP2020) [79] ✘ ✘ ✘ ✔ 4.35/48.22
AMP-Net(TIP2021) [84] ✘ ✘ ✘ ✔ 6.08/58.34
COAST(TIP2021) [76] ✘ ✘ ✔ ✔ 1.12/76.25

AMSNet(TMM2022) [80] ✔ ✘ ✔ ✘ 2.43/145.13
CASNet(TIP2022) [5] ✔ ✘ ✔ ✔ 16.90/128.97

DPC-DUN(TIP2023) [60] ✘ ✘ ✘ ✔ 11.44/93.38
CAT-Net(TMM2023) [33] ✘ ✘ ✘ ✔ 6.53/69.62
OCTUF(CVPR2023) [61] ✘ ✘ ✘ ✔ 3.74/102.57

S2-CSNet (Ours) ✔ ✔ ✔ ✔ 11.59/108.37
1 Adaptive CS Ratio Allocation (ACRA) 2 Scale-Aware Adaptive Partitioning (SAP)
3 Fine Granular Scalability (FGS) 4 Without Access to Ground Truth Image (WAGTI)

Table 4: The ablation results (PSNR) of different functional submod-
ules of S2-CSNet at different sampling rates on dataset Set11.
SAP ACRA DSAM RD Map Rate=0.01 Rate=0.10 Rate=0.25 Avg.

✘1 ✔ ✔ ✔ 22.25 30.55 35.85 29.55
✘2 ✔ ✔ ✔ 22.18 30.49 35.81 29.49
✔ ✘ ✔ ✔ 22.21 30.43 35.69 29.44
✔ ✔ ✘ ✔ 22.31 30.63 35.92 29.62
✔ ✔ ✔ ✘ 22.43 30.71 36.06 29.73
✔ ✔ ✔ ✔ 22.57 30.86 36.21 29.88

1 B = 16 2 B = 32

global features of the deep reconstruction network. In Table 4, we
compare the native multi-scale network (i.e., composed of multiple
sets of cascaded residual blocks) with our DSAM-based multi-scale
network. It can be observed that DSAM can bring about 0.26dB
gain compared to the non-DSAM strategy.

4) Effect of RD Map R: In the process of deep reconstruction, we
introduce the reconstruction distortion (RD) map (see Fig. 3) to
perceive the distribution of distortion information. The RD map
contains the reconstruction distortion of each block, which is used
to guide the CS ratio allocation of S2-CSNet. As shown in Table 4,
the introduction of RD map results in an average PSNR gain of
0.15dB compared to inputting only the initial reconstructed image
in the deep reconstruction.

5 Conclusion
In this paper, by analyzing the drawbacks of block-based sampling,
a scale-aware scalable network (dubbed S2-CSNet) for image com-
pressive sensing is proposed, which achieves scale-variable adaptive
sampling and fine granular scalability without direct access to the
original image. Specifically, to adapt to multi-scale adaptive sam-
pling, a structural sampling matrix with a predefined order is pre-
sented, which can sample multi-scale image blocks with arbitrary
sampling rates. Then, we design a distortion-guided scale-aware
scheme, which is used to evaluate the reconstruction distortion
under different scale samplings and select the optimal scale for
sampling. Furthermore, to reconstruct the measurements with high
quality, a multi-scale hierarchical sub-network is developed, in
which a dual spatial attention is embedded to mine the local and
global affinities between dense feature representations. Extensive
experiments on both objective metrics and subjective visual quali-
ties demonstrate that the proposed S2-CSNet outperforms existing
state-of-the-art CS methods by large margins.
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